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INVESTIGATION OF OCULAR ARTEFACTS IN THE HUMAN EEG 
AND THEIR REMOVAL BX -- A MICROPROCESSOR-BASED INSTRUMENT 

E.C. IFEACHOR 

ABSTRACT 

The Electroencephalogram (EEG) is widely used in clinical 
and psychological situations, but it is often seriously 
obscured by ocular artefacts (OAs) resulting from 
movements in the ocular system (eyeball,eyelids etc). 'The 
work described in this thesis is concerned wi:th the 
problems of OAs in the human EEG, their removal both 
off-line and on-line, and the design and development of an 
on-line OA removal system, together with a critical review 
of the literature on the subject. 

The work of Jervis and his eo-workers was extended to 
further study OAs, to obtain improved measures of the 
effectiveness of OA removal, and to find the most 
effective model for removing OA on-line. A number of 
criteria were devised to compare the performance of 
several models, including a more reliable pictorial 
method. It was found unnecessary to use the vertical and 
horizontal EOGs for both eyes (ie. four EOGs) in a 
removal model, as previously reported. This was shown to 
be due to strong correlation between the EOGs. 

It was shown that the assumption 
terms, impli6it in present removal 
remedy this, the error terms 
autoregressive series. 

of uncorrelated error 
models, is invalid. To 
were modelled as an 

New on-line removal algorithms based on numerically stable 
factorization algorithms were developed. Compared to the 
present on-line methods the algorithms are superior, 
requiring no subjective manual adjustments, or the 
co-0peration of subjects which cannot always be 
guarranteed. The algorithms were shown to give similar 
results to their off-line equivalents. A simpler 
algorithm based on the present on-line method is also 
proposed as an alternative, but may lead to a reduced 
performance. 

An important part of this research lay in the application 
of the results to the design and development of a new 
automatic OA removal system utilizing the algorithms 
described above. 
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CHAPTER l I:NTRODUCTION 

l. 0 Preamble 

Original work to investigate ocular artefacts (OAs) in the 

human Electroencephalogram (EEG,) , and the development of a 

microprocessor- based instrument for removing OA from the 

EEG is described in this thesis, together with a critical: 

review 'of the existing literature on the subject. Chapter 

l constitutes a review of OA in the human EEG and formed 

the basis of a survey paper [1]. Chapters 2 to 8 describe 

the original contribution on OA. 

The EEG signals are often seriously obscured by the 

superimposition of large electrical potentials associated 

with eye movements (EMs~ and /or blinks. The source of 

these potentials is the corneo-retinal dipole and 

short-circuiting of it by the eyelid [ 2 ,.3 ] Thus eye 

movement results in dipole motion and scalp potential 

changes, modified by any associated eyelid movement. 

Blinks represent the case of temporary closure of the 

eyelids and the corresponding artefact is due to the 

motion of the eyelids over the cornea [3,4]. These EM, 

eyelid and blink artefacts are referred to collectively as 

ocular artefacts (OAs) . 

The EEG is widely used in clinical and psychological 

situations and subjects often exhibit random ocular 

movement. It is therefore, necessary in these situations 
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to be able to remove the OA from the EEG so that the true 

EEG record can be analyzed. Such subjects may include 

brain-damaged babies and patients with frontal tumours. 

In both cases it is difficult to distinguish between the 

associated pathological slow waves and ocular artefacts. 

Patients with Huntington's Chorea, a fatal hereditary 

condition, exhibit random choreiforM movements and their 

EEGs may· be completely obliterated by OA. An 

event-related potential, known as the Contingent Negative 

Variation (CNV) [5 ], which has diagnostic usefulness for 

this ~atient category [6 J is very vulnerable to ocular 

artefacts. It has been demonstrated that OAs have shapes 

very similar to the CNV [7-12] and remain the most serious 

methodological problem in CNV studies [13 J. 

Ocular artefacts also make it difficult to automate the 

analysis of the EEG by computers. For example, the 

accuracy of a technique for locating brain les~ons 

[14,15] which are characterized by slow waves, is reduced 

in the prescence of OA. In normal EEG recording very 

large amounts of data are often acquired, and to allow the 

clinician a better use of his time, automatic screening of 

the EEG records to indicate records containing clinically 

relevant features that require further examination is 

used. Due to OA the screening is often unsuccessful as a 

large number of normal records are labelled as abnormal 

[16). A method for monitoring the effects of anaesthesia 

on the background EEG, and for studying the EEGs of 

epileptics and schizophrenics 

2 
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topographic analysis" [ 17] wiH be ineffect.:i.ve in the 

presence of OAs. 

Available literature on OA was surveyed and was found both 

extensive and distributed widely in several journals 

reflecting its relevance in the fields of neurology, 

electroencephalography, psychiatry etc. 

sections of this chapter, the various 

In the remaining 

aspects of the 

ocular artefact problem are reviewed including, the causes 

of OAs, methods for their removal, and practical problems 

involved. Besides covering the existing literature, the 

text is interspersed with comments on this research, to 

put it in perspective. 

1.1 The Causes of Ocular Artefacts. 

The human eye acts like an electric dipole with a positive 

cornea and negative retina. When the eyes move, the 

electrical dipole changes orientation so that the 

associated electrical potential on the scalp (that is OA) 

changes. 

There are several types of ocular movements [22,23] of 

which the more relevant to this work are described here. 

In this thesis, the term 'Electrooculogram' (EOG) refers 

to the electric potential measured between two skin 

electrodes placed close to the eyes and due to ocular 

movements. 
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(a) Blinks 

Blinks, figure 1.1, are characterized by a brief artefact 

potential of between 0.2 and 0.4 s in duration and occur 

at intervals of 1-10 s. The blink potential was shown to 

be attributable to the eyelid moving over the functional 

Figure 1.1 Blink Artefact 

( i ) Vertical right EOG (ii) Contaminated EEG 
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cornea [ 3,14 ], and not to eyeball movement as was 

previously thought. Movement of the eyelid over the 

positive cornea produces a shorting effect, which is 

removed when the eyelid is again raised . 
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(b) Saccadic Eye Movements and Rider Artefacts. 

Saccadic eye movements, figure 1.2a, are rapid conjugate 

movements of speeds between 100 and 500 degree~ • Normal 

everyday movements of the eye from one fixation point to 

Figure 1.2a 
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Figure, 1. 2 Vertical- and Horizontal eye movement records 

Showing rider artefacts. (i), (ili) EOGs for vertical- and horizontal 

eye movements, respectively; ail, (iv) the corresponding contaminated EEGs. 

another come under the category. These include the "jump 

and pause" fixation movements performed when reading or 

scanning a visual field. 

During vertical movements with the eyes open, a brief 

potential similar to blink potential is sometimes observed 

in the EOG [3,21 ] , figure 1.2a. This artefact was called 
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rider artefact [21 land was later demonstrated to be due 

to eyelid movement [ 1 ]. 'Thus it appears that rider 

artefact has the same cause as blinks. However, the 

stimulation mechanisms differ being saccades in the former 

case and blinks in the second.. Rider artefact is reported 

to occur mostly during an upward vertical saccade or blink 

reflex. However, it has been seen in both vertical and 

horizontal EOG records, figure l.2b 

(c) Optokinetic Nystagmus 

This type of ocular movement is elicited by a visual field 

which contains repeated patterns. The potential change 

produced in optokinetic nystagmus follows a characteristic 

saw tooth pattern. The eye fixates on a part of the field 

and tracks it as in pursuit movement. Then there is a 

return saccade and the process repeated. 

(d.) Vergence Eye Movement 

In vergence, the eyeballs move in opposite directions. 

This disconjugate EM occurs when the eyes focus from far 

to nea·r objects, or vice versa. 

(e) Miniature or Fixation Ocurlar Movements 

Miniature or fixation movements include a 

movements that are generally less than l 

amplitude and occur when the eyes are 

number of 

degree in 

supposedly 

s.tationary, as for example 

stationary target. The three 

movements are flicks, drift 

during a fixation on a 

main miniature ocular 

and tremor. Flicks, or 
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microsaccades, are small EMs lasting for about 30mS and 

which are performed to correct a dri.ft and redirect the 

eyes to the fixation target. Drift is a slow involuntary 

eye movement during fixation that makes the eye wander 

away from a target for short periods of time bef6re 

correction by flicks. Tremors are rapid oscillatory EMs 

which may be superimposed on flicks and drifts. The 

frequency of a tremor may be as high as 30-150 Hz. Flicks 

and drift from both eyes are partially correlated while 

tremor is a disconjugate eye movement. The existence of 

miniature EM means there is always a measurable EOG signal 

and this is important because it ensures that the signal 

is 'persistently exciting', a necessary requirement for 

on-line recursive least squares removal method discussed 

in chapter 4. 

(f) Eye Flutter 

Eye flutter is a rapid ocular movement that tends to occur 

when the eyes are closed or nearly closed. It is 

increased during mental activity and may be mistaken for a 

seizure discharge especially during medication [ 24 1. 

Flutter frequency is usually in the range 3-6 Hz but 

occasionally in the range of 8-10 Hz and sometimes as 

high as 14 Hz. Flutter is expected to be of minor 

importance in experiments where the eyes are kept open. 
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1.2 Methods of Measuring Ocular Movements 

There are three main methods of measuring ocular 

movements, namely, optical, electro-oculography (EOG) and 

impedance oculography • Each method produces a voltage 

that is a function of the degree of ocular movement or 

posit:Lon. 

(a) Optical 

Optical methods of detecting OM have been developed [ 23 }. 

In most cases they consist of a light source, optical 

detectors, and a lens system. The limiting disadvantages 

of optical methods include that they cannot be used on 

unco-operative subjects such as children and some patient 

categories, they are bulky, and that they may not give an 

output when the eyes are closed. 

(b) Electro-oculography (EOG) 

Ocular movements (OMs) (eye-·, eyelid movement etc.) can 

be detected from th resulting EOGs [ 16,22 ]. This method 

has been used extensively to remove OAs [7,16,19,25-32 1. 

Advantages of the EOG method are: It can be used whether 

the eyes are open or closed, it gives a voltage that is 

directly related to the degree of OM and hence to the 

scalp potential change produced by the ocular system 

(corneo-retinal dipole and;' or eyelids). The method is 

simple to use and can be set up quickly with minimum 

calibration, and introduces no extra difficulty where 

electrodes are also being used to detect the EEG. The 
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main disadvantages of the E0G are [22,23]: The measured 

potential may contain other artefacts unrelated to ocular 

movement. These may include electromyographic (EMG) 

signals resulting from ·muscle action and EEG contamination 

of the EOG. If both vertical and hor·izontal EOGs of the 

eye or both eyes are to be recorded, there may be 

considerable cross coupling between the axes and the eyes 

which may introduce some errors, as will be shown in 

chapter 2. Slow rolling eye movements occuring during 

drowsiness may be imposssible to distinguish from 

'psychogalvanic sways' which are low drifts of potential 

related to changes in skin impedance. Physical movements 

of the recording electrode can occur especially if placed 

over a pulsating artery, or if the electrode is poorly 

applied. 

(c) Impedance Oculography 

The disadvantages of the EOG have led to the technique of 

impedance oculography [33,34 1 This method is based on 

the principle that the impedance across the eye changes as 

the eye moves. A similar electrode placement method as 

used for the EOG is employed but in addition a low level 

high frequency current is injected into the electrodes. 

Movement of the eye changes the current distribution and 

produces a modulating signal which is proportional to the 

change in impedance between the electrodes This 

impedance change can be extracted from the output of a 

demodulator. Although the technique is supposed to 

eliminate some of the disadvantages of the EOG method it 
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has seldom been used •. 

1.2.1 Electrode Placements in Electro-oculography. 

Figure 1.3 shows some of the commonly used EOG el:ectrode 

placements. The placements are influenced by a number of 

factors, which include the need to obtain maximum 

information regard1ng an ocular movement and to use a 

minimum number of electrodes to record and identify the 

horizontal and vertical components of ocular movements. 

It is also desirable to reduce EEG contamination of the 

EOG and to obtain a voltage that is related to the extent 

of ocular movement. For these reasons electrodes are 

often placed across and close to the eyes in the 

horizontal and vertical planes. These may be referred to 

as the vertical and horizontal EOG channels respectively. 

The sites most commonly used are the outer and inner 

canthi'(for the horizontal EOG) and the infra- and supra

orbital ridges (for the vertical EOGs). The most common 

electrode placement is that of figure 1.3b. This has the 

advantage of using few electrodes and minimizes cross 

coupling between the horizontal and vertical channels 

which can be a problem 

[23], as demonstrated 

in multiple electrode placement 

in chapter 2. Unfortunately, the 

method combines the horizontal EOGs of the two eyes, which 

may be significantly different in shape especially during 

horizontal eye movement [ 16,27 J. Electrode placements 

(g),(h) and (i) are designed to overcome some of the above 

10 
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Fi gure 1 .3 Some commonly used EOG measurement methods 
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disadvantages. Electrode placement (j) is sensitive to 

all ocular. movements, but combines the horizontal and 

vertical EOGs of each eye. However, it has been· pointed 

out [36] that the separation of the EOG into its vertical 

and horizontal components may be unnecessary if all that 

is required is the ability to measure the potential change 

due to ocular movement. In fact, electrode placement (j) 

has a number of advantages over placements such as (g), 

(h) and (i), viz·: it eliminates the problem of 

cross-coupling between the horizontal and vertical EOG 

channels, and it could lead to a simpler OA removal model 

(see chapter 7). A similar technique may be used to 

reduce the contamination of the EOG by the EEG by using 

the electrode placement (k), although this may be less 

sensitive to ocular movements than electrode placement 

(j). In the off-line work the electrode placement (h) was 

used, but the best result was 

vertical channel and some 

obtained using 

combination of 

only 

the 

one 

two 

horizontal channels (see chapter 2). In evaluating the 

new Ocular Artefact Removal (OAR) system (chapter 7) , 

electrode placements (h), (j), and (k) were all used, but 

only (h) and (j) gave satisfactory results. 

1.3 Scalp Potential Distribution of Ocular Artefacts 

A knowledge of scalp potential distribution of OA is 

useful in the study of surface evoked potentials [18,19]. 

A number of workers have studied the scalp distribution of 

OA using multiple electrode placements [ 18,37,38 ~ Peters 
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[37] showed that for subjects with both eyes functional, 

the scalp potential dfstri:bution is symmetrical on both 

sides of the scalp. Overton and Shagass [18] studied the 

OA distribution for a number of subjects and reported no 

significant inter-subject differences. However, they 

found significant differences in the distribution of OA 

due to blinks and VEM. A number of workers have, however, 

reported individual differences i~ the scalp distribution 

[25,39]. The OA at any point on the scalp depends on a 

variety of factors: extent of EM, eyelid ·position, 

distance of point from the eyes, type of ocular movement, 

the possibly distributed nature of the dipole, state of 

alertness of subjects, anatomical structures, and whether 

the subject's eyes are defective or not. Because of these 

factors, OA distribution on the scalp cannot be expected 

to be the same in all subjects. 

records of a subject with 

Visual examination of EEG 

a defective eye showed 

significant differences in the distribution of OA on the 

normal and defective sides. It was also found that in a 

subject completely blind on one eye that there was OA on 

the blind side of the scalp, albeit much reduced in 

amplitude and somewhat distorted. This reinforces the 

fact that OA on the scalp is a function of both eyes and 

that symmetrical distribution cannot always be assumed. 
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1.4 Methods for the Removal and Control 

Artefacts 

of Ocular 

Several partial solutions have been proposed for removing 

the OA from the EEG [ 7,14,16, 19,26, 27, 28·, 40 ]. These can 

be divided into three categories: Rejection, eye 

fixation., and Electro-oculogram (EOG) subtraction methods. 

(a') Rejection Methods. 

OA is controlled in the rejection methods by discarding 

data thought to contain significant OA. This can lead to 

what may be an unacceptable loss of data, e.g in studies 

involving unco-operative subjects such as children and 

psychiatric patients. In some Event Related Potentiat 

(ERP) studies sections of the record containing OA also 

contain useful information., and their deletion could make 

the data unrepresentative [19,28]. A common technique has 

been to monitor one EOG channel and when the level 

exceeded some fixed threshold the corresponding EEG 

channels were considered to contain unacceptable levels of 

artefact [41]. The threshold is subjectively determined 

prior to the experiment as that level of EOG for which no 

vestige of the EOG can be seen in the EEG. It has been 

shown that visual inspection of an EEG cannot be used to 

determine whether all the artefact has been removed 

[26,27 J and so this method leads to the acceptance of EEG 

records with relatively low levels of artefact as being 

artefact free. There is also the possibility that ocular 

14 



movements could be continuous so that the entire data 

would be rejected [40]. 

Attempts to implement an automatic rej.ection method in the 

fr~quency domain have been largely unsuccessful 

[ 14,29,40 1 This is probably because of the inherent 

problems of the rejection method described above, the 

occasional spectral overlap between the artefacts and 

genuine slow waves, and the fact that OA does not 

necessarily occupy a fixed frequency band [40 ]. 

(b) Eye Fixation Melhocls~ 

To reduce the amount of data lost by the rejection method, 

it is often supplemented by asking subjects to fixate 

their eyes on a target and sometimes to avoid blinking or 

moving their eyes at critical times during the experiment. 

However, Rowland [42 ] claimed that as many as 50% of the 

subjects could not fixate successfully. A more controlled 

way of reducing OA by fixation was described by Borda and 

Hablitz [47 ], The subject was required to detect a square 

wave displayed on a visual display unit (VDU), and this 

resulted in a reduction of EMA but not of blink artefacts. 

The method could also cause micro-saccades as the subjects 

searched the VDU for the square wave. Papakostopoulos et 

al [43] found that by asking the subject to focus on his 

own eyes in a mirror, directly in front of him, the amount 

of rejected data was significantly reduced. 
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(c) EOG Subtraction Me.thods. 

The EOG subtraction me.thods probably offer the best means 

of removing OA from EEGS. At present, however, the 

various techniques reported do not completely solve the 

problem. Thus new approaches ar.e continually being 

developed [16.,19,28,30 ]. All of the methods are based on 

the principle that the OA is additive to the background 

EEG. Thus in discrete form: 

p 

y ( i) = OA ( i) + e ( i) = i: 8. x . ( i) + e ( i). ( 1.1) 
J J 

j=1 i=1,2 ... ,M 
where y(i) and x(i) are the samples of the measured EEG 

and the EOGs respectively, and e(i) is the true EEG which 

may be regarded as an error term. The ~are constants of 

proportiona~ity which will be called the ocular artefact 

parameters, and p is the number of parameters in the 

model. If the ~can be estimated then an estimate of e(i) 

can be obtained as: 

~(i) = y(i) -

p 

L: e.x.(i) 
J J 

j=l 

i= 1,2, ... ,M ( 1. . 2) 

where the ~are the estimates of ~ and S(i) is the 

estimate of e(i). The problem then is one of estimating 

the 9j. The various EOG subtraction techniques differ 

primarily in the way e. is estimated, in the number of EOG 
.J 

signals that is used in (1.1) and the way these are 

measured. (cf, [ 8,14,16,27,28]). 

In some methods it is assumed that the OA parameters are 

time-invariant [7,25,29]. This assumption, however, is 

untenable due to the different characteristics of the 
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ocular artefacts [ 18,39 J and the effects of the eye lid 

position [8]. 

The ECG subtraction method can be carried out either 

on-line (that is as the data is being acquired~ [25,29]. 

or off-line at some later time [ 1:6, 27 ]. The main 

advantage of the off-line methods over previously reported 

on-line methods is that more sophisticated removal 

techniques can be employed. However, in applications 

requiring real-time analysis, the delay involved when 

off-line methods are employed is unacceptable. The trend 

in EEG signal processing is clearly towards. real-time 

processing [ 17,44 ] and it is then necessary to remove the 

artefacts on-line. 

{i) Off-line Methods 

Several off-line OA removal methods have been developed 

[7,14,16,19,26,27,28,40 J. In this section some of the 

more promising ones will be described. 

Verleger et al [19] used the electrode placement of 1.3a 

in their off-line technique. As was pointed out earlier 

and demonstrated in chapter 2, more than one EOG channel 

is necessary for OA removal. 

Gratton et al [28] recognised that most of the existing 

removal methods did not distinguish between EM and blink 

artefacts, and that the usually regarded, 

e r r on e o u s 1 y· , as constants prior to and during 
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experiments • Thus they identified and obtained 

parameter estimates for blinks and EMs. The 

separate 

method 

however, is time consuming and will be very expensive in 

computing time for multi-channel situations. The method 

may only be sui table for ERP studies., and unsuitable for 

use on-line 

Whitton et al [31] described an EOG subtraction method in 

the frequency domain. Their method suffers from several 

disadvantages which include the inability to use more than 

one EOG and the assumption of time -invariance of e. The 

method is also time consuming and not suitable for 

multichannel use or for use on-line. 

Quilter et al [16] proposed an off-line OA removal 

procedure which involves cross-correlating the EOG and EEG 

signals for each set of data, without assuming constant a. 

These authors used only two EOG signals. Their technique 

has been extended to three and four parameter models by 

Jervis et al [26,27 ], who showed that a four-channel model 

involving both the vertical and the horizontal EOGs of 

both eyes was the most effective and that while the use of 

the vertical EOG due to only one eye might be necessary, 

the horizontal EOGs of both eyes were essential especially 

during horizontal eye movements (HEM). The suggested 

reason was that the dipoles of the two eyes tended to 

oppose each other during HEM, but not during vertical eye 

movement when the dipoles move in conjunction. 
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Fortgens and DeBruin ,[ 30 l used least squares approach to 

obtain the e for a four-EOG channel model. They proved 

theoretically that four EOG channels were necessary for 

complete correction. However, they assumed that four 

uncorrelated EOG channels existed. In chapter 2, it is 

shown that there are not four uncorrelated EOG channels so 

that the use of four EOGs is unecessary. 

( i.i) on:..line 'Methods. 

A number of on~line removal methods have been devised but 

have either been unsatisfactory or unwieldy. These 

on-line methods required manual calibration. Setting them 

up was thus time consuming, especially for multichannel 

recording. Also their calibration required subjects to 

move their eyes or blink repetitively. This ruled these 

methods out for use with children and unco-operative 

adults. Additionally, the method of assessing whether the 

OA was removed was subjective and the whole procedure 

required the· operator to be familiar with the method. 

Furthermore, these methods were unable to deal with 

multiple artefacts, so that if a different ocular artefact 

occured after calibration; it was not removed properly 

[ 12 ] • 

McCallum and Walter [32 J described one of the first 

on-line methods for reducing OA in the CNV recordings 

which used a potentiometer arrangement (see figure 1.4). 

The vertex EEG signal was referred to the centre terminal 
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correc ted 
vertex EEG 

l~·--------0 

measured EEG 

correc t ed EEG 

Figure 1 . 4 On-line Removal methods 

(a } McCall urn a nd Wal ter ' s method 

(b ) Girton and Kamiya ' s method 
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of the potentiometer. The other terminals of the 

potentiometer were connected to a frontal EEG electrode 

and linked earlobes. The 'corrector' was calibrated, 

prior to recording, by adjusting the centre terminal 

whilst the subject moved his eyes repetitively until there 

was no trace of OA in the EEG. The device was then left 

at this setting during recording. The method suffered 

from a number of disadvantages including those outlined 

earlier. It could not deal with lateral eye movement 

artefacts as these were not taken into account [ 25]. 

Jervis et al [ 27 ] have used this method and found it 

unsatisfactory. Jervis et al also showed that this 

analogue technique may actually be unsuitable for removing 

OAs due to VEM, as in all cases there was some coupling 

between the EOG and EEG when the EOG changed rapidly. 

This was probably due to the RC network formed by the 

potentiometer resistance and the electro-chemical 

capacitance of the electrode-skin interface. Wasman et .al 

[11 ] reported that their attempt to use the method was 

unsuccessful as it resulted in "positive CNV". 

The on-line method described by Girton and Kamiya [ 25 ], 

like the method of MoCallurn and Walter [32], used a 

potentiometer arrangement (figure 1.4 b) and required 

manual calibration. Although a number of modifications 

were made to cater for lateral eye movement and to improve 

the signal quality, the method still suffered from the 

disadvantages mentioned earlier. A number of workers have 

used the method and found it unwieldy and inefficient in 
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removing OA [ 14 , 15 , 31 l • 

/ 
Bar1ow and Remond [ 29 ] proposed a method that is similar 

to that of Girton and ~ami~a [25 ]. The ess.ential 

differences between the two were that Bar1ow and Remond' s 

method required' (ewer amplifiers when used in multichannel 

recording and had facilities such as those for changing 

the sign of the. EOGs used to remove the OA. 

In chapter 4, a new on-line method for removing ocular 

artefacts will be described. It uses numerically stable 

algorithms bas~d on the efficient recursive least squares 

technique. These algorithms have been implemented in a 

microprocessor-based system the design and development of 

which are described in chapters 5 to 7. The on-line 

removal system requires no subjective manual adjustment 

and processes all signals digitally and thus has all the 

advantages of digital signal processing methods. 

1.5 Practical Problems of Removing Ocular Artefacts from 

the EEG 

The removal of OA from the EEG poses a number of problems 

some of which have already been mentioned. Perhaps the 

most serious problems are (i) the lack of a convincingly 

accurate method of assessing the reliability and 

effectiveness of removing OAs and the resulting side 

effects, (ii) the effects of EOG (or secondary) artefacts 

on the corrected EEG, (iii) the influence of the EEG/EOG 
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statististics, (iv) the relative effect of pathological 

slow waves, and (v) the effect of overloading of the data 

acquisition systems. A brief discussion of these problems 

will be given here. Solutions to some of them will be 

given in the main body of the thesis. 

1.5.1 Assessment of the Reliability and Effectiveness of 

Ocular Artefact Removal 

(a) Reliability 

The method commonly used is to obtain the parameter 

estimates, e1 of a number of subjects in two or more 

experiments or sessions. If these parameter estimates are 

highly correlated then they are said to be reliable. The 

implicit assumption of course is that exactly the same 

factors and ocuiar movements would be involved in the 

experiments, which may not be true. 

Verleger et al [19] attempted to establish the reliability 

of subject-specific parameters, and implicitely concluded 

that they were unreliable. However, the assumption was 

made that the parameter estimates, e, for any individual 

would be the same for both a comparison- and 

concept-learning task. Different ocular movements may, 

however, be elicited in the two tasks which would 

invalidate the assumption. This would be particularly so 

with the sixty seven subjects aged ten to thirteen years, 

of whom twenty five were mentally retarded, used in their 

experiment. The wide variation in the estimates for each 
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task and between tasks were probably largely due to 

genuine factors and perhaps to the inadequacy of the model 

used (see section 1.4(c)). 

Gratton et al [28] assessed the constancy of the parameter 

estimates over different trials for the same subjects in 

and between experiments. Their results showed that for a 

given subject the parameter estimate was not constant 

during or between experimental sessions and that there 

were inter-subject differences in the parameter estimates. 

Their results showed that the variation in the subject 

specific parameter estima~es between sessiohs was larger 

than during a given session, which they pointed out may be 

due to not placing the electrodes at exactly the same 

position in the sessions. This variation emphasises the 

need for removing the OA not only on an individual basis 

but also adaptively. 

(b) Effectiveness of Ocular Artefact Removal 

The most commonly used method of assessing the 

effectiveness of the removal techniques is visual 

inspection of the corrected EEG for any trace of OA. 

Another approach is to compare the stow waves of clinical 

interest obtained from the corrected EEG and that from an 

artefact-free EEG. If they are reasonably similar then 

the correction procedure is said to be effective or valid. 

Verleger et al [ 19 ] applied both methods to their 

correction procedure and found it effective. They also 
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compared the covariance between the ERP derived from the 

correc.ted EEG and the EOG with that be.tween the ERP 

derived from the rejection method and the EOG. The former 

was significantly lower, and was taken as an indication 

that their correction procedure was superior to the 

rejection method. However, this result is to be expected 

since the correction criterion is minimisation of the 

covariance between the measured EOG and EEG. 

Gratton et al [28 ] assessed the effectivenes of their 

correction procedure by determini'ng how different the ERP 

from the corrected EEG was to the 'true' ERP, obtained 

from trials with insignificant artefact selected by the 

rejection method. To obtain a quantitative assessment 

they computed a deviation index which was the sum of 

squares of the deviations of the corrected ERP from the 

true ERP. They concluded that in general the corrected 

ERP resembled the true ERP more than the the uncorrected 

one. The validity of the method rests upon a common 

assumption that the ERP from trials selected by the 

rejection method is a good estimate of the ERP, but as the 

authors pointed out this assumption may sometimes be 

incorrect. For example, if the number of trials used to 

obtain the estimates of the true ERP is small, the noisy 

EEG would affect the result. Furthermore, rejection 

methods inevitably accept trials with low level artefact 

which could affect the result. Such effects may explain 

why the deviation index never becomes zero. 
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Jervis et al [ 27 ] introduced a technique based on the 

autocorrelatton function (ACF) of the corrected EEG to 

assess quantitatively the effectiveness of OA removal, 

Nhere an estimate of the ACF of a data sequence, x(n), 

n=O.,l, •• N-1, is given by: 

'C. (k) = 
XX 

N-k-1 
6 x( i)x(i+k) 

i=O l~-k-1 . 
'\' 2(') {.__; X l. 

C:x(-k) = Scx(k) i=O 

k=0,1, ... ,N-1 ( 1. 3) 

Using an EEG record contaminated by a rectangular EOG they 

found that after OA removal the ACF of the EEG lost its 

triangularity, an indication that the rectangular artefact 

has been removed. If the ACF was 'random' the OA was said 

to have been completely removed. To quantify the 

effectiveness of OA removal in the case where the ACF was 

not random the autocorrelation coefficient (ACC) at a lag 

of 2 seconds was obtained by measuring the peak-to-peak 

value of the ACF at 2 second lag. The lower the ACC, the 

more effective the model used was said to be in removing 

the OA. This was used as the basis for comparing the 

performance of two methods of removing OA. Thus the 

authors found that the analogue method of McCallum and 

Walter [32] was inferi6r to the correlation technique 

method [16,26,27], and as described earlier (pl8), that a 

four-parameter model was the most effective in removing 

OA. This quantitative technique however, was not 

sensitive enough in many cases, and may not be reliable as 

a quantitative study of the performance of several models 

showed (see chapter 2) • 
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1.5.2 Secondary Artefacts 

As stated earlier, a disadvantage of using the EOG in 

removing OA is that it may contain other artefacts not 

related to ocular movements, such as EMG or EEG.. Because 

i,n the EOG subtraction method a fraction of one or more of 

the EOGs is subtracted from the measured EEG, any 

artefacts in the EOG would be introduced i:nto the EEG as 

'secondary' artefacts. 

The technique usually used to deal with this problem is to 

filter out the EOG artefacts which are mostly high 

frequency activities [21,31,45 l However, the filters 

used have poor amplitude and phase characteristics which 

could adversely affect the OA removal [31 ]. An efficient 

zero phase low pass digital filter that will introduce 

minimal distortion is described in chapter 3 together with 

a spectral study of the OA problem. 

The e~tent of the effects of secondary artefact has not 

been settled. Verleger et al [ 19 ] stated that the effect 

of EEG contamination of the EOG was by and large 

unnoticeable. Some workers reported only a small increase 

in noise in the corrected EEG which was only significant 

in a few cases [16 ]. Others [22] stated that in most 

cases the EEG contamination was less in magnitude than the 

effect of half a degree of eye movement, thus making the 

problem insignificant. In some subjects with relatively 

large EOG artefacts, no apparent relationship was found 
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between the scalp EEG and the EOG [ 22 J • The variation of 

the parameter es.timates with time was stud:i:ed in this 

research and it was found that the variances of a for 

those EOG channels with large artefacts were larger than 

those for less noisy EOGs. This was interpreted as 

indicating that secondary artefacts do affect the 

correction process.. This is discussed in more d'etail in 

chapter 4. 

1.5.3 The Influence of the EEG/EOG Statistics. 

It :Ls usually assumed that the background EEG is a random 

process, uncorrelated with the EOGs [16, 28,30 J. As will 

be shown in chapter 2, the assumption of randomness is not 

val:i:d and requires corrective steps to be taken. Methods 

will be discussed in chapter 2 to take correlated EEG into 

account .• 

To obtain good removal of OA, it is necessary to use more 

than one EOG signal [16,25,26,27,30 1, However, as shown 

in chapter 2, when more than one EOG signal is used 

computational and statistical difficulties due to the 

linear dependencies between the EOGs may arise and these 

need to be taken account of in OA models. 

28 



1.5.4 OA Removal in the Presence of PathoJ.!ogical Waves. 

The removal of OAs by the EOG subtraction technique has to 

be considered carefully when OAs are present together with 

the ERPs or with pathological slow waves of interest. 

Since the 

the degree 

fraction of the EOG subtracted is obtained from 

of correlation between the EOG and its 

component in the EEG, the presence of ERPs-or slow waves 

of similar shape to the OA can lead to the subtrac.tion of 

a fraction which depends on the ERP or slow waves as well 

as the EOG. This results in over-correction. For 

example, it is difficult to distinguish between the 

electrical potential contributed by eye movement and the 

true CNV potential [7,10-12 ]. Muras and Binnie [46] used 

judicious electrode placement to distinguish between OA 

and slow waves. It will probably be necessary to 

distinguish between the various ERP components, slow 

waves, and OAs by examining the propagation of the 

electric potentials over the scalp by using a number of 

scalp electrodes. This is an area that was not 

investigated in this research, but needs to be studied in 

the future. 

1.5.5 Overloading of the Data Acquisition System 

Another problem which has been largely ignored, is the 

possibility of overloading the amplifier and the analogue 

to digital conversion system. Quilter et al [ 16 ] found 

this to be their most significant problem. Overloading 
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causes erroneous parameter estimates and hence a 

reduction in the effectiveness of the correction. The 

common approach is to set the dynamic range of the 

analogue-to-digital converter (ADC) such that overloading 

is infrequent. This often involves a compromise between 

utilising most of the dynamic range of the converter and 

avoiding overloading. Verleger et al [ 19 ]reported a data 

loss of about 4i because of overloading. A method is 

proposed here for dynamically changing the range of the 

ADC (see chapter 5) which should alleviate the overloading 

problem. 

1.6 Experimental Data. 

The data used for the off-line work and computer 

simulations (chapters 2 to 4), was obtained in a previous 

study into the problem of ocular artefacts in the EEG 

[26,27 ]. Separate vertical and horizontal EOG signals 

were recorded for each eye from silver-silver chloride 

electrodes placed above and below the eye, and from 

similar electrodes at the outer canthus and the nasion. 

One channel of EEG was obtained from a similar electrode 

placed at the vertex referred to linked earlobes. 

Subjects with no known eye defects were asked to make 

periodic eye movements in the vertical, horizontal and 

diagonal directions between pairs of light emitting diodes 

located on a wooden screen. This corresponded to about 20° 

of eye movement and ensured that the performance of the 

models were evaluated under a known type of OA. 
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The EOG and EEG signals wer.e fed to an electr.o-

encephalograph to produce paper chart record and to a data 

acquisition system where they were filtered, digitized and 

stored on a disc. The data was later transferred to a 

main frame computer for analysis. 

1.6.1 D~ta Preprocessing 

The mean of the data samples of each channel was computed 

and removed from each sample. Any low frequency trend was 

removed after removing the mean by differencing [ 48 J, and 

this also helped to reduce the effects of serial 

correlation of the background EEG on the estimates of e. 

Differencing involves generating a new set of data x(i)_, 

say, from x(i) [ 48]. That is, 

x(i) = x{i) - x(i-1) ' i= 2,.3, ... ,M ( 1. 4) 

Thus after removing the mean and differencing two sets of 

data were obtained for each EEG record, viz: 

(a) Data with the mean removed, and 

(b) differenced data (corresponding to x(i) above). 
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Chapter 2 OFF-LINE REMOVAL OF OCULAR ARTEFACTS FROM· THE 

EEG SIGNALS 

2.0 Introduction 

In this chapter, . the ocular artefact problem is described 

using system identification methods [ 1, 2 J and a more 

formal development of the removal algorithm than was given 

before is presented'. Statistical and computational 

difficulties in removing OA are discussed and, where 

possible, solutions given. An extension of the work of 

Jervis et al [S,S] to find the most effective model for 

implementation on-line is also described here. The work 

described in this chapter has been written up for 

publication [3 J. 

In section 2.1, the OA problem is stated and parameter 

estimation methods discussed. Section 2.2 gives a formal 

development of the OA problem using the least squares 

method, and in section 2.3 the problems of removing OA by 

this method is discu~sed. Three problems of importance 

are, the statistics of the background EEG which is often 

assumed random, the linear dependence between the EOGs 

which can lead to difficulties in computation, and the EOG 

artefacts. In section 2.4 several models are compared 

with a view to finding the most suitable for on-line 

removal of the OA. This section fulfils the need to carry 

out a systematic comparison of models to establish their 

relative effectiveness in removing OA. 
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2.1 Ocular Artefact Problem Representation 

The f undamental assumption in all EOG subtraction methods 

is that the OA is additive t o the background EEG and that 

the path between the eye and the EEG electrodes is linear. 

This situation is represented in figure 2.1. 

X (t) 

X {t) 
System 
(e) 

OA 

e (t ) [Background EEG] . 

..._...------!e>Y (t ) 

(measured EEG ) 

Figure 2. 1 Block diagram Representation of the OA System 

where xi (t) and y(t) are, respectivel~ the measured EOGs 

and EEG. e (t ) represents the error term or the backgound 

EEG. 

Thus, in discrete form, the system output can be written 

in terms of the inputs: 

y(i) = e1x1(i) + ... + e x (i) +e(i) p p 

= xT(i)e + e(i) i = 1 ' 2 ' ••• ,M (2.1) 

where, xT(i) = [ x1(i) x2(i) ... xp(i)] 

a nd 

The T indicates a transposition. (It is assumed in this 

equation and in the rest of this thesis that the 
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appropriate mean values have been computed and removed 

from the data samples, x(i) and y(i), as described in 

chapter 1. Otherwise this can be allowed for by including 

a constant term on the right hand side of the equation 

2 . 1) • 

The problem is to obtain estimates of e, given x(i) ,y(i), 

i=1,2, .. ,M, and then to use these estimates to obtain an 

estimate of e(i) (the true EEG). 

illustrated in figure 2.2. 

System 
e 

Pararreter 
Estimation 
Algorithm 

e(i) 

This problem is 

t-----"i> ~ (i) 

Figure 2. 2 Block diagram representation of the 

rerroval of ocular artefacts from the EEl3 

There are various methods that may be used to estimate the 

system parameters, e. These include the ordinary least 

squares and maximum likelihood estimation methods [1,2 ] . 
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Of the various methods the least squares method is the 

most widely used. This is due mainly to its simplicity 

and good statistical properties. 

2.2 Ocular Artefact Removal Algorithm- the Ordinary Least 

Squares Method. 

Equation 2.1 can be written more compactly for all m 

samples as in equation 2.2. 

y = X 8 + E (2.2) m m m m 

where, 

y(1) xT(1) 81 e(1) 

y(2) xT(2) 82 e(2) 

y = ) X = ) 8 = ) E m m m m -

y(m) T x (m) 8 
p 

e(m) 

The Suffix m indicates that each matrix was obtained with 

all m samples. R~ represents the background, or true, 

EEG. 

Assuming that e(i) is an uncorrelated sequence with zero 

mean and constant variance, then optimum estimates of the 

coefficients a~ can be obtained by minimizing J, the sum of 

squares of the error term E~: 

M 
J = L e 2 ( i) = ETE m m ( 2.3) 

i=1 
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This. minimization leads to equation 2.4 (see appendix Al 

for details): 

( 2, 4) 

This equation gives the ordinary least squares (OtSl 
i 

estimate of e.., which can be obta:i!ned using any suitable ? 

matrix inversion techniques. 

"' Having obtained e111 • estimates of the OA and' hence the 

background EEG., E"', can be obtained from (2.2). EO'\ ar.e 

referred to as the residuals in statistics. Implicit in 

the OLS method is the assumption that the EOGs., x (i.) , are 

not perfectly collinear, so that the matrix (XTX ) is 
m m 

invertible. 

It is worth noting that all the EOG subtraction methods 

that appear in the literature under different names are 

essentially least squares methods and thus subject to the 

above assumptions. For example, it is shown in appendix 

Al that the so-called correlation technique method [5-7] 

is in fact an OLS method. 

2.2.1 Multichannel EEG Ocular Artef£ct Removal Algorithm. 

The removal algorithm described above can be extended to 

the multichannel case, where there is more than one EEG 

sighal. Thus, following the approach described above a 

system with p EOG inputs and q measured EEG outputs is 

shown in figure 2.3. 
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e1 [backgr0lll1d Effi1) • 

t----C> y 1 (neasured Effi1 ) 

e .. 
l.J 

eq [background ~] • 

Figure 2. 3 Block diagram representation of a 

Multichannel Effi Ocular Artefact System. 

The system equation then becomes: 

p 
y.(k) = ~e .. x.(k) + e.(k) 

J lJ l J 
J = 1,2, ... ,q 

i=1 k = 1,2, ... ,m 

(2.5) 

For all m data points, these can be written more compactly 
...., - -..,. 

a s in ( 2. 6) • Y = x e + E (2.6) m m m 
where, 
""" x1(1) x2(1) xp( 1) y = y1(1) y2(1) X m = 

Yq(1) 
y ( 2) y2(2) Yq(2) x1(2) x2(2) X (2) 
1 p 

y1(m) y2(m) y (m) q x1(m) x2(m) x (m) p 

- """" 
em= e11 912 91q E e1(1) e 2(1) e ( 1) m q 

9 21 922 92q e1(2) e 2(2) e ( 2) q 

8p1 ep2 e e 1(m) e 2(m) pq 

Noting that the form of ( 2. 6) is the same as ( 2. 2) and 

proceeding as before leads to the OLS estimate: 
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A ..... 
~em = (2.7a) 

;;.., 
From the form of (2.7a),it is seen that each column of em 

has the same form as the expresion for the one EEG output 

considered earlier. Thus, for example, the first column 
~ 

of e is given by: 1\ 
XTX r 1xTY eil = [ (2.7b) m m m 1 

yl(l) 
....... 
yl = Y1(2) 

y1_(m) 

and the other matrices are as defined earlier. 

The foregoing shows that the q output system can be 

treated as q individual single-output subsystems, and the 

overall system identifiable in q separate steps. However, 

it is seen from equations 

subsys.tems have the factor 

be computed only once. 

(2.7a) and (2.7b) that the 

T -1 (XroXfu 1n common, and this need 

2.2.2 Some Statistical Properties of the OLS Estimates. 

If the assumptions of the statistical properties of the 
A 

error term are valid, the estimate a.,.can be shown to have 

the following statistical properties [1,2] (more details 

are given in appendix Al): (i) ~~ is unbiased and 

consistent. (ii) The error covariance of a"' is given by 
')~ .,. _, z. 

C= &(X X) (where ~ is the variance of the error term). 

The elements of C can be used to estimate the accuracy of 

the parameter estimates. The diagonal elements of the 
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" matrix C give the vadances of e., and the off-diagonal 

elements give the covariances between each pair of the 

" exements of e
111

• 

2.2.3 Models used in the Investigation 

The form of the models used is given in equation (2.8) 

EEG(i) = {:\VL(i) + e
2
vR(i) + e

3
HL(i) + e

4
HR(i) + e(i) (2.3) 

i=1,2, ... M 

where EEG(i), e(i) are the ith samples of the measured and 

background or true EEG respectively. VL.(i), HL(i) are the 

vertical and horizontal left EOGs respectively. VR(i), 

HR(i) are the corresponding right EOGs and M is the number 

of data points for each variable. 9 1 the 

correction coefficients, are the fractions of the 

corresponding EOGs that reach the EEG electrodes as 

artefact. 

The variations of equation (2.8) which were used in the 

investigation are given in table 2.1 

Model 2A in the table is an approximation of the model 

used by Quilter et al [7]. Model 2G simulates what 

appears to be a popular two-parameter model e.g [20,24]. 

It has the advantage of having reduced coupling between 

the vertical and the horizontal EOG signals, but combines 

the EOGs of both eyes which may be different [7 ]. Models 
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Table 2.1 Definition of models 

model name EOGs used in 8s set to zero in 
eqn 2.8 . eqn 2.8 

2A VL,HL 82,84 

28 VL,HR 82,83 

2C VR,HL 81,84 

20 VR,HR 81,83 

2E VL,VR 93,84 

2F HL,HR 81,84 

2G VL, (HL-HR) 93,94 

3A VL,HL,HR 92 

38 VL,VR,HL 84 

3C VL,VR,HR 93 

30 VR,HL,HR &1 

4A VL,VR,HL,HR none 

48 VL,.(VLxVL) ,HL,HR " 
4C VL,HR;(VL-VR) 1 (HL- HR) " 
40 VL,HLxHR,HL,HR " 

3A and 4A were used by Jervis et al [ 5,6 }. The latter is 

also an approximation of the model used by Fortgens and De 

Bruin [25 ]. Model 4B attempts to correct for possible 

non-linearities which may be present . . Model 4C attempts 

to minimize the effects of dependencies between the EOGs 

(due to coupling and conjugate eye movement) , while model 

40 attempts to compensate for possible non-linear 

interraction between the horizontal EOGs. It has been 

suggested that the ocular dipoles tend to oppose each 

other in their effects during HEM [6]. Other models were 

included to ensure that all 'possible' models were 
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compared. 

Additionally, 

containing one 

correct for OA. 

four single parameter models, each 

of the four EOG signals , were used to 

The aim here was to show that the single 

parameter models may not always give satisfactory removal 

of OA. 

2.3 Problems with Removing OA by the OLS Method 

Although the OLS method is simple and efficient, it 

suffers from a number of problems. The three most serious 

problems are correlated errors, collinearity of the EOGs, 

and 'secondary' artefact in the EOGs themselves. 

2.3.1 Autocorrelation in the Background EEG. 

A crucial assumption in the least squares method is that 

the error terms, e(i), are uncorrelated. If this 

assumption is violated then the parameter estimates 

obtained by the OLS method are inefficient as they no 

longer have minimum variance, and tests of significance 

based on the sum of squares are no ~onger strictly valid 

[4,8-10]. 

(a) Testing for Autocorrelation 

The Durbin-Watson statistic, d, [ 11,12] defined in (2.9), 

can be used to test for the existence of autocorrelation 

in the error terms. Since in general the error terms are 

50 



not directly available, the test is applied to the 

residuals or the estimates of the error terms (see 

equation 1.2 and figure 2.2). 

M 

d = L [ e(i) - e(i-1) ] 2 

i=2 M 
2:::e 2(i) 
i=2 

(2.9) 

d is close to zero when the residuals are highly 

positively correlated and to 2 when they are not. Tables 

giving the U{)per and lower bounds (·dL,dU) for d for 

different percentage points are available for testing the 

significance of d [ 9 ] . If d is significant then some 

remedial action should be taken. 

{b) Correcting for Autocorrelation 

Generalized Least Squares. 

The method of 

A significant value for d might be due to model inadequacy 

or autocorrelation in the errors. If the model is 

inadequate due to the omission of some important 

variables, or a linear model is specified where in fact 

the relationship beween the dependent and independent 

variables is nonlinear, then the residuals from such a 

model will be correlated [ 9 J. Model inadequacy may be 

detected by examining plots of the residuals (or standard 

or normalized residuals [ 4 J) against the fitted values or 

in this case estimates of the O~s, and plots of the 

residuals against the EOGs (including those that were 

omitted1, if any) for systemati:c effects. Curvatures in 

any of the plots is indicative of nonlinearity [10 1· and 

this may be corrected by the use of a suitable model (e.g. 
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~he use of a polynomial or the addition of cross-product 

terms to the model [10]). In the case of omitted 

variables, the plots would show some systematic effects 

[26]. The inclusion of the omitted variables in the model 

should elimina·te the problem [10]. If the number of 

variables is not large, as in the OA problem, it is 

probably best to try out all the 'possible' models and 

then to examine their Ourbin-Watson statistic. 

However, if no important variables are omitted and the 

model is appropriate (ie a linear model has not been 

specified where the relationship is in fact nonlinear), 

then the error terms themselves are probably correlated. 

In this case the OLS method will always give correlated 

residuals and this can be corrected by transforming the 

data to yield uncorrelated residuals. A way of doing this 

is to represent the error term as an autoregressive (AR) 

series. Thus: 

e(i) = f "fje(i-j) + a(i) 

or j=l 

a(i) = e(i) -

j=1 

(2.10) 

where n is the order of the AR model, chosen such that the 

model adequately represents the error terms, L is the 

autoregressive parameters and a(i) is an uncorrelated 

sequence. oc' is the shift operator and ~(<(1 ) ·a linear nth 

order polynomial of 4_;. given by: 

r<·o--1 ) _ x -1 r -2 
f.: V - .l1't- + ~2 q_. + " " " 



Now from section 2.1 the OA model is given by: 

p 

y(i) = L: ekxk(i) + e(i) 
k=l 

and f.rom equation (2.10), 

e(i) "' a(i) 

J - ~(q_-1) 

(2.11) 

On substituting e(i) into (2.11) and multiplying out 

equstion (2.t2) is obtained: 

[ 1 - ! ( q:1 ) ] y ( i) = [1- \t<i 1)J•L: 8 x (i) + a(i) 
k \( ~ 

L; 8 [ 1 - ~ ( cC 1 ) ] x ( i) + a( i) 
K k k 

"' 

Define the variables x
1
<. (i) and y (i) as: 

x (i) "' [1 - !<~1)]xK(i) "' xk.(i) k 

y(i) "' [1 - ~ ( ~ 1 )Jy ( i ) "' y(i) 

Then equation (2.12) becomes: 

p 
y( i) "' L; 81<. xK ( i) + a ( i) 

k -=1 

-L:!·x (i-j) 
,J J k 

- L: ~jy( i-j) 

j 

(2.12) 

(2.13) 

(2.14) 

This model now has the same form as the original model of 

equation (2.11), but has an uncorrelated error term, a(i~ 

and so will yield optimum estimates of e~ ,which is the 

desired goal. However, it is clear from equation (2.14) 

(which is only a more compact form of equation (2.12)) 

that before ek can be estimated the autoregressive 

parameters, ~J' which are not known apriori, must be 
A 

obtained. Thus, 9K cannot be obtained from the usual OLS 
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approach, but may be obtained using a numerical procedure 

[ 2 1 ln this approach, a rough estimate of ~J is first 

obtained, so that x·k ( i) and y ( i) may be obtained (equation 

2.13) • Next ~K is obtained using ( 2. 14) • This value of 

ek is then used to obtain another estimate of ~j and the 

process is th~n repeated. At each iteration, improved 

estimates of eK and tj are obtained. The process is 

terminated when some convergence criterion is satisfied. 

The procedure is given explicitly in the following 

algorithm [8,10): 

Step 1 

Let ~j=O in equation (2.13), so that equation (2.14) 

reduces to the OLS equation of (2.11). 

Step 2 

Use OLS method to obtain an estimate of eK using (2 .11), 

and hence an estimate of the error term as: 

e(i) = y(i) 

Step 3 

p 

2:: S X (i) 
k K 

K=l 

Use OLS method to obtain an improved estimate of !j from 

equation (2.10), that is: 

~(i) = ~ ~-~(i-j) + a(i) 
. J 
J=l 

Step 4 

Obtain the set of variables xK(i) and y (i) as in equation 

(2.13) using ~j from step 3. 
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Step 5 

Use OLS method to obtain an improved estimate of 91<. from 

equation (2.14), viz: 

y( i) = 
p 

l: e x (i) + a(i) 
k=l k: k 

to obtain an estimate of the error term, e(i~ from 

equation (2.11) and then go back to step 3 and continue 

until some convergence criterion is satisfied. 

For the first order or AR(l) model, ! could be monitored 

and the operation terminated when there is no significant 

change in its value beween iterations. For the general 

case, that is AR(n) , it is more convenient to use the 

residual variance. When the algorithm has converged, the 

last estimate of e is 
k 

then used in (2.11) to obtain 

estimates of the corrected EEG. If e(i) is uncorrelated 

then j?O and both the OLS and the iterative methods lead 
J 

to the same results. It is to be noted that differencing 

(see section 1.6.1) is a special case of the first order 

AR model, obtained by setting both n and ~j to unity in 

( 2 .10.) • 

Two objections to the above algorithm, commonly called the 

Generalized Least Squares (GLS) Algorithm, are that the 

convergence rate is too slow, and ~"'may converge to false 

values if the signal-to-noise ratio is small [2]. Hsia 

[ 2 ] has given a modified GLS algorithm that is 

computationally more efficient. 
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In the investigation all three estimation methods, 

OLS with raw and with differenced data, and iterative 

(i.e AR(l)) .methods, were used 

viz. 

(c) Results of the Investigation on Autocorrelation 

Several EEG records were corrected for OA with the models described 

in section 2.2.3 using the OLS with raw data method. In each 

case the statistic, d, was found to be very low for all 

ocular movements., suggesting that the residuals were 

highly correlated. As all the models were affected, 

including those that contained all the EOGs and those that 

contained cross-product terms, this suggested that the 

cause of the high correlation was not model inadequacy. 

The same records when corrected by tl1e OLS witl1 differenced 

data and iterative methods gave d statistics that were much 

closer to 2. For comparison, representative results for the OLS 

with raw and with differenced data methods are given in table 2. 2. 

A study of the residuals (or corrected EEG) and their autocorrelation 

functions (ACFs) for the OLS with raw data method suggested that the error 

terms,e(i), behaved like an autoregressive series [ 13,14 ]. 

The residuals behaved like 'random walks' and their ACFs 

decayed slowly to zero. Figure 2.4(i) and 2.4 (ii) give 

typical examples for a HH1 record for the OLS with raw data 

method. Figure 2.4(iii) to 2.4(vi) give similar plots but for the 

OLS with differenced data and iterative methods, and these show that 

all systematic effects have been removed and the ACFs 

decreased rapidly to zero. This was true for all types of 

ocular movements and was taken as an indication that the 
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Table 2.2 

Comparison of the Ourbin-watson statistics for the 

OLS with raw and with differenced data methods using various models 

model OLS(Raw) OLS(differenced) 

1A 0.35 1.59 

2A 0.35 1. 60 

2B 0.34 1.52 

2C 0.34 1 . 58 

20 0.37 1. 51 

2E 0.34 1.59 

2F 0.33 1. 51 

2G 0.37 1. 51 

3A 0.36 1. 51 

3B 0.34 1.59 

3C 0.38 1. 51 

30 0.39 1 . 4 9 

4A 0.39 1.49 

4B 0.36 1 . 51 

4C 0.39 1. 49 

40 0.36 1 . 4 9 

autoregressive representation for e(i) was reasonable. 

2.3.2 Collinearity of the EOGs 

If the EOGs are linearly dependent on each other they are 

said to be collinear. Strong collinearity can lead to 

difficulties in computation and imprecise parameter 

estimates [9,10,16,17] (see appendix A2). 
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Figure 2.4 Comparison of the residuals and their autocorrelation 

functions (ACF) for a horizontal eye movement record 

(JSS48 ) for the three estimation methods. (i), (iii ) 

and (v) residuals for the OLS with raw data, OLS with differenced 

data , and iterative methods, respectively. (ii), (iv) and (vi) the 

corresponding ACFs. 
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To assess the extent of linear dependence between the EOGs 

their correlation matrices and the associated eigenvalues 

were examined. Strong co~linearity is accompanied by one 

or more very small eigenvalues [ 10,16, 18]. Table 2 .• 3 

gives a representative selection of the correlation 

matrices and their eigenval~es for different ocular 

movements. Examination of the table showed th*t in each 

case there was high correlation between some of the EOGs, 

and at least two of the eigenvalues were very small. In 

fact, only the first two eigenvalues in each case 

accounted for nearly 99 ·~variability [ (~,+~1) x lOO"// t ~; ] 
1=>1 

suggesting strong collinearity and that about two EOGs 

were redundant. 

For the differenced data, the correlation coefficients 

were much smaller than for the raw data and no eigenvalue 

was too small. For example, after differencing the 

eigenvalues for the record given in table 2.3a were 

Al= 2.630,),2=0.647,A3=0.561,).4=0.162. This suggested that 

differencing could be used to reduce the effects of 

collinearity. 

For all types of ocular movement except lateral eye 

movement, the vertical EOGs were more strongly correlated 

than the horizontal EOGs. The correlation coefficients 

for the differenced data were typically 0.6 for the 

horizontal EOGs for HEM and 0.75 for the vertical EOGs for 

blink or VEM. T:lis lends quantitative support to the sugE;es

tion that the vertical EOGs dt•.:'ing iJliuks and VEt·! are more 

stronglycorrelated than the horizontal EOGs during HEM [6,7]. 
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VL 

VL 1.000 

VR 0.990 

~ 0. 917 

HR 0.894 

Table 2.3' 

Correlation matrices and their eigenvalues for the 

EOGs for (a) a vertical eye movement record (JSS36) 

(b) a blink record (AJS108 ) {c) a horizontal eye move

ment record (AJS36) (d) a diagonal eye movement record 

(AJS54) . 

VR HL HR VL VR HL HR 

1.000 

1.000 0.987 1.000 

0.926 1.000 0.956 0.960 1.000 

-.907 0.978 1.000 0.942 0.943 0.943 1.000 

Eigenvalues: ~123,806, A2=0.164 Eigenvalues: A1=3.876, ">.2=0 .078 

A3=o.o2o, ~4=o.o1o A3=o.o33, ~4=o.o13 
(a) L:i\. =156.36 (b ) L:t. =120 . 30 

• I I I I 

VL VR ~ HR VL VR HL HR 

VL 1.000 1.000 

VR 0.853 1.000 0.994 1. 000 

HL -0 . 662 -0.258 1.000 0.995 1.000 1.000 

HR 0 . 799 0.430 -0.957 1.000 -0.761 -0.733 -0.849 1.000 

Eigenvalues: ~1=3.012, ~2=0.933 Eigenvalues: A 123.628, i\2=0.330 

A3 =o .o37, ~4 =0. 018 A3=0.o36, ~4=0.006 

(cl ?:i\i =8 3.99 (d) L:-' :197.75 )\ · 
• I 

I I 

Scatter plots of the EOGs against one another showed 

linear relationship between the EOGs, especially between 

the two vertical EOGs and between the horizontal EOGs (see 

for example figure 2 . 5). Although in nearly every case 

the scatter diagrams for the vertical and horizontal EOGs 

of any eye showed some curvature , suggesting a nonlinear 

relationship, the linear relationship was stronger . 
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Figure 2.5 hodzontal right eog (jiV) 

Scatter diagrams of the EOGs against themselves for a 

vertical eye movement record. The symbol * indicates a 
single point, the numbers give counts of points that fall 
on the same s pot and the symbol + is used where count exceeds 9 . 
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2.3.3 EOG Artefacts 

As stated earlier, any •rtefact contained in the EOG such 

as EMG or EEG, would be introduced into the corrected EEG. 

To assess the problem, several EEG waveforms for both the 

raw and differenced data were studied visually and were 

found to be always contaminated by 'noise'. It was found 

that for VEM and blink records the EOG level relative to 

noise (loosely called signal-to-noise ratio here) was 

smaller for the horizontal channels than for the vertical 

channels. The opposite was true for HEM. A VEM record 

showing EOG artefacts is given in figure 2.6 

The problem of EOG artefact will be re-examined in chapter 

3 where an efficient digital filter used to reduce its 

effect is also discussed. 

2.4 Comparison of Models for Removing Ocular Artefacts 

It is important to determine whether a model a~equately 

describes the EOG-OA relationships. In particular, which 

and how many EOG signals should be used in an OA model 

Some workers suggest that the best removal can only be 

achieved by using all four EOGs (5,6,25 ], others report 

satisfactory correction with one or two EOG signals 

[7,19,20.,25]. Thus there remained a need to carry out a 

systematic comparison of the various models to establish 

their relative effectiveness in removing OA from the EEG. 

In this section, the effectiveness of the models described 
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(iv) 

(HR) 

Figure 2.6 EOGs and differenced EOGs showing secondary artefacts 

(i ) ,(ii) measured EOG waveforms; (iii), (iv) the corresponding differenced 

waveforms. 
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in section 2.2.3 are compared, and the work of Jervis et 

al [ 5,6] extended. 

2.4.1 Criteria Used to Compare the Performance of Models 

Quantitative and pictorial criteria were used in the 

comparison of models. They were intended to be 

complementary. 

(a) Minimization of the Sum of Squares of the EEG. 

As discussed in section 2.2, each model minimizes the sum 

of squares of the error terms. Thus minimum sum of 

squares of the estimates of the error terms (or residual 

sum of squares) can be used as a criterion for comparing 

the models. To take into account the decrease of the 

residual sum of squares with the number of parameters in a 

modei, the residual variance given by equation 2.15 [18] 

was used instead. 

= R /(M-p-1) ssp 
( 2. 15) 

where Rssp and p are respectively, the residual sum of 

squares and the number of parameters in the model. Models 

with small residual variances are considered good modeis 

[18,21,22]. 

(b) Mallows' Statistic, c. 
p 

A model is a subset of a larger model if the latter 

contains all the variables in the former plus one or more 

variables. Subset models yield biased estimates except 
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when the variables omitted are unimportant. T.hus a subset 

model is to be preferred if the bias of its estimates is 

small. A criterion that can be used to choose between 

models is Mallow's statistics, Cp[l8,21,22]: 

C = ( R /S 2 ) + 2p. - M p ssp · k (2.1b) 

'2. • 
where pis the number of parameters in the model,~,1s the 

residual variance from the fu,ll model, here taken to be 

model 4A. A good model shouid have a Cp value close to p, 

which in this case should be no more than about 4 as no 

model has more than four parameters. If models have cp 
values that differ by only small amounts, they may have 

comparable performance. Therefore, a somewhat more 

relaxed criterion was used to ensure that all 'good' 

models were included. Thus a model was 'good' if its Cp 

value was about ten or less. After studying several 

records a pattern emerged and the 'good' models were then 

subjected to further analysis. 

(.c,) OA Estimates and their Differences as Measures of 

Performance 

A disadvantage of quantitative tests is that they may be 

influenced by large secondary artefacts in the EOGs. 

Thus a model that uses noisy EOGs may be favoured by the 

residual variance criterion, for example. Also, these 

tests do not give a good indication of the relative levels 

of remnant artefact. However, they can be used as a 

guide. Further discussions of the problems of 

quantitative tests in the OA work are given in appendix 
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A complementary method used to study the performance of 

the models was to compare plots of OA es.timates from the 

various models and also the differences between these 

estimates. The difference between the OA estimates of any 

two models is equivalent to the difference between the 

corresponding corrected EEGs. This approach may be 

described as a pictorial form of 'F-Test' and it enabled 

the effects of adding extra terms in the model to be 

j:udged visua·Hy. To relate the differences to EM, plots 

of the autocorrelation functions {ACFs) of the differences 

may also be obtained. 

2.4.2 Results of Model Comparison 

{a) Single Parameter Models 

The four single parame.ter models descri:bed in section 

2.2.3 were used to correct several EEG records for OA, and 

in many cases the corrected EEGs still contained a vestige 

of the EOGs. It was found that for blinks and vertical 

eye movements, the models that used vertical EOGs 

performed better than those using horizontal EOGs, and 

vice versa for lateral eye movements. Figure 2.7 gives a 

typical result for two of these models. (Similar results 

were obtained for the other two models). It is evident 

from the systematic effects in the corrected EEGs and 

their ACFs that the OA has not been satisfactorily 

corrected for by one of the models. 
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Figure 2. 7 Corrected EEGs and their JI.CFs for a HEt1 r ecord 
for one parameter models. (i), (iii) EEGs for models using 

vertical right EOG and horizontal right EO~ respectively. 

(ii), (iv) the corresponding ACFs. 

Scatter plots of the EEG against the EOGs are shown in 

figure 2.8, from which it is seen that there is only a , 

weak relationship between the vertical right EOG and the 

EEG, and this explains its failure in removing the OA (see 

figure 2.7 (i)). The bunching of points at about± 60 pV 

in figure 2.8 (ii) correspond to when the eyes were at 

rest or fixated (see section 1.6). Examination of these 

and similar scatter plots for other types of ocular 

movements showed that there was sometimes a linear 

relationship between the EOGs and the OA but that this was 
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not true in all cases. 

The mean of the absolute values of the parameter estimates 

and their standard deviations for two single parameter 

models (using VR and HR respectively) are given in table 

2.4 for two subjects. The values of the standard 

deviations :i.'ndicated that for VEM, blink and DEM, the 

single parameter model that used VR gave more reliable 

estimates than the model that used HR. The opposite was 

true for lateral eye movement. It is seen that the 

estimates for the OLS with raw and with differenced data methods 

differed, but only by small amounts if the standard 

deviations are taken into account. Similar results were 

obtained for models using VL and HL, respectively. 

(.b) Quantitative Comparison of Models 

Several EEG records were corrected for OA with the 

multiparameter models defined_ in section 2.2.3 using the 

OLS with raw and with differenced data methods. In each case and for each 

model the statistics Sp and Cp were computed. Table 2.5 

gives typical results for the methods. For the OLS 

:with raw data method, it is seen from the table that only models 

2D,3C,3D and 4C satisfied the Cp criterion of about ten or 

less, whereas for the OLS with differenced data method only models 

2D,3C,3D,4C and 40 satisfied the criterion and in this 

instance are the 'good' models. As the d statistics for 

the OLS with differenced data method were significantly low (see sec. 2.3.1), 

the results for the OLS with differenced data method were taken to be 

more reliable. Similar conclusions can be drawn from the 
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Figure 2.8 Scatter diagrams of the EEG and EOGs for a 

horizontal eye movement record (AJS36). The symbol * on the 
diagrams indicates a single point, the numbers give counts of 

points that fall on the same spot and the symbol + is used where 
t he.se exceed 9 . 
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Table 2. 4 
,... 

Mean parameter estimates (9) and their stan1ar~ deviations (SO) 

for recordR corrected for OA with sinqle parameter model~ that 

used VR and HR for th e OLS with raw and with differen ced data method 

Vertical E"' Blink 

Subject OLS(raw) OLS (diff) OLS(raw) OLS(diff) 
(V~) (RI!) (Vr.~.) (H~) (V~) (R~) (V~) (HR) 

... 
9 0.16 0.52 0.14 0.33 0.07 0.23 0 .09 0 . 31 

AJS so 0.03 0.12 0.01 0 . 06 0.01 0 . 06 0.01 0.06 

A 

9 0.18 0.76 0.15 0.34 0.10 0.35 0.11 0.40 
JSS so 0.04 0.38 0.02 0.08 0.01 0.21 0 .01 0.12 

Horizontal EM Diagonal EM 

Subject OLS(raw) OLS(diff) OLS(raw) OLS (diff) 

(V~) (Hill (VR) (HR) (VR) (H") (VIl) (HR.) 

"' e 0 . 20 0.13 0.28 0.16 0.16 0.24 0.15 0.18 
AJS so 0.14 0.022 0.1 0.037 0.07 0.05 0.05 0.11 

e 0.38 0.13 0.22 0.22 0.18 0.29 0.18 0.36 
JSS so 0.07 0.04 0.08 0.12 0.08 0 . 10 0.11 0.24 

values of the variance. However, Cp values are easier to 

interpret, but it is necessary to inspect the variance to 

avoid making wrong deductions. 

Table 2.6 gives a summary of the results based on the Cp 

valu es for the OLS with raw and with differenced data methods for 

the various ocular movements and for two subjects. From 

the table it is seen that the following models performed 

we ll in the OLS with raw and with differenced data methods , r espect ive l y : 

(3D,4C and 40) and (3D,4C). It is to be noted that these 

models contained (HL,HR) and one or the other but not both 
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Table 2.5 

Comparison of models using the test statistics 

and 

Model OLS(raw) OLS(differenced) 

s c s c p p p p 

1A 47.49 67.15 16.45 166.33 

2A 45.58 23.33 15.47 95.53 

2B 47.50 68.32 14.45 22.96 

2C 45.56 23.81 I 15.48 97.21 
20 44.97 10.30 14.30 11 . 9 4 

2E 45.55 23.62 15.48 97.47 

2F 48.95 101.62 14.43 21 . 04 

2G 47.03 57.49 15.46 95.90 

3A 46,78 52.82 14. 41 20.97 

3B 45.55 24.77 15.50 99.20 

3C 44.86 8.90 14.27 1 0. 61 

3D 44.57 2.34 14.16 2.56 

4A 44.56 * 14. 15 * 
4B 46.78 53.80 14.42 22.87 

4C 44.56 3.00 14. 15 3.00 

40 46.74 52.85 14.02 -6.18 

* not applicable 

vertical EOGs, except model 4C which contained VR 

indirectly. It appears that there is no need for more 

than one vertical EOG signal in a model. It is to be 

noted that models containing the EOGs of the right eye 

performed better than those containing the EOGs of the 

left eye. (compare for example, models 2A and 2D or 3A 

and 3o). 

The iterative method was applied to some of the 'best 

models'. It was found that convergence of the parameter 

estimates was obtained after about two to three 
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Table 2. G 

Sum~ary of results based on the Cp criterion: the ta~le shows the 

number of times each model had Cp values of about ten o r less for 

each ocular movement and for 0.0 subjects (AJS and JSS), 

table 2. 6(a): OLS(Raw) 

MOD'SL VEM Blink HE!'.\ DE."1 

Z\JS JSS AJS JSS AJS JSS AJS JSS TOTAL 

'2A 0 0 0 0 0 l 1 '2 4 

2B 0 0 0 0 0 0 2 2 4 

2C 0 0 0 1 0 0 4 1 6 

20 0 0 2 f) '2 0 2 3 9 

2E 0 0 0 0 0 0 3 0 3 

2F 0 0 0 1 0 1 1 0 3 

2G l 0 f) 0 0 0 1 l 3 

3.1\ l '2 0 3 0 3 4 5 16 

38 2 2 l 2 l 0 4 1 16 

3C 1 0 2 1 l 0 4 5 14 

3D 1 '2 3 3 3 0 5 4 21 

48 1 l 0 0 0 4 4 5 15 

4C 5 5 3 5 3 4 8 7 40 

40 2 3 3 3 3 3 4 5 '26 

table :Z . ~(b ) : · OLS(differenc ed) 

MODEL VEl'.\ Blink 'REM OE."' 

AJS JSS AJS JSS AJS J'3S A.JS JSS TOTAL 

2A 0 0 0 0 0 0 0 0 0 

2B 0 0 0 0 0 1 0 0 1 

2C 0 0 0 0 0 0 2 1 3 

20 5 0 3 0 2 l 3 1 15 

2E 0 0 0 0 0 0 l 0 1 

2F 0 0 1 l 0 0 0 2 4 

2G 0 1 0 0 0 0 1 l 3 

3A 0 0 1 1 0 1 1 3 7 

3B 0 0 0 0 l l 2 '2 6 

3C 3 0 2 0 3 1 3 1 l3 

30 5 5 3 4 3 4 8 4 36 

4B 0 1 0 0 0 1 1 3 6 

4C 5 5 3 5 3 4 8 7 40 

40 0 0 '2 l 0 2 2 3 10 



iterations. Results very similar to those of the 

differencing method were obtained. For comparison, 

results for model 3D using the three estimation methods 

are given in table 2.7. Inspection of the table shows 

'!'able 2 . 7 

Comparison of parameter estimates,Durbin-Watson statistics and 

the autoregressive parameter 1 for the OLS with raw and with 

differenced data, and the iterative me thods using mod e l JD 
(a) VEM record (JSS36), (b) HEM record (A.lS36) 

(c) Blink record (AJS114) ,(d) VEM record (AJSO). 

Parameter Estimates '!'-ratio 

~. ~~ 
... 
al Te1 '!Ql T~ d 1 

OLS(raw) 0.121 -o. 231 0.609 19.36 -4 .47 14.61 0.17 0 
OLS(diff) 0.12Cl -0.181 o. 331 9.69 -5.19 9 .17 1.81 l 
iter. 0.140 -0.165 0 .3 55 11.47 -4.74 9.94 l. 75 0.935 

(a) 

OLS(raw) 0.091 -0.177 -0.108 4.69 -15.41 -7.18 0.27 0 
OLS(diff 0.330 -0.044 0.102 9.99 -2.46 4.47 l. 65 1 
iter. 0.306 -0.046 0.077 9.39 -2.64 3.50 l. 60 0.942 

_ib_l 

OLS(raw) 0.107 0.094 -0.174 10.07 3.16 -4 . 85 0.39 0 
OLS (di f f) 0.0515 -0.104 0.304 4.52 -3.37 9.83 l. 49 1 
iter . 0.047 -0.105 0.274 4.24 3.46 8.79 1.41 0.866 

(c) 

OLS(raw) 0.168 -o .115 0.0664 27.68 -3.56 2.43 0.22 0 
OLS(diff) 0.129 -0.011 0.105 15.20 -0.44 3.94 l. 59 1 
iter. 0.132 -o. 011 o.o<n 17.02 -0.66 3.70 1. 52 0.899 

(d) 

... .. ~ .. . 
where SE is the standard error for ej, J=~2,3 • 

SE 

that the results for the OLS with dif fe renced data and iterative 

methods were in general similar, but differed from those 

for the OLS \-lith raw data me thod. Compa r e for examp le, the values for 

~3 in table 2.7(c) for the three methods. This is to be 

expected as ~ was near ly the same for the OLS with differenced data and 

iterative methods so that both methods were nearly 

equivalent. 
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~c) Pictorial Comparison of Mbdeis. 

Figures 2.9 and 2.10 show, respectively, the OA estimates 

obtained using a number of models and the differences 

between these estimates for a horizontal eye movement 

record corrected by the OLS with raw data method. Figure 2.9 showed 

that all the oA estimates were not the same in amplitude 

and shapes, suggesting that the models corrected the EEG 

to different extents. It was also found that the OA for 

models 4A and 4C, in general, contained much higher level 

of noise than any other model. 'l'his was probably because 

the EOGs used in these models contained more secondary 

artefacts. Referring to figure 2.10, it may be noted that 

all but figure 2.10(iv) and 2.10(v) contained EOG related 

signal in the form of rectangular wave and only little 

noise. Figure 2.10(iv) and (v), associated with models 

that use all four EOGs (models 4A and 4C), contained 

significant levels of noise. This suggested that hardly 

any improvement was achieved by using all four EOGs in a 

model. Figure 2.10(vi) shows that only small improvement 

was achieved by including square terms (in this case, 

HLxHR ) in the model. These results hold for lateral eye 

movement. For vertical eye movement and blink, it was 

found that models using more than two EOGs did not yield 

significant improvements, especially if one of the EOGs 

already included in the model was a vertical EOG. 

The corrected EEGs corresponding to the OA estimates given 

in figure 2. 9 are shown in figure 2 .11. Some ves.tige of 

the EOG can be seen in these waveforms particularly in 
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that of the single parameter model , figure 2.ll(i). It 

is note worthy that the differences between these EEGs are 

not as easily seen as they are from figure 2.ro, 

illustrating the sensitivity of the pictorial criterion. 

A common feature in all these models was that rider 

artefact, when it occurred, was hardly ever completety 

removed. Peaks were often observed in the corrected EEG 

at points corresponding to where the rider artefacts 

occurred in the raw data. 

Similar results to those given above were obtained for the 

OLS with differenced data and iterative methods. In these cases, 

however, the improvements were more pronounced. However, 

model 40 did not perform as well as in the OLS method. 

Figure 2.12 gives the OA estimates for model 3D for the 

three methods and the differences between these estimates. 

The figure showed that the OLS with differenced data and the iterative 

methods differed only in the size of their OA estimates, 

whereas the OLS with raw data method gave results that were dissimilar 

to either methods. J.udging from the signs of the peaks in 

the OA differences, it appears that the OLS with raw data method tended 

to under estimate the OA. 
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2.5 Discussion of Results 

(a) Autocorrelation in the Background EEG 

The results of section 2.3.1 showed that the background 

EEG is highly correlated and thus violates one of the 

assumptions of the least squares method. Thus optimum 

estimates of the parameters cannot be obtained. Although 

the problem was reduced by modelling the EEG as a first 

order AR series, higher order AR models may give better 

estimates [ 15 ]. However, there are draw backs in using AR 

models. Firstly, the data points have only a limited 

accuracy, so that subtraction of terms as in equation 

(2.13) leads to a reduction in the accuracy of the data. 

Secondly, these operations are equivalent 

filtering and therefore, the parameter 

determined only by the changes in the 

to high pass 

etimates are 

data. This in 

itself is not a bad thing since the detection and removal 

of changes in potential due to ocular movement and not eye 

fixation is the goal in OA removal. 

(b) Collineari ty 

The results of this 

ocular movement, at 

investigation showed 

least a pair of 

that for any 

EOGs were highly 

correlated. The correlation is probably because in most 

cases both eyes move in unison and there is no isolation 

between the vertical and horizontal measuring sites. It 

is possible, therefore, that for some ocular artefacts 

(e .. g. blinks and vertical eye movement) a single 

parameter model is sufficiently sensitive for satisfactory 
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correction. However, when the best possible correction is 

required or when there is less correlation between the 

EOGs as in lateral and random eye movements more EOGs are 

required. However, when additional EOGs are used 

computational difficulties due to collinearity may arise 

[9 ]. If the EOGs were strongly collinear, as in the cases 

studied, it is not possible to estimate the exact 

contribution of ~ach EOG signal and the parameter 

estimates are less reliable [9,16,17]. 

(c) Comparison and Choice of Models 

A good model should include at least a horizontal and a 

vertical EOG signal. On the basis of the results it 

appears that these should be the horizontal and the 

vertical; right EOGs. As mentioned earlier, there is no 

need to use both vertical EOGs as they are nearly always 

highly correlated and may introduce significant secondary 

artefacts into the EEG. Account should also be taken of 

the various observed effects in the EEG and EOGs such as 

the opposing effects of the eye dipoles during lateral 

movements [5,6] and the slight curvatures in the scatter 

diagrams. Model 40 (which used VL,HLxHR,HL,HR) was chosen 

for implementation on-line, but with hind sight it was 

thought that a model that used (VR,HLxHR,HL,HR) would be a 

better choice. A brief investigation confirmed this to be 

so. However, if the concept of 'fewer is better' is used 

then model 3D (which used VR,HL,HR) should be used. As 

discussed in chapter 5, the new ocular artefact removal 

sys.tem infact implements the three models: 20, (which uses 
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VR,HR), 3D (which uses VR,HR and HL) and the modified 4D 

(which uses VR,HR,HL and HRxHL). The desired model is 

then selected by the user- again illustrating the 

versatility of the on-line removal method d~veloped in 

this work. 

Jervis et al [ 5, 6 ] compared a number of models which 

included model 4A (which used all the four EOGs) and some 

of its subsets, using a quantitative test based on the 

autocorrelation functions of the corrected EEGs. They 

found that model 4A was the best. 

of strong serial correlation in 

However, the presence 

the EEG and the large 

secondary artefacts associated with this model could 

significantly affect the ACF of the corrected EEG and make 

the quantitative results unreliable. These points are 

discussed further in the appendix A3. Fortgens and De 

Bruin [ 25 ] reached similar conclusions as Jervis et al 

[5,6] by considering 2- and 4- parameter models. They 

reported that at least four EOGs are required for adequate 

removal of OA, especially in the frontal regions. They 

also showed theoretically that four EOG signals were 

necessary assuming uncorrelated signals, but it has been 

shown that the EOGs are correlated so that four EOGs are 

unnecessary. 

The OA models used in this investigation probably do not 

remove completely OA which is due to rider artefacts. For 

the rectangular EOGs used, rider artefacts tended to occur 
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at twice the frequency of the EOGs and appeared as peaks 

in the corrected EEG. Examination of a number of 

corrected EEGs from records that contained rider artefact 

suggested that this may be the source of the second 

harmonic reported by Jervis et al [5,6 J. See for example, 
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Figure 2.13 Corrected EEG waveforms and their ACFs for a VEM record. 

showing imperfectly corrected Rider Artefacts , 

(one parameter models were used. (i), (ii) model 

that used VR; (iii}, (iv) model that used HR) 

(Raw data are given in figur e 1.2a, pS . See a l so the back pocket) , 

figure 2.13. The inability of the OA models to deal with 

multiple artefacts is mainly because all data are given 

equal weight in the estimation of e and only simultaneous 

changes in the EOGs and the EEG signals are taken into 

account. Some form of dynamic model that does not give 

equal weight to all M data points would appear to be more 
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appropriate. Models incor,porating some of these ideas 

have been simulated on a main frame computer and will be 

discussed in chapter 4, when attention will be focused on 

on-line removal of OA. 

2.6 Summary 

In this. chapter a formal ocular artefact removal algorithm 

using least squares methods has been developed. Three 

problems of parameter estimation using this method and 

their solutions have been discussed. These are 

autocorrelation of the EEG,. collinearity of the EOGs and 

EOG artefacts. 

The common assumption, implicit in all EOG subtraction 

methods, that the error terms (or background EEG) are 

uncorrelated was shown to be invalid. The effects of this 

invalid assumption on 

estimates were reduced 

the ocular artefact parameter 

by modelling the error terms as a 

first order autoregressive series. 

It was shown that for most ocular movements there were 

least a pair of EOGs that were strongly correlated. 

at 

Thus 

there is no need to use all four EOGs ( one vertical and 

one horizontal for each eye) in the model for removing OAs 

as previously reported [5,6,25]. 

The performance of several models were compared using 

quantitative and pictorial criteria and it was found that 

regardless of the type of ocular movement, there was 
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always a smaller model that has a performance that is 

comparable or better than the full model. Overall, the 

model using the vertical right EOG (VR) , the two 

horizontal EOGs (HL and HR) and their product (HLxHR) gave 

the best performance. The model using the vertical right 

EOG and the two horizontal EOGs was found to be the best 

three-parameter model. This updates the conclusions of 

Jervis et al [5, 6] and Fortgens and De Bruin [ 25 J. 
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Chapter 3- SPECTRAL ANALYSIS OF THE OCULAR ARTEFACT SYSTEM 

3.0 Introduction 

In this chapter, several aspects of the OA problem are 

explored using spectral analysis methods. Although the 

EEG subtraction technique may be carried out in the 

frequency domain [ 1 ], the main value of spectral analysis 

in OA is probably as an exploratory tool. 

Three aspects of the OA system were investigated, these 

are: 

(i) Power spectra of the corrected EEG to establish 

whether the OA has been completeiy removed. 

(ii) The relationships between the EOG and its counterpart 

in the EEG using cross and coherence spectra. These allow 

an estimate of the range of frequencies over which the EOG 

and OA are related to be obtained, and this in turn allows 

appropriate characteristics of a filter for removing the 

EOG noise to be defined. 

(iii) The magnitude-frequency response of the OA system 

for various types of ocular movement. This method could 

explain the differences in the ocular artefact parameters 

for different types of ocular movement. 

In section 3.3, 

filtering out the 

an appropriate digital 

EOG noise is discussed. 

filter for 

The work on 

digital filtering was carried out in collaboration with a 
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final year undergraduate stud~nt supervised by the author, 

and formed the basis of a paper [ 2 ]. 

3.1 Summary of Spectral Analysis Methods Used 

In this section, an outline of the spectral analysis 

methods used which is considered necessary to follow 

subsequent discussions is given. More detailed 

discussions of both the theory and practice of spectral 

analysis methods can be found in the literature [3-9]. 

Four spectral measures were used, namely, Power-, cross-, 

coherence-, and gain spectra. 

(a) Power Spectra and Cross Spectra 

Two spectral estimation methods were used in the analysis, 

namely, the method of modified periodogram or Welch method 

[3,4,9] and the correlation method[ s]. 

(.i) The Method of Modified Periodogram or Welch Method. 

Estimation of Power Spectra. 

In this approach, the data sequence (x(n) ,n=O,l, ••• N-1) 

whose spectrum is to be estimated is first divided into S 

overlapping segments each of length L. The transform, 

Xi (m), and periodogram (or raw spectrum), Ii (~), of each 

segment are then obtained as: 

L-1 
x.(m) = 1 \ W(n)x.(n)e-j(2tr)nm/L m=O, ... L-1 

1 --- ~ 1 

(3.1a) 

L n=O 

I 
2• 

I.(w) = LX.(m)l 
1 m - 1 

2nQ · 
i=O, 1, ... (S-1) 

\'lm = 2nm/L rn=O~ ••• L/2 (3.1b) 
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Q 

where j= J:J: 1 w (.n) is an appropriate window function (see 

later) used to reduce the effects of finite length record 

on the spectral estimates, x·i~) is the ith data segment 

and., Q., the window energy [ 9] defined as: 

1 L-1 
.·L; " =· L· W''"( n) 
ti 0 

The estimate of the power spectrum of the original 

sequence x (n) , is the average of the periodograms of 

equation (3.lb): 

wm = 2m.1/L r::=O, .. L/2 (3. 2) 

S i=O 

The Discrete Fourier Transform (OFT) coefficients, Xi(~) 

in equation (3.la) are efficiently obtained via the Fast 

Fourier Transform (FFT) algorithm [9,10]. To increase the 
_....... 

spectral resolution of Ii (Wju) and hence Sxi""r,1 l, the length 

of the segments are extended, after windowing, to say 

(L+R) by adding R zeros, and the transform of the 

augmented sequence is then obtained [ 9 ]. 

To obtain optimum estimates of the spectrum, the segment 

length and/or overlap between segments have to be varied 

by trial and error. In the investigation the overlap 

between segments was kept constant at half the segment 

length, so that only the segment length was varied. The 

segment, xi(n), and the original data sequence, x(n), are 

r ela.ted as: 

xi(n) = x[n + iL/2] , i = 0,1, ... (S-1) (3.3) 
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This approach, which is due to Weich [3,4], yields 

estimates with lower variance than those from a direct 

transformation of the original sequences or when there is 

no overlap between the segments, but at the cost of 

increased computation [4,9]. 

Estimation of Cross Spectra 

For the cross spectra, each of the sequences x(n) and 

y(n), n=O,l, •• N-1, is divided into S segments as described 

above. Each segment is then windowed and trans£ormed 

(after zero padding if necessary) to give x1 (m) and Yi(m) 

as in equation (3.1). The periodogram and cross spectral 

estimates are then given by: 

.... 
I . ( w ) = L X. (m) Y. "(m) 

l m --- l l 
(3.4a) 

2n Q s-1 
2:: Ii(wm) "' S (w ) = 1 xy m -

s 
(3.4b) 

i=O w = 2nm/. m=O, .. ,L/2 m /\..., .,: 
where Y i(m) · is the complex conjugate of the transform of 

yi(m). The Cross spectrum is complex, so that it may be 

expressed as: 

Ay(wm) (3.5) 

and h ( \l ) 
~ are, respectively, the 

magnitude and phase of the cross spectrum. 

(ii) Correlation Method 

Given a data sequence, x('n) ,n =O,l, .•• N-1, the estimate of 
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the spectrum is given by: 

M-1 
/'.. 
s. .(..,, ) -· 

XX Lll 

2::: W(k)C (k)e-j(Zn/M)mk (3.6) 
XX 

k=-(M-1) I /2 w = 2nm M, m=O, ... ,M m 

where w ( k) is a lag window [ 5 ], M the window length, and 
......... 
c .. x;k) is an estimate of the autocovariance function 

" 

(ACVF) of x(n) given by: 

tl-k-1 
C (k) = VN \' x(n)x(n+k) 

XX {__, 
- ,.... c (-k) = c (k) 

XX · XX 
(3.7) 

n=O 
O~k~(N-1) 

As in the modified periodogram method, the lag window is 

used to reduce the effects of using a finite length 

record. Optimum spectral estimates are obtained by 

varying the window length, M, by trial and error. The 

'window closing' technique described by Jenkins and Watt 

[ 5] was used, and involves computing spectral estimates 

with progressively larger window lengths until 

satisfactory estimates are obtained. In general, the 

larger the window length the less the bias in the spectral 

estimates, but the larger the variance. At some point 

further increase in the window length may lead to rinstable 

(or wildly fluctuating) spectral estimates. Thus the 

window closing technique is essentially a method of 

trading-off between bias and variance. 

For cross spectra, given the data sequences, x~n) and y(n) 

(n=O,l, ••• N-1), an estimate of the cross spectra is given 

as: 
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M-1 
'S ( ) " W(k)C' (.k):e-j(2tr/M)mk 

xy ~m = LJ xy 
(3.0) 

k=-(M-1) 
vl = 2nm/M, m. . ra=O, ... ,M/2 

,.,...... 
where C xfkl is an estimate of the crosscovariance 

function given by: 
N-k-1 

C':y(k) = l/N L; x(n)y(n+k) 
n=O 

N-k-1 
'C ( -k) = 1/N L; x(n+k)y(n) xy 

n=O 

0~ k ~ (N-1) 

Estimates of C C S and S 
XX xy' XX xy 

(3. 9) 

may be obtained using the FFT algorithm, but the 

algorithms given in [ 5 ] were used instead so that the 

various techniques suggested therin could be explored. 

Computationally, the method of Welch is more efficient 

than the correlation method due to the efficiency of the 

FFT algorithm. For some window functions, e.g 

Hanning-Tukey, the correlation method can produce negative 

values of power spectrum [ 5 ]. An attraction of the 

correlation method is that it tends to average out the 

noise in the data before its transform is taken [11], so 

that the transform of a recurring signal 'buried' in noise 

may still be obtained. The Welch method transforms the 

data (plus any noise) directly, although the averaging of 

the periodograms in equation (3.2) also reduces the 

effects of noise. It has been pointed out [ 11 ] that the 

correlation method may not be suitable where the signal is 

non•stationary in nature, as the method is based on the 

assumption that the signal source is ergodic, which would 
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no longer be satisfied. 

(iii) Window Functions 

In the two estimation methods described above, the number 

of data points used in the transform is finite. A finite 

length data record can be viewed as the product of a 

rectangular window of unit height and the actual data. 

Such a window and its transform are depicted in figure 

3 .1. 

w( n) 

1.0 

(a) 
N-1 In! 

2. 

W( f) 

side lobe 

(b) 1/N 

Figure 3.1 (a) A rectangular window and (b) its transform 

In the Welch method, the spectra is obtained from the 

transform of the finite length record (see equation 3.1). 

Since multiplication in the time domain is equivalent to 

convolution in the frequency domain [17], the convolution 

of the spectrum of figure 3.1b and the data spectrum leads 

to a broadening of the peaks in the estimated spectrum 

and, due to the side lobes in figure 3.lb, a leakage of 

energy from one frequency into another. The broadening of 

peaks may cause two peaks that are very close to fuse 

together into one peak [11], and energy leakage may lead 
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to spurious peaks in the spectral estimates. W,indow 

functions referred to above have reduced sidelobes and are 

used to reduce leakage, but often at ·the expens~ of 

broader peaks [ 5, 11]. 

Similar effects to those above are obtained in the 

correlation method. In this case, however, the use of a 

finite length record leads to biased estimates of the 

covariance functions (equations 3.7 and 3.9) since, for 

example, the expected value of the ACVF is given by [2,5]1: 

(3.10) 

Thus the spectral estimates obtained from the biased 

covariance functions again can be viewed as the 

convolution of the true spectrum and the spectrum ofthe 

window funtion, (1 - k/N) [3,5]. 

Two popular windows, the PARZEN and HANNING-TUKEY windows 

[5,12 ], were used in the investigation. For the Welch 

method, they have the form: 
PAR ZEN 

WB- + ~· = 1 - 6 ~~1]
2 

+ 6 ~!tl}3 

= 2 f1 - 21 kTP 
L L-1-j 

= 0 elsewhere 
HANNING-TUKEY 

wrL + kl = 0.5[1 + cos(2rrk/L-1)] 
~ J = 0 elsewhere 

Following Jenkins and Watt [ 5], only 
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windows were used for the correlation method (the windows 

are even functions) , thus they have the form: 

PAR ZEN 

W(k) 
= 

1 
-

6f~r + 
6 [7r 

=Zf-7.1 
3 

::0 elsewhere 

HANNING-TUKEY 

W(k) = 0.5[1 + cos(nk)] 
. . ·H 

- . 

M.< I kl ~M 
2 

0 ~ lkl (M 

The windows produce similar but not identical spectral 

estimates due to differences in their shapes. 

(b) Coherence Spectrum 

The relationship between the EOG (input) and the EEG 

(output) may be described by the coherence spectrum. This 

is the counterpart of correlation coefficient (for a 

single-input-single-output system) in the time domain at 

each frequency [5]. 

The coherence spectrum, j2 (wffi), is given by [5-7]: 

p(wm) == I ~xy( wm) 12 
,.....,_ A 

S _{ v )S (w ) 
¥x. m y m 

(3.11) 

are respectively, 

estimates of the input-, output-, and cross spectrum using 

either of the estimation methods described earlier. 

Jenkins and Watt [5] have shown that, at least in theory, 
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. the coherence func.tion satisfies the ine.qua·li ty: 
A 

O-f. f(·'1nl"'L A coherence of unity at a given frequency 

implies that the input and output signals are perfectly 

correlated at that frequency, and a coherence of 0 implies 

zero correlation [5-7]. 

(c) Frequency Response 

The frequency response of a linear system, such as that 

given in figure 2.1, but for a single input, is given by: 

This may be expressed as consisting of an absolute value 

l';;:y("'m)l , known as the gain, and a phase angle:i.7 • Thus : 

( 3 .. 13) 

where , 

A 

= IHx/wm) I' lixy(wm) 

A 
Q~y (wm) and are the real and imaginary parts of 

" Hxy(wtn). 

A /' 
For an n-input system, H (w ) , and s· x/wtn l are complex xy m 

A 
vectors of dimension n., and 5 xx(Wffi) is an nxn complex 

matrix, so that (where the symbol '"V is used here to 

distinguish these matrices from the scalars above): 

(3.14) 
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Equation 3.14 above is analogous to the OA model of 
"V 

equation 2.1, and n· (w ) may be viewed as the counterpart 
xy m 

of e in the frequency domain [ 5-7]. 

In view of the high correlation between the EOGs and for 

simplicity, only the single input case was investigated. 

Furthermore, ohly the gain functions were computed. 

3.2 Results of Spectral Analysis 

Figure 3.2 shows the power spectra for the EOGs (VR,HR) 

and the EEGs (measured and corrected) using Welch's 

method. Each spectrum is normalized to have a minimum 

value of 0 dB.. The horizontal right EOG spectrum, figure 

3.2(ii), shows a well defined peak at about 0.9Hz due to 

the periodic nature of the original data, and a smaller 

peak at about 2.6Hz. The corresponding peaks are evident 

in the measured EEG spectrum, figure 3.2(iii), as well as 

other smaller peaks. Examination of the spectra for the 

EOG and EEG, figures 3.2 (ii) and (iii), shows that the 

second peak is more pronounced in the EEG than in the EOG, 

suggesting that it may have originated from the EEG.. The 

spectrum of the EEG after correcting for OA (using model 

3D in section 2.2) is shown in figure 3.2 (iv). It is 

seen that the fundamental EOG component has been reduced 

in level, but not completely removed. 

Results for the same record using the correlation method 

are shown in figure 3.3. Comparison of figures 3.2 and 
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c 16 
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10 

Ul EEG c 
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a.. 8 ...., 
12 'L '- 7 Ql 

:J 10 Ql 6 :J 0 8 0 5 Q. Q. 

Cl 6 1 
0 Cl 3 1 0 -I -I 2 2 I 

0 0 
0 2 3 1 5 0 2 3 ., 

Freq( Hz > Freq< Hz > 

Figure 3.2 Spectra of the EOGs and the EEG for a HEM r ecord 
(i) Vertical right EOG (ii) Horizontal right EOG 

(iii) measured EEG (iv) Corrected EEG 

(the raw da t a are given ~n figure 4 . l, pl23) . 
-

3.3 shows that they are similar, but not identical due 

perhaps to the differences in the estimation methods. 

Figure 3.4 gives the results for a blink record using 

Welch's method. It is seen that the corrected EEG, figure 

3.4 (iv), still contains a peak at the EOG frequency 

(about 1.3Hz), an indication that the OA has not been 

completely removed. It is to be noted that the OA 

components in the corrected EEG sometimes occur at lower 

frequencies than their counterparts in the measured EEG. 

A consequence of this will be discussed later. 
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Figure 3. 3 Spectra of the EOGs and EEG for a HH1 record 

using the corre l at i on method U1=350) . (i) Vertical right EOG 

(ii) Horizontal r i ght EOG (iii ) Meas ured EEG (iv) Corr ec t ed EEG . 

( t he raw da t a are given in figure 4.1, pl23) . 

The coherence-, gain-, and cross spectra between the EOG 

and the EEG obtained via the ~eQ~h's method for a lateral 

eye movement record are given in figures 3.5(i), (ii) and 
• 

(iii) respectively. The coherence spectrum has a large 

peak at about 1Hz, due to the periodic EOG, and falls off 

on either side . This indicates that the EOG and the EEG 

are strongly correlated at this frequency. There are also 

large coherencies above 2Hz, but thes.e are th_ought to b e 

spurious since the power and cross spectra indicate little 

power at those frequencies. 
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Fi gure 3.4 Spec t ra of t he EOGs and the EEG fo r a bli nk r ecord 

using t he We l ch' s me t hod (1=350) . ( i ) Ver t i ca l r i gh t EOG 

(ii) Hor izon tal right EOG (iii) Meas ured EEG ( i v) Cor rected EEG . 

(the f igure showing the raw data is in the b ack pocke t ) . 

The gain has a peak near the EOG frequency. Above about 

2Hz, the gain fluctuates rapidly due perhaps to the weak 

relationship between the EOG and the EEG at these 

frequencies. 

Figure 3 .6 shows the coherence and gain spectra for the 

s CJ.rae record with the data differenced prior to obtaining 

the spectral estimates. The behaviour is somewhat s imilar 

to figure 3.5, with t he notable difference being a 0rc&cci 

gain peak. SiQilar Les ult s we r e obta ined f or blinks, but in 

,. t:1ese cases the gain peaks \·Je r e lower in magni tude . 
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Figure 3.5 (i) Coherence 

between VR and EEG ("ii) Gain 

spectrum between VR and EEG 

(iii) Cross amplitude spectrum 

of VR and EEG (HEM record) 

(the raw data a r e given in figure 4.1, p123) . 

(ii) 
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Figure 3 . 6 Coherence and Gain 

spectrum for a HEM record with 

data differenced prior to trans

form~ tion to reduce the effects 
of spurious relationships 

(o ther details same as 3 . 5). 

(the raw data are given in figure 4.1, p123) . 
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3.3 Digital Filtering of the EOG with Minimal Distortion 

As discussed in section 1 .• 6.2, a disadvantage of the EOG 

subtraction method is that 'noise' in the EOG, unrelated 

to ocular movement, may be introduced into the corrected 

EEG. Thus this noise should be removed. 

Whi tton et al [ 1 ] found that there was 1i ttle shared 

activity between the EOG and EEG above about 8Hz, and 

employed a low pass filter to remove any high frequency 

activity in the EOG above this frequency. The results of 

section 3.2 agree with 

considered that the 

not appropriate. The 

their finding. However, it is 

use of a simple filter as in [1] is 

simple filter with its poor 

amplitude and phase response would introduce distortion 

which would impair the remova,l of ocular artefacts. 

The excellent filter design method of Mcllelan et al [9] 

was selected as the best approach. The method allows 

filters with specified amplitude response and linear phase 

to be obtained. 

Using the design method, an FIR filter with the frequency 

response of figure 3.7 was designed. The filter has 29 

coefficients, a passband of 0 to 10 Hz (to pass higher 

frequency components of the EOG) and a stop band loss of 

-33.43dB. The filter coefficients are listed in table 

3.1. 
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Figure 3.7 
(a) EOG filter frequency Response 

(b) EOG filter. pas sband response 

-::33·4 

(a) 

0 0•1 0 ·2 0 ·3 0·4 0 ·5 
norma.Lised freq.uenc~ 

0 ·023 ------

(b) 

0 

- 0 · 023 =-=-=-.;.._,...-~-:-:--~-=--!-:----++:~ 
0 ·02. 0 ·04 O·OB 

normalised fre q.u en c V 

TABLE 3. 1 

Filter ooefficients for Em lCMpaSs filter. 

H( 0) = -O.lll91774E-Ol a H(28) 

H( l) 2 -0.38390798E-02 2 H(27) 

H( 2) 0. 7303480lE-02 = H(26) 

H( 3) = O.ll693427E-Ol • H(25) 

H( 4) = O.l8245798E-Ol = H(24) 

H( 5) 0.78lll943E-02 = H(23) 

H( 6) = -0.75105876E-02 = H(22) 

H( 7) = -0.31717509E-Ol = H(21) 

H( 8) = -0.41073106E-Ol = H(20) 

H( 9) = -0.31341068E-Ol = H(l9) 

H(lO) 0.13298627E-Ol = H(l8) 

H(ll) 0.790ll54SE-Ol = H(l7) 

H(l2) O.l5616089E-OO = H(l6) 

H(l3) = 0.21316704E-00 = H(l5) 

H(l4) 0.23729908E-00 
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Rabiner's Algorithm [13 ], modified to take account of the 

impulse response symmetry for a linear phase filter, was 

used to realise the filter. A FORTRAN program used to 

perform the filtering is given in appendix Al4 , and an 

example of filtered data is given in figure 3. 8. 

Ill 
1J 
:J .. ... 

..J 
Q. 
e 
d 

Unfiltered EOG 

2 3 1 5 s 7 8 9 
tim• Ssec> 

Filtered EOG 

( ii ) 1~~~~~~~~~~~ 
" 3 
> 2 
3-
q, 
1J 
:J .. . .. 
..J 

~ -3 
d 

-1 

-5~~~~~~~~~~~ 0 2 3 1 5 s 7 
t ime <sec> 

Figure· 3.8 Unfiltered and fil tered EOG signals 

Examination of the figure shows that there is little 

distortion of the filtered data. However, spectral 

analysis of the filtered and unfiltered data did not 
• 

reveal any significant differences, probably because the 

EOG noise was very small compared to the 'true' EOG. For 
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this reason, the filter was used in subsequent work only 

in cases where it was thought that the EOG noise would 

affec.t the results. 

3.4 Discussion of Results 

The results of the spectral analysis of the corrected EEG 

indicates that the present models do not completely remove 

the OA from the EEG. This .supports the report of Whitton 

et al [1]. A method for removing OA in the frequency 

domain described by these authors first computes the 

spectra of the EOG and the EEG. The EOG spectrum is then 

subtracted from that of the EEG, after both have been 

scaled so that their low frequency peaks are equal. As 

was found out, the EOG peaks sometimes occured at 

different frequencies to those of the OA, so that a direct 

subtraction of scaled EOG spectrum may not be wise. Also 

if the peaks are not well defined, as will be the case 

when the OA level is low, the scaling will be difficult. 

Furthermore, the gain fuctions suggested that the system 

does not have a constant gain at all frequencies, so that 

a scale factor obtained from one peak (which is equivalent 

to the gain at a single frequency) will not apply to all 

frequencies. A better approach in the frequency domain 

would probably be to obtain the corrected EEG as the 

difference between the product of the gain function and 

the EOG, and the measured EEG. In the time domain, a 

possible alternative to the present OA models is to use 

the impulse response identification method U4-16 ], with 
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the system impulse duration estimated from a spectral 

analysis study. This is ana!ogous to the frequency domain 

methods just suggested, but has the advantage that it 

could be implemented in real-time. 

3.5 Summary 

In this chapter, various aspects of the OA problem were 

explored using spectral analysis methods. It was found 

that the EOG subtraction method does not completely remove 

the OA. 

Cross and coher.ency spectral analysis of the EOG and EEG 

showed that for the 'periodic' EOGs used, there is little 

shared activity between the EOG and the EEG above about 

3Hz. Thus higher components of the EOG are probably due 

to noise and should be filtered out. A suitable digital 

fil.ter which introduces minimal distortion into the EOG 

was discussed. 

The gain function of the OA system suggested that all EOG 

frequency components are not attenuated by the same amount 

through the scalp. 
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Chapter 4 ON-LINE ·REMOVAL 0F OCULAR ARTEFACTS FROM THE EEG 

SIGNALS 

4.0 Introduction 

The present on-line methods of removing ocular artefacts 

(OAs) from the EEG signals employ analogue methods 

requiring the cooperation of subjects which cannot always 

be guarranieed, and are in genetal inferior to the 

off-line methods [ 1-7 J. In this chapter, al:gorithms are 

ptesented which are suitable for on-line removal of OA 

with a performance that is as good as their off-line 

equivalents. These algorithms are based on the efficient 

recursive least squares parameter estimation technique. 

Compared to the present on-line methods, they are 

superior, requiring no subjective manual adjustment and 

the OA removal is adaptive (as the OA parameters are not 

assumed constant) and therefore more accurate. 

The problems of removing OA by these algorithms and 

solutions are discussed. This chapter has formed the 

basis of a paper that it is hoped will be published soon 

[8], and will form part of a longer paper to be written 

soon. 

4.1 On-line Parameter Estimation Algorithms 

In chapter 2, it was shown that the ocular artefact 

parameters are obtained from equation 2.2, by minimising 
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the sum of squares of the error terms,J: 

J= ~ e 2(i) = E TE m m 
, I 

(4.1) 

This leads to the ordinary least squares (OLS) estimates 

of equation 4.2 below. 

where 

1\ 

e-2 X = m 

As may b e apparent, th e time 

y -m-

(4.2) 

y(l) 

y(2) 

y(m) 

consuming inverse matrix has to be computed each time em is 

to be estimated. Clearly, this approach is not suitable 

for real-time or on-line estimation. In practice when 

continuous data are being acquired, and it is desired to 

improve the parameter estimates using the new data, 

recursive methods are preferred. With a recursive 

algorithm the estimates can be updated for each new set of 

data acquired without repeatedly solving the time 

consuming matrix equation of 4.2 directly. 

A suitable recursive least squares (RLS) algorithm, which 

also tracks slowly varying parameters is obtained by 
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exponentially weighting the data to gradually remove the 

effects of old data on the estimates [9-11]. Thus : 

O< ""( <1 (4.3) 

Minimisation of J with respect to the a•s leads to the 

recursive least squares algorithm given in (4.4) [ 9-11], 

the derivation of which is given in appendix A4: 

"" " T ~ 9 ( m+1) = 8(m) + P(m+1)x(m+1)[ y(m+1 ) - x (m+1)6(m)] 

P(m+1) = 1 [P ( m) - 1... P(m) x(m+1) x T (m+1) P(m)] 
i ()(. 

where, 

d... = Y + x T (m+ 1) P (m) x ( m+ 1) 

x ( m+1)] 
n 

(4.4a) 

(4.4b) 

and the argument (m) is used to emphasize the fact that 

the quanti ties are obtained at each sample point. Y is 

referred to as the forgetting factor and prevents the 

matrix P(m+l) from tending to zero (and " 8(m+l) to a 

constant) with increased m, thus allowing the tracking of 

a slowly varying parameter. The number of the previous 

samples that significantly "' affect e(m) is referred to as 

the asymptotic sample length (ASL) , given by e.g. [ 12 ]: 

00 • 

\' yJ asL = 6 1 
j -,:0 

= 1/(1-Y) (4 . 5) 

Typically , Y is between 0. 98 and 1. Smaller values assign 

too much weight to the more recent data which leads to 
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wildly fuctuating esttmates. 

As in the off-line case (see section 2.1), the on-line 

case is extendable to the multi-EEG channel case by 

similar arguments. 

4.1.1 Starting the Algorithm 

There are a number of ways of starting the algorithm, two 

of which are described below (!.3, 1~ • 

(a) Solve for 9(m) directly using the first m samples. 

That is, solve: 

where, 

P(m) = [X TX ]- 1 (see appendix A4) m m 

(4.6) 

Having obtained P(m) and a,(m), the algorithm then iterates 

from the (m+l)th sample onwards. To keep the computation 

time to a minimum, m should be chosen to 'be small. The 

advantage of this approach is that the initial transient 

associated with " . 9(0) lS initial 'guessed' p (0) and a 

avoided. 

(b) Assign arbitrary values to ft(O) and then set P(O)=.bi, 

where I is a unit matrix and b is a positive constant. A 

large 0 leads to rapid initial changes 
A 

in 9(m) as it 

implies little confidence in the value of "' e < o l A [ 12 ]. 

smaller D is an indication that ~(0) is a reasonable 

estimate and leads to slow initial changes. It is helpful 

116 



to choose e(O) based on previous results and then to set 8 

to a small value. Having assigned values to t:i(O:} and 

P(O}, the algorithm then iterates from and P (1} 

onwards. 

4.1.2 Factorization Algorithms 

The RLS method is very efficient and involves exactly the 

same number of arithmetic operations between samples, as ~ 

and P in equation 4.4 have fixed dimensions. There are 

however, two main problems that may be encountered when 

the RLS algorithm is implemented directly. The first, 

referred to as 'blow-up', results if the signal is not 

'persistently exciting' as, for example, when there is no 

ocular movement, leading to an exponential increase in the 

elements of P in equation 4.4b. Thus: 

li:m P .. (m+l) = lim 
lJ 

f'll+ 110 l'f\~ 00 

( 4. 7) 

However, because of miniature ocular movements and other 

activities that are normally picked up in the EOG 

channels, this problem may not be so serious in OA 

removal. 

The second problem with RLS is its sensitivity to computer 

round-off errors, which degrades the numerical accuracy 

and algorithm performance. For successful estima-tion, the 

matrix P is required to be positive semidefinite. (This 

is equivalent to requiring in the off-line case that the 
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matrix (X T X) be invertible). If this condition is not 

met, then P does not exist and the algorithm becomes 

unstable. Because of differencing of terms in equa·tion 

4.4b, positive definiteness of P cannot be guaranteed 

[9,15]. This problem is worse in multiparameter models, 

especially if the variables (EOGs in this case) are 

linearly dependent [ 9] and when the algorithm is 

implemented on a small system with finite word length. 

When the algorithm has iterated for a long time the two 

terms in the bracket in equation 4.4b are very nearly 

equal and subtraction of such terms in a finite word 

length system may lead to errors and a negative definite P 

matrix [12,15,16]. 

An elegant way of solving the problems of blow-up and 

numerical instability is to replace the RLS algorithm with 

one that is numerically better conditioned. Such 

algorithms factorize the matrix P(m+l) so that the 

differencing of terms in 4.4b is avoided, and reduce the 

numerical ranges of the variables so that even when the 

data is not exciting P does not become excessively large. 

It is reported that these factorization algorithms have 

accuracies that are comparable to RLS algorithms that use 

double precision [15-17]. As an indication of the 

confidence that is placed on these algorithms, they have 

been used in many aerospace projects, such as the Appolo 

lunar mission [15-17]. 

described here. 

Two of these algorithms will be 
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(a) The Square Root Algorithm 

In the square root method, the matrix P is factored as,: 

P(m+l) = S(m+1)ST(m+1) (4.8) 

where S(m+l), an upper triangular matrix and ST (m+l) its 

transpose, is a square root of P(m+l). Thus if S(m+l) 

instead of P(m+l) is updated, the positive definiteness of 

P(m+l) is guarranteed since the product of . ~ two square 

roots is always positive (assuming real roots). 

There are several approaches to square root filtering e.g 

[9,15,18]. The approach presented here is due to Peterka 

[9]. From equations 4.4 and 4.8, P(m+l) is given by: 

P(m+l) = 1. [I - 1. P(m)x(m+l)xT(m+l)}P(m) 
i c(. 

= S(ril} fl: jf(m+1)JQQTt!_.---~1ST(m) 
~ l_ 1 V~ Jf:(m+l) ~ 

~0< 

=S(m+l)ST(m+l) (4.9) 

where f{m+l) = x"im+l)S(m) ,j=V-1' and Q is an orthogonal 

matrix. Noting the symmetry in equation (4.9), S(m+l) may 

be writ ten as: 

S (m+ 1) = _L S (m) fr : j f (m+ 1 )l Q 

{!' L;Rj 
(4.10) 

By choosing an appropriate orthogonal matrix Q, equation 

4.10 reduces to: 

S(mtl) = __!__ S(m)H(m) (4.11) 

{Y' 

where H(m) is an upper triangular matrix. 
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Thus, S(m+l) can be updated from S(m). Peterka [ 9 ] has 

derived a recursive algorithm for updating S(m+l) which is 

given in appendix AS together with a more detailed 

derivation of the square root filter. 

(b) U-D Factorization Algorithm 

The U-D factorization algorithm is an alternative method 

of updating the covariance matrix P(m+l) in a numerically 

stable form [15-17]. It is, in fact, a square-root-free 

arrangement of the conventional square root algorithm and 

thus shares the same properties as the latter. In this 

method P(m+l) is factored as: 

P(m+1) = U(m+l)D(m+l)UT(m+1) (4.12) 

where U(m+l) is a unit upper triangular matrix, u1m+l) is 

its transpose and D(.m+l) is a diagonal matrix. Thus 

instead of updating P its factors U and D are updated. 

Using equation 4.12, equation 4.4b may be written as: 

P(m+1) = 1 U(m)[D(m) - _.1_ vvT]UT(m) y 0( 
(4.13) 

T where v = D(m)U (m)x(m+1) 

If the term in the square bracket is further factored into 

an upper triangular and diagonal matrices, such that 

U(m)D(m)UT(m) = [D(m)- 1 vvT] 
0( 

(4.14) 

where the bar is used to distinguish the U-D factors of 

[D (m)- _h vvT] 
o( 

from those of P, then: 
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P(m+1) = 1 U(m)U(m)n(m)1JT (m) UT (m) 
-::r (4.15) 

comparing equations (4.12) and 4.15), and noting that the 

product of upp~r triangular matrices is itself upper 

triangular and the symmetry in equation (4.15) then: 

U(m+l) = U(m)U(m) 

D (m+ 1 ) = 1 D( m) 
"'( 

Thus the problem of updating U(m+l) and D(m+l) depends on 

finding appropriate recursive formulas for U(m) and D(m). 

Bierman [15] has given an algorithm for updating 

U(m+l) ,D(m+l) recursively for the Kalman filter, which 

uses the variance of the error term, e(i), but not Y. 
This algorithm has been trivially modified for the OA 

problem to encorporate l instead, as has the presentation 

given above. The modified algorithm is given in appendix 

A6. 

Compared to the square root filter, the U-D method is more 

efficient in terms of storage and computation. For an 

n-parameter estimation problem, the U-D and the square 

root algorithms require about (1. 5n2 + :1. 5n) and 

(2n
2 

+ 2~5n) multiplications, respectively per update for 

P [15-17]. Additionally, the square root method requires 

the evaluation of n square roots. Also in the U-D method, 

the elements of D give directly the diagonal elements of 

P, which can be used fo~ statistical analysis (see 
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appendix Al). For these reasons, the U-D method is 

preferred and was us~d in the OAR system discussed in 

chapters 5 to 7. 

4.2 Co~puter Simulation of On-line Removal of OA 

To verify that the recursive algorithms descriibed above 

when used on-line will give the same results as the 

of.f-line (or batch) method, several EEG records 

contaminated by ocular artefacts were corrected on a main 

frame computer using both methods. 

4.2.1 Experimental Data 

The data used in the investigation were the same data that 

were used in the preceding chapters and described in 

section L 6. Figure 4.1 gives typical waveforms of EOGs 

and the contaminated EEG for a horizontal eye movement. 

4.2.2 Models 

The models given in equation 4.16 below were used in the 

investigation. Two of these models (3D and 4D*) had 

already been found to give the best ocular artefact 

removal in the previous investigation (see chapter 2) ' and 

the third is included to show the effects of EOG 'noise' 

and correlation among the EOGs on the parameter estimates. 
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Figure 4 .1 Measured EOG and EEG signals 

for a horizontal eye movement record. 

(i), (iii) vertical and horizontal EOGs of the 
left eye. (ii), (iv) the corresponding EOGs 
of right eye . (v) the vertex EEG 



3D y(i) = e1 VR'(i) + e2HR•(i) + e3HL(i) + e(i) (4.16a) 

4A y( i) = GtVR(i) + e2HR(i) + e3HL(i) + e4V•L(i) + e(i) (4.16b) 

.4D··'< y(i) e-1VR(i) + 8:2HR(i) + e3HL(i) + 8l
1
HL(i)xHR(i) + e(i) 

'(4.16c) 

where y(i), e(i) are, respectively the ith samples. of the 

measured scalp signal and background EEG. VL(i) and HL(i) 

are, respectively, the ith samples of the vertical and 

horizontal left eye EOGs. VR(i) and HR(i) are the 

corresponding right eye EOGs. The e. 
J 

have the usual 

meaning. (the symbol * is used to indicate that this 

model is not the same as the model 40 defined in chapter 2 

which used VL instead of VR as above1 and the EOG variables 

havebeen re-ordered for convenience). 

4.2.3 Results and Discussions 

The results presented in this section for the on-line 

methods were obtained using the UD algorithm discussed 

above, although similar results were obtained for the 

recursive least squares- (equation 4.4) and the square 

root algorithms, as will be pointed out. 

(a) Comparison of the On-line Methods with the Off-line 

Method 

Figures 4.2 and 4.3 give the ocular artefact estimates and 

the corrected EEGs for these models for the batch and the 

U-D methods respectively. Ignoring the initial 
• 

transients, both the 0~ estimates and the corrected EEG 

for the two methods are similar. Table 4.1 compares the 
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parameter estimates for the batch or convention~! off-line 

method with those for the u-o algorithm after 1024 

iterations. An exami:nation of the table shows that the 

parameter estimates for both methods are essentially the 

same, ~n indication that they are equivalent. Similar 

results to figures 4.2 and 4.3 were obtained for other 

types of ocular movement (blinks,vertical eye movement and 

diagonal eye movement) • 

(b) Convergence of the Parameter Estimates 

To study the behaviour of the recursive algorithm between 

samples and its convergence properties, plots of the 

variation with time of the parameter estimates., the sample 

variance s2 
and the multiple correlation coefficient R2.. [21] 

were obtained and studied. The sample variance and 

multiple correlation coefficient were obtained with the 

following approximate recursive equations (see appendix A7 

for more details) : 

s 2(m+1) = SS(m+l)/[asL(m+l)-n] , asL(m+l) > n (4.17a) 

(4.17b) 

where SS(m+l) and SST(m+l) are, respectively, the sum of 

squares of the residuals and the total sum of squares and 

given by: 

SS(m+l) = YSS(m) + eT(m+l)e(m+l) (4.18a) 

T SST(m+l)= 1SST(m) + y (m+l)y(m+l) (4.18b) 
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Figure 4.2 

Estimates of the ocu l ar artefacts and the backgr ound EEG 

by t he conven t ional batch method . (i), (i i i), and (v) ocu l ar 

artefact estimates using models 3D,4A and 40~ respective l y . 

(ii), (iv), and (vi) the corresponding es t ima t es of the 

background EEGs. 
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Figure 4 . 3 

Es timates of the ocular artefacts and the background EEG 

by the UD recursive algorithm. (ll =O .OS , Y=l. O, a.= 0 .1) 
Other de tails a r e the same as for figure 4.2. 
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'9 B' A " Model e· e4 1 2 3 

3D 0.091 -0.108 -0 . 177 T-
UD 

4A 0 .310 -0 . 053 -0 .169 -0.216 
4D* 0 .090 - 0 .109 -0.178 0 .000 

3D 0.091 -0.10il -0. 178 + 
Batch 

4A 0 .31 2 -0 . 053 -0. 169 -0.218 
4D* 0 . 090 -0 . 109 -0.176 0.000 

T not applicabl e 

Table 4.1 Comparison of the parameter estimates 

for the batch and the UD algorithm. The estimates 

for the UD algorithm ar e the values a t t he end 

of the iterations. 

n is the number of parameters in the model and asL(m+l) is 

given by: 

asL(m+1) = 1 + YasL(m) = 

Figures 4.4(i), (iii) and (v) illustrate the variation o f 

the parameter estimates with time f or the U-D algorithm. 

It is seen that there are initial transients as a result 

of guessed " initial values for U,D and a, after which they 

appeared to converge to some value about which they varied 

slowly. A comparison of figures 4 .4(i ) a nd (iii) showe d 

that there were large changes in the parameter estimate, 
A 
e1, when VL is included in the model. (in fig ure s 

4.l(iii)' VL and VR correspond to a nd 
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Figure 4 . 4 The evolution of the parameter estimates . 
(i), (iii) , and (v) estimates for models 3D, 4A, and 4D* 

respective l y, for the firs t cycl e . (ii),(iv), and (vi) 

the corresponding es t imates for the second cycle. 
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respectively). In fact, it was found that when only VL or 

VR was in the mode!l. the variations in the parameter 

estimates were much less than when both variab~es were in 

the model (cf figures 4(i) and (iii)). As discussed in 

reference [ 24], these large changes in the patameter 

estimates when a variable is added or dropped from a model 

are due to collinearity. Thus when there is collinearity, 

a given parameter estimate is determined by not only the 

corresponding EOG but also· by the other EOGs which are 

related to the corresponding EOG. These points and other 

effects of collinearity are discussed further in appendix 

A2. It should be pointed out that the large variations in 

~ and ~+ in figure 4.4(iii) were probably due in part to 

the relatively large amount of noise unrelated to ocular 

movement in the corresponding EOGs (see figure 4.l(i) and 

(ii)). The large variations in the parameter estimates 

were observed mostly in horizontal eye movement records, 

but sometimes they were observed in the other types of 

ocular movements also. These effects suggested that it is 

undesira,ble to include all the EOGs, especially the 

vertical ones, in the model, and this agrees with the 

previous findings in chapter 2. 

The variation with time of the estimates of the residual 

variance ff and th lt . 1 1 t' ff' . 2 e mu 1p e corre a 1on coe 1c1ent,R , 

are depicted in figure 4.5 (i) and (iii). It is seen that 

both s1 and Rz increase with time, rapidly at first and then 

slowly. This is an indication that these quantities were 

converging. 
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I 

No of Model Parameter es.timates I sl. Rz 
' cycles 9__1 8? . 8}__+_~4 

1 3D 0.091 -0.:1!08' ~0.177 ~ 49.22 0.42 
4A o. 3.10 -o .. o53 -o; 169 I -o. 216 . 47.75 0.41 

-0.178 
I 48.94 0.42 4D..- 0.090 -0.:1!09 I 0.000 

I 
I 

2 I -o 0.090 -0.106 -0.176 i+ 49.88 0.43 ,.) I 

I 

I 

I 
48.20 0.42 4A 0.311 -0 .·053 ··0.169 1-0.217 

4D* 0.090 -0.109 -0.178 I 0.000 49.64 I 0. 43 I 

3 3D 0.09 -0.1'07 -0.176 :t 49.95 0.43 
4A 0 .. 312 -0.053 -0.178 -0.218 48.37 0.42 
4DK- 0.090 -0 .. 1:09 -0.178 49.64 0.43 

3D 0 .. 091 -O ."ioB -0.178 + 50.34 0.56 
Ba:tch 4A 0.312 -0.053 -0.169 -0.218 49.02 0.41 

4D* 0.090 -0.109 -0.176 - 0 .000 50.21 0.56 
--- ---

+ .. not applicable 

Table 4.2 Final values of the estimates of the parameter 
the sample variance (Sl), and the multiple correlation 
coefficient (Rz.) 

To simulate longer lengths of data and to verify whether 

the parameter estimates have converged, the operation was 

recycled for the u-o algorithm. That is, at the end of 

the data the algorithm was resumed at the begining of the 

data without reassigning starting values for U,D and e. 
Table 4.2 compares the final values of the parameter 

estimates, the sample variance and the multiple 

correlation coefficient for the first, second and third 

cycles with those of the batch method. It is evident that 

the quantities have converged by the end of the first 

cycle. It is noteworthy that the final values of both the 

variance and the multiple correlation coefficients are 

reasonably close to those of the batch method, thus 
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demonstrating that equa.tions 4.17a and 4.17b are good 

estimates of these quantities. .The fig.ures on the right 

hand side of figures 4.4 and 4.5 give the parameter 

estimates, the sampil.e variance and the mul:tiple 

correlation coefficient for the second cycle. They 

confirm that the algorithm has converged. The estimates 

of the ocular artefact and the background EEG in this case 

were very similar ~o the results for the batch method. 

Results very similar to those of the UD algorithm· were 

obtained for the recu~sive least squares algorithm 

(equation 4.4) and the square root algorithm. The notable 

difference between them was that they always produced 

different initial transients due to the starting values 

for P(O) (or S(O) for the square root algorithm) and ~(0). 

4.3 Recursive Generalized Least Squares (GLS) Algorithm 

A problem in the ordinary least squares (OLS) method that 

was discussed in chapter 2 for the off-line case was 

correlation in the error terms, e(.i). From section 2.3.1, 

the autoreg~essive model for the error term and the 

resulting GLS equation are: 

e(i) = 2:: Ije(i-j) 
J 

y(i) = 2:: xk(i)e~ + 
I< 

where, y(i) = y(i) -

\_(i)= xK(i) -

+ a( i) 

a(i) 

Ijx1p- j) 
133 
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As observed in chapter 2, equations (4.19a) and (4.19b) 

have the same form as the OA model. Thus the recursive 

GLS for the parame.ter estimates, 9, and the covariance 

matrix, P, have the same form as those for the RLS 

algorithm given in equation (4.4a). Thus, 

ij(m~-1)= ~(m) + P(m+1)x(m+1)[y(m+1) - xT(m+1)ij(m) .. ] 

P(m+1)= 1 [P(m) - 1 P(m)x(m+lYxT (m+l)P(m)] 
-y 

where, 

~ = Y + xT(m+1)P(m)x(m+1) 

x (m+1)] 
p 

(4.20a) 

(42.0b) 

where the bar is used to distinguish the GLS terms from 

those of the RLS. 

The autoregressive parameter,fj , which is required to 

obtain ?"and y also has the usual RLS form: 

....-... r- T ......_ 
f<m+1) = !Cm) + Q(m+1)W(m+1)[e(m+1) - W(m+1)!(m)] (4.21a) 

Q (m+1) = _!._ [ Q(m) -_!_Q( m)W( m+1 )WT (m+1)Q( m)] (4.21h) 
i f' 

where 

~ = Y + WT(m+1)Q(m)W(m+1) 

W(m+1) = [e(m) e(m-1) ..• e(m-n+1) ]T 

~(m+1) = y(m+1) -
,... 

L: 8 x (m+1) 
" \<. k 
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/'.. 

As in the off-line case, {may be obtained iterati~ely. 

In fact, a,t each sample instant, a similar algorithm to 

that used for the off-line case is applied to the GLS. To 
c. 

start the algorithm, initial val;ues are assigned to 9(;0), 
A 

P(O), ~(0) and Q(O) in the manner described in section 

4.1.1. Then at each subsequent sample instant when a new 

set of data is acquired, the following algorithm is 

performed (the symbol @ is used to indicate the relevant 

equations) 

" ,.. 
1. Set f<m+l)=~(m) 

2. Obtain the variablesxK(i) ,y(i) @(4.19) 

3. Update p(m+l) and 9(m+l) using @(4.20) 

4. 

5. 

6. 

7. 

A T. !: 
Estimate the error term, e(m+l)=y(m+l)-x(m+l)9(m+l) 

Obtain improved estimates of l<m+l) ,Q(m+l) @(4.21) 

Obtain x (i), y"(i) @(4 .• 19) 
K 

~ 
Obtain improved estimates of 9(m+l) ,P(m+l) @(4.20) 

8. Test for convergence and go to step 4 if not 

satisfied. When the algorithm con~erges, the latest 

" A 
S(m+l), P(m+l), I<m+l) are the desired updates. 

To ensure that the algorithm does not go on indefinitely 

at some sample instant, a limit is imposed on the maximum 

number of iterations allowable for each sample point or 

update based on previous experience. To avoid numerical 

problems of the kind associated with the RLS algorithm 

discussed earlier, the update of P(m+l) and Q(m+l) in 

steps 3, 5, and 7, is made via one of the factorization 

algorithms described earlier. Of course, if AR(l) model 
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"' is used 'P_ and Q ar.e scalars and their update is gr.eatl!y 

simplified and can be made directly. It should be pointed· 

out that the recursiiTe GLS algorithm suggested aboiTe has 

not been ITerified in practice. 

4.4 Fixed Parameter Models 

A disadiTantage of all the recu·rsiiTe algorithms discussed 

aboiTe is that where there are many EEG channels to correct 

for OA (e.g 16 channels), the number of arithmetic 

operations between samples becomes so large that they 

cannot be implemented entirely in softwate on a general 

purpose microcomputer. Possible solutions include, 

reduction i:n the number of EEG channels, reduction in the 

number of parameters in the model (to say 2.), and the 

reduction in the sampling frequency to giiTe more time for 

calculations between samples. If none of these is desired 

then hardware floating point arithmetic devices may be 

required, as discussed in chapters 7 and 8. 

However, if only predominantly one type of OA is expected 

so that the OA parameters, e, may be assumed constant and 

subjects are able to co-operate, then an automated form of 

the present OA remoiTal method may giiTe satisfactory OA 

remoiTal (see section 1.4), and in this case no special 

arithmetic deiTice is necessary. An approach that can be 

used is proposed here. 
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4. 4. 1 Algorithm 

1. Calibration Stage 

(a) Acquire M samples (e.g. M = 250) from each EOG and 

EEG channel, whilst subjects are performing purposeful 

ocular movements. 

11. 
(b) Use samples to compute the values for e for each EEG 

channel: 

where the matricesx .Y are as defined in section 4.2.1 
m' m 

2. Removal Stage 

A. 
Use e obtained in l(b) to correct subsequent EEG samples 

for artefact on-line: 

i=l '2 ... 00 

Remarks 

(i) As the number of arithmetic operations is small, the 

above algorithm can be carried out entirely by software. 

(ii) If desired, e may be obtained for each ty.pe of ocular 

movements, e.g blinks and vertical eye movement, and a 

criterion for distinguishing between vertical eye movement 

and blink [22 l used, so that when blink occurs 9blink is 

used and when ordinary eye movement occurs -evem is used. 

(iii) In the previously reported on-line methods [4,5,6 ], 
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'estimatesi of e are obtained whilst subjects are 

performing purposeful ocular movements by .adjus.ting one or 

more .potentiometers until no vestige of the EOG can be 

seen in the EEG (see section 1.4). This can be time 

consuming and requires a subjective judgement and 

familiarity with the instrument by the operator. The 

calibration method suggested above, which is essentially 

an off-line technique similar to those discussed in 

chapter 2 and practiced by Jervis et · al [2 ], overcomes 

these disadvantages. However, the removal stage for both 

methods are equivalent, since both assume that e is 

time-invariant. HoWever, this assumption may be 

untenable, so that the fixed parameter approach will be 

inferior to the 'full' or adaptive on-line methods 

described in the preceding sections of this chapter. 

4.5 Summary 

In this chapter efficient recursive least squares (RLS) 

algorithms suitable for removing OA on-line were 

developed. Two main problems that beset the RLS 

algorithm, namely, autocorrelation and numerical 

instability, and ways of solving these were discussed in 

some depth. For autocorrelation, the generalized least 

squares method was suggested, and for stability, the two 

factorization algorithms with excellent properties, viz, 

the square root and U-D algorithms were used. These 

numerically stable algorithms were shown to give similar 

results to their off-line equivalents. Compared to the 
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presen·t on-line methods, this approach is 

requiring no subjective manual adjustment and 

superior, 

does not 

assume that the OA parameters are constant. An automated 

form of the present on,-line method is also proposed as an 

alternative method of on-line removal of OA where it is 

not desired to use fast but expensive hardware arithmetic 

devices, subjects are able to cooperate, and less than 

optimum performance is acceptable. 

139 



References for Chapter 4 

[1] JERVIS B.W. ,N,ICHOLS M.J. ,ALLEN E. ,HUDSON N.R. and 

JOHNSON T.E .• 

The Quantitative Assessment of Electroencephalograms 

Corrected for Eye Movement Artefacts. First European 

Conference on Signal Processing ,Lausanne., Switzerland, 

1980. 

[2] JERVIS B.W·. ,NICHOLS M.J. ,ALLEN E.HUDSON N.R. and 

JOHNS0N T.E. 

Comparison of two Methods for Removing Eye Movement 

Artefact from the EEG. {submitted to Electroenceph. and 

Clin. Neurophysiol.) 

[3] GOTMAN J.,GLOOR P. and RAY W.F. 

A Quantitative Comparison of Traditional Reading of the 

EEG and Interpretation of Computer Extracted Features in 

Patients w.ith Super tentorial Brain LesiOns. 

Electroenceph. Clin. Neurophysiol.,l975,38,PP. 623-639. 

[ 4] BARLOW J. S • -and REMOND A. 

Eye Movement Artifact Nulling in EEGs by Multichannel 

on-line EOG Subtraction. Electroenceph. and Clin. 

Neurophysiol., 1981,55 ,.pp. 418-423. 

[5] GIRTON D.G. and KAM'!YA J. 

A simple On-line Technique for Removing Eye Movement 

Artifacts from the EEG. Electroenceph. Clin. 

140 



Neurophysiol., l973,34.,pp. 212-216. 

[ 6} McCALLUM W.C. and WALTER W.G. 

The Effects of Attention and Distraction on the Contingent 

Negative Variation in Normal and Neurotic Subjects. 

Electroenceph. Clin. Neurophysiol. ,.1968,25,pp. 319-329. 

[7] QUILTER P.M., MACGILLVRAY B.B. and WADBROOK D.G •. 

The Removal of Eye Movement Artefact from EEG Signals 

using Correlation Techniques. 

IEE Conference Publication, No. 

Random Signals Analysis, 

159, 1977~ pp93-100. 

[8] IFEACHOR E.C.,JERVIS B.W.,MORRIS E.L.,ALLEN E. and 

HUDSON,N.R. 

A NEW ON-LINE METHOD FOR REMOVING OCULAR ARTEFACTS FROM 

EEG SIGNALS (to be published) 

(9] PETERKA C. 

A Square Root Filter for Real-Time Multivariate 

Regression. Kybernetika, 1975, ll,pp. 53-67. 

[10] MORRIS E.L. and ABAZA B.A. 

Adaptive Control of Steam Turbine. 

123,pp. 549-553. 

[11 J YOUNG P. 

Proc. 

Recursive Approaches to time Series Analysis. 

I.M.A.,l974,10,pp. 209-224. 

141 

IEE,l976., 

Bull. 



[12) CLARKE D.W. 

Implementation of Self-Tuning Controllers,in 

and BILLINGS,S.A. (Ed~.) Self-Tuning and 

Control. Peter Peregrinus,l98l,pp. 36-71. 

[ 13] HSIA T.C. 

HARRIS, C. J .• 

Adaptive 

System Identification. Lexington Books,Mass.,l977. 

( 14 ) EYKHOFF P. 

System Identification John Wiley,l974. 

[15) BIERMAN G.J. 

Measurement Updating Using the 

Automatica,l976,12,pp. 375-382. 

U-D Factorization. 

[16} THORNTON C.L. and BIERMAN G.J. 

Filtering and Error Analysis via the UDU 

Factorization. IEEE Trans. on Automatic 

1978,23,pp. 901-907. 

[17) THORNTON C.L. and BIERMAN G.J. 

Covariance 

Control, 

Givens Transformation Techniques for Kalman Filtering Acta 

Automatica,l977,4,pp. 8~7-863. 

[18) CARLSON N.A. 

Fast Triangular Formulation of teh Square Root Filter. 

IHAA JNL,l973,.ll,pp. 1259-1265. 

[19) HSIA T.C. 

142 



On Least Squares A~gorithms 

Identification. IEEE Trans. 

1976, PP. 104~108. 

[20] CLARKE D.W. 

for System Parameter 

Automatic Control,Feb. 

Generalized-Least-Squares Estimation of Paramet~rs of a 

Dynamic Model. IFAC Symposium- Identification in 

Automatic Control Systems,l967. 

[21] JOHNSTON J. 

Econometric Methods. McGraw-Hill,l972. 

[22] GRATTON G., COLES M.G.H. and DONCHIN E. 

A new method for Off-line Removal of Ocular Artifacts. 

Electroenceph. and Clin. 

468-484. 

[23] SINHA N.K. and SEN M.S. 

Neurophysiol., 1983, 55, pp. 

Critical Evaluation of On-line Identification Methods. 

Proc. IEE,l975,122,pp. 1153-1158. 

[24] CHATTERJEE S. and PRICE B. 

Regression Analysis By Example. John Wiley, 1977. 

143 



Chapter 5 DESIGN AND DEVELOPMENT OF THE HARDWARE FOR THE 

ON...,LINE OCULAR ARTEFACT REMOVAL SYSTEM 

5. 0 Introduc.tion 

In chapter 1, the 

signals for OA 

need for on-line 

was discussed. It 

correction of EEG 

was stated that the 

present on-line methods, however, are unsatisfactory and 

unwieldy for routine clinical use, among other 

disadvantages. In chapters 2 and 4 an approach to solving 

these problems was presented. In this chapter and the 

next, the design and development of an Ocular Artefact 

Removal (OAR) system which incorporates the work in those 

chapters are described. 

First, target specifications for the system are set out. 

Next, a suitable system is described at system and block 

diagram level. The hardware needed to meet the 

specifcations and the detailed design of the system are 

then discussed. 

5.1 Instrument Specification 

5.1.1 General Specification 

The OAR system should meet the following requirements: 

{i) Be compatible with the standard EEG machines. 

(ii) It should be able to acquire data from upto 16 and 4 
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EOG channels at 128 samples/sec. for each channel. 

( iii) Provide a continuous r,eal-time correction for OA fn 

the EEG signals. 

{iv) Output the corrected EEG and/or the uncorrected 

EEG/EOG to the EEG machine, to alrow ins.tant comparison of 

the corrected and uncorrected EEG. 

(v). To avoid saturation, 

corrector's effectiveness, 

autoranging facility. 

which would reduce the 

the system should have some 

(.vi) The ii'IStrument should be suitable for use by unskilled 

persons. 

In view of the requirements and the criteria set out 

above, and the desire to implement the U-D algorithm 

described in chapter 4, it was decided that the OAR system 

shou,ld be microprocessor-based·. This decision was 

reinforced by the following advantages offered by the use 

of a microprocessor-based instrument. 

( i) Software .controlled design yields a very flexible 

system. Several OA removal algori.thms and models can be 

implemented on one system, and the models used in any 

application specified by the user. 

(ii) New models or ideas can be investigated by mere 
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software modifications wi,thout having to bu·ild a new 

instrument. Thus a sof.tware-controlled OA removal system 

could be ari exce~lent research aid. 

(iii) A programmed instrument allows the provision of 

house-.keeping routines for self-checking., automatic 

calibration, reduction in overload problems etc. Data 

processing on the removal system may includ~ zero phase 

digital filtering of the EOGs to reduce the effects of 

secondary artefacts. 

5 .. 1.2 System Description 

The block diagram of the OAR system is given in figure 

5 .1. Each EEG/EOG signal from the auxillary output of the 

EEG machine is first amplified and then bandiJ..imited to 30 

Hz by a low pass filter which feeds a sample and hold 

circuit. The twenty channels are then simultaneously 

sampled at the posi.tive transition of the sampling 

signal,FS. Simultaneous sampling is employed to avoid the 

introduction of delays between corresponding time points. 

The negative transition of the signal, FS, also interrupts 

the processor, and signals the beginning of a cycle during 

which the twenty samples are sequentially selected by the 

multiplexer ~MUX) and digitized by the analogue-to-digital 

converter (ADC) under the the control of the 

microprocessor (~P). 

Some form of autoranging is provided by the programmable 
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gain amplifier (PG~) and the window detector. This is to 

extend the dynamic range of the ADC and to avoid 

saturating it.. I·f a channel sample falls outside a 

predefined window (± 9 .• 75V), the pP selects the lower gain 

of the PGA, which halves the sample level before 

initiating an ADC cycle. Account is taken of this before 

the digitized sample is sav.ed in the memory. 

The digitized samples are then processed by the OA removal 

algorithm to obtain the corrected EEGs. The corrected EEG 

samples, together with the raw EEG/EOG if desired, are 

output to the auxilliary inputs of the EEG machine via the 

digital-to-analogue converter (DAC) and the associated 

network. 

5.1.3 Specifications and Choice of Hardware 

(a) Microprocessor 

It was realised at an early stage that to perform the 

complex tasks of processing the OA a.l!gorithm, albeit 

recast in an efficient form (see chapter 4) , and control 

the entire structure require a very fast processor. Also 

it was desirable that the arithmetic operations be 

performed using floating point scheme (see section 6.3), 

which involves the manipulation of several bytes of data. 

In a time-critical system such as this these operations 

are best carried out using register-to-register operations 

to gain speed. The 68000 pP with internal 32-bit data 

size for registers is ideally suited for these operations, 
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in addition to the fact that this processor was considered 

the best 16-bit procesor at the time • 

The MVEllO single card Microcomputer was selected for this 

application, as it has essentially all the facilities that 

were required. 

The MVEllO Single Card Microcomputer 

The MVEllO, a 68000 pP-based microcomputer, was chosen for 

the OAR system. It can function as either a single CPU 

element i-n a multi-processing VME-bus configuration, as a 

single CPU/controller in a VMEbus system or as a 

stand-alone microcomputer [1]. It has a number of ports 

which are available to the user. These include the 

VMEbus, which contains all the signal lines from the 

processor, and the 

communication with 

serial port, which is used 

a data terminal equiptment (DTE) • 

for 

The 

MVEllO also comes with a monitor program which allows 

line-by-line assembly of programs and various debugging 

operations. It has four pairs of memory sockets which can 

be easily configured to accept ROM and/or RAM devices. 

(b) Amplifiers, Filters and Sample and Holds 

The amplifier, the filter and the sample and holds form 

the input signal conditioner [2, 3] . 

( i) Arnpl i fiers 

The two main factors that were considered in selecting 

amplifiers were range of the amplitudes of the signals and 
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noise [ 3]. The gain of the amplifier is chosen so that 

the smallest signal of irtterest cah be detected. It is 

desirable for the amplifier to have low internal noise 

(""lJiV) and high common mode rejection ratio (-vlOOdB), so 

that low level signals in a noisy environment can be 

measured as faithfully as possible. The amplifier should 

also be able to amplify both differential and single-ended 

signals. 

These requirements are easily met by a suitable 

instrumentation amplifier, which has become an industrial 

standard in medical instruments [ 4, 5 ]. The amplifier 

chosen is the AD524. This device is a low drift, high 

linearity and low noise amplifier suitable for high speed 

data acquisition systems. It has the added feature of 

being programmable, which may become useful in the future. 

Additionally, the high input impedance of this device 

' ("" 10 J\..) ensures that there is negligible loading of the 

EEG machine which has an output impedance of the order of 

lOOohms (see appendix 8 for more details). 

(c) Input and Output Filters 

The filters are 3rd order Butterworth active filters with 

a cut-off frequency of 30 Hz, in line with current 

practice in EEG work [ 4, 7, 8 ]. The Butterworth filter is 

chosen as it has a reasonably good amplitude and phase 

characteristics, and so would not alter significantly the 

signals amplitude . and latency [ 4 ]. The use of a third 

order filter pr6vides a loss of about 15 dB at half the 
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sampling frequency, which is considered adequate to reduce 

aliasing. The input and output filters are identical. 

(iii) Sample and Hold 

The devices should have low droop, and in view of the 

number required should be cheap. The LF398 was chosen for 

these reasons. The sampling frequency chosen is 128 Hz, 

in line with current practice in EEG work [7,8 ]. A higher 

sampling rate would put severe restrictions on real-time 

computations. 

(c) Multiplexer/Demultiplxer 

The multiplexer and the demultiplexers are required to 

allow resource-sharing by the input and output channels. 

Thus, they allow each channel to be digitized or converted 

to analogue using only one ADC and one DAC. Analogue 

devices AD7501/06, with excellent characteristics were 

used to perform both functions, as they are bidirectional 

switches. 

An alternative approach would be to provide separate ADC 

and DAC for each channel [2,3,6 ]. This approach reduces 

to a minimum system noise due to cross-talk between 

channels, but was considered rather too expensive. 

(d) Analogue-to-Digital Converter/Digital-to-Analogue 

Converter 

In line with current practice in physiological work 

[4,5,7,8], the ADC/DAC have a resolution of 12 bits. In 
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view of the number of channels that need to be converted, 

it is desirable for the ADC to have a conversion time of 

less than 4'0lJS. For easy interfacing to the pP, it would 

also be desirable for both the ADC and DAC to be, 

microprocessor-compatible. The ADC and DAC devices 

selected are the Analog Devices successive approximation 

converter AD574 and AD567, respectively. For the ADC, 12 

bit conversion takes between 15 to 35 pS, and the DAC has 

a settling time of 500ns. Both devices meet easily the 

system requirements and are reasonably cheap. In the 

bipolar mode, the ADC can accept analogue signals in the 

range :UOV. 

(e) Digital Integrated Circuits 

All digital integrated circuits (IC) were TTL (LS 

versions) for speed and compatibility with other circuits 

(llP,ADC,DAC,MUX etc.). 

(f) Window Detector 

The LM311 was selected to perform window detection. This 

device has features that make it stand out from most other 

comparators., (e.g 710), and these include: 

(i) Operation from standard supplies,e.g ±l5V, unlike most 

comparators which operate from asymmetrical supplies (e.g 

710). 

(ii) Ability to perform a wired-OR fuction, and gives 

output that is TTL compatible. 
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5.2 System Design 

The entire system can be divided broadly into six 

different circuits or subsystems., namely: The 

microcomputer which was bought off-the-shelf, the Analogue 

input circuit, the ADC circuit, the DAC circuit, the 

decoder, and the Analogue output circuit. These will now 

be described in turn (except the microcomputer which has 

already been described in section 5.1.3).: 

5. 2.1 Analogue Input Circuit 

The analogue input circuit is shown in figure 5.2. It 

consists of three sections: the amplifier, the filter and 

the sample and hold. The signal level at any point in the 

system should not exceed 12V peak to allow for the 

internal volt-drops and possible non-linearity in the 

amplifiers (± 15V supplies are used), and since the input 

signal to the system is expected to be in the range 1 to 

2V peak the input system gain should not exceed 6. Thus, 

the gain is provided by the instrumentation amplifier, 

connected for a gain of 2, and the programmable gain 

amplifier {see later). 

(a) Filter 

The filter is required to have a cut-off frequency of 30Hz 

and a loss at 60Hz (twice the cutoff frequency) of 15dB so 

that n, the filter order, lies between 2 and 3 [9]. In 

view of the system gain requirements, the filter should 

153 



..... 
V1 
l'-

~ Analogue grouro 

l Digital Ground 

-
+15 V 

10K 33K 16K 

22K 1K +15V 

8 I 
V+(input) 2 9 -=- 2 

16 AD 524 6 3 5 
3t.r.:... 16K 16K 3 

l 01<. 

.?> 

1.. 6 
0.66\1 0.18 0.33f 

V- (input) 
7 

o~--------------------~~------------~----------------~-----------+------4---a 

Inst.runentation Anplifier 

Gain =2 

Figure 5 . 2 Analogue Input Circuit 

Filter G=1 

Fc=30 Hz @DC 

3rd Order 

Butterworth 

5anple and fbld 

(FS) 



configuration 

figure 5.2. 

have a gain of unity (at d.c •. ). A suitable 

for these requirements [10] is given in 

Following the design steps in [10], the given components 

yield the desired filter response. 

(b) Sample and Hold 

The sample and hold circuit connections are straight 

forward. It is necessary, however, to choose the hold 

capacitor carefully. The 

polypropylene, which has 

hold capacitor used is 

a low loss dielectric and 

suitable for continuous use, has excellent frequency 

performance and can withstand fast rise time pulses. 

5.2.2 Analogue Output Circuit 

The analogue output circuit consists of the sample and 

hold and the filter, which are identical to those of the 

anal!ogue input circuit. See figure 5.3. Each sample and 

hoid has a separate sampling signal line which is 

controlled via the decoder (see later). The sample and 

hold is used to hold the analogue sample until the next 

analogue sample is obtained. This stretches the sample 

pulses and increases the signal power, but introduces 

aperture distortion [17,18], which is considered small 

here. The filter reduces the unwanted sideband and 

sampling signal components at the output of the sample and 

hold. 
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5.2.3 Analogue-to-Digital Converter Circuit 

The ADC circuit consists of the multiplexer (MUX) , the 

programmable gain amplifier, 

ADC as shown in figure 5.4. 

the window detector and the 

The 20-input to 1-output 

multipie~er is made up of one 16-channel MUX and one 

a.:..channei MUX (there are four spare inputs). 

The MUX occupies a word in memory ($FFFF70) , and channels 

are selected by writing to this location. The value of 

the word, which determines the logic levels of the control 

lines MXO-MX4, determines which channel is selected. To 

minimize crosstalk between channel selection, the MUX 

output is grounded after the selected channel sample has 

been converted to digital. 

The output of the MUX is connected to the input of the 

programmable gain amplifier (PGA) , which also acts as a 

buffer between the ADC and the MUX. The MUX should 

operate from a low impedance source, which is provided by 

the sample and hold, into a high impedance load to reduce 

loading which affects accuracy. 

It is important to include a filter at the input of the 

ADC to reduce the error due to noise. The output of the 

MUX/PGA is broadband, so that it is necessary to limit the 

noise bandwidth to a value consistent with the response 

times of the multiplexer [17,18]. This can be 
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accomplished by a simp:lleRC filter. 

C, however, is a compromise 

signal-to-noise ratio and linea·rity. 

The choice of R and 

between improving 

Additionally, only 

very little series resistance can be tolerated if loading 

of the ADC, which has an input impedance of only about 

15KOhm, is to be avoided. 

The PGA and the window detector are used to extend the 

dynamic range of the ADC. If the output of the PGA 

exceeds the range of the ADC, which is ±lOV, there is 

saturation or overloading which would affect the removal 

algorithm. The window detector, consisting of the two 

comparators, LM311 and the associated diode/resistor 

network, is used here to monitor the PGA output and to 

indicate to the controller (pP) before conversion when it 

exceeds the window limits. To allow for the effects of 

noise and power supply variations, the window limits are 

set at ±9.75V. If these limits are exceeded, the output 

of the detector goes low. On detection of a low level by 

the ~P when the status of the detector is read, the gain 

of the PGA is set to a lower value. The PGA is normally 

in the higher gain which is twice the lower gain (gains of 

3 and 1.5). Selection of the lower gain automatically 

halves the sample value and brings it to within the 

dynamic range of the ADC and thus avoids saturation of the 

ADC. 

The ADC, AD574, is connected for bipolar operation and an 

input signal range of ±lOV. The device has internal 
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register control inputs that are used to control the 

output data format and conversion cycle. The data format 

input {pin 2) is hard~wired high so that all 12 bits of 

data can be read i!n one operation. Pin 4 controls the 

conversion length. If it is held low before conversion is 

initiated a full 12 bit cycle results (25pS), otherwise an 

8 bit cycle is initiated. The two functions, start 

conversion and read data are controlled by the R/W line 

when the enable signal, CE, is at logic 1. To start 

conversion, R/W is at logic 0, and to read data it is at 

logic 1. The signal line, CE, is generated in the decoder 

and the R/W comes direct from the processor (via buffers). 

The status line {pin 28) goes high at the start of 

conversion to indicate that conversion is in progress and 

goes low when the cycle is completed. This line is 

connected to the data bus via the tri-state device 

controlled by the 'STS' line. 

5.2.4 Digital-to-Analogue Converter Circuit 

The DAC circuit consists of the 12-bit DAC, attenuator and 

the demultiplexer, figure 5.5. The DAC is connected in 

the transparent 

address ($FFFF~!) 

mode. Thus, 

automatically 

writing a word to the DAC 

initiates a 12 bit 

digital-to-Analogue conversion. Only two control lines, 

CS and R/W, are required in this case to control the DAC. 

The output amplifier, IC 2, is connected to give a +5V 

span at its output corresponding to $000 and $FFF (Hex) at 
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the input of the DAC. To avoid saturation in the EEG 

machine,, the output of the output amplifier is limited to 

a maximum of 2V peak by the attenuator (the potential 

divider preceding IC3). A buffer (IC3) between the 

attenuator and demultiplexer provides the necessary low 

impedance source. The demultiplexer performs the inverse 

operation to the multiplexer, so that under the control of 

the pP it connects the output of the buffer to one of 20 

ouput circuits. It should be pointed out that it is 

possible to do without the demultiplexer [6]. In this 

case the output sample and holds would be used to perform 

the demultiplexing function as well as the function 

described in section 5.2.2. 

Since the final destination of the demultiplexed signal is 

the EEG machine, and given the speed of the DAC (500 nS) 

the delay introduced between channel samples is 

insignificant. Thus, it was not considered necessary to 

use 'simultaneous sampling' as was the case at the input 

circuit. A way of implementing simultaneous sampling, if 

the cost of doing so is justifiable, is to use the 

per-channel DAC arrangement described in section 5.3 

5.2.5 The Decoder/Control Interface 

The circuit diagram of the decoder is given in figure 5.6. 

The circuit decodes and generates from the 

various control signals for the I/O devices. 

VMEbus the 

I/ 0 devices 

connected to the VME bus via this interface can occupy the 
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address range $FFFFOO to $ FFFF7F (128 bytes), as the I/ 0 

enable signal (I/O EN), (,pin 10, lC2), is only valid when 

an address in this range is accessed~ 

Whenever the processor accesses any address in the range 

$FFOOOO to $FFFFFF, the so-called VME short address range, 

an address modifier code is placed on the AMO to AM4 lines 

of the VMEbus. When the processor is in the supervisory 

mode, as in this case, the code on the AMO-AM4 lines is 

$2D (Hex). By decoding these lines, the address lines A7 

to Al5 and the address strobe AS (using !Cl and 2), it is 

ensured that the I /0 devices connected to the VMEbus 

respond only to accesses in the range $FFFFOO to $FFFF7F. 

The device select IC (IC 8) is enabled when the (I/O EN) 

signal is high. The device selected then depends on the 

states of the address lines, A4 to A6, and in the case of 

MUX,DMUX,PGA, window detector and output sample and holds 

also on the states of A3,A2 and Al. 

The ADC and DAC occupy, respectively, three and two words 

in memory, and either may be selected when the (I/OEN) 

line is high and the address lines (A6,A5,A4) are at 

(1,1,0). The ADC is selected when additionally A3 = 0, 

and the DAC when A3 =1. IC 18 is used to decode the 

address lines A3 and A2 to generate the DAC and ADC select 

andjor control signals. To start 12 bit AD conversion, a 

write to location $FFFF60 or $FFFF62 is performed. The 

converted sample is read from the same 1ocation. The 
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status of the ADC can be read from location $FFFF64. 

The DAC can be controlled from one of two locations, 

$FFFF68 and $FFFF6~. Writing to either of these locations 

loads the 12 bit d~ta into the DAC and initiates 

conversion. 

Writing to location $FFFF74 strobes the data on DO to the 

PGA latch (ICll, pin 16) and hence to the PGA control 

line. The logic level of DO determines which of the gains 

of the PGA is to be selected. Similarly, the window 

detector status can be read by reading from address 

$FFFF76 which causes WDSTS line (pin 6, IC3) to go high. 

The output sample and holds require 20 control lines, SHl 

to SH20 (see the right hand side of figure 5.6 ). One 

word is allocated 

location ($FFFF78) 

to control these. Writing to this 

causes SHSEL (pin 12, IC3b) to go high 

and strobes the data on data lines D0-D4 to the latches 

(IC15 and 16). The 5-line to 32-line decoder formed by 

IC6,12,17,19-21 and 27, then generates from the output 

latches the appropriate logic level to select the desired 

channel. 

The control signals for the other devices are generated in 

a similar way as described above. The output equations 

for the various device select signals are given below, and 

the memory map for the I/O devices in table 5.1. 
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Table 5.1 Memory map for the I/O devices connected 
to the VMEbus. 

Address Device Signal operation 
mnemonic 

FFFFSO-SF FP chips (reserved). 

FFFF60-61 ADC CE start convsn. 

FFFF62-63 11 11 read 12 bit data 
FFFF64-65 !1 STS read status 
FFFF68-69 DAC CS load 12 bit data 

FFFf.6A-6B 11 CS 11 

FFFF70-71 MUX . MX0-4 select an i/p eh 

FFFF72-7 3 DMUX DX0-4 select an o/p eh 
FFFF74-75 PGA PGA select gain 
FFFF76-77 WDSTS WDSTS read WD status 

FFFF78-79 S+HLD SHSEL select o/p s+hold. 
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(I/O EN) A6 A5 A4 = MPY/ALU 

(I/O EN') A6 AS A4 . A3 A2 = CE 

(I/o EN.) A6 . AS A4 . A3 . A2 .;, C5 

(I/O EN) A6 AS . A4 . A3 A2 .Al = MX5E""L 

(Ijo EN) . A6 AS . A4 . A3 A2 . Al = DxSEL 

(I/O EN) A6 AS A4 A3 A2 Ai = PGASEL 

(I/o EN) A6 AS A4 A3 A2 Al = WDSEL 

(IjO EN) A6 AS A4 A3 A2 Al = SHSEL 

The control signals that go via latches are required to be 

stable throughout the period they are needed. In each 

case, a data strobe signal ~. derived from the the data 

strobe lines of the processor, is used to strobe data into 

these latches. 

The VMEllO generates a bus time-out and aborts a data 

transfer cycle if an addressed I/ 0 device does not 

acknowledge the data transfer within 200 pS. This is to 

prevent the system hanging. 

Acknowledge is accomplished by asserting the DTACK line 

when the bidirectional lines, (.OSO,DSl), that indicate a 

valid data transfer on the data bus are active low. For 

the purposes of terminating the bus cycle, the I/0 devices 

are divided into two groups. The Floating point (FP) 

chips (see chapte~ 7 and 8 ), requiring no wait 

states (13,16] because they are very fast, belong to one 

group, and the rest of the I/0 devices belong to the 
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other. For the group 1 devices, a valid DTACK is 

generated when any of the addresses assigned to the FP 

devices (see table 5.1) is accessed and the data is valid. 

For the group 2 devices, IC24 (figure 5.7), a clearable 

shift register, is used to lengthen the read or write 

cycles to 1.5~S to allow valid data to be presented or 

received from the data bus by the slowest device, which is 

the the multiplexer or demultiplexer 

5.3 Hardware Construction 

Plate 5.1 depicts the OAR system The OAR system 

hardware was constructed on double Eurocard boards, 

dict~ted by the dimensions of the computer board. 

Initially, these boards were contructed with wire-wrapping 

techniques so that the designs could be modified if 

necessary, but later printed circuit boards (PCBs) were 

used for good finishing and to keep the system noise down. 

The boards plug onto DIN 41612 connectors mounted on an 

equipment rack and int,erconnected at the backplane with 

wire-wraps. The details of the backplane and Eurocard 

connectors for the system are given in appendix AS. 

The six analogue input circuits (section 5.2.1) were 

constructed on one board and the corresponding analogue 

circuits on another. (Infact at the present, the six 

input circuits were constructed on two P.C.Bs which were 

then mounted on another board containing the appropriate 

DIN connector. The P.C.Bs were originally intended to be 
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Plates.t The OAR system 

P late~2 The OAR system An~l ogue input board. 
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mounted in a smaller equipment rack). Plates 5.2 and 5.3 

show these boards. To minimize. digital-feedthrough from 

fast logic signals into analogue signals, r .. ogic lines to 

the sample and holds wer.e kept as far as possible from the 

analogue input and output lines and by using guard tracks 

[20 ]. The hold capacitors were 

connected to the output [20]. 

planes were used. 

guarded by tracks 

Where possible, ground 

The ADC and DAC circuits (figures 5,4 and 5.5) were 

contructed on one board as shown in plate 5.4. The board 

supply voltages were suitably decoupled at 

the board and near the supply pins of 

the edges of 

the various 

integrated circuits. Each of the analogue supply pins of 

the ADC and DAC was decoupled directly to analogue common 

with a 47pF tantallum capacitor in parallel with . a O.lpF 

disc ceramic capacitor. The +5V supply pin of the ADC was 

decoupled directly to digital ground. Each of the other 

ICs on board was decoupled to digital ground with a 0.1 pF 

disc ceramic capacitor. The ADC and associated analogue 

circuitry were located as far as possible 

circuitry. Special note should be made of 

from logic 

the ground 

geometry. Two separate grounds, the analogue ground and 

the digital ground, were used. The only connections 

between the two grounds were at the analogue ground pins 

of the ADC and DAC. 

The PCB for the decoder is given in plate 5.5 and follows 

similar considerations as above. The PCB construction and 
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Plate5J The OAR system Analogue output board 

• 
Plateg4 The OAR system ADC/DAC board 
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Plate~S The OAR system decoder. 

layout were in general spacious with ground planes on both 

sides of the board, where possible. 

The costing for the OAR system parts is giving in appendix 

Al6. 

5.4 Summary 

In this chapter, the specification, design and development 

of the hardware for a new Ocular Artefact Removal system 

were described. The OAR system takes advantage of the 
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advances in semiconductor technology: 

advanced microprocessor, the 68000 

microprocessor compatible ADC and DAC. 

use is made 

pP and 

of an 

new 

The design of the various parts 

presented. These included the 

of the system is 

analogue signal 

cond'itioners, the d~ta converters, 

and the interface between the advanced microcomputer and 

the various input output (I I 0) devices. The system is 

designed so that it is compatible with the standard EEG 

machines and with possible future expansion in mind. 
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Chapter 6 DEVELOPMENT OF THE SOFTWARE FOR THE ON-LINE 

OCULAR ARTEFACT REMOVAL SYS.TEM 

6.0 Introduction 

In chapter 5, it was stated that the OAR system is sofware 

controlled. 'ln this chapter, the design and development 

of the.software are described. 

First, a general description is presented to give an 

overview of the sofware, then a more detailed description 

of the OA removal routines is given. The heart of these 

routines, written in 68000,..f assembly language, is the UD 

algorithm described in chapter 4. Next, the software 

floating point routines required by the OA removal system 

is described. Finally, a brief description of the 

software development tools used is given. 

6.1 General Description of Sofware 

The OAR system is interrupt driven. The interrupt signal 

is derived from the programmable Timer Module (PTM} on 

board the system controller [1,2], and has a frequency of 

128 Hz. On interrupt, the OAR software is used to acquire 

data from up to 20 channels of EOG/EEG signals, remove OA 

from the EEG samples using the UD algorithm, and output 

the corrected EEG and/or the raw data to the EEG machine 

so that a paper chart record can be produced. The system 

operation is summarized in the flow chart of figure 6.1. 
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During the initialisation phase, the user is invited to 

specify the various system· cons.tants viz, the number of 

EEG channels to be corrected for artefact, the number of 

parameters and hence the mod~[ that should be used in the 

removal alg~rith~, and the number of corrected EEG and/or 

raw EEG signals to be output to the EEG machine. Some EOG 

signals and parameter estimates may also be output to the 

EEG machine. These constants are checked and if valid are 

used to initialize the system. A default value is used 

for any constant that is invalid. See appendix A1.5 for 

more details on the choice of, and default values for 

these constants. 

The models given below are implemented, but only one may 

be used in the removal process. The number of parameters, 

specified by the user at the outset, determines which 

model is to be used. These models were found to give the 

best OA removal as discussed in chapters 2 and 4. It is 

to be noted that the software was written with the third 

model in mind, but with careful ordering of the va·r iables, 

it has been made general enough to permit the 

implementation of the other two models as well. 

1. y(i) = e1VR(i) + 8-~HR(i) + e(i) 
L 

2. y(i) = e1 VR( i) + e2HR(i) + e3HL(i) + e(i) 

3. y(i) e1VR(i) + e2HR(i) + e3HL(i) + e4I-IL(i)xHR(i) + e(i) 

After initialisation, the program loops around endlessly 

until valid data is available (figure 6.la). (In future 
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OAR systems, this 'backg:round' program will be replaced by 

a more useful one, e.g displaying the corrected EEG or 

parameter estimates). A flag (1DATA FLAG) is set in the 

interrupt service routine (see figure 6.lb) each time the 

interr.upt occurs and this is the indication to the main 

program that valid data is now available. After the data 

has been acquired, the elements of the UD algorithm are 

updated, the OAs are removed from the EEGs, and the 

corrected EEGs and/ or raw data are output to the EEG 

machine. Finally, the DATA FLAG is cleared to indicate 

that the current data samples have been successfully 

processed. 

An error message is output to the visual display unit 

(VDU) and the program halted if an interrupt occurs before 

the previous one has been serviced • This will normally 

occur if too many parameters and/or EEG channels are 

specified than the software can process within the 

sampling interval of BmS, an4 prevents the accumulation of 

unserviceable interrupts and the eventual system failure. 

6.2 Description of OAR System Software 

The OAR system software consists of several subroutines in 

addition to the main program and interrupt service routine 

described above. These include, the data acquisition, the 

ocular artefac.t removal, and output routines. 
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6. 2.1 Data Acquisition Routine (OADATA) 

The main purpose of this routine is to acquire and save 

data from· the EEG machi·ne. 

With reference to the flow chart,figure 6.2, on entry to 

the routine the various address registers are initialized. 

The use of these r.egisters greatly facilitates subsequent 

memory accesses. The input channels are then sequentially 

selected and their samples digitized and saved using the 

subroutine DSAVE (.see later). The PGA is always set to 

the higher gain before a channel is selected for 

digitization. After a channel is selected, the window 

detector status, WDSTS, is read and used to select the 

appropriate gain. If WDSTS is at logic '0', then the 

lower gain is selected, if at '1', the higher gain is 

selected. To reduce crosstalk between 

output of the multiplexer is grounded in 

selection. 

channels, the 

between channel 

In anticipation of converting the digitized samples to 

floating point format in the DSAVE routine, the 12 bit 

samples are converted to 16 bit words. To save time, the 

conversion of the next channel sample is started before 

saving the present digitized sample. These operations are 

summarized in the flow chart of figure 6.2. 
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Data Saving (DSAVE) Routine 

This subroutine saves the acquired sample in the data area 

of the Random Access Memory, (RAM') (see figure 6.3). 

Two main operations are performed on the 16 bit word 

representing the converted sample before it is saved. 

First, it is converted into a floating point number as 

arithmetic operations in the OAR system ar~ carried out· 

using floating point scheme. To account for PGA, the 

exponent of the floating point number is incremented by 1 

if a lower gain was selected before digiti za tion, 

otherwise it is left unchanged. Next, the mean value is 

computed and removed from the sample. The following 

recursion formula is used to compute the mean: 

S"(m+l) = ""{s(m) + (1-1 )S(m+l) ( 6 .1) 

where S(m+l) and ~(m+l) are, respectively, the (m+l)th 

sample and sample mean, and I is the forgetting factor 

(see chapter 4). 

It is to be noted that this routine saves the EOG and EEG 

data in contiguous memory locations as: 

Chl data (VR) 

Ch2 data (HR) 

Ch3 data (HL) 

Ch4 data (VL) 

ChS data (EEGl) . 
ch20 data (EEG16) 
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Thus, the E0G data are sav.ed first, and in the order 

given, then· the EEG da'ta. The order i:n which the EEGs are 

stored is irre~evant, provided they start after the EOG. 

The data is in fac.t stored in two identical sets. This is 

to simplify the output routine, where it may be required 

to output both the raw data and the corrected EEGs. The 

data saving routine is summarized in figure 6.3. 

6.2.2 Ocular Artefact Removal Routines 

Three auxiliary subroutines together with a control 

subroutine form the OA removal algorithm. The auxiliary 

subroutines are, the UDUFLT, used to update the elements 

of the UD filter: PERR, used to compute the prediction 

error or the difference between the EEG sample and the 

predicted EEG sample: and the ESTIMATE, which is used to 

update the parameter estimates for each EEG channel. 

Now, the objective is to obtain for each EEG channel, an 

estimate of the background EEG,e(m+l)_given by : 

"' ,.... T( ) e(m+l) = y(m+l) - e(m+l)x m+l (6.2) 

T 
where y(m+l) is the measured EEG sample, x (m+l) the 

A ' EOG vector, e(m+l) the parameter est1mate vector. 

It was shown in chapter 4 that estimates ft(m+l) can be 

obtained at each sample point recursively, using the 

following expression: 
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" " 8(m+l) = 8:(m) + G l:J. e ( 6,, 3) 

where G i!s the Ka:tlman gain vector, g1ven by P(m) x(m+1)/o( 

and b.,e the pr-ecliction error is given by:y(m+1)-S(rtt)xT(r.t+1) · 

Thus, the removal algorithm may be summarized' as follows: 

(i) Update the elements of the UD filter and obtain G 

(ii) Compute the prediction error, 6.e, for the given 

channel. 

(iii) update the parameter estimates for the channel and 

obtain ~ ( m+l)from 6. 2 • 

(iv) Repeat (ii) and (iii) for each EEG channel. 

Remark 

Experience with the various recursive algorithms showed 

that the prediction error, 6.e, and ~(m+l) do not differ 

significantly, so that step (iii) may be ignored to ease 

time contraint imposed by the number of arithmetic 

operations involved. 

The subroutine UDCRTN, figure 6.4, controls the removal of 

OA from the EEG samples. The three auxiliary subroutines 

will now be described. 

(a) The UDUFLT 

In chapter 4, it was shown that the covariance matrix,P, 

which is used to update the parameter estimates can be 

factored as: 
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A modified recursive algorithm for updating the UD factors 

of P which was descri,bed in. chapter 4 is reproduced in 

figure 6.5 for ease of reference. 

1. V = UT(m)x 

2. b.= D'. (m)'( 
~ 1 

, i=2, .. , n 

3. o(l = I + bl V 1 

4. o1(m+1) = o1(m)/o<1 

5. b1 = Di_m+1)v1 
For j = 2,3, .. ,n recursively evaluate (6) to (10) 

6 . C(. =q'• 1 + V • b . 
J ]- J J 

-v./0(. 1 J ]-

For k = 1,2, ,j-1 recursively evaluate (8) and (9) 

8. ukj(m+1) = ukj(m) + bk fj 

9. bk = bk + bjUkj(m) 

= D.(rY) )~ 1/(0(.l) 
J J- J 

Figure 6.5 Modified UD factorization Algorithm 

The Kalman gain vector, G, obtained at step 11 is used to 

update the parameter estimates, as indicated in eqn (6.3). 

The subscripts (k,j) in the algorithm indicate that u is 
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stored as a two dimensional array. Because U is upper 

triangular, it is sufficient to describe it by n(n+l)/2 of 

its elements. Further, since all the diagonal elements of 

U are unity, the elements of D can be stored along the 

diagonal. Thus, for n=4, U becomes: 

~~1 (1) 
u1z(2) u13 (4) u14(7) 

Dz(3) u 23 ( 5) u24 ( 8) . 0 
u = 

0 0 03( 6) u34(9). 

0 0 0 04(10) 

To save storage and for ease of programming, the elements 

of U are stored columnwise , with the zeros omitted, in 

contiguous memory locations as indicated by the numbers in 

brackets. This is the so-called vector subscripting [ 3], 

whereby a matrix such as U above is stored as a vector or 

one-dimensional array instead of as a two dimensional 

array. 

The UD algorithm is summarized in the flow chart of figure 

6 .• 6. 

The FORTRAN and assembly language coding of the UD 

algorithm are, respectively, given in appendices Al2 and 

Al5. In implementing the algorithm in assembly language, 

the various powerful instructions of the 68000 pP were 

exploited [ 4,5]. The excellent features of the processor 

are evident from examination of the listing. 
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( STAHT 

INPUT 

xT( m+1) ,y(m+1) 
D(m),U(m) 

~ 

COMPUTE THE 

VECTORS v ,b 

w 
UPDATE THE 
FIRST ELE~1ENT 

Of D 

UPDATE THE 
REMAINING ELEMENTS 

OF D 

~. 
UPDATE THE 
ELEMENTS OF u @ 

t 

COMPUTE THE 
UNSCALED KALMAN GAIN 

VECTOR 

I 

( RETURN 

@ v =UT(r.l)x(r.H-1) 

@ b =D(m) v 

@ d . (m+ 1) = d . (m) 0::. . 1 /rv . -{ 
J J J- ~J 0 

U 1 . ( r11+ 1 ) ::-: U k . (m) + b A 
KJ J k J 

Figure 6 . 6 UD factorization Algorithm 
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(,b) Prediction Error (PERR) Routine 

This routine is used to compute [y - xTS] given in (6.3). 

Be c.o.use of the similarity of the expressions for 6.e and 

e'{m·:·l) (cf .eqns 6 .• 2. and 61 • 3) ,this routine is also used to 

" compute e (,mtl) 

{c) Parameter Estimate update (ESTIMATE) 

This routine is used to update the parameter estimates 

that is, to solve for 3(m+l) in (6.3). 

6.2.3 Output Routines. 

A control subroutine, OUTPUT, together with two auxiliary 

subroutines are used to output the corrected EEG samples, 

the EOG and I or the raw EEG (measured EEG with mean 

removed) to the EEG machine, depending on the user 

specified (or default) constants. 

The two auxiliary routines are the 'FLTINT' and the 

'DACOUT' which are, respectively, used to convert a given 

data sample from floating point to integer and from 

digital to analogue. Additionally, the DACOUT selects the 

output channel to which the converted sample should be 

sent. 

(a) Conversion from Floating Point to Integer (FLTINT) 

The input to the DAC must be a 12 bit integer in the range 

000 to $FFF (Hex) . Negative numbers are in the range 000 

to $7FF, and positive numbers $800 to $FFF. Sihce the 
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arithmetic opetations in the OAR system are in floating 

point scheme, it is necessary to convert the ouput data or 

result to 12 bit integer. The subrouti,ne FLTINT is used 

to perform this conversion. 

With reference to the flowchart in figure 6.7, it is seen 

that thtee deci:~iof\S have to be made before conversion: 

(i) Is the sample zero 1 If it is, then an offset is 

simply added to obtain directly the desired integer 

number. 

(ii) If the sample is not zero, is it too large? A sample 

is too large if it is outside the range of the DAC. This 

is easily determined by examining the exponent of the 

floating point number to be converted. Samples that are 

too large are set to the maximum integer value, with the 

appropriate sign. 

(iii) Is the sample not zero, but too small ? If it is 

too small, it is treated as a zero. A sample is too small 

if its integer equivalent is less than 1. 

(iv) If (i) to (iii) above are not true, then the integer 

equivalent of the sample is within the DAC range. The 

sample is then converted to integer by shifting right its 

mantissa (see section 6.3) an amount determined by its 

exponent. 

{b) Subroutine DACOUT 

This subroutine outputs the 12 bit sample to the DAC where 

it is converted into analogue form. Next it selects the 

demultiplexing channel and the output sample and hold 
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where the analogue sample should be sent. This program is 

listed along with the other routines used to o~tp~t data 

in appendix AlS. 

6. 3 Software Floating Poin't Arithmetic Routines 

Fixed and floating point arithmetic are the two most 

common types of arithmetic in a digital system [ 6, 7 ]. 

Fixed point representation has 

fast, but limits the range 

the advantage of being 

of numbers that can be 

represented. To prevent results of arithmetic operation 

going outside the number range, the operands have to be 

scaled before and/or after each arithmetic operation. To 

overcome tbe problem of scaling associated with fixed 

point approach floating point representation is often 

used. A floating point scheme greatly increases the 

dynamic range of the numbers and it is preferred in 

applications where the magnitude of numbers vary widely 

[6 ]. Thus, floating point (FP) arithmetic operations were 

preferred for the OAR system. Furthermore, FP arithmetic 

was used to develop the removal algorithms on the main 

frame computer (see chapter t) , so that the use of FP 

follows naturally. 

As speed is vital in this application, hardware floating 

point was considered the best approach, but it was found 

that hardware floating point devices available at the time 

were both expensive and too slow. Therefore, the number 
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of EEG. channels to correct was sca,led down so that 

software FP could be used until fast FP devices became 

available. 

An overview of the binary floating point routines which 

were used: to perform the basic arithmetic operations of 

add, subtract, multiply and divide in 68000 microprocessor 

assembly language is presented here. A more detailed 

description of the assembly language routines, which are 

of interest in their own right, is given in appendix A9. 

The material presented here and in appendix A9 has been 

written up for publication [8 ]. 

The floating point number representation and the data 

format used will be described in section 6.3.1 and 6.3.2 

respectively, and in section 6.3.3 the floating point 

arithmetic routines are described. 

6. 3.1 Binary Floating 'point Representation 

A floating point number X i:s represented as the product of 

two signed numbers, the mantissa M and the exponent, E: 

X= M.2E 

where 2 is the base of the binary system. 

The exponent primarily determines the range of the numbers 

that can be represented, whereas the mantissa determines 

the accuracy of the numbers. In this system, the exponent 

and the mantissa are represented, respectively, by 8 and 
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16 bits. This choice is a suitabl~ comp~omise between 

speed' and accu~acy. Simila~ choice of exponent and 

mantissa lengths have been used in a control application 

[ 9] and we~e found to be adequate. The range of the 

floating point numbers is the difference between the 

la~gest and the smallest numbers that can be rep~esented, 

which in this case is: 

(0.5 X 2- 64 ) to (1 - 2- 15 ) X 263 

Of the 16 bits used to represent the mantissa, 1 bit is 

the sign bit and the least significant bit may be of a 

doubtful accuracy due to rounding effects. Thus, the 

accuracy of the floating point numbers is 1 in 2
14 

(0.61 
4 

x 10 ) , that is about 4 decimal digits. 

6.3.2 Floating Point Data Format 

The format for the floating point number (or word) is 

given in figure 6 •. 8. The mantissa is expressed as a 16 

bit fractional two's complement value with the binary 

point assumed to the right of the sign bit. The exponent 

is 8 bits long in excess 64 form. The exponent normally 

has a range of -64 ~E~63 , but by adding a fixed constant 

to the exponent (in this case 64) such that it is always 

positive the range becomes: 0 ~ E ~ 127. This ensures 

that when the mantissa is zero the exponent is also zero, 

giving an all zero floating point number. Additionally, 

this form of representation has the advantage · of making 

the detection of over- and under-flow simple [10]. 

However, when performing arithmetic operations the 
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Figure 6.8 (a) Floating point data format 

(b) Floating point memory allocation. 
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exponent has to be restored to its unbiased form. 

All .numbers going into or out of the floating point 

routines must be normalized. A normalized floating point 

number is one in which the sign bit and the bit to the 

right of the binary point (bits S and ml4 in figure 6.8) 

of the mantissa are different. In this system, a 

normalized mantissa satisfies the condition: 0.5~M\~ 1. 

If the result of an arithmetic operation produces a 

mantissa that is outside this range, it is said to have 

overflowed (mantissa overflow) if the result is equal to 

or greater than unity, and under flowed (mantissa 

underflow) if it is less than 0.5. 

The floating point numbers in memory are allocated four 

consecut~ve bytes of memory (2 words), although only the 

first three are used as shown in figure ~b This is to 

simplify reading and writing to the memory of the 68000 

pP. It also allows the number of bits in a floating point 

word (mantissa + exponent) to be increased easily, if 

desired. 

6.3.3 Floating Point Arithmetic Routines 

The floating point arithmetic routines consist of three 

routines for the basic ari:thmetic operations: FADD (for 

addition), FMUL (for multiplication), and FDIV (for 

division). Exit from these routines is made via a common 

routine, 'EXIT'. 
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On entry into any of the arithmetic routines, registers 03 

and 02 contain, respecti.vely, the first and second 

operands. In the case of division, 03 and 02 contain, 

respectively, the dividend and the divisor. On exit, 03 

contains the i:'esuit. Apart from 03, none of the registers 

are modified on exit by the floating point routines. 

The 68000 pP hai an abundance of registers and these have 

been used freely to improve the execution speed:. For the 

same reason, the use of some otherwise efficient 

instructions have been avoided. Arithmeti:c operations can 

be chained with the result of the previous operation left 

in 03 to be used as the first operand of the next 

operation. 
• 

A detailed description of these routines can be found in 

appendix A9. 

6.3.4 Execution Times of the Floating Point Routines 

point 

only 

Estimates of the execution times of the floating 

routines are given below. These times are 

approximate as the execution times depend on the data. 

Routine Execution time (pS) 

Addition 70 

Multiplication 70 

Division 85 
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6. 4 Software Developmen·t 

Due to lack of adequate development tools, the OA system 

software was developed on a number of systems, each sys~em 

being used to develop only a part of the software. These 

were, the VMEllO microcomputer, the Wicat, the Future data 

and the Exorset. 

The VMEllO is the system controller board used to develop 

the programs initially and to test later programs after 

they have been put on EPROMs.. It is equiped with a 

monitor program with line by line assembler and several 

debugging facilities. These facilities were used 

extensively in the program development. However, the 

VMEllO board lacked suitable permanent storage facilities. 

The WICAT, a 68000 JlP based system at present is used only 

as a terminal equipment for the VME board. It also holds 

a fully documented copy of the OAR software from which a 

hard copy may be obtained. The Wicat has a resident 

assembler which can be used to assemble programs, but has 

no debugging facilities. When the system was bought about 

half way into this research, it was hoped that it would be 

used to develop programs. However, due to insufficient 

memory, inadequate software, and hardware problems 

encountered with the system this was not possible. 

The Future Data system was the only system in the 

polytechnic at the time that had facilities for developing 
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68000 assembly language programs, but these were limited • 

The limitations included the inability to split object 

codes into upper and lower bytes, which is necessary for 

16 bit processors and the inabi'lity to program memory 

devices above 2K bytes (at least 4K EPROMs were required) . 

Thus another system, the EXORSET, was used to perform 

these two functions. 

The EXORSET is a development system for the 6800 series 

which does not support 68000 programs. 'However, it can 

program a variety of memory devices and supports a1
t least 

a high level language. 

Thus, the approach adopted was to cross assemble programs 

on the Future Data system, and after editing put these on 

one or more 2K EPROMs (depending on the size of program) , 

read the codes from the EPROMs into the EXORSET, use a 

BASIC program on the EXORSET to split the codes into upper 

and lower bytes, and then put the.upper and lower bytes of 

the codes on separate 4K EPROMs. 

Ideally, it would have been better to use a single system 

to develop the programs and then download on to the VMEllO 

card. However, the method devised above aithough less 

efficient was quite straight forward and took little time. 
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6.5 Memory Requirement 

The on-;-board memory of the VMEllO card is organized into 

four socket pairs, as shown in figure 6.9. Each socket pair 

Upper byte Lower byte 

RAM or ROM l Socket 
pair 4 I I RAM or ROM· 

[ Socket RAM or ROM I pair 3 RAM or ROM l 
RAM or ROM Socket RAM or ROM 

I pair 2 

I ROM 
Socket 
pair 1 ROM 

Figure 6.9 VME110 local memory organization 

can be configured to accept a wide range of RAM or ROM, 

except the first which must be a ROM. This socket pair 

contains the monitor program. 

Headers are provided for configuring the sockets. 

Additionally, a map decoder PROM is required to provide 

information about the memory [11,12]. This includes, 

~hether an address is local or global, whether a local 

memory is ROM or RAM, whether a local RAM location is 

write protected and implicitly, the size of the memories 

in'each socket pair. 
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.The user programs the decoder to .provide this information. 

The memory requirements ch6sen for the OAR system are as 

follows: 8K RAM and 24 K ROM. This includes two 8K x 8 

ROMs for the monitor, two 4K x 8 ROMs for the OAR system 

software (socket pair 2) , and four 2K x 8 RAMs used as 

wor.k area (socket pairs 3 and 4) • These memories occupy 

the following address ranges: 

System Monitor 

OAR Sytem 

Write protected 

+ Vectors + 

work area 

address $F00000 - $F03FFF 

address $F04000 - $F05FFF 

address $000000 - $000FFF 

address $001000 - $001FFF 

The approach used by Motorola whereby ROM is placed in the 

high address (the HI block) and RAM i·n the low address (LO 

block) [11,12.] has been adopted. 

6.6 Summary 

A detailed description of the OAR system sofware, its 

design and development was presented in this chapter. The 

heart of the software is the numerically stable UD 

algorithm. Also discussed are the software floating point 

routines which were used in the OAR sofware, and routines 

required to control the hardware described in chapter 5. 
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Chapter 7 SYSTEM TESTING AND EX·PERlMENTAL RESt:JLTS 

7.0 Introduction 

In the last two chapters, the design and development of 

the hardware and software of the ocular artefact removal 

(.OAR) system were discussed. In this chapter tests on the 

system are described. The tests were carried out in two 

phases, namely, simulated tests and pre-clinical tests. 

In the simulated tests, the various subsystems (hardware 

and software) were tested .using test data, signals and 

programs to discover the blatant errors and bugs. Next, 

the entire system was tested with test signals that 

resemble the EOGs/EEG to verify that the system worked in 

the real-time situation. The test program and circuits 

for generating the test signals will also be described. 

In. the pre-clinical tests, both normal and patient 

subjects were used. Experimental results from these tes.ts 

will be presented and discussed. 

7.1 Simulated Tests of the OAR System 

7.1.1 Hardware and Software Tests 

(a) Hardware 

The various hardware subsystems 

etc) were tested with small 

(multiplexer, 

programs. The 

ADC, PGA 

debugging 

facilities on the VMEllO microcomputer were used in these 
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tests. These facilities allowed readi!ng from or writing 

to the subsystems, single stepptng thrbugh the test 

programs., and the display of the mtcroprocessor register.s 

on the terminal. 

Firstly, the decoder which generates the control signals 

was tested,. For each function listed in table 5.1 

{chapter 5> , short assembly language programs of three or 

four lines were used to generate the correct control 

signals which were then monitored on an oscilloscope. For 

example, to generate the multiplexer control signals {MXO 

to MX4), the desired channel number was entered in a data 

register and then a write to the multiplexer address was 

performed. The logic levels of the control lines were 

then monitored on the oscilloscope to verify that they 

were correct. Similar tests were carried out for other 

control signals and enabled the discovery of wiring errors 

etc. Next, the analogue input circuit was tested, to 

verify that with both sinusoidal and sampling signals 

applied, its output was a sampled version of the sinusoid. 

{the sampling signal was derived from the Programmable 

Timer Module on the VMEllO) • 

After testing the hardware subsystems and correcting any 

errors, it was necessary to test the overall hardware. To 

do this it was decided to connect the system 

'back-to-back'. Thus, sine wave signals were applied to 

the system inputs, on interrupt these were sequentially 

selected and digitized by the ADC, the digitized samples 
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were then converted back to analogue by the DAC, and 

demultiplexed via the DMUX and the output sample and 

holds. After smoothing the samples with the output 

filters, the resulting anal!ogue signals were then compared 

with the original input signals to verify that they were 

similar. 

In all the hardware tests the programs were carefully 

chosen to simulate operations that were similar to those 

of the OAR software, so that in effect the OAR software 

was also being tested. 

(b) Software Tests 

As was stated earlier, some aspects of the software were 

tested in the hardware tests. The removal routines are, 

however, the most important part of the OAR system 

software. These were tested with test data obtained from 

the data used in the investigation described in the 

previous chapters. An on-line OA removal was simulated on 

the main frame computer as described in chapter 4, and 

values of the EOG and EEG data, parameter estimates as 

well as elements of the UD matrices at a few sample points 

were printed. 

The EOG/EEG data were then stored in the RAM of the OAR 

system, after converting to floating point format. With 

the system initialized with similar starting values for i 
and the UD elements as on the main frame computer, and 

using the debugging facilities, the EOG and EEG samples 
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.were fetched and used in the removal al:gorithm, see figur.e 

7 .1. At the end "' of each iteration, the values of u,n,s 

and the corrected EEG were compared to those produced by 

the main frame computer. Typical values from the test are 

given in table 7.1, from which it i:s seen that the values 

produced by the OAR and the main fraine computer are the 

same. 

This test revealed a number of software errors, which were 

later corrected. It will be recalled that the OAR system 

arithmetic is carried out in floating point scheme. Thus 

it was desirable to perform floating point/decimal 

conversion to allow communication with the system in 

easily understandable form and to check the validity of 

the results. Routines developed for performing these 

conversions are described in appendix AlO. The values 

given in table 7.1 were obtained with these routines. 

7.1.2 System Testing with Real-Time Signals 

Although the hardware and software of the OAR system have 

been shown to work separately, it was necessary to verify 

that the entire system worked before proceding to 

preclinical tests. This required generating test signals 

with characteristics similar to the EOG and EEG. 

Circuit for Generating Test Signals 

The circuit used to generate the EOGs/EEG is shown in 

figure 7.2.The requirements of the circuits were: 
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m• l 

~1F OAR 

e l (m) 0 .1416 0.416 

~2(m) - 0 . 0260 -0 . 0260 
(a) 

e 1(m) 0. 1030 0 .1030 
(b) e2(m) 0 . 0910 0 . 0910 

~3(m) 0. 1106 0. 1106 

e1 (m) 0 .1005 0. 1005 
e-2(m) 0.0984 0 . 0984 

6im) 0.1019 0 . 1018 
(c) 

a4(m) - 0.0030 - 0.003 

NO 

START 

INIT. REG. 

MOVE A SET OF 
X,Y DATA ( EOG 
& EEG) I NTO 

BUFFER 

FETCH DATA FR 
BUFFER, UPDATE 
UD ELEMENTS AND 
REMOVE OA 

STOP 

Figure 7.1 

Fl ow char t fo r the 
program us~d to tes t the 
assemb l y l anguage coding of 
o f the UD algorithm 

m=2 m=3 m=4 

MF OAR MF OAR MF OAR 

0.2463 0 . 2463 0 . 2667 0.2667 0.7074 0. 7073 

0 . 0190 0 . 0189 0.0488 0 . 0488 0. 1962 0 .1962 

0 . 2159 0.2158 0 . 2285 0.2285 0.7089 0 . 7089 
0 . 1280 0. 1281 0 . 1843 0 .1841 0. 1870 0 .1864 
0. 1011 0. 1012 0 .1 259 0. 1258 - 0.0083 - 0.0088 

0 . 045 0 . 2043 0. 1858 0 .1858 0. 1857 0 . 662 7 

0.0599 0 .0601 - 0.0667 - 0.0670 - 0.0711 - 0 . 0717 
0. 1722 0 .1 722 0 . 3642 0 . 3640 0.2373 0 . 2366 

0.0023 0 . 0023 0 . 0079 0.0079 0 . 0081 0 . 0081 

Tabl e 7.1 Compar i son of r esu lt s of simulation of the UD on- l i ne 
OA removal on the main f r ame (MF) computer and on t he OAR sys t em. 

(a) mode l 2D (VR,HR) (b) mode l 3D (VR,HR,HL) (c) mode l 4D (VR,HR,HL ,[HLxHR]~ . 

• 
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(i) Generate signals that were similar to the EOGs and EEG 

signals. Thus the EOGs should be correlated (but ndt 

perfectly), and have a low frequency (""' 10Hz). It was 

also useful to simulate random ocular movement. The EEG 

should be approximately random. 

(ii) The signal levels should be similar to those at the 

auxilliary outputs of the EEG machine (I( 2V peak). 

Referring to figure 7.2, the output of an oscillator 

running at a frequency of 20 Hz (a lower frequency made 

viewing on oscilloscope difficult) was used to generate ~ 

pseudorandom sequence (PRS) of length 15 bits, by 

logically controlling the shift register. The PRS allows 

the simulation of random ocular movement. 

The resistance-capacitance networks were used to shape the 

PRS output to obtain the desired signal levels and shapes 

[1]. The resulting 'EOG' signals were added to a noise 

signal from a noise generator to give a contaminated 

signal, reminiscent of the OA process on the scalp. 

A word or two on the test circuit is in orrler. The PRS 

output is maximal length (15 bits), made possible by 

exciusive-Oring the last two bits of the shift register, 

IC3. To avoid the all zero state at the shift register 

output on turning the power on, for example, which would 

inhibit the PRS [2] the NAND gate was used to detect the 

all zero state and force the PRS to sequence. 
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To prevent the interacti!on of the signals (EOGs, EEG), an 

inverting adder was 'Used. This feature was desirable to 

allow each input signal to be individually control,led. 

The RC network arrangement has the feature tha~ its 

components can be adjusted .to obtain different 

waveshapes. 

The simulated signals were used to test the OAR system 

which was found to work satisfactorily. 

7.2 Pre-Clinical Tests 

The pre-clinical testing was carried out at the Freedom 

Fields Hospital, Plymouth, and consisted of two phases. 

In the first phase, six normal subjects were used to allow 

extensive tests to .be carried out. The objective here was 

to assess the reliability of the OAR system, which can 

only be obtained from trying the instrument out on peopl:e. 

This phase was also a 'learning' phase, allowing the 

understanding of how the system behaved and discovering any 

bugs. In the second phase two patient subjects exhibiting 

slow waves were used, to assess how the OA removal .process 

affected the waves. One of the subjects could not 

co-operate fully and also suffered from chronic epileptic 

condition, and the other was unco-operative and suffered 

from a mental illness. 
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7.2.1 Methods and Material 

(a)Experimental Apparatus 

Ten EEG signals were derived from electrodes placed as 

shown in figure 7.3. These were FP2-F4, F4~C4, C4-P4, 

FP1-F7, FP1-F7, F3-C3, C3-P3, Fz-cz, cz referred to the 

right ear lob~, and Cz-Pz. The EOG signals were derived 

from electrodes placed near the eyes as described in 

chapter 1, sections 1.2.1 and 1.6. Two different EOG 

electrode placements were used (see figure 7.3) and these 

have been discussed in details in chapter 1, section 

1.2.1. (Other derivations for both the EEG and the EOGs 

were also sometimes used, as will be pointed out later) • 

It is perhaps worth pointing out that the electrode 

placement 7.3(c\ can be derived from that of 7.3(b) (as 

indeed most of those given in figure 1.3 in chapter 1) by 

merely selecting the appropriate pairs of EOG electrodes 

at the EEG machine. Thus, it was only necessary to apply 

the EOG electrodes as shown in figure 7.3('ol. 

The EEG and EOG signals were fed into an eight-channel EEG 

machine via the head box, and after amplification they 

were fed into the OAR system via a 37-way D-type connector 

(see appendix A~ ) . After removing the OA from the EEG 

signals, both the corrected and raw EEGs (with the means 

removed) and/or the EOGs were fed into the final 

amplifiers of the EEG machine 

chart for examination (see 

and thence to the paper 

figure 7.3q). It should be 

noted that the first four channels of the EEG machine were 
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rigure 7 .3 (a) the OAR system connections to the 

EEG machine, (b ) and (c) the Ecx; placer.>en~s used . 

Fa Fz 
0 0 

C3 cz 
0 0 

P3 Pz 
0 0 

f'J 

a- e''o 

The head box showing some of the EEG 

channels and the type of derivations used . 

The letters on the heaubox indicate the -reas 

on the scalp where the electrodes ar·e placed ; 

r indicates frontal , c c~ntral , p parietal, 

0 occipital and T temporal. 

rS 

T5 

rP2 

T4 

(b) - (rP2- T4 is VR) 
- (r8-T5 is HR) 
- (rp1 - T3 is VL) 
- (r7- T5 is HL) 

Pre- amp. 

The 
OAR system 

(c) (rp2- r8 is EOGR) 
- (rp1 - F7 is EOGL) 

EEG machine 

rinal amplifier paper char·t 

(a) 



reserved for the EOG signals so that only four EEG signals 

could be applied to the EEG machine simultaneously. 

Furthermore, only six input and output signal conditioners 

were fitted to the OAR system , so that effectively only 

two EEG signals could be fed to the OAR system at the same 

time. The two EEG signals were selectable using the 

channel-selection switches on the EEG machine. Additional 

EEG signals can be accommodated by using a bigger EEG 

machine and by fitting more signal conditioners. However, 

since the OAR system software can only remove OA from a 

limited number of EEG signals at the same time due to the 

slow speed of the floating point arithmetic software these 

expansions were considered unnecessary at the present time 

(see later). 

(b) Models Used in the Tests. 

Four models were used in the tests. Three of these 

utilized the EOGs derived from electrode placement of 

figure 7.3(b) and were described in chapters 2 and 6. 

These three models are reproduced below for easy 

reference: 

20 y(i) = s1VR(i) + s 2HR(i) + e(i) 

3D y(i) = B1VR(i) + e2HR(i) + e3HL(i) + e(i) 

40>': y(i) = e1VR(i) + e2HR(i) + e3HL(i) + e4HL(i)xHR(i) + e(i) 

(7 .1) 

The fourth model, which will be called model 2H in line 

with the nomenclature of chapterl, used the EOGs derived 
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from the electrode r.lacement of figure 7. 3(c): 

2H y(i) = 8 1EOGR(i) + ~zEOGL + e(i) ( 7. 2) 

where EOGR(i) and EOGL(i) aTe the right and left eye EOGs. 

(c) Ocular Artefact Removal 

With the OAR system connected to the subject via the EEG 

machine and the head box as shown in figure 7.3(q), the 

OAR program was started After entering the various 

system constants (including the desired model) as 

described in chapter 6, section 6.1, the subject was asked 

to carry out various ocular movements, reminiscent of the 

experiments described in section 1. 6. (For the 

un~o-operative subjects, the OAR system was simply used to 

remove the random OAs) • It should be noted that if a 

two-parameter model was specified, then either model 20 or 

model 2H was used to remove the OA, depending on the pairs 

of EOG electrodes that were selected to feed channels 1 

and 2 of the EEG machine ~see figure 7.3(b)). In fact, 

the selection switch on the EEG machine can be used to 

'force' the OAR system to implement a variety of models by 

selecting the appropriate pairs of EOG electrodes to feed 

channels 1 to 4. 

The OAs in the EEGs were then removed on-line using the 

U-D factorization algorithm described in chapters 4 and 6. 
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7.2.2 Experimental Results with Normal Subjects 

(a) Comparison of Models 

Figure 7.4 gives typical results for models 2H, 3D
1 

and 4D~ 

for vertical eye movement experiments at the FP2-F4 EEG 

electrodes.. This is one of the EEG electrodes that are 

most susceptible to OA. One model was used at a time to 

remove the OA while the subject moved his eyes vertically. 

It is seen that all three models gave satisfactory removal 

of OA. Compare for example the corrected and uncorrected 

EEGs i.e traces (iii) and (ivl in each of figures 7.4(a), 

(b) and (c). However, it is seen that the rider artefacts 

were not completely removed. Satisfactory OA removal was 

also obtained for the other types of OA. Figure 7.5 gives 

the results for a lateral or horizontal eye movement 

experiment at the same electrode~. 

It was found that in all cases, model 2H had. a performance 

that was as good as the other models. As this model is 

simpler than either model 3D or 40* (cf equations 7.1 and 

7.2) and uses fewer EOG electrodes, it was decided that it 

should be used in subsequent investigation in preference 

to models 3D and 40*. Figure 7.6 givesadditional results 

for the model 2H at FP2-F4 electrodesfor periodic blinks 

and random ocular movements. These results also showed 

that the OAR system satisfactorily removed the OA.s. 

Electrode placement 1.3(k) in chapter 1, was tried but 

gave an unsatisfactory results, especially for blinks. 
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Fi gure 7 . 4 Compari son of models at the FP2 -F4 electrodesfor VEM experiments. 

~ 

~"VV 
~..--.r-vv-...........,~,.,....._~~~~~~~ 

(iv) EEG (corrected) 

Figure 7 . 4(a) Model 2H 
( i) The righ t eye EOG (EOGR) ( ii) The left eye EOG (EOGL) 
(iii) Mea sured EEG (iv) Corrected EEG 

(iv) EEG (corrected) 

Fi gur e 7.4(b) Model 3D 
(i) The vert ical right EOG (i i )The hori zon tal right EOG 
(iii ) Measured EEG (iv) Corrected EEG 

Fi gur e 7.4(c) Model 40* 

(i) The ver tical right EOG (ii) The horizontal right EOG 
( iii ) Measured EEG (iv) Corrected EEG 
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Figure 7.5 Comparison of mode l s at the Fp2-F4 electrodelfor HEM experiments . 

!1 ,!)u:.- 1 I ! I I I I I I I ! I 

Figure 7.5(a) Model 2H I 200 pV 

(i) The right eye EOG (ii) The left eye EOG 

I ( iii) Measured EEG (iv) Corrected EEG 70 pV 

( i) VR 

(iv) EEG (corrected) 

Figure 7.5(b) Mode l 30 
(i)The vertical right EOG (ii) The horizontal right EOG 

(iii) Measured EEG (iv) Corrected EEG 

( iv ) EEG (corrected) 

Figure 7.S(c) Mode l 40* 
(i) The ver tica l right EOG (ii) The horizontal right EOG 

(iii) Measured EEG (iv) Corrected EEG 
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Figure 7.6 Ocular artefact Removal at the Fp2-F4 electrodeS 
using model 2H for (a) periodic blinks (b) random ocular movements . 

~----~= (i) EOGR 

( ii) EOGL 

Figure 7.6(a) Periodic blinks 

(i) The right eye EOG (ii) The left eye EOG 
(iii) Meas ured EEG (iv) Correc t ed EEG 

I 1 I I I I I 

(iv) EEG (corrected) 

Figure 7.6 (e ) Random ocular movements 

( i) The right eye EOG (i i) The left eye EOG 

(i ii ) Measured EEG (iv) Corrected EEG 

,222 

} 200 fv (EOGsl 

I 70 pV (EEGs) 



Model 20 did no.t give complete OA removal at the FP2-F4 

electrod~~ especi~lly for large ocular movements (see for 

example, figure 7.7)'. 

(b) Evaluation of the OAR System Performance at different 

EEG electrodes. 

The OAR system was used to remove OAs from a number of 

other EEG electrodes (see figure 7.3(q.)) using model 2H 

(and occasionally models 3D and 40, • It was found that in 

all cases the OA was satisfactorily removed, and this 

included all the frontal EEG channels where the OA was 

largest. Figures 7.8(a) and (b) give results for four 

different electrodes (Fz-cz, Cz referred· to the earlobe, 

F4-C4, and F3-C3) for blink experiments. In both figures 

two different EEG signals were simultaneously corrected 

for OA. Comparison of the corrected and uncorrected EEGs 

in both sets of figures showed that the system had 

satisfactorily removed the OAS. (compare traces (v) and 

(vi) with traces (iii) and (iv) in each set of figures) 

There was little OA contamination at the more posteriorly 

placed EEG electrodes (e .g Cz- Pz and Cl: .• P4) • In these 

cases all the models performed equally well. 

(c) The effects of OA removal on the background EEG 

To assess the effects of OA removal on the background or 

true EEG, subjects were asked to keep their eyes as 'still 

as possible', so that there was effectively no OA in the 

EEG. The raw and 'corrected' EEGs were then compared and 

in all cases there appeared to be no 
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Figure 7 . 7 Ocular artefact removal at the Fp2-F4 elec trodeS 

using model 20 for a VEM experiment. 

(i) The ver tical right EOG (ii) The horizontal right EOG 
(iii) The measured EEG (iv) The corrected EEG 

I 200 pV (EOGs) 

I 70 pV (EF;Gs) 



(iii)measur ed EEG (Cz) 

( iv) wea!:ure(. EEG (Fz - Cz) 

(v)cor rected EEG (Cz) 

(vi)corrected EEG (Fz-Cz) 

Figure 7 .8 (a) Multichannel EEG ocular artefact removal at the 

Cz and Fz- Cz electrodes . 

corrected EEG (F4-C4) 

Figure 7 . 8 (b) Multichannel EEG ocular artefact removal at the 

F3-C3 and F4-C4 e l ectrodes/ I 150 pV 
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differences between them, e.~g. figure 7 .9. :Fhis 

suggested .that the OAR system does not have any serious 

adverse effects on the true EEG. 

(d·) Simulation of the Previous On-line OA Removal Methods 

In the investigation reported above, it was necessary to 

use a lower sampling frequency (95Hz) than the target 

specification (128Hz) when model 4D* was employed, or when 

more than one or two EEG signals were to be simultatieously 

corrected for OA using the simpler models. This 

limitation was due to the floating point arithmetic 

routines used which were too slow to perform the large 

number of arithmetic operatidns involved in these cases 

within the sampling interval. Table 7.2 sets out the 

maximum number of EEG signals that can be simultaneously 

corrected for OA at each of the two sampling frequencies. 

(The sampling frequency can be easily changed in software 

as described in appendix A15J 

model 

21) or 2H 

3D 
4010-

TabLe 7.2 Maximum number of EEG signals 

that can be corrected for OA simultaneously 

at the two sampling frequencies used. 

-- -·-

95Hz 128Hz 

4 2 

2 1 

1 0 

It should be pointed out that no significant differences 

could be seen when the results at the two frequencies were 

compared. For this reason most of the tests were carried 

out at the lower sampling frequency, including all those 
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EOG 300 ~ VI 

EEG 150 ~V l_____ 
1 s ec 

(i) EOGR 

(ii) EOGL 

(iv) measured EEG (Fpl-F3) 

Figure 7.9 Effects of OA removal on t he background EEG 
at the Fp2 - F4 and Fpl - F3 electr odes using model 2H. 
(i) The right eye EOG (ii) The lef t eye EOG 

(iii) The meas ured EEG (Fp2- F4) (iv) The measured EEG (Fpl - F3) 
(v) and (vi) The corr esponding corrected EEGs 



described in this chapter. 

The number of EEG signals that can be corrected for OA 

simultaneously can be significantly increased by using a 

suitable hardware floating point (FP) arithmetic devices, 

such as the Weitek devices [ 4]. 

As described in chapter 4 section 4.4, another way of 

avoiding the limitations imposed by the slow speed of the 

FP routines is to use the fixed parameter approach. As 

mentioned in chapter 4, this approach can be viewed as an 

automated form of the previous on-line methods [6-8]. 

Thus the fixed parameter approach is a two-step OA removal 

method. In step 1 or calibration stage, estimates of the 

OA parameters are obtained whilst subjects are performing 

a given ocular 

the parameter 

on-line. In 

movement, 

estimates 

and in step 2 or removal stage 

are used to remove the OAs 

chapter 4, an 

suggested as a way of obtaining 

off-line technique was 

the parameter estimates 

required in step 1. An alternative approach is to use the 

on-line routines of the OAR system to estimate the 

parameters. This approach was used to simulate the 

previous on-line methods. Thus the OAR system's on-line 

program was started as described in chapter 6, and the 

subject was asked to perform a given ocular movement. The 

program was then stopped after sev•ral seconds, and the 

resulting parameter estimates used in the second step of 
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the algorithm. ( A special program of only a few lines of 

codes was used for the removal stage, see appendix Al5). 

Figure 7.10 _(a) to (C') show results for the fixed parameter 

algorithm. In these cases., estimates of e were obtained 

whilst the subject was performing vertical eye movement 

experiment. After the parameter estimates were obtained 

the subj.ect was then asked to perform horizontal-, 

blinks-, and vertical ocular movements, and in each case 

the same parameter estimates were used to remove the OAs. 

As Examination of these figures showed, the OA removai in 

all cases was not satisfactory although it is seen that 

the system performed best for the vertical eyemovement 

(figure 7.10(Q);. These results demonstrated that 

parameter ~stimates obtained for one type of ocular 

movement cannot give adequate OA removal for other types 

of ocular movements. 

7.2.3 Experimental Results with Patient Subjects 

In the results given in the preceding sections, the raw 

EEGs were in fact partially processed (e.g. low pass 

filtered, sampled, mean-corrected, converted to digital 

etc). For the patients., it was considered necessary to 

record the raw unprocessed EEG on to the paper chart along 

with the corrected EEG to allow an unbiased analysis of 

the EEG. 

Thus the raw EEG to be corrected was fed direct to the 
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(v) corrected EEC (Fp2 - F4 ) 

Figure 7 .10(a) OA removal at the FP2 - F4 and Fp1 - F3 electrodes 
for a VEM experiment using the fixed parameter method. 
The parameter estimates used were ob ta ined in a previous 

VEM experiment. Details of the traces a r e the same as for figure 7 . 9. 
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Figure 7.10(b) OA removal at the Fp2-F4 and Fp1-F3 electrodes 
for a HEM experiment using the fixed parameter method . 

The parameter estimates used and details of the traces are the same 
as for figure 7 . 10(a) . 
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Figur e 7 . 10(c ) OA r emoval at the Fp2- F4 and Fp1-F3 elec trodes 

for a blink experiment using the fix ed parame ter method. 

The paramete r es timates used and details of the t races are t he same 

as for f i gures 7.10(a) and (b) . 
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paper charts via a ~pare channel as well as to the OAR 

system as described earlier. 

(a) Epileptic Subject 

This 28-year old female 

epilepsy and could not 

subject suffered from 

perform the ocular 

chronic 

movement 

experiments successfully. Even when she was aided in the 

experiments by gently holding her head to prevent head 

movements and with instructions such as 'look at my head, 

look at my foot' to get her to perform vertical eye 

movements, her ocular movements were still uncontrolled. 

Figure 7.11 shows the result for a horizontal eye movement 

experiment. An examination of the EOGs (traces (i) and 

(ii)) showed that they contained blinks as well as some 

lateral eye movement and perhaps other types of ocular 

movements as well, showing that the subject could not 

control her ocular movements. However, it is seen from a 

comparison of traces (iii) 0~ 

have been satisfactorily removed. 

(v) '•ht'n (iv) that the OAs 

A problem with patients in this category is that they 

exhibit slow waves which could be confused for OA as well 

as the characteristic epileptic spikes. It is desirable 

to remove the OAs from their EEGs without adversely 

affecting the waves or the spikes. 

Figures 7.12 shows an EEG record for the patient which 

contains the epileptic spikes and slow waves. Comparison 
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100 )JY L 
1 sec Raw EEG 

Figure 7.11 Ocu l ar artefac t r emova l in a HEM experiment 
Other types of OA, notably blinks, can also be seen in 
the traces due to the inability of subj ect t o co-operate 
fully. (i)The right eye EOG (ii) The left eye EOG 
(ii i ) The measured EEG (FP2 - F4) (iv) The corrected EEG 

(v) The raw EEG 



of the corrected EEG (trace (iv)) and the raw EEG (trace 

(v)) showed that the OAs have been removed, but not the 

spikes and waves. Another example is given in figure 

7.13. Again this showed a satisfactory performance. 

In some instances, the EOG electrode pairs of figure 

7.3(cJ which were used for model 2H may be used as EEG 

channels. It was therefore decided to verify how the OAR 

system would behave at these sites which are right at the 

usual EOG electrodes. Thus the EEG electrode pair Fl-F7 

was applied to the OAR system as an EEG channel and model 

3D used to remove the OA. Figure 7.14 shows the result in 

this case. Examination of the corrected EEG showed that 

the spike and wave complex have been substantially reduced 

(figure 7.14(iv)). It is seen that the vertical EOG 

(figure 7.14{i)) and the measured EEG (figure 7.14(iii) or 

(v)) were essentially the same because of the proximity of 

the EEG site to the eye, and this was why the spikes and 

waves have been reduced. This result suggested that it 

may not be wise to record EEG signals from sites that are 

as close. to the eyes as the Fl-F7 electrodes. 

(a) Patient with Mental Illness 

This patient could not co-operate and exhibited slow 

waves. To enhance the slow waves he was ·occasionally 

asked to keep his eyes still but this met with limited 

success. 

Figure 7.15 shows results for this p~tient. 
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OA 
Figure 7.12 OA removal in the presence of epileptic spike 
and wave complex. (i) The righ t eye EOG 
(ii) The l eft eye EOG (iii) The measured EEG (F8 - A2) 
(iv) The corrected EEG (v) The raw EEG 

(/spike 
/ wave 

~ ~~ 



rv 
w 
-..J 

150 IJV L 
1 sec 

correc ted EEG 

(v) Raw EEG 

OA 
Figure 7.13 OA r emova l in the presence of epi l ep tic spike 
and wave complex . Details of traces are the same as for 
fi gure 7.12. 
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(v) Raw EEG 

Figure 7 . 14 Effects of OA removal on epileptic spike and 
wave complex at the EOG electrodes . (i) The right eye EOG 
(ii) The left eye EOG (iii) The measured EEG (Fpl - F7) 
(iv) The corrected EEG using mode l 30 (v) The raw EEG 
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Figure 7.15 OA removal in the presence of slow waves 

(i) The right eye EOG (ii) The l eft eye EOG 
(iii) The measured EEG (Fp4 - F3) (iv) The corrected EEG 

(v) The raw EEG 



waves in the EEG appeared to have be~n reduced a.f.ter 

correction, but not removed. 

7.2.4 Discussion of Results 

(a) Normal Subj~cts 

The results of the various tests showed that in most cases 

the models defined in section 7.2 .1 gave satisfactory OA 

removal. Model 2D (which used VR,HR) in some cases., 

especially for large ocular movements did not 

satisfactory removal of OA in the frontal channels. 

agrees with the results of Fortgens and De Bruin [5] 

give 

This 

who 

concluded that more than two EOGs were required to achieve 

satisfactory OA removal at the frontal channels. However, 

the good performance of model 2H (which used only two 

EOGs) suggested that the reason model 2D failed was 

probably because it failed to take into account the 

contribution of both eyes to the OA in the EEG and not 

because it used only two EOGs. 

The tests also showed that it is possible to achieve 

satisfactory on-line OA removal at all EEG sites. It was 

found that in the more posterior EEG sites, very little OA 

contamination of the EEG was observed and in these cases 

all the models performed well. 

In the absence of OA the background EEG did not suffer any 

serious adverse effects by the OA removal process. 

However, the effects of OA removal on the true EEG depends 

largely on the secondary artefact in the EOG channels, and 
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this may vary from subject .to subj.ect. 

(b) ·Patients 

The r.esul ts showed that when pathological slow waves and 

spikes occur in the absence of OA, they were in general 

not significantly affected by the OA removal process. 

However, when they ocur simu~taneously with the OA, they 

may be reduced in amplitude., but not removed comp·letely. 

The reduction in amptitude occurs mainly at the frontal 

EEG channels. 

A simulation of the previously published on-line methods 

showed that in general they were inferior to the OAR 

system. It is perhaps worth mentioning that the 

un-coperative patients used in the test would have been 

unsuitable for use in the previous on-line methods where 

subjects'' co-operation is necessary (see section 1. 4). 

7.4 Summary 

In this chapter, tests used to evaluate the OAR system 

were discussed. These included simulated tests, and tests 

on normal subjects as well as patient subjects exhibiting 

pathological slow waves. The tests showed that in general 

the OAR system gave satisfactory OA removal. 

Tests on normal subjects showed that the OAR system 

satisfactorily removed the OA at various EEG sites, but 

suggested that to obtain satisfactory OA removal in the 
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frontal EEG channels account should be taken of the EOGs 

of both eyes in the OA model. 

Tests on patients indic 2ted that at the frontal channels 

when pathological slow waves and spikes occur 

simultaneaously with the OA, the OA removal process could 

reduce the amplitudes of the slow waves and the spikes. 

At the more posterior channels or when the waves occur in 

the absence of the OA they are in general insignificantly 

affected by the OA process. 
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Chapter 8 REVIEW., FUTURE WORK AND CONCLUSIONS 

8.0 Introduction 

The work described in this thesis is concerned with the 

problems of ocular artefacts in the human EEG, their 

removal .both off-line and on-line, and the design and 

development of an on-line ocular artefact removal system. 

This chapter contains a review of the main points in the 

thesis, suggestions for future work, and conclusions. 

8.1 Review 

(a) Off-line Removal of Ocular Artefact 

As discussed in chapter l, ocular 

resulting from movements in 

(eyeball,eyelids etc.), need to be 

true EEG can be analyzed. The 

offers the best solution because 

artefacts in the EEG 

the ocular 

removed so 

system 

that the 

EOG subtraction method 

it does not lead to 

wastage of data and gives satisfactory ocular artefact 

removal. On-line removal of OA is preferred because the 

delay involved when off-line techniques are employed is 

unnacceptable, especially in real-time applications. 

In chapter 2, the ~ork of Jervis et al [1,2] and Fortgens 

and De Bruin [3] was extended to find the most effective 

EOG subtraction model for implementation on-line. A 

number of criteria were devised, including the more 

reliable pictorial (waveform subtraction) method, and used 
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to compare the per.formance of several models. It was 

found that there was no need to use four EOG channels, as 

suggested by J.ervis et al [1,2] and Fortgens and De Bruin 

[3] because of the strong correlation between the EOGs. 

The EOGs of the right eye were found to be more important 

in removing OA than those of the left eye. The best model 

overall used the vertical right EOG (VR) , the two 

horizontal EOGs (HL and HR), and their product (HL x HR). 

The best three-parameter model used VR,HL and HR. 

It was shown that the assumption of uncorrelated error 

terms in the EOG subtraction models is invalid. To remedy 

this, the error terms were modelled as an autoregressive 

series. 

A disadvantage of the EOG subtraction method is that if 

the EOGs themselves contained artefacts, these would be 

introduced into the corrected EEG. The. exact effect of 

this is difficult to asses, but would appear to be small 

[4,5]. However, because the EOG noise is mostly high 

frequency, the effect can be reduced by low-pass 

filtering. A suitable low-pass digital filter that 

removes the EOG noise and introduces only minimal 

distortion was discussed in chapter 3. 

(b) On-line Removal of Ocular Artefacts 

New on-line removal algorithms based on the numerically 

stable UD factorization and square root algorithms have 

been developed. Compared to the present on-line methods 
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the algorithms are superior, requiring no s~bjective 

manual adjustments., or the co-operation of subjects which 

cannot always be guarranteed. The new aLgorithms were 

shown to give similar results to their off-line 

equivalents. 

(c) Automatic Ocular Artefact Removal System 

An important part of this research was the design and 

development of an automatic ocular artefact removal 

system. The system utilizes the efficient on-line 

algorithms described above. The specification, design and 

development of the sys.tem' s hardware and software were 

discussed in detail. Preliminary results obtained with 

both normal and patient subjects showed that the OAR 

system gives satisfactory OA removal. This system, which 

is the first of its kind, is compatible with standard EEG 

machines, so that it could be bought as an accessory. It 

is hoped that the system will in the near future be 

manufactured. 

8.2Future work. 

(a) Improvements to the OAR system 

It may be desirable in routine clinical work that the OAR 

system takes as small a space as .possible. This would 

require the system to be reduced in size. At present, the 

main constraint on size is the microcomputer board. It is 

possible to implement the software . using a single chip 

processor, and utilizing only the necessary components: 
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this would reduce the processor board to a minimum. 

Furthermore, programmable array logic (PAL) can be used to 

perform most of the functions of the decoder, and the 

analogue boards could be reduced by putting the discrete 

components on an integrated circuit. By these methods, it 

should be possible to reduce the size of the OAR system to 

~t least a half of its present size. 

A limitation of the OAR system at the present is that it 

cannot remove the OA from more than a few EEG channels 

simultaneously, due to the slow speed of the floating 

point arithmetic routines which take typically 70pS to 

perform an arithmetic operation. A solution to this 

problem is to use fast hardware floating point arithmetic 

devices, such as the Wei tek devices [ 6], capable · of 

performing an arithmetic operation in 1 or 2 pS. 

The use of the fast floating point arithmetic devices 

should allow the incorporation of the EOG filter discussed 

in chapter 3 into the OAR software. At the present the 

filter was not used because of the additional arithmetic 

operations that would be involved. 

(b) OA Removal in the Presence of Pathological Slow waves 

AS was discussed in chapter 1, when ocular artefacts and 

pathological slow waves and/or event related potentials, 

such as the CNV, are simultaneously present, the EOG 
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subtraction method may not give optimum correction. As 

was found in chapter 7, the slow waves could be reduced in 

these cases especia~ly at the frontal EEG channels. Thus, 

it is necessary to distinguish between the OA and slow 

waves. 

It is known that slow waves and OA have different scalp 

potential distribution [7,8]. Slow waves for example, are 

uncommon along the midline, so that waves that occur only 

laterally are probably slow waves. Thus several 

electrodes could be used to separate out the two types of 

waves. A similar technique could be applied to the CNV 

which occurs abundantly only at specific sites, such as 

the vertex electrodes.. A technique could be developed for 

recording the topography and quantifying the propagating 

waves and to investigate the spatial variation of EOGs. 

(c) Further Clinical Tests 

Further tests on the OAR system need to be carried out. 

The effectiveness of the correction procedure should be 

tested further on various categories of patients, 

particularly those exhibiting slow frontal waves and 

un-coperative patients (eg children) to establish its 

usefulness. The results from such tests should provide 

the basis for an assessment of the clinical usefulness of 

the corrector. 
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8. 3 Conclusions. 

The work descri!bed in this thesis has -shown that ·the OA in 

EEG signals can be satisfactorily removed on-line, and 

that the r.ealization of an automatic ocular artefact 

removal .system is 

usefulness of the 

technically 

instrument 

after extensive clinicai tests. 

feasible. However, the 

can only be fully assessed 

It is hoped that the instrument will significantly 

alleviate the problem of OA in the human EEG. 

Although the OAR system was designed specifically for 

removing the OA from the EEG, it could be used as a 

general-purpose artefact (or noise) removal system in most 

physiological situations where both the contaminating and 

the contaminated signals can be separately measured 

[9-11]. An example is the problem of measuring the foetal 

Electrocardiogram (ECG) in the presence of large 

contaminating maternal ECG [9,10]. Another example is the 

case where it is necessary to remov.e both the OA and the 

ECG artefacts from the EEG [3]. In both applications the 

OAR system could be used to remove the artefacts, after 

possible minor modifications to the software and hardware. 

The OAR system could also be used as a data acquisition 

system. In this case, it may be necessary to link the OAR 

system to a suitable storage medium so that the acquired 

data may be saved. 

It is also possible to reprog-ram the OAR system and then 
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to use it in real-time digital filtering applications, 

e.g. [12,13]. 
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Appendix A1 The Leas:t Squares and Correlation 

Techniques Methods; 

(a) The least Sguar.es Method. 

The fo~m of models used in the investigation was given in 

equation (.2.1) which may be written more compactly in mat-

rix form, as: 

Y = xe + E 

where Y,X,9 and E are given by: 

Y= EEG(!) 

EEG(2) 

EEG(m) 

X = VL(l) 

VL(2) 

VL(m) 

E = [e(l) 

VR(l) 

VR(2) 

VR(m) 

e(2) 

The suffix T indicates transposition. 

HL(l) 

HL(2) 

HL(m) 

(Al.l) 

HR(l) 

HR(2) 

HR( m) 

Ordinary least squa,res (OLS) estimates of 9 are obtained 

by minimizing the sum of squares of the error terms, J: 
IT\ 

J = l: e2(i) = ETE = (Y-X9)T(Y-X9) (A1.2) 

From linear algebra [1,2], the following theorems and 

identities hold. Given matrices A,B, and C: 

( i) (A + B)T = AT + BT 

(ii) (AB)T = BTAT 

(iii) (ABC)T = CTBTAT 

(iv) (j~ATBA2 = 2BA = 2ATB 

OA 

where ATBA is a quadratic in A. 

Thus using relations (i), (ii ), equation (Al.2) becomes: 

(Y-X9)T(Y-X9) = (YJ-9TXT)(Y-X9) = yTy - eTxTy - yTxe + 8TXTX8 

Al 
(Al. 3) . 



Noting tha·t rf!xTy is a scalar so that it is equal to 

its transpose, that is: 

YTX8 = (YTXS)T = 8TXTY 

then (A1.3) becomes: 

(AL4) 

Differentia.ting (Al. 4) with respect to 9 and equating to 

zero: 

dUll 0 e e=e 
where the relation (iv) above has been used to obtain the 

last term. On simplifying, 

(A1.5) 

(b) Correlation Techniques Method 

Writing out the matrices in (A1.5) explicitely, gives: 

'LEEG(i)VL(i) ~L2 (l) 
,Z)EG'(i)VR(i) = brL(i)VR(i) 

LEEG.( i) HL.(i) I UL (. i )!.HL ( i) 

~EEG( i )HR( i~ UL( i)HR( i) 

LJL( i)VE( i) 

UR2{i) 

LYR(i)HL(i) 

LJ·R ( i )HR ( i ) 

LVL( i )HL( i) .[VL(i) HR{i) 81 

UR ( i) HL ( 1) . Z::vR ( i) HR( i e 2 

dJL 2(i) LUL(i)HR(i 83 

~L(i)HR(i) ~R2 (i) e4 
_j -

T ) . ( T ) f. d f 1 (Al. 6 If the elements of (X Y .and X X are de 1ne as o lows: 

MVL = 2:: EEG(i)VL(i) PVL = 2:: VL 2( i) 

MVR = 2:: EEG(i)V.R(i) PVR = 2:: VR 2(i) 

MHL = 2:: EEG(i)HL(i) PHL = l: HL 2( i) 

MHR = 2:: EEG(i)HR(i) PHR = 2:HR 2( i) 

A = 2:HR ( i) HL ( i) B = 2:: VR ( i ) VL ( i ) c = Z HR(i)VL(i) 

D = 2:HL ( i ) VR ( i) CCL= 2:HL(i)VL(i) CCR= Z HR(i)VR(i) 

If these elements are substituted into (A1.6) equation 

(A1.7) which is identical to the results of Jervis et al [3] 

is obtained. 
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MvL PVL B CCL c 

MVR B PVR D CCR (A1.7) 
MHL, -

CCL D PHL A 
A 

MHR c CCR A PHR 84 

Identical results to those of Quilter et al ,[4] can be 

obtained by considering only a 2-parameter model, e.q. 

EEG(i) = e1VL(i) + e2HL(i) + e(i) (Al. 8) 

Proceeding as before leads to the following normal equat:i!on: 

L: EEG ( i) VL ( i) L:;vt2(i) L: VL ( i ) HL ( i ) ~ 1 

L:;EEG(i)HL(i) L: VL( i)HL( i) L: HL 2(i) 

(A1.9) 

If the elements of the vectors and matrix are defined as: 

Cv = L: EEG(i)VL(i) CH =L:EE(i)HL(i) 

cc = L: VL(i)HL(i) Pv = L:;v.t2(i) 
' PH L: HL 2( i) 

Equation (Al.lO) is obtained: 

·~·· Pv ·c c 

(A1.10) 

which if multiplied out is identical to equation (8) and 

(9) of Quilter et al [4]. Thus it is seen that the least 

squares approach is simply a more formal way of deriving 

the normaL equations than the so-called correlation 

technique. 

The correlation techniques approach is instructive in the 

sense that it reveals the need to make certain assumptions 

abou't the error terms which is not apparent in the formal 

least squares method. This can be illustrated as follows: 
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If equation (Al.B) is multiplied by V·L(i) and HL(i) 

separately, and sum each results over all M data points 

(using a slightly more refined method than in [3,4])} (A1.11) 

resu'lts: 

L;EEG(i)VL(i) 

-
LEEG( i)HL( i) 

l:vL 2(1) Z:vL(i}HL(i) 

I:VL( i )HL( i) l:HL 
2

( i) 

~l Z:e(i)VL(i) 

"' ,t \1 e 2 u e ( i ) HL ( i ) 

(ALll) 

Notice the similarity between (A1.6),(A1.9) and (A1.11) 

Thus (A1.11) may be written more compactly as: 

(A1.12) 

It is seen that to obtain 0, it is necessary that XTE = 0. 

That is, that the EOG and EEG (or error terms) are uncorre-

lated. This is the expLicit assumption that is made in the 

correlation techniques method and is met if the error terms 

e(i) are a random sequence, It has been shown that this 

assumption is untenable in the OA problem. 

(c) Properties of the OLS Estimates . 
..... 

The least squares estimator, B, posseses a number of useful 

statistical properties [5,6]. These properties are based on 

some assumptions, namely, that the error terms, e(i) is a 

stationary random variable with zero mean and constant 

variance. Some of the properties of 3, based on the these~ 

assumptions, will be discussed here. 

(i) Bias 

If equation (A1.1) is substituted into (Al.S) and, dropping 

the subscripts for convenience, then: 

~ = (XTX)-lXT(XB + E] = 8 + (XTX)-lXTE 

A4 

(A1.13) 



Taking expectation of both sides of (A1.13) and using the 

assump.tion that t[EJ = 0, then 

wheret_[.] is the expectation of the function in the bracket. 

Thus the least squares estimator is unbiased. 

(ii) Error Covariance 

The covariance matrix corresponding to the estimate error 
.... 

(9-8), is ob.tained from (A1.13): 

c =f(__i<e-e><e-e>T3 
= L~ [ (XTX) -lXTE] [ (XTX) -lXTE]Tj = 

= (XTX)- 1XTRX(XTX)- 1 

where 

(XTX) - 1 xTt_~ ETE } X(XTX) - 1 

(A1.14) 

which is the expected value of the ~u~ of 

squares of the error terms, or the 'mean-square-error'. If 

the error terms satisfy the assumptions stated earlier,then 

R =1tETEJ = ir (A11.15) 

and (A1.14) becomes: 

(A1.1<6) 

C is useful in estimating the accuracy of the pa~ameter 

estimates, but require the computa!tion of the variance, i, 
and this may be obtained from: 

2 s = L rlci> 
M-n-1 

(iii)Consistentcy. 

The e~~or covariance C may be written in the form: 

c = -chxT x) -1 =62[~ xTxr1 
01 

where M is the number of samples used in computing C. 

Assuming that m ~ ~ , the matrix (~ XTX) tends to a 
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a non-singular ma~rix so that: 
lim C = lim a?(~ XTX) - 1 = 0. 

!") ~ (lO I'Y'\ ..... CXl f<'\ 

-ec"" -- , "' Since C = y_(S-8)(9_-:-\j) J is only zero when {)=e, it follows 

"' that e is a consistent estimate of e. 
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Appendix A2 Prob~ems of Collinea~ity. 

In. the OA prohlem, collinearity always exists because 

the interdependence of the EOGs is an inherent characteristic 

of the OA system. As discussed in the main text, the exis-

tence of collinearity among the EOGs can lead to some diffi-

culties. These include large changes in the parameter estima-

"' tes, e, when a variable is added or dropped from the model, 
A 

a change in the sign of.e from that which is expected, values 
A . 

of e that are less precise [1,2], and in the extreme case 

inestimable parameters. A reliable way of detecting colli-

nearity is the examination of the correlation ~atrices .of 

the EOGs and the associated eigenvalues [1,2], and this was 

used in the main text to demonstrate the strong linear depend-

ence between the EOGs. In this appendix, the .problem of 

collinearity will be re-examined to show how it affects the 

parameter estimates. 

(a) The Influence of Collinearity on the Magnitude and 

Sign of the Pa~ameter Estimates. 

Given two data sequences, x2 ,x 3 , the simple (or zero order) 

correlations between them is defined as [2]: 

Z: x2.( i) x3 ( i) (A2.1) 
I 

Given several va~iables, y, x2 , x3 ... xn' the correlations 

between them a·rranged in matrix form is called the 

correlation matrix, which is symmetric [2]. 
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Thus: 

(A2.2) 

where rlj' j=2, ... ,n is the correlation between y and xj' 

and r .. =1. {The x index starts from 2, to avoid a clash 
JJ 

in subscripts). 

Now, the OA model may be written as: 

8 x (i) e(i) n n 
(A2.3) 

where x. ( i) represent the EOGs and yt;> the measured EEG. 
J 

It is shown in E2] that the parameter estimates are functions 

of the eo-factors of the correlation matrix, R. Thus: 

8. = - sl Rl. J J 
, j.=2,3, ... ,n (A2.4) 

s. Rll J 

where s 1 , S. are the standard deviations of y, and x. 
J J 

respectively, and given by: 

(A2.5) 

Rlj is the co-factor of r 1j in the matrix R above [3]. 

1\ 
In equation (A2.4) above, the sign of 8J depends on the 

sign of Rlj, since s 1 , SJ and R11 must be positive [2]. 

When there is no correlation or collinearity between the 

EOGs, the ratio R1j/R11 in (A2.4) reduces to the simple 
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correlation between the x. and y (see la,ter). In the 
J . 

presence of collinearity, the ratio R1j/R11 contains 

terms that takes this in to account., so tha•t both the 
<!\ 

magnitude and sign of Bj depend. on the collinearity. 

A two parameter model wiN now be used to illus<tra,te the 

point. The arguments presented are extendable to larger 

models, but these fnvolve cons~derably more algebraic 

manipulations. 

In the ca~e of the simple two-parameter model, the OA model 

of (A2.3) becomes: 

(A2.6) 

The three va·riables (X 2 ,,x 3 , and y) lead to the 3x3 corre

lation ma.trix: 

R = r11 r12 r13 (A2. 7) 

r12 r22 r23 

r13 r23 r33 

where as before, r11 = r22 = r33 = 1 ' 

Rlj' the eo-factors of r lj in this case are [3]: 

R11 = r22 r23 = 

r23 r33 

R12=- r12 r13 = 

r23 r33' 

R13 = r12 r13 

The symbol denotes the determinant. 
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Thus from (A2.4) and (A2 .. 8): 
A 
8 = 2 51 ( r12 - r13r23) 

s2 (1 - r~ 3 ) 
(A2.9) 

Now, if there is no cottelation between x2 and x3' then 

0 ~ ~8 r 23 = ·, and 8 2 , 3 reduce to: 

" S' (A2.10) 82 = sl r12 = s1r13 3 

s2 S3 

and the sign and magnitude of each parameter estimate 

depend entirely on the correlation between the correspond-

ing x and y (and of course the standard deviations). 

However, if there is collinearity equation (A2.9) holds 

and each parameter es·timate is determined by the corresp-

onding x and y as well as by the correlation between the 

corresponding x and. the other x . The extent the other 

x affects the parameter estimates depends on the degree 

of correla·tion. Thus if the correlation is strong, the sign 

of a parameter estimate could be the exact opposite of the 

sign where there is no correlation (cf A2.9 and A2.10). 

(b) The Effects of Collinearity on the Precision of 

the Parameter Estimates. 

The reduction in the precision of the parameter estimates 

may be seen from a consideration of the simple two parame-

ter model [2]: 

Following the procedure given in appendix Al, thi~ leads 
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to the normql equations below: 

(A2.11) 

or in compact form: 

(A2.12) 

Now the standard deviations . s1 and Sj are given in (A2.5). 

Thus if the first row of (A2;11) is divide by MS 2 and the 

second by MS 3 , the equation A2.11 becomes: 

Thus : 

T 
(x.x) = and 

(A2.14) 
where use has been made of the fact that: 

The variance-covariance matrix of the patameter es:timates 
. A 
Var(S), is given by [2]: 

2 T 1 Var(8) = S (X X)- , where 

of the error term, e(i). 

Thus using (A2.14): 

Var(S2) = s2 

2 52(1-r23) 

All 

s2 is· the residu~l variance 

(A2 .ls.) 



It is seen from these equations tha,t as the correlation 

between x2 and x3 , r 23, increases the larger the variances 

of the parameter estimates become. In the limit when r 23=1, 

the variances become infinite. 

The exact effect of collinearity on the parameter estimates 

in a given situation can be seen from a consideration of 

the difference between the parameter estimates and the 

parameters themselves, i.e. (3-e). From appendix R~ 

where E is the vector of the error terms, e(i). Thus 

XTE = 
T 

e(1) 

e(m) 

For simplicity, assume that x3 is related to x2 as 

where v is a disturbance term uncorrelated with x
2

. 

Assume further tha t~x~( i) = l: x~( i) =1, so that 

(XTX)- 1 has the simple form [2]: 

1. [1 

(A2.16) 

(AZ:17) 

(A2.18) 

(A2.19) 

(1 - J> ~r.x. 
(A2.17) Substituting and (A2.19) into (A2.16) and simpli-

fying: 

" 1\ 

~Lx2e - <:('[x 3e (8-8) = 82 - 82 (A2.20) 
: 

A 

- 83 1- -~x2e + Ix 3e 83 
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Using (A2 .18) in (A2. 20) and simp·:Hfying gives: 

" .... I:X 2e( i) -"Le( i)v( i) ,[e(i) v( i) (A2. 2la) 82 Et2 = 

(1 -Cl() (1 2 
- 0() 

1'\ 
i 2.:: e( i).v(i} (A2. 21b) e3 - e3 = 

2 
(1 -c~) 

No•ting that both equations (A2. 21a) and (A2. 21b) contain 

the term Le(i)v(i) then if 0\.is large and positive (i.e x2 

and x
3 

are highly positively correlated), large and opposite 

errors will be produced in the estimates e2 and &3" E.g., if 

~2 underes·tima·tes e2 , then 83 overestimates e3 . 

(c) Partial Correlation Coefficients. 

The problems discussed in (a) above can also be studied 

by considering partial correlations, which is essentially 

the simple correlation between each x and y after the effects 

of the other x's have been removed [2,4]. Thus, if the 

partial correla.tion between a given EOG (or x) and EEG 

(or y) is small, it suggests that the particular EOG makes 

little or no contribu·tion to the OA in the EEG [ 4'). On the 

other hand, if the partial correlation coefficient is : 

larger than the simple correl!t1on coefficient between the 

EOG and the EEG' then some other EOG(s) are masking the 

contribution of the first EOG to OA [4]. 
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Appendix AJ On the .Quantitative Assessmen•t of EEGs Correc

ted for Ocular Artefacts. 

(a) It was stated in the main tex.t that quantit~tive methods 

of assessing the effectiveness of OA removal may give mis

leading results, especially in the presence of large second

ary artefacts and serial correlation in the error terms. 

In this appendix results are given to illustrate this point. 

These results were obtained in a preliminary investigation 

into ways of obtaining more sensitive and more reliable 

measures of the effectiveness of OA removal than the method 

of Jervis et al [1] (see chapter 1). 

The models used in the investigation included those used by 

Jervis et al [1] and some new ones. These models are defined 

below. A discussion of these models, llith the exception of 

Model nar.1e 

2A 

JA 

4A 

4B 

40 

4E 

EOGs used 

VL,HL 

VL;HL,HR 

VL,VR,HL,HR 

VL,VLxVL,HL,HR 

VL,HLxHR,HL,HR 

VL,[VL(i-1) + VL(i+1)],.HL,HR 

of model 4E, was given in chapter 2. Model 4E attempts to 

compensate for possible time delays between the EOGs and OA. 

One significant problem in assessing the effectiveness of 

OA removal is that the true EEG is not known, so that it is 

impossibl(,l to judge from the corrected EEG exactly how well 

the OA removal has been. Thus following Jervis et al [1], 

th-e-models given above were used to correct several EEG 
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records for OA, and in each case the performance of the 

models were compared using a number of •criteria. 

(b)Summary of Criteria used in the Investigation .. 

Several criteria were us.ed in the investigation, but only 

the most promisi~ ones are discussed here. 

( i) Test of Additi ·o"nal term. 

Starting with the model 2A and for each EEG record the 

F-·test [2] was used to assess how much improvements or 

otherwise the addition of an extra terQ to the OA model 

made to the fit. The form of the F-test used was [2]: 

(A3.1) 

~ 
where sk and are ,the residual variances of the models 

with k terms (or parameters) and (k-1) parameters, respect-

ly, M is the number of data points used to obtain the 

residual variances. 

A significant value of F indicates that the model with 1,n 

k terms is better than that with (k-1) terms. That is, the 

addition of the extra term is justified. The opposite is 

also true. I.e. an insignificant value of F. indicates 1,n 

that the addition of the extra term is not justified. 

In the investigation, the value of F obtained from 1, n 

(A3.1) ii ~ompared to critical values of F obtained from 

tables [2]. If F1 for a given model is greater than the ,n 

critical values then the F1 is said-to b~ significant. ,n 

For large n, the critical values et 0.1%. 1%, and 5% levels 

are, respectively, 10.83, 6.63 and 3.84 [2]. 
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Remarks 

(1) The F-test assumes that the error terms have certain 

distributional properties. For example, that they are 

normally distributed and are not serially correlated 

(2) The test can be used to compare the performance of a 

large model and its subsGts (see chapter 2), but cannot 

be directly used to compare models where one is not a 

tiUbset of the other, for example in cumparing models with 

the same number ot parameters [3]. This was one of the 

reascns the Mallow's statistic was used to compare models 

in the main text instead of the F-test. 

(i~) Pictorial Method - OA estimates and their differ~nces 

This cri.teria allows the visual assessment of the improve-

ments or otherwise of adding an extra term to the OA model 

(see chapter 2 ) . Th:i.ls it may be described as the pictorial 

form of the F-test. There are two aspects of the test. 

Firstly, the estimates of the OAs for the various models 

are compared to identify the 'good' models. The OA 

estimates for the good models shouLd contain most (if not 

all) the information about the OA in the EEG and little 

(if any) of the noise or other contamination. The more 

the noise in the OA estimates the more genuine EEG that 

will be removed in the OA process . Secondly, the differe

ces between the OA estimates (or equivalently, the 

differences between the corrected EEGs) are ~tudied. As 

in the F-test, starting with the model 2A, the improve 

ments or otherwise of adding an extra term to the model 

is studied. 
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(c) Results and Discussions. 

(i) Test of additional term - the F-test 

Several EEG records were corrected for OA by the OLS 

method using the models defined in section (a). In each 

case and for each model the F-value (eqn A3.1 was comp

uted (where appropriate). Table A3.1 gives the results 

obtained from 21 EEG records for three subjects. The 

results are grouped separately for each subject and accord

ing to the type of ocular movement to reduce any effects 

of individual differences or differences in the character

istics of the various ocular movements on the conclusions. 

A comparison of the F values in the table with the 5% level 

(or critical value) showed the following: 

model name 

3A 

4A 

4B 

40 

4E 

number of times model's 

F value was significant. 

17 

17 

12 

12 

5 

This result suggested that in general, model 3A was better 

than model 2A, model 4A was the best, models 4B and 40 may 

be preferred to model 3A, but that model 4E does not o.ffer 

any improvement over model 3A. These findings parallel those 

of Jervis et al [1], although their method was no·t sensi

tive enough to distinguish clearly between the models. For 

example, they applied their method to model 4A and in 96% 

of the cases no measurable value could be obtained for 

their test statistic (see chapter 1). 
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Table A3.1 F values for mode~s (5% significan,t level= 3.84 

Note: Although the significant leveis of the-.F-tes,t .are not 

strictly valid ,[2] due to serial correlation in the er~or 

terms, the F values in many cases we~e either too la~ge or 
tae·srnatl tnat the v.alid:i:ty (l!JesHonsmav be'.'"overlgoked [ 4 1

1 

F Values 

Type of OM Data 3A 4A 4B 40 4E 

and Subject File 

AJS 42 ' 0·.02 63.45 5.97 2.64:. ·.·3. 49 
VEM 54 22.53 109.81 1. 34 :JJ0.06 7.99 

48 96.43 171.18 2.27 0.29 11.12 

,AJS 36 25.34 46.75 17.96 8.34 2.06 
HEM 60 8.34 34.06 14.88 12.1'9 0.07 

84 69.64 31.84 20.76 1.61 0.59 

AJS 102 12.96 35.89 0.05 14.26 0.02 

Blinks ----7 1:08 47.25 21.35 51.82 5.12 0.03 

114 2.52 51.82 3.25 6.27 0.37 

JSS ~ 36 251.45 0.31 21.00 12.65 14.83 
. VEM 66 46.18 0.51 9.50 64.23 0.96 

90 12.42 136.33 0.06 18.93 2.89 

JSS 24 22.04 136.33 0.06 18.93 0.99 

\-\EM ~ 48 0 .. 08 170.76 15.17 19.26 0.79 

96 9.29 7.59 0.94 19.73 0 .. 39 

JSS 126 5.76 35.17 0.15 22.73 2.33 
~L 1: f\ \<.s 132 92.46 4.80 33.48 1.07 5.37 

138 3.94 45.46 2.18 28.10 1.08 

DEA 24 79.31 27.76 52.20 1. 79 19.00 
V·EM 54 29.09 0.92 0.48 0.37 7.06 

72 0.09 0. 77 72.41 0.02 8.74 
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(ii) Pi~torial Method - OA estimates and their differences. 

The pictorial method was appl1ed to. several EEG record~· 

It was found that for HEM, model 3A gave significant improve

ments over model 2A, btit .not for blinks and VEM where the 

improvements were small or none at all. For blinks and VEM 

model 4A sometimes gave significant improvements over model 

3A although in each case, it also introduced a high level 

of noise into the corrected EEGs (ie its OA estimates cont

ained high levels of noise). For HEM, model 4A did not give 

any improvements. Models 48 and 40 always gave some improve

ments over model 3A, but these were small in many cases. 

Model 4E in general did not give any improvements over 

model 3A. These results suggested that for HEM, it is nece

ssary to include both horizon.tal EOGs in the model, but 

that it is not necessary to include both vertical EOGs 

for VEM or blinks (cf the variables in models 4A and 3A). 

Figure A3.1 gives the differences between the OA estimates 

using the 0LS method for a horizontal eye movement record. 

Examination of the figure showed that figure A3.1(ii ) and 

(v) contained large amount of noise and suggested that the 

corresponding models (models 4A and 4E) did not give a 

significant improvements over model 3A. In this case these 

models would in fact significantly affect the true EEG. As 

examination of table A3.1 will show, the result for the 

pictorial method agreed with the F-test for models 48, 4E, 

and 40, but not for models 3A and 4A. Examination of the 

OA differences and table A3.1 showed that. for model 3A 1 both 

the bA different~s ar1d the F velue were s~all. For Model 
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4A, both the OA differences and the F value were very large 

although the OA differences were mostly noise. It. was found 

that in general when the OA differences associa•ted,with 

a model were large the corresponding F value was also la~ge, 

and hence highly significant irrespective of whether the 

large differences were mos.tly noise or OA. Also when the 

differences were small, the corresponding F value was 

insignificant. Thus a model whose OA estimate contained lhe 

mos;t noise which led to a substantial reduction in the true 

EEG (an undesirable side effect) would give a highly sig

nificant result which could be misleading. 

Figure A3.2 gives results for a VEM record. It is seen that 

the differences between th~ OAs for models 3A and 2A, and 

the OAs for models 4E and 3A, are mostly noise, so that 

the use of models 3A or 4E in this case is not desirable. 

However, the F values for models 3A and 4E are significant 

and suggest that model 3A is to be preferred to model 2A 

and model 4E is to be preferred to model 3A. Both methods 

agree that model 4D is-~ significantly better than 

model 3A. As mentioned earlier, the quantita·tive test only. 

takes into account how large the differences between the 

OAs are, but not the composition of these differences. 

Figure A3.3 shows the OA differences for the models for a 

blink record. It is seen that the OA differences in figure 

A3.3(i ) and (v) contain substantial noise, so that the 

corresponding models (3A and 4E, respectively) have not 

performed well. Figure A3.3(ii ) which corresponds to 

model 4A also contains a fair amoun.t of noise, but also 

contains significant level of OAs and so its performance 

on this occassion may be acceptable. The F values for ""asl:.<>f 
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.the models (JA,. 4A, 48, 4D -) are significant, 

and as said earlier have .not taken into acount the 

exact content of the 0A differences. 

(d) Summary. 

The quantitative tesL suggested that in· general model 4A 

was the best, irrespective of the type of ocular movement. 

However, the waveform subtraction or pictorial me,thod 

showed that no single model was the best for all types of 

OM. It show~d that in nearly all the cases considered model 

4·A had an undesirable side effects - that of introducing 

EOG artefact or noise in·to the true EEG. The quantitative 

test did not take account of factors such as noise in the 

EOGs, whereas the pictorial method revealed the noise. It 

was found that the F values which were exceptionally high 

corresponded to cases where the OA estimates and the asso

ciated OA differences contained significant levels of noise. 
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Appendix A4 Recursi!ve Least Squares Algorithm. 

From section 4.1, the matrix equation fbr the OA mode~ may 

be wri t:ten as: 

(A4 .1) 

where th~se matices were defined in section 4.1. In the 

on-line case, the sum of squares of the error term, J, is 

minimized as follows [}-4]. 
M f!H 

J =2::Y e 2(i) o < "( < 1 (A4.2) 
·o=l 

This means that Ym+ 1 , Xm+ 1 and Em+1 , in partitioned form, 

become 

y(m-1)/ 2y(2) .... yy(m-1) y¥ly(m) :· y(m+l) ]T 
I 

.k I T = [ Y 2 Y • y (m+ 1 ) ] m , 

xm+1 = ym/2 xT ( 1) - 8' X J Ct\-t/2 xT(2) ~r<:~o y 

-0 xT(m) 
---

XT (m+l) 

Em+1 = [\m/2 e(1) l'(m-1)/2 e( 2) 
~ ' T Y e(m-1) y e(m) i e(m+l)] 

It is to be noted that if Y is set to unity, these express

ions reduce to those of equations 2.2. 

Proceeding as in appendix A1, then: 

A [ T ]-1 T 8 m+1 = xm+1xm+1 xm+1ym+1 

If the matrix P(m) is defined as P(m) = [X~Xm]- 1 , then: 

( ) [ T ]-1 
p m+1 = xm+1xm+1 

Using Xm+ 1 , above, P(m+1) becomes: 
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P(m+l) = f[ '(; x! x(m+l!) t' x·Jr _;T(:+~) 
= [ Y XTX + x(m+1) x T (m+l) rt 

m m 

[ '( p-1(m) + x(m+1)xT(m+1) r1 (A4.3) 

Invoking the matrix inversion lemma of equa,tion A4.4 [1] 

(A4.4) 

where the matrice A is non singular, then (A4.3) becomes 

(in this case C ~ 1 ): 

P(m+1) = _!__ P (m) - 1. P (m) x (m+ 1 )[ Y + x T (m+ 1) P (m) x (m+ 1) ] 
1 r 

= .1. [P(m) - P(m)x(m+1)xT(m+1)P(m)] 
'( o(_ 

where o(_ = ·"'( + xT(m+1)P(m)x(m+1) 

xT(m+1)P(m) 

(A4.5) 

Equation (A~.S) can be written in various forms. For 

example, it may be written as: 

P(m+1) = 1.. [I - 1 P(m)x(m+1)xT(m+1) }P(m) 
y o(__ 

= 1 [I 
d" 

- G(m)xT(m+1)]P(m) (A<b 6) 

where G(m) is the Kalman gain vector, given by: 

G(m) = P(m)x(m+1)/[l + xT(m+1)P(m)x(m+1)] (A4. 7) 

In this form P(m+1) can be related to the well known Kalman 

filter [2]. 

Now, 

~ [ T ]-1 T 
~(m+ 1 ) = X m+1Xm+1 Xm+1ym+1 

" Using the definition for P(m), 9(m+1) may be written as 

" T 9(m+1) = P(m+l)Xm+1 Ym+ 1 , and 
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= Yx~y + x(m+l)y(m+l) m m 

Therefore, 

S(m+l) = P(m+l)[ '( P- 1(m)e(m) + x(m+l)y(m+l) ] . 

From (A4.3), P- 1(m+l) ='fP-~(m} + x(m+l)xT(m+l), so that 

'(P-1(m)e(m) = [P- 1 (m+1) - x(m+l)xT(m+l) ]S(m). 

Thus, 
A. 

e(m+l) = -1 T A P(m+l)[P (m+l) - x(m+l)x (m+l)]e(m) 
t> 

/\. 
= B(m) 

+ P(m+l)x(m+l)y(m+l) 

P(m+l)x(m+1)xT(m+1)i(m) + P(m+l)x(m+l)y(m+l) 

~ ~ A 

= B(m) + P(m+l)x(m+l)[y(m+l) - x-(m+l)B(m)] (A4.8) 

or in words, 

New estimate = old estimate + Gain x Prediction error. 

Equation (A4.5) or one of its variants and equation (A4.8) 

give the real-time recursive least squares algorithm. 

(a) Algorithm for updating P(m+l) and e'(m+l) 
A. 

To obtain P(m+l) and B(m+l) on the computer, equation 

(A4.5) can be used directly. However, the coding can be 

made more efficient by exploiting the symmetry of P(m+l) 

and some matrix identity [5]. 

/'-. 
Thus writing P(m+l) and 8(m+l)· as: 

P(m+l) = 1 [P(m) - G(m)xT(m+l)P(m)] 
I 

S'(m+l) = S(m) + G(m)[y(m+l)- xT(m+l)&'cm)] 

where, 

G(m) = P(m)x(m+l)/[Y + xT(m+l)~(m)x(m+l)]. 
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The algorithm becomes: 

(i) V(m~·l) - p(,m)x(m+1) 

(ii) 2(m+1) = ~T(m+1)~(m+1) + l 
(iii) G(m ) = V(m+l)/ 6(m+1) 

(iv) Ae = y(m+1)- xT(m+1)G(m) 

(v) 8(m+1) = ft(m) + G(m)Ae 

(vi) P(m+1) = 1 [P(m) - G(m)V(m+1D 
1 

Notes. 

1. Because of symmetry, P(m)x(m+1) = xT(m+1)P(m) 

2. In a computer program the symmetry of P(m+1) would be 

used to compu,te the lower triangular half of P(m+1). 

(b) Matrix Inversion Lemma. 

Assuming that the inverse of a matrix, A, exists then it 

can be modified by adding a term of the form BCD to it. This 

modification normally reduces th~ number of operations 

required to obtain the inverse of A. 

Lemma: If A is a non-singular square matix then the following 

identity holds [1,6] : 

(A4.9) 

Proof. 

Premultiply both sides of (A4.9) by (A + BCD) to obtain: 

'i -1 
I = (A + BCD)[A- 1 - A~ 1 B lc- 1 + DA- 18J DA- 1] (A4.10) 

The aim in thiS proof is to show that th~ right hand side 

of (A2.10) can be reduced to an identity matrix, I. 

(A+ BCD)[R-~ A - 18(C- 1 + DA - 18)-1DA - 1] 

I + 8CDA- 1 - 8(C- 1 + DA- 18)- 1DA- 1 

- 8CDA- 1B(C- 1 + DA- 18)-lDA- 1 

= I + BCDA - 1 8[I + CDA- 18]I[C- 1 + DA- 1 8f~A-l 
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-1 
= I + BCDA - BC[·C-l + DA- 1B.)[C + DA- 1B]- 1DA- 1 

= I + BCDA- 1 - BCDA-1' I. 
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Appendix AS 'fhe Sgua-reRoot·Algorithm. 

In this appendix, the orthogonal matrix (see later) will 

be used to factor the covariance matrix into the product_ 

of two matrices. The algorithm for ~pdating S, the square 

root of P wil~ then be given. the derivation of the algorithm 

presented here is due to Peterka [1~2] 

The equation for P can be written as: 

P(m+1) "' { [I - ~ P(m)x(m+1)xT(m+1)]P(m) 

Define the positive definite matrix, P(m), as: 

P(m) "' S(m)ST(m) 

(A5.1) 

(A5.2) 

where S(m) is an upper triangular matrix. Using (A5.2), 

equation (A5.1) becomes: 

P(m+1) "' 1 [I - 1 S(m)ST(m)x(m+1)xT(m+1)]S(m)ST(m) 
I 0( 

"'..!. S(m)1[I - 1 ST(m'-:)x(m+l)xT(m+1)S(m)]ST(m 
.Vf' ot- ' 

define f(m+1) 

and (A5.3) becomes: 

P(m+1) "' S(m+1)ST(m+1) "'~ S(m)[I 
IT' 

where C>(., l + xT(m+1)P(m)x(m+1) 

"''( + fT(m+1)f(m+1) 

)_1_ 
-ry

(A5.3) 

(AS.S) 

The crucial step in the square root algorithm is to 

rearrange (A5.4) to get (A5.6): 

S (m+1 )ST (m+1) "'~S (m)[ I ~ j f(m+l) ]QQT ~)--_ ~ S(m) 
' - \(c2' j f 1<1'1-tl) .fV' 

.re;::- . 
\vhere j "' y:1 and Q is an orthogonal ma·trix, such that: 

(A5.7) 
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Noting that the right hand si!de of (AS.6) is symmetrical 

then S(m+1) may be written as: 

S(m+l) =..!.. S(m)[I 1 J f(m+1) ]Q 
R' ' JO('. 

Next choose the orthogonal matrix Q such that: 

[I I j 

If a Q 

I 
f(m+1)]Q = [H(m) 1 0] 
.p::' I 

can be .found to perform the reduction of 

then (A5.8) becomes: 

(AS.8) 

(A5.9) 

(A5.9) 

S(m+1) = __!_ S(m)[H(m) 1 0] = 1 S(m)H(m) (AS.l'O) 
v=r rr 

It is evident from (A5.9) that Q cannot be real. 

It is to be noted at this point that if the number of 

parameters to be estimated is n, then the dimensions of 

f,x and Q are n, n, and (n+1)x(n+1),respectively 

Express the orthogonal matrix Q as a product: 
n 

Q = n Qi 
i=1 

(AS.ll) 

where Qi is the generalized elementary orthogonal matrix 

given by: 

1 

1 0 (A 12) 
0 

c. jSi ... ( i) 
1 

- j s. 1 c. ... ( n+1) 
1 1 

1 
(1) (n+1) 

This matrix is a special form of Givens matrix [3], with 

imaginary coefficien·ts for Si. The condition of 

orthogonality requires that: 

c~ - s? = 1 
1 1 

(A5.13) 

In the factored form each elementary orthogonal matrix is 
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used to annu•l .one element of the vector jf/10( and a't the 

same time obtain a column of H. The final H is obtained 

by successively post multiplying [,I l jf/o(_ ] by Qi• As. the 

vector j f~ is of dimension n, a total of n elementary 

orthogonal matrices is required to accomplish the decompo-

sition of (A5.9). 

The ,procedure will now be applied to a 3-parameter sys,tem 

to illustrate the point, and later generalized. In this 

case there are a maximum of three orthogonal matrices, 

QJ· = 1 0 0 0 Qz= 1 0 0 0 

0 1 0 0 0 cz 0 jS" .. 
0 0 c3 jS3 0 0 1 0 

0 0 -j.S3 c3 0 - j sz 0 cz 
-

Ql = cl 0 0 jSl 

0 1 0 0 

0 0 1 0 

-jSl 0 0 cl 

It is desired to accomplish the decomposition: 

[I ! j/g (A5.16) 

Step 1: [I! jf/.[a,_ ]Q3 I 

~ 

= 1 0 0 j fl/!C( 1 0 0 0 

0 1 0 jf/R 0 1 0 0 

0 0 1 jfJ/R 0 0 c3 jS3 

0 0 -jS3 c3-
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• 

= 1 0 f1S3~ j,f 1 C3/f7' 
-, 

I 

0 1 f 2s 3/.W:: jf 2C/Jo(..l 
( , 
I 

' 
0 0 (C3 + f 3s 340(_) J( s 3+ f 3c 3{-Jd::: _i 

From which it is seen that only the last two columns of 

[I jf/~] are affected by the multiplica-tion by Q3 
that is, the n and (n+1)th columns. The aim in thii step 

is to annul the last e'lemen t of the 4th or ( n+t) th column 

This is achieved by setting: 

s 3 + f 3c 3/J?::' = 0 (AS.17) 

Also from (AS.13) 

c2 
3 - s2 

3 = 1 (AS.18) 

Define: 

0(. = '( + f f2 = 6? (A5.19) 
1 

K-=1 
k 1 

From (A5.16) and (AS .. 17) and using (A5.18): 

c3 = 2/[ 6 ~ - f2 
3 

]~ = 631 6 2 (A5.20) 

s3 = -f3C3/ 6 3 = - f/2"t. (AS.21) 

Equations (A5.20) and (A5.21) give the values for c3 and 

s 3 to ensure that the Last element of tolumn 4 is 

annuled. Thus, after the first step [I jf/Jo( ]Q3 
becomes: 

~ 0 H13 j f 1/ ~ 2 (A5.22) 

~ 
1 H23 j fz/ 6 2 

0 H33 0 , 
_j 
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where, 

Hk3 = ft c:;3 = -fkf 3 k=1,2 

~3 23 ~ 2 

H33= c3 + f3S3 = ~3 f2 
3 

23 22 2z 6 3 

= c ~~ - f2 )/ 6 2 b3 = Zz; 6 3 2 

Step 2: 

1 0 Hu j f 1/ ~2 I (AS.23) 
i 

0 1 H23 jfzl 6 2 
Q2 

0 0 H33 0 

= 1 1 H13 j f 1/ 6 2 
: 

1 0 0 0 

0 1 H23 jfz16 2 0 cz 0 jS2 

0 0 H33 0 0 0 1 0 

0 -jS2 0 cz 

= 1 f1/ 6 2 . H13 · j f 1 Czl 62 
0 ( Cz + f zr zl2 2) 

H23 j(sz + fzCz16z) 

0 0 H33 0 

It is to be noted that only columns 2 and 4, or the ( n-1) th 

and (n+1) columns, respectively, were affected. TheQim in this 

step is to annul the last but one element in the 4th column 

and to obtain the 2nd column of H. To do this set: 

= 0 (A5.24) 

It is to be noted that (A5.24) is similar to (A5.17). Thus 

similar results are obtained for s 2 and c 2 , and (A5.22) 
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reduces to: 

1 H12 H13 

0 H22 H23 

·0 0 H33 
L 

Step.3 

• 1 H12 H13 

0 H22 H23 

·O 0 H33 

= (Cl+ flSl/ b1) 

0 

0 

-r 
jf/ bl 
0 

0 

H12 H13 

H22 H2J 

0 H3J 

(A5.25) 

J(Sl +f 1 Cl/ 7::>1) I 
0 

0 

To annul the 1st element of the 4th column set: 

This leads to 

Hll H12 H13 ;;l 
0 H22 H23 0 

0 0 H33 I 0 

where, 

Hll = '0 ' H12 = -flf2 
?.,\ ~~ 6, 

H13 = -flf3 ; H23= -f 2f 3 

23 22 23 62 
Or in general, 

= [H! o] 

H22 = it 
61._ 

H33= ~2 

z3 
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The general formula for computing the elements of H can be 

used to update S(m+1) ion (A5.10) directly. Thus, 
J 

S(m+l)ij = 1 6 [S(m)]ik Hkj . (A5.29) 
~ ~~~ j-1 

=j_lj.-1 ~[S(m)] .. - f. L: [S(m)].kfkj (A5.30) 
'V\-- q _]_ . 1 
vr· ~· ~ ,.:.,, 

:.J z. ._, 
If a vector gi is defined as: J 

J. 
gil) == [S(m}]il< fk 1:=1,2, ... {_. (AS.31) 

K=l . 

g ~-!) = o; i >L 1 . 

(S(m+l));j = .k l~~l { (S(m)]ij - ftij-l)J (AS.32) 

..l 'j-1 
The algorithm given in the section can be used to upda.te 

S(m+1). 

Peterka's Square Root Algorithm for Updating S(nm+1) 

1 7 =./Y' • <o 0 l 

2. 2.6 = y 

For j=1,2, ... ,n ~ecursively evaluate (3) to (13) 

.:- , f . = t [ S ( r.i) ] . . [ x (m+ 1) ] . 
J i = I 1J 1 

4, a = 6j-1/f?' 

5 ·' b = f ./6 ~-I J J 

6 6-2= 72: + f_2.· 
J Drl J 

7. 6j· = f(,jz.' 
8. C = a/6j 

9. g.= [S(m)] .. f.= C[S(m)] .. 
J JJ J JJ 

For i=1,2, ... j-1 recursively evaluate (11) to (13). 

11 d = [S(m)] .. 
1J 

12 [S(m+l)] .. = C[d- bg.] 
1J 1 

13 g. =g. = df. +g. 
1 1 J 1 
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Notes 

72.. 
1. The variables fj, Z j, and <::, j do not need to be indexed 

and may be considered as scalars in a computer program 

2. The argument m for S and x .does not p1ay any part in a 

computer program, but is included to make the algorithm 

esay to understand. 

A FORTRAN program for the square root filter is given in 

appendix A12. 
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Appendix A.6 U-D Factoriza·tion Al!gori.thm. 

The factorization given here is due to Bierman [1,2] . 

. The covariance ma:trix P can be updated as': 

P(m+1) =+[Pm)- lP(m)x(m+1)xT(m+1)P m)] 
cx.T 

= 1 [P(m) - Gx (m+1)~(m)] 
1 

where~- Y + xT(m+1)P(m+l)x(m+1) and 

G = P ( m) x ( m+ 1 )/ G\_ · · 

(A6.1) 

If P(m) is factored as P(m) 
T U(m)D(m)U (m), where U.(m) 

is an upper triangular matrix with unit diagonal elements, 

and D(m) is a diagonal matrix, then (A6.1) can be written as 

- 1 U(m)D(m)UT(m)x(m+1) P(m+1) = L[U(m)D(ru)UT(m) 
I o( T T 

. x (m+1)U(m)D(m)U (m)] 

= l U(m)[D(m) 
1 

- 1 D (m) UT ( m) x (m+ 1 ) xT (m+ 1 ) U (m )·D (m) ] UT (m) 
~ 

1 U(m)[D(m) 
y 

- l_vvT)UT(m) (A6.2) 

where, 
oZ 

v = D(m)UT(m)x(m+1) 

and use has been made of the fact that D = DT, D being a 

diagonal matrix. 

If the term in the square bracket is factored as: 

where the bar is used to distinguish the U-D factors of 

[D(m) - vvT] from those of P, then (A6,2) becomes: 

P(m+1) = U(m+1)D(m+1)UT(m+1) 

= 1 U(m)lf{m)D(m)lJT(m)UT(m) 
T 

(A6.3) 

Noting that the product of two upper triangular matrices 

is itself an upper triangular matrix, and the symmetry in 

(A6.3), then: 
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U(m+1) = U(m)U(m) ; D(m+l) = D(m) (A6.4) 
T 

Thus, if sui table forms of U(m) and D(m) can be found, 

U(m+1) and D(m+1) can be upda.ted. 

If Y in (A6.1) is se.t equal t6 unity, and"'(= 7} in (A6.1a) 

where ~2 is the variance of rihe error term, the presentation 

given here is the same as tha~t given by Bierman { 1]. · 

Bierman's aLgorithm for upda,ting U(m+1) and D(m+l), modified 

as st~ted above, is given below. To reduce the number of 

arithmetic operations and storage, Bierman's algorithm 

avoids the matrix multiplication implied in (A6.4) by using 

a special matrix factorization. The algorithm is given 

below: 

For j=2, .. ,n recursively evaluate (1) to (4): 

1. o<j = OS-1 + V/j 
2 . d /m) = d /m) q j _1 I c<j 

3 . u /m+ 1) = u /m) u} m) = 

4. bj+1 = bj 

where f = UT(m)x 

+ v.U.(m+1) 
J J 

v = D(m)f 

d1= d1 (m)/ o(j_ 

D(1=t+ v1f1 

bT = [V 0 2 1 

Note 1 

D = [ d1 d2 
T b. = [b.(l) b.(2) 
J J J 

u}(m) = [Uj(l) 

0 ... 0] 

; dj(m+1) = dj(m)/l 

u.(m) + A.b.; ,\. = -f.lo(· 1 J J J J . J J-

U.(m), U.(m+1) are the jth columns of the matrices U(m) ancl 
J J 

U(m+1), respectively. 
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Note 2. 

+ xT(m+1)U ill)D~m)U(m)·x(m+l) 

" + vf = '1 + ~ f. v. 
. 1 1 
I" l 

Writing thi~ out explicitely, for each S•tep in the iteration 

i = 1 o(l = "'( + f1v1 

i = 2 

i = j 

r:J,_ 2 = 1 + f1v1 + f2v2 =o(t + f2v2 

oC =o(. 1 + f.v. 
J J- J J 

After the last iteration,O\j in step 1 of the algorithm gives 

<X._ of equation (A6.la). 

Note 3. 

Step 2 of the algorithm updates the elements of D, the 

diagonal elements of P. Step 3 updates the elements of 

U(m+l); Step 4 computes the unweighted Kalman gain vector: 

b. =c(G 
J 

1\. 
From section 4.2 in chapter 4, & may be written as: 

~ "'( T A ~(m+1) =Gm)+ G(y(m+1) - x (m+1)8(m)]. 

" so that all that is necessary to update 8 is G, and this 

is readily obtained from bj. Thus although P(m+l) can be 

obtained from P(m+1) = U(m+1)D(m+1)UT(m+1), it is unnece

ssary to compute P(m+1). 

A FORTRAN program for updating the U-D factors of P is 

given in appendix A12. 
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Some Properties of the 'U-D Algorithm. 

To ~aih insight into. some properties of the U-D algorithm 

it is useful to wrLte out the algorithm explicitely. Thus 

for a 2-parameter model (us,ing the rriore direct form of 

the U-D algorithm given in chapter 6): 

1. v1 = x1(m+1) 

2. b1 d1(m)x 1(m+1) b 2 = d2(m:)v 2 

3. 0(1 = 1 + b V = 1 1 1 + d1(m)x 1(m+1)x 1(m+1) 

4. d 1(m+1) = d1(m)/o(_1 

5. C>( 2 = t:\1 + b2v2 ,;1X1 + d 2(m)v 2v2 

6. u12(m+1) = u12 (m+1) - (b1v2)/t\ 1 

7. b1 = b1 + b2U12(m) = d 1 (m)x1 (m+l) + d2(m)v 2u12 (m) 

8. d 2(m+1) (d2o( 1)/(1 « 2) 

The U-D elements are updated at steps (4), (6) and (8). 

An examination of the algorithm above will show that 

(steps 3 and 4) if the values used to initialize the U-D 

elements were positive, then0(1 and hence d1(m+l) will 

always be positive. For the same reason 0( 2 (which is 

the same as ~ in the general RLS algorithm - see note 2 

above and equation 4.4 in chapter 4) and d 2 will also be 

positive. Thus it is seen that the D elements are always 

positive, and this guarran:tees the positive definiteness 

of the covariance matrix P. 

Notes. 

(i) The analysi'S above assumes of course that'( is positive, 
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(ii) A matrix P is positive definite if and on~y if 

xTPx > 0 [3,4], except when x1=x 2= ... xn=O 
_, -.f T T y T Now, 11'-- = 1 + x UDU x= t x Px (see note 2 above), which 

for a 2-parameter model becomes (see steps 3 and 5 of 

algorithm): 

in this xTPx d1(m)xi(m+1) 2 so that case: = + d 2(m)v 2 . 

As stated earlier, both d1(m) and d2(m) are always positive, 

so that the matrix p satisfies the positive definiteness 

property sta.ted earlier. Thus, the u,.o factorization 

method guarrantees the positive definiteness of P. 

(iii) If there is no data, ie x1=x 2= ... xn=O, then 

ell = r (step 3)' and dl will be continuously scaled 

byy as will d 2 . As dis~ussed in the main text, this will 

lead to P increasing exponentially (since it is being divided 

by a quantity that is ·I 
" 

1). Thus it is seen that the 

problem of blow-up is not altogether eliminated as suggested 

in [5] by ma,trix factorization. However, as Bierman [3] 

pointed out the use of .factorization algorithm considerably 

reduces the numerical ranges of numbers involved so that the 

blow-up problem may be less serious. More importantly in the 

OA work, the inherent system noise and/or noise picked up 

at the EOG electrodes ensure that the x's never become zero. 
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Appendix A7 Recurs:i!v,e 'Estimation of the Residual Vari'ance 

and the Multiple correlation Coefficient-. 

The residual variance, s 2 , and the multiple correlation 

coefficient, R2 , for the batch method may be de·fined as 

in (A7.1) [1]: 

s 2 = SS/M-n 

R2 = SS/SST 

(A7.1a) 

(A7 .lb) 

where M and n are the number of samp~es and the number of 

patameters in the model, respectively. SS, the sum of squares 

of the residuals and SST;' the total· sum of squares are, 

respectively, given by: 

\' 2 SS = LJ e ( i) 

y (i), E(i) are, respectively, the ith samples of the meas

ured and corrected EEG. In the recursive algorithms it is 

desirable to .obtain s 2 and R2 recursively. The recursive 

forms of s 2 and R2 used in the investigation are justified 

here. From chapter 4, the sum of squares at each sample 

point may be written as: 

SS(m) = 1 SS(m-1) + eT(~)e(m) 

= Y SS(m-1) + e 2(m) 

since e(m) is a scalar. Similarly, 

SS(m-1) =Yss(m-2) + e 2(m-1) 

Thus on substituting into (A7.2), SS(m) becomes: 

(A7.2) 

SS(m) = "{~s(m-2) + ~ e 2(m-1) + e 2(m) 

By successive substitution for SS(m-2), SS(m-3) etc and 

simplfying SS(m) becomes: 

SS(m) ('l, "'"' 2 =2_Ye(i) 
i:l 
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which is the same as the expression for the sum of squares 

for ·the exponentially weighting scheme (eqn· 4.3 in chapter 4). 

Thus (A7.2) converges to the required form. In view of 

(A7.2), S(m+1) may be written as: 

SS(m+1) = l SS(m) + e 2(m+1) (A7.4) 

By a similar argument, the total sum of squares given by 

(A7.5) also converges to the true total sum of squares. 

(A7.5) 

In the exponential weighting scheme, the number of samples 

that effectively contribute to the estimation of 8(m+1) at 

each sample poin.t is called the asymptotic sample length 

(ASL) [2] and is given by: 

= 1 
I -I 

(A7.6) 

Thus m in (A7.1a) may be replaced by ASL. A recursive form 

for ASL is given in (A7.7): 

_asL(m+1) = 1 + \ asL{m) (A7.7) 

By a similar argument to that for the sum of squares, 

asL(m+1) can be shown to converge to the true ASL, that is 
<>() • 

asL(m+1) = 1 + "( asL(m) = ~ f (A7. 8) 
i::::O 

To compute s2 and R2 recursively, all that is now required 

is to use equations (A7.2), (A7.5) and (A7.8) as ~n 

equations equations (4.17) and (4.18) in chapter 4. 
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Appendix AB OAR Sys-tem Input/Output Connect:i!ons to 

the EEG Machine and Back~lane Connections 

This appendix describes _the interconnections to the OAR 

system from the EEG machine, to the data terminal equipment, 

and the backplane connections. The OAR system has one analogue 

-port, one Rs-232 serial port, and several slots for the 

boards which are interconnected at the backplane. 

(a) The Analogue I/0 Port. 

The analogue I/0 port is a 37-pin female D connector. 

The interconnections to the EEG machine are made via this 

port. Table AB.l liDts pin numbers, signals, and their 

descriptions for the port. The pin assignment of table 

AB.l allows a direc.t connection of the OAR system to a 

port of the B channel Universal Electroencephalograph (or 

simply EEG machine) via a shielded cable. For connection to 

other EEG machines, reference should be made to the manufact

ures handbook and a suitable cable and connector used. 

(b) RS-232 Serial I/0 Port. 

This port connects the 0AR system to a data terminal equip

ment and allows communication with the system. The connec

tor on the OAR system is a standard 25-pin female D connec

tor. Table AB.2 liststhe pin numbers, signal names and des

criptions for the port. Reference should be made to the 

'VMVE110 Monoboard Microcomputer User's Manual', by 

Motorola, for a detailed description of how to communi

cate with the microcomputer board of the OAR system. 

(c) Backplane and Eurocard Connections. 

Tables AB.3 to AB. list the pin assignments for the 

connectors at the backplane of the OAR system. Three types 
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of connectors. are us·ed'. A 96 way connector consisting of 

three rows of pins labe,ll,ed rows A, B ,. and C'; a ·64-way 

connector consisting of two rows labelled rows A and B; 

and a 32-way connector consis.ting of a single row, labell:ed 

row A. These connectors are all standard DIN 41612 connectors. 

The connectors on the backplane are designated P1, P2 etc. 

from left to right on the OAR system starting from th~ 

microcomputer board as shown below. 

Port number Description or name of 

port 

Port 1 (Pl) VMEbus 

Port 2 (P2) I/O channel (not used) 

Port 3 (P3) Decoder (A) 

Port 4 (P4) Decoder (B) 

Port 5 (PS) FP hardware board (reserved) 

Port 6 (P6) (not used) 

Port 7 (P7) ADC/DAC (A) 

Port 8 (P8) ADC/DAC (B) 

Port 9 (P9) (not used) 

Port 10(P10) Analogue 0/P board 

Port 11(P11) (not used) 

Port 12(P12) Anc:loeue 0/P board (reserved) 

Port 13(P13) (not used) 

Port 14(P14) Analogue I/P board 

Port 15 (P15) (not used) 

Port 16(P16) Analogue I/P board (reserved) 
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(d) Charac teris.tics of the EEG Machine 

In this section., typical signal levels and input/output 

impedances of the EEG machine are given. These parameters 

relate to the Universal EEG machine in particular, but are 

in general typical! of mos•t EEG machines. 

Outpu.t signal level from EEG machine up to 2V peak 

Inpu't signal level to the EEG machine " 

Input impedance 200MA , 500pF 

Analogue inputs 0.5V/CM, lOOKJL 
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Table A8.1 Analogue 1/0 port pin assignmenL 

Ein no. Jini;IJt signal name Pin no. OutEut signal name 

and descr:i!Etion and descriEtion 

1 EOG1 signal 20 EOG/EZG 

2 EOG2 signal 21 " 

3 EOG3 signal 22 " 

4 EOG4 signal 23 " 

5 EEG1 signal 24 " 

6 EEG2 signal 25 " 

7 EEG3 signal 26 " 

8 EEG4 signal 27 " 

9 EEG5 signal 28 " 

10 EEG6 signal 29 " 
11 EEG7 signal 30 " 

12 EEG8 signal 31 not connected 

13 EEG9 signal 32 EOG/EEG 

14 EEG tO signal 33 " 

15 EEG11 signal 34 " 

16 EEG12 signal 35 " 

17 Ground 36 not connected 

18 not connected 37 not connected 

19 not connected 

EOG/EEG indicates that either the EOG or the EEG (corrected 

or uncorrected) could be output through the Pin , depending 

on the response of the user to the requests for system 

constants when the OAR program is run (see apperidi~ A15.)• 
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Table A8.2 RS232 Serial Port Connector pin assignments. 

Pin number 

2 

3 

5 

6 

7 

8 

20 

Signal 

Mnemonic 

TXD 

RXD 

CTS 

DSR 

GND 

DCD 

DTR 
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Signal name and 

description 

Transmit clata from terminal 

Receive d~ta to terminal 

Cie~r to send 

Data set ready 

Signal ground 

Data carrier detect 

Data terminal ready. 



Table A8.3 
Port 1. 

Pin 
Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

DOO - DlS 
AOl - AlS 
GND 
SYSCLK 
i5SO 'lJSl 
R/W 
DTACK 
AS"" 
AMO-AM4 
lACK 
TRQti 

VMEbus Backplane and Ei..trocard' Connectors. 

Row A 
Signal 
Mnemonic 

DOO 
DOl 
D02 
D03 
D04 
DOS 
D06 
D07 
GND 
SYSCLK 
GND 
IJS1 
()5U 

R/tr 
GND 
D:r'ACK 
GND 
E 
GNB 
lACK 
IACKIN 

AM4 
A07 
A06 
AOS 
A04 
A03 
A02 
AOl 
+12 V 
+5 V 

Data bus 
Address bus 
Ground 

Row B 
Signal 
Mnemonic 

AMO 
AMl 
AM2 
AM3 
GND 

GND 

IRQ6 

+SV 

System clock (16 MHz) 
Data strobe lines 
Read/Write line 
Data transfer acknowledge line 
Address strobe line 
Address modifier code lines 
Interrupt acknowledge line 

Row C 
Signal 
Mnemonic 

D08 
D09 
DlO 
D11 
012 
D13 
D14 
DlS 
GND 
SYSFAIL 
m 
SYSRESET 

GND 

GND 

AlS 
A14 
A13 
A12 
All 
AlO 
A09 
A08 
-12 V 
+SV 

Interrupt request line no. 6 (others not shown) 

All signal lines are from the 68000 processor. 
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Table As ,4 

Port 3. 

Pin 

Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

DOO - D15 
AOO - A15 
GND 
SYSCLK 
DSO,DSl 
R/W 
DTACK 
IT 
AMO - AM4 
CE ,STS 
CS 
FS 
CLK 
DSTB 
FP 

Decoder Ba~kplane and Eurocard Connec~ors. 

Row A Row B 
Signal Signal 
Mnemonic Mnemonic 

GND GND 
DOO D08 
DOl D09 
D02 DlO 
D03 011 
D04 D12 
DOS D13 
D06 D14 
D07 D15 
GND GND 
SYSCLK 

FS 
m 
1J5tj CLK 
R~ 

DTACK AMO 
AMl 

AS AM2 
CE AM3 
STS IJSTB 
CS FP 

GND 
AM4 A15 
A07 A14 
A06 A13 
A05 A12 
A04 All 
A03 AlO 
A02 A09 
A01 A08 
+SV +SV 

Data bus from the pP 
Address bus from the pP 
Ground 
System clock (16Hz) from the ~p 
Data strobe lines from the ~p 
Read/Write line from the pP 
Data transfer acknowledge line pP. 
Address strobe line from the ~p 
Address modifier code lines.from the pP 
Control signal lines to the ADC 
Control signal line to the DAC 
Sampling si~nal 
clock (8MHz) 
Data strobe signal (local) 
Floating point hardware control signal (reserved) 
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Table A8.5 Decoder Backptane and Eurocard Connectors. 
Port 4. 

Pin 

Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
t5 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

MXO - MX4 
DXO - DX4 
PGA 
SH1 - SH20 

WDSTB 
WDSTS 

PTM 

FS 
PGND 

Row A 

Signal 

Mnemonic 

GND 

PGND 

MXO 
MX1 
MX2 

DXO 
DX1 
DX2 

PGA 
GND 

GND 

GND 
SH1 
SH2 
SH3 
SH4 
SH5 
SH6 
SH7 
SH8 
SH9 
SH10 
+5V 

Row B 

Signal 

Mnemonic 

GND 

PTM 

FS 

MX3 
MX4 

DX3 
DX4 

WDSTB 
WDSTS 

GND 
SH11 
SH12 
SH13 
SH14 
SH15 
SH16 
SH17 
SH18 
SHl!9 
SH20 
+5V 

Multiplexer con,trol lines (to ADC/DAC board) 
Demultiplexer control lines (to ~DC/DAC board) 
Programmable gain amplifier control line " 
Outpu.t sample and hold control lines(to the 
analogue output board) 
Strobe signal for the window det. (reserved) 
Status control line for the window deti (to 
the ADC/DAC board) 
Interrupt signal from the prog. timer (the 
sampling signal is derived from this signal). 
Sampling signal (to the analogue inpu.t board) 
Ground from the prog. timer module. 
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Table A8.6 A:DC/DAC Backplane and Eurocard Connectors. 

Port 7. 

Pin 

Number 

1 
2 
3 
/! 

5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

DOO - D11 
CE,STS 
R/"VT 
CS 
Al 
GND 
AGND 

Row A 

Signal 

Mnemonic 

GND 
D:;.l 
D10 
D09 
D08 
D07 
D06 
DOS 
D04 
D03 
D02 
DOl 
DOO 
N.C 
N.C 
N .'c 
N.C. 
N.C 
GND 
CE 
STS 
R/W 
CS" 
Al 
N.C 
AGND 
N.C 
-15V 
N.C 
+15V 
N.C 
+5V 

Data lines from the ~p 
Control lines from the decoder (to the ADC) 
Read/Write lines from the ~p 
Control line from the decoder (to the DAC) 
Address line from the pP 
Digital ground 
Analogue ground 
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Table A8.7 ADC/DA€ Backplane and Eu~ocard Connectors. 
Port 8,. 

Row A Row B 
Pin Signal Signal 
Number Mnemonic Mnemonic· 

1 GND GND 
2 PGA WDSTS 
3 GND GND 
4 S7 S6 
5 ss S4 
6 S3 S2 
7 S1 MXO 
8 MX1 MX2 
9 MX3 MX4 
10 S8 S9 
11 S10 Sll 
12 S12 Sl3 
13 S14 S15 
14 S16 s 1:7 
15 S18 s 1:9 
16 S20 GND 
17 GND OS7 
18 OS6 oss 
19 OS4 OS3 
20 OS2 OS1 
21 DXO DX1· 
22 DX2 DX3 
23 DX4 GND 
24 OS8 OS9 
25 OSlO OSll 
26 OS12 OS13 
27 0St4 OS15 
28 OS16 OS17 
29 OS18 OS19 
30 OS20 +15V 
31 N.C. N.C. 
32 AGND -15V 

PGA Programmable gain amplifier control line ( fr decoder) 
Analogue samples (from analogue input chns) 
Analogue samples ( to analosue ou.tput chs) 
Multiplexer control signals (fr decoder) 

S1 - S20 
OS1 - OS20 
MX1 - MX4 
DXO - DX4 
GND 
AGND 
N.C 
WDSTS 

Demultiplexer control signals (fr decoder) 
Digital ground 
Analogue ground 
Not connected 
Window det. control line (fr decoder) 
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Table AB. 8 
Connec·tors. 

Pin 

Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

OP1 - OP6 
OS1 - OS6 
SH1 - SH6 

GND 

Analogue output Backplane and Eurocard 
Port 10 

Row A Row B 
Signal Si!grial 
Mnemonic Mnemonic 

GND GND 
" 
" 
" 
" 
" 
" 
" 
OP1 
OSl 
OP2 
OS2 
GND 
SH2 
SH1 
GND 
OP3 
OS3 
OP4 
OS4 
GND 
GND 
SH3 
GND 
OP5 
OS5 
OP6 

+15 OS6 
GND 

-15V SH6 
SH5 

Analo~ue output signals (to the EEG machine) 
Analogue samples(from the decoder) 
Control signals to the out pu·t sample and 
Holds (from the decoder) 
Digital ground. 
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Appendix A:9 - Software Floating Point Arithmetic Routines 

for the 68000pP 

As described in the main text, there are three routines 

for performing software floating poi:n.t arithmetic 

operations in the OAR, and additionally a common routine 

via which control is returned to the calling program•. 

These routines will now be described in turn. 

(a) EXIT Routine 

This routine is used to handle 'exceptions', such as 

overflow, to recover the sign of the result, to put the 

result in the correct floating point format and to return 

control to the calling routine. Three exceptions are 

handled: 

(i) Result is zero or too small: If the result of an 

operation is zero or the number is too small to be 

represented (under-flow) , this routine sets the result to 

zero. 

(ii) Resuit overflowed: If there is overflow in the 

arithmetic operation, the result is set to the maximum 
-15 63 

floating n~mber possible. That is, (1-2 _) x 2 In 

practice it is set to $007F7FF, then the mantissa is given 

the appropriate sign. 

(iii) Over- or under-flow detection: In excess 64 

representation, the exponent of a valid floating point 
• 

number is positive. Over- or under-flow causes it to be 

negative. Thus, the sign of the exponent is used to 
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detect over;.. or under-.f'low. Additionally, under'- flow 

generates a carry bit whereass over-flow does not. The 

EXIT routine determines which of the two has occurred· and 

sets the result to either FPMAX or to zero, which e.ver is 

appropriate. 

The listing of the EXIT routine in 68000 pP assembly 

language is given in figure A9.1. 

(b) Floating Point Addition Routine (FADD) 

This routine is used to perform addi.tion .or subtraction. 

In the case of subtraction, the second operand is negated 

in the calling routine with a single instruction (e.g 

NEG.W D2) before entering the addition routine. Before 

adding two floating point numbers, their exponents must be 

made equal. This is called alignment, and involves 

shifting right the mantissa of the smaller operand and 

incrementing its exponent until it equa·ls that of the 

larger operand. The aligned· numbers are then added. Thus 

if Xl and X2 are two floating point numbers to be added·, 

where Xl = Ml x 2~ 1 
and X2 = M2 x 2E 2, then their sum X, 

is given by: 
X = M X 2E 

where M= (Ml+M2 x 2El-EZ), E=E
1 and Xl)X2 .• 

That is, the exponent of the result is the exponent of the 

larger operand and its mantissa is the sum of the 

mantissas of the two operands properly aligned. 
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• 
• 
* EXIT ROUTINE 
* THIS ROUTINE HANDLES EXCEPTIONS FROM FLOATING POINT ARITHMETIC 
* OPERATIONS AND RETURNS CONTROL TO THE CALLING ROUTINE • 
• 
DFORMAT SWAP.W Dl 

MOVE.W'. DJ,'ol! 
MOVE.L Dl,D3 

SIGNS: SUB.B H,DS 
BNE EXITF 
NEG.ii' 'D3 

EXITF: ·MOVEM•L (A7) +,,D0-D2/D4-D7 
RTS 

ZEROF: CLR.L D3 
BRA EXITF 

UOFLW: BTST US,D6 
BNE ZEROF 

OFLW: MOVE.L FPMAX,D3 
BRA SIGNS 

Figure A9.1 The EXIT routine 

1 PUT RES~T IN CORRECT -FP FORMAT 

1RECOVER SIGN OF MANTISSA 

:RESULT IS ZERO 

:RESULT UNDER OR OVERFLOW? 
:UNDERFLOW.SET· RESULT TO. ZERO 
:OVERFLOW.SET RESULT TO· FPMAX 

Control is returned to the calling program via this routine. 

The routine also handles under/overflow, reco:vers the sign 

e.c.d puts the resul't in the correct format. 
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The sum of the a'l.i!gned mantissas, M, may not be properly 

normalized. It may be too large (mantissa overflow) or it 

may be too small (mantissa under-flow) • The former 

results when the mantissas of the original operands to be 

added (Ml,M2) have the same signs, and the later ~hen they 

have opposite signs. Mantissa over-flow and under-flow 

are cortected by renormalizing the sum and adjusting the 

result exponent, E, but this may lead to exponent 

over-flow or under-flow Exponent over-flow means that 

the result is too large to be represented and uhder-flow 

that it is too small. 

Figure A9.2 qives the flow chart for the FADD routines and 

the corresponding assembly language program is listed in 

figure A9.3. Referring to figure A9.2, the first 

operation is to align the operands so that their exponents 

are equal (boxes 1 to 5) . This is done by shifting the 

mantissa of the operand with the smaller exponent right an 

amount equal to the difference in the exponents (the shift 

count). If the two exponents were equal or their 

difference exceeds 15 (operands too small) , no alignment 

is carried out. In the latter case, the operation is 

terminated as the smaller operand is effectively zero and 

the result is simply the larger operand. Next, the 

aligned numbers are added (box 6) and the exponent of the 

result set equal to the exponent of the larger operand. 

If the sum is not zero, it is 

over-flow or under-flow. 
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SHIFT SMALLE 
MANTISSA RIGH 
SHIFT COUNT 

14 
SHIFT SUM 
RIGHT WITH 
CARRY AND 
INCR. RESULT 

NORMALIZE 
SUM AND ADJUS 

RESULT EXPO-

YES (EXIT FPMAX) 

NO 
EXIT 

(DFORMATJ 

Figure A9.2 Floating point addition of two operands with exponents El and E2 

mantissaa Ml and M2 , respectively . 
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*------------------------------------------------------------------------
* SUBROUTINE FADD 
* THIS SUBROUTINE ADDS TWO NORMALIZED FLOATING POINT NUMBERS IN 
* D2 AND D3. THE, RESULT IS RETURNED IN D3 
* 
FADD: 

SCPOS: 

SCZRO: 

OPRPOS: 

NEGMX: 

DFSIGN: 

FNORMA: 

SHFTLA 

MOVEM.L 
MOVE.L 
MOVB.L 
SWAP.W 
SWAP.W 
MOVB.B 
SUB.B 
BEQ 
BPL 
NBG.B 
BXG 
BXG 
CMP.B 
BPL 
ASR.W 
MOVE.W 
ADD.W 
ROXR.W 
TST.W 
BEQ 
BOR.W 
BMI 
MOVE.W 
SUB.W 
TST.W 
BPL 
NEG.W 
TST.W 
BMI 
NEG.W 
EOR.W 
EOR.W 
BPL 
ROXL.W 
ROXR.W 
ADDQ.B 
BMI 
BRA 
SUB.B 
TST.W 
BPL 
MOVEQ.L 
NEG.W 
MOVEQ.L 
MOVB.L 
ADD.W 
DBMI 
SUB.B 
LSR.W 
SUB.B 
BMI 
BRA 

Figure A9.3 

D0.-D2/D4-D7,- (A 7) 
D3,D1 
D2,D0 
D1 
DO 
D1,D4 
D0,D4 
SCZRO 
SCPOS 
D4 
D0,D1 
D2;D3 
U5,D4 
EXITF 
D4,D2 
D3,D6 
D2,D3 
U,DS 
D3 
ZEROF 
D2,D6 
DFSIGN 
D5,D4 
D5,D5 
D2 
OPRPOS 
D3 
D3 
NEGMX 
D3 
D4,D6 
D3,D6 
DFORMAT 
U,D4 
ll,D3 
U,D1 
OFLW 
DFORMAT 
DS,DS 
D3 
FNORMA 
t1,D5 
D3 
US,DO 
D0,D2 
D3,D3 
DO,SHFTLA 
D0,D2 
i1,D3 
D2,D1 
ZEROF 
DFORMAT 

7MAKB COPIES OF OPERANDS , . 

7RETRIEVE EXPONENTS (B) OF OPERANDS 

JB2-E1=SHIFT COUNT(SC) 
1SC IS ZERO 
7SC IS POSITIVE 
1SC IS NEG7MAKE POSITIVE 
1 SWAP OPERANDS 

7ANY OPERAND TOO SMALL? 
7YES. RESULT = LARGER OPERAND 
1NO. SHIFT SMALLER M RIGHT SC PLACES 
1SAVE SIGN OF 2ND OP 
!OBTAIN SUM=M2+M1 
1 SAVE CARRY FLAG 
1IS SUM=O? 
1IF YES,THEN EXIT 
1NO. ARE THE TWO OPBRNDS SAME SIGN? 
10PERNDS ARE OPPOSITE SIGN 
10PERNDS ARE SAME SIGN 

1IS SUM +VE OR -VE? 
1SUM IS B +VE. 
1SUM IS -VE. MAKE SUM +VB 
7IS SUM STILL -VE? 
1YES. SUM MUST BE NEGMAX 
1NO.RECOVER SIGN OF SUM 
1DID OVERFLOW OCCUR DURING ADDITION? 
I 
1NO. THEN FORMAT RESULT AND EXIT 

7SHIFT SUM RIGHT WITH CARRY AND 
1INCR EXP: E=E+1 
!CHECK THAT E DID NOT OVERLOW 
1E IS OK. FORMAT RESULT AND EXIT. 

7IS SUM POSITIVE? 
1YES. NORMALIZE RESULT 
7NO. SET FLAG AND MAKE POSITIVE 

1SET UP REGS FOR NORMALIZTN 

!NORMALIZE SUM AND 

I 
1ADJUST EXPONENT 
1E UNDERFLOW? 
I~O.FORMAT RESULT AND EXIT 

The Assembly language program for the floating point Addition. 
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separately and as mentioned. earlier depend on the signs of 

the operand~. Boxes 10 to 15 deal with mantissa 

over-flow, whilst boxes 16 to 19 deal with .mantissa 

under-flow. 

Mantissa over-flow is detected by successively performing 

an exclusive-OR opera.tion on the sign bits of the two 

original operands, the sum, M, and the carry bit. The 

result of this operation is a (1) if there was over-flow 

and (0) otherwise [1]. Over-flow is corrected by shifting 

the sum M, right with carry and incrementing the result 

exponent, E, by one (box 14). If the exponent over-flows, 

the result is set to FPMAX with the appropriate sign, 

otherwise the resulting number is now properly normalized. 

A special form of over-flow may occur when the sum, M, is 

exactly equal to -1 ($008000 in hexadecimal) or NEGMAX, 

and this is separately detected. NEGMAX is the maximum 

negative mantissa and has no positive equivalent. Thus, 

when negated it still remains negative (boxes 10 and 11). 

When this condition is detected the sum, M, is normalized 

as in the ordinary mantissa overflow. 

Mantissa under-flow is corrected by successively shifting 

left the sum, M, and decrementing the exponent, E, until 

the sum is properly normalized (box 18). The exponent is 

tested for under-flow at each shift. If exponent 

under-flow occurs at any stage the operation is terminated 

and the result set to zero. The sum is made positive (box 

17) before normalizing to simplify the operation. The 
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sign is recovered in the EXIT routine where the result 

exponent, E, and· the normalized sum, M, are put into the 

proper floating poi·nt format. 

(c) Floating Point Multiply Routine (FMUL) 

If Xl and X2 are two FP numbers to be multiplied, where 

El Xl = Ml x 2 X2 = M2 x zEZ 

h d . . b ( · ... 2).2El+E2- M zE t en their pro uct X, 1s g1ven y:X = Ml x:.M . ·- = x 

where M= (Ml x M2), E =(El+ E2}. Thus, the mantissas are 

multiplied and their exponents added. Since Ml and M2 are 

both normalized then their product, M, will be in the 

range, 0.2:f. MLl. Thus the product, M, cannot over-flow 

but may not be properly normalized (mantissa under-flow). 

The flowchart for the floating point multiply routine is 

given in figure A9.4, and the corresponding assembly 

language program listing given in figure A9.5. The 

mantissas of the operands are multiplied and the product 

tested to see if it is zero (boxes 1 and 2): If it is 

zero the operation is terminated and the result set to 

zero. The product, M, is double length (multiplication of 

two n-bit numbers gives a 2n bit result) and is thus 

rounded and reduced to single length. The exponents are 

then added and corrected for excess 64 (box 4) • If the 

product M, is not normalized it is then normalized by a 

single left shift and the exponent decremented by 1. The 

sign of the exponent is tested. If it is negative, then 

there was exponent over-flow or under-flow when the 
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RESULT EXPO
NENT 
= El+E2- 64 

SHIFT PRODUC 
LEF'T AND DECR 
RESULT EXP. 

NO 

YES 

EXIT ( DFORMAT) 

(UOFLWl 

Figure A9.4 Floating point multiplication of two operands with 

exponents El and E2 , mantissas Ml and M2, respectively. 
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*---------------------------------------------------------------------------
* 
* SUBROUTINE FMUL 
* THIS SUBROUTINE MULTIPLIES TWO NORMALIZED FLOATING POI NT NUMBERS 
* IN D2 AND D3 AND RETURNS THE RESULT IN D3. 

* 
FMUL: DO-D2/D4-D7,-{A7l 

D3,D1 
D2,DO 

MOVEM.L 
MOVE.L 
MOVE.L 
SWAP.W 
SWAP.W 
SUB.B 
MULS 
ADD.L 
ADD.L 
SWAP . W 
TST.W 
BEQ 

D1 

POSMUL: 

TESTE: 

BPL 
ADDQ . B 
NEG.W 
ADD.B 
SUB.B 
ROXR.W 
BTST 
BNE 
ADD.W 
SUBQ.B 
TST.B 
BM! 
BRA 

Figure A9 . 5 

DO 
D5,D5 
D2,D3 
D3,D3 
132768,D3 
D3 
D3 
ZEROF 
FOSMUL 
tl,DS 
D3 
D0,D1 
164,D1 
tl,D6 
114 ,D3 
TESTE 
D3,D3 
tl,D1 
D1 
UOFLW 
DFORMAT 

~MAKE COPIES OF OPERANDS 

~RETRIEVE THE EXPS. 

~CLEAR FLAG 
~OBTAIN PRODUCT M1*M2 
~SHIFT DLENGTH PRODUCT LEFT 
~ROUND RESULT 
~CONVERT RESULT TO SINGLE LENGTH 
~ RESULT"'O, +VE OR - VE? 
~RESULT IS =0. EXIT 
~RESULT IS +VE.COMPUTE EXP. 
~RESULT IS -VE.SET FLAG 
~MAKE POSITIVE 
;E2+E1•E 
~REMOVE XS64 
~SAVE CARRY FLAG 
~IS PRODUCT NORMALIZED? 
~YES. TEST EXP. 
~NO.NORMALIZE PRODUCT AND 
; ~DJUST EXPONENT 
;EXP UNDER/ OVER FLOWED? 
;YES. BRACH TO UNDER/ OVERFLOW TEST 
;NO. FORMAT DATA AND EXIT. 

The Assembl y language program f or the floa ting point mul tiply 
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• 

exponents were added. The EXIT routine then determines 

whether it was under-flow or over-flow that occurred and 

takes appropriate action. It is to b~ noted that exponent 

over~flow or under-flow was not tested for when the 

exponents were added as subsequent exponent adjustment 

could correct it. The normalized product, M, and the 

adjusted exponent give the result for the floating point 

multiplication, except when the exponent over-flows or 

under-flows. 

('d) Floating Point Divide Routine (FDIV) 

In floating point division, the mantissas are divided and 

the exponents subtracted. 

where 

Thus, division of Xl by X2, 

Xl = Ml x zEl X2 = M2 x zEZ 

gives, 

where 

X = Ml x 2El-EZ = M x 2E 

M2 

M = Ml , E = El - E2 

M2 

To ensure that the quotient is within permissible range, 

Ml must be less than M2. This is readily achieved by 

shifting Ml one place to the right. After division, the 

quotient, M, may not be properly normalized. If it is 

not, it is shifted left one place and the exponent, E, 

decremented by one and checked for under-flow as before . 

Figure A9 .. 6 gives the flowchart for the floating point 

divide routine. The exponent, E, is obtained f.rom the 
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EXIT : 0 

(ZEROF ) 

(OUFLW) 

EXIT YES 

(OFLW ) 

RESULT EXP. 
= E1 - E2-+64 

<o 

>o 

10 
QUOTIENT (M) 
= M1 / M2 

NO 

12 
SHIFT 

QUOTIENT (M) 
LEFT ONE PLAC 

YES 

EXIT (DFORMAT ) 

Figure A9 .6 Floating point division of two operands with exponents El and E2 , 

mantissas Ml and M2, respectively . 
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* * SUBROUTINE FDIV 
* THIS SUBROUTINE DIVIDES ·TWO NORMALIZED FLOATING POINT NUMBERS. 
* ENTER WITH THE DIVIDEND IN 03 AND THE DIVISOR IN 02. THE RESULT 
* IN THE'CORRECT FLOATING POINT 1 FORMAT IS RETURNED IN 03 
* 
FDIV: MOVEM.L D0-D2/D4-D7,-(A7l 

MOVE.L 03,01 
MOVE.L 02,00 
MOVEQ.L tO,D3 
MOVE.W 01,03 
SWAP.W Cl 
SWAP.W DO 
ADD.B 064,01 
SUB.B DO;Dl 
ROXR.W 01,06 
SUB.B 05,05 
MOVEQ.L U,D7 
TST.W 02 
BEQ ZEROF 
BPL TESTMl 
EOR.B 07,05 
NEG.W D2. 

;MAKE COPIES OF OPERANDS 

1 RETAIN ONLY Ml IN D3 

;RETRIEVE THE EXPS. 

;ADD BIAS TO El (El=El+64) 
;OBTAIN EXP. E=El-E2= 
;SAVE CARRY FLAG 
;CLEAR SIGN FLAG 

;IS M2=0,+VE OR -VE? 
;M2=0,THEN EXIT 
;M2 IS. +VE 
;M2 IS -VE 

TESTMl: TST.W 03 
;MAKE M2 POSITIVE 
;IS Ml=O,+VE OR -VE? 
;Ml=O,THEN EXIT BEQ ZEROF 

BPL EUFLOW 
EOR.B D7,D5 
NEG.W D3 

;Ml IS +VE 
;Ml IS -VE 
;MAKE Ml POSITIVE 

EUFLOW: TST.B Dl 
BMI UOFLW 
CMP.W D2,D3 

;DID EXP. OVER/UNDERFLOW? 
;IF YES EXIT 
;IS M2 ;GE •. Ml? 

M2GT: 

BLT M2GT 
ASR.W Ol,D3 
ADDQ.B U,Dl 
BMI OFLW 
SWAP.W 03 
ASR.L U,D3 

;YES.TBEN IT IS OK 
;NO. THEN DIVIDE Ml BY 2 AND 
;INCR El BY 1 

;CONVERT Ml TO DOUBLE LENGTH 

DIVS D2,D3 ;OBTAIN QUOTIENT OF Ml/M2 
BTST fl4,D3 ;IS QUOTIENT NORMALIZED? 
BNE DFORMAT ;YES.THEN GO FORMAT ·RESULT 
ADD.W D3,D3 ;NO. NORMALIZE AND 
SUBQ.B Ol,Dl ;ADJUST EXPONENT 
BMI ZEROF ; 
BRA DFORMAT ;GO FORMAT RESULT AND EXIT 

*---------------------------------------------------------------------• 

Figure A9.7 

The Assembly language program for the floating point division. 
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exponents of. the operands and the bias (ie 64, the 

so-called excess 64) is added (box 1). The two mantissaa 

are then tested. If either is zero, the operation is 

terminated and the result set to zero (boxes 2 to 4). The 

exponent of the result, E, is then tested for under- and 

over-flow and treated in the same way as in the multiply. 

For easy comparison of the mantissas and normalization of 

the product the mantissas of the operands are always made 

positive (boxes 3 to 5) • The sign is restored in the EXIT 

routine. Division is performed with the inherent divide 

instruction of the 68000 pP processor (box 10). The 

assembly language program for the division routine is 

listed in figure A9.7. 

[ 1] COPE S • N • 

Floating-Point Arithmetic Routines and Macros for an 

Intel 8080 Microprocessor. o.u .. E.L Report 1123/75, 1975. 
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Appendix AlO ,... Fl;oating Point/Fixed Point Decimal Number 

Conversions 

At the testing stage of an atgorithm it is desirabe for 

the microprocessor to communi:cate results in an eas:ily 

understandable form so that their validity can be checked. 

Thus it is useful to be able to convert from hexadecimal 

floating point representation to decimal. In systems with 

high level language, this conversion is quite simple. If 

this facility is not available on the system, the 

following routines could be used. 

(i) Floating Point to Fixed Point Decimal 

When denormalized, a floating point number consists of an 

integer and a fractional part. The fractional part can be 

expressed as: 

, b1 =0 or 1 (Al0.1) 

where n is the number of bits in the mantissa less one. 

The method used converts the fractional and the integer 

·parts separately to decimal and then combines the results 

as shown in figure AlO.l(a). 

Conversion of the fractional part to decimal is achieved 

by a direct realisation of equation (Al0.2). It is 

apparent from equation (AlO.l) that the fractional part 

consists of fixed n binar-y related quanti ties. Thus, when 

the bi's are all (1) F is given given by: 

F= 0.5 + 0.25 + 0.125 + + O.OOOOJos= 0.999996 (A10.2) 

In conversion, each of the fixed 15 (n=l5) quantities in 
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l> _, 
w 

(a) 

= 0 

YES 

Figure A10.1 Converting Floating point numbers 

YES to decimal (a) main and integer conversion 

(b) Fractional conversion. 

YES 

(FRACTION) 

COMPUTE AND 
SAVE BCD VALUE 

(b) 



equation (Al0.2) are computed and stored in the memory in 

Binary Coded Decimal (BCD) at initial_ization. To convert 

to decimal, the bits of the fractional part of a 

denormalized number are successively tested starting from 

bit o. At each stage if the bit is a ( 1) , the 

corresponding BCD number is fetched and added to a running 

sum. When all the bits have been tested, the final sum 

gives the decimal equivalent of the fractional part. 

Figure AlO.l (b) gives the flow chart of the fractional 

conversion• 

To convert the integer part to decimal the divide-by-10 

method of binary to BCD 1 was used. In this method, the 

largest power of ten, say m, is found such that the 

following relationship holds: 

(A10.3) 

where B is the maximum binary number to be converted. In 

16 
the routine, B = 2· .:: 65536. Thus, m = 4. To convert to 

decimal, the integer part of the denormalized number is 

first divided by 10 (expressed in binary) to give a 

quotient and a remainder. The quotient gives the most 

significant BCD digit. The remainder is then divided by 

10 and the new quotient gives the next most significant 

BCD digit. This process is continued until the power of 

ten is zero. The resulting BCD digits give the decimal 

equivalent of the integer part. The flow chart for the 

method is given in figure AlO .2 
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SAVE QUOTIENT 

DlVIDEND= 
REMDER. 

M=m-1 

NO m=O 

Figure A10.L Divide by 10 method of binary 

to dec~mal conversion 

YES 

Figure A1 0. 3 Reading and converting characters 

to hexaoecimal 



The integer part and the frac.Hona1 part, all in BCD. 

together give the d~cimal equivalent of the floating point 

number. 

(ii) Decimal to Hexadecimal Floating Point 

To convert a number from decimal to floating point., 

express the number as~ nl(sgn)X/lOdl, d=O,l, . ;6. Where 

(sgn) is the sign of the number, d is the number of digits 

to the right of the decimal point. e.g. the decimal 

number -345.67 is expressed as sgn = 1, d = 2 and . 

X= 34567. 

In the conversion routine, the sign and 'd' of the decimal 

number are first obtained and saved,·the number is then 

converted to decimal as an unsigned integer. The 

resulting hexadecimal number is normalized and then 

divided by d 10 (expressed in hexadecimal floating point) 

using the floating point divide routine described earlier. 

The result of this division, with the appropriate sign, 

gives the desired floating point number. 

(iii) Examples of Conversion 

In addition to the main conversion routines described 

above, there are other small routines used to output 

messages and to determine the type of conversion required. 

These rcutines use extensively sor.te of the I/0 routines in 

the 1ME110 ~on±tar··.via 
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trap 15 [2,3]. There is also a routine for reading and 

converting characters entered on the keyboard to 

hexadecimal. The flowchart for this routine is given in 

figure Al0.3 .. 

When the program is run it prompts the user to enter the 

number to be converted. Floating point numbers are 

entered in hexadecimal, prefixed by a dollar sign ($) 

whereas decimal numbers are entered in fixed point format, 

prefixed· by the ampersand (&). Examples of the use of the 

routines are given below. The items underlined are those 

entered by the user and the rest are responses from the 
' 

routines, apart from the comments which are included. for 

clarity. 
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Examples ~f Conversions 
In the following examples, the items underlined are those 
entered in response to prompts. 

(i) Floating point to Decimal 

When program is run the message below is output on to 

the terminal: 

ENTER NUMBER 

,404000 (user enters FP number in HEX) 

FP_:TO-DECIMAL : $404000 = 0. 500000 

(result is 0.5 ) 

(ii) Decimal to Floa~ing point 

ENTER NUMBER 

&D....5 

DECIMAL-TO-FP: $404000 
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[1] TOMPKINS, W.J., WEBSTER, J.G. (ed) 
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[2] VMEmodule Monoboard Microcomputer user's Manual. 

Motorola Semiconductor, 1983. 

[3] MC68000 16-Bit Microprocessor User's Manual. 

Austin, Texas, Motorola Semiconductor, Inc., 1980. 
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SPACE EQU 
STACK EQU· 
MSGBUF EQU 
DBUFINT EQU 
DBUFINI EQU 
FPNUM EQU 
NTYPE EQU 
RESULT EQU 
BASE EQU 
FDIV EQU 
* * MAIN PROGRAM 
* 

FPTD 

CNTNUE 

INTEGR 

FRACTN 

MAXINT 

LEA 
MOVE.ii 
BSR 
TST.B 
BNE, 
BSR 
BSR 
BRA 
BSR 
BSR 
SUB.L 
SUB.L 
MOVE.B 
TST.ii 
BPL 
MOVE.B 
NEG.W 
MOVE.L 
SiiAP 
SUB.B 
BEQ 
BPL 
NEG.B 
CMP.B 
BLE 
BRA 
CMP.B 
BGT 
ANDI.L 
MOVE.W 
ASL.L 
MOVE.ii 
ANDI.L 
ASL.L 
SWAP 
ANDI.L 
SUB.L 
BSR 
AND.W 
BSR 
BRA 
MOVE.L 
BRA 

$0BA 
$DFE 
$0F00 
$0900 
$0BOO 
$A60 
$A6A 
$A30 
$A08 
$6FE 

STACK,A7 
UO,BASE 
VALUES 
NTYPE 
FPTD 
FETCHDE 
DTFP 
OUTPUT! 
INITLZE 
FETCHFP 
04,04 
os,os 
00,01 
03 
CNTNUE 
01,01 
03 
03,02 
02 
0$40,02 
FRACTN 
INTEGR 
02 
fl;S,o2 
FRACTN 
OUTPUT2 
U6,o2 
MAXINT 
O$FF,D2 
D3,DS 
D2,DS 
DS,D3 

0$7FFF,D3 
u,os 
os 
f$FFFF,DS 
02,02 
INTEGER 
01S,o2 
FRACTION 
OUTPUT2 
f6SS3S,DS 
OUTPUT2 

11 FOR FP-TO-DEC,O FOR DEC-TO-FP. 
1RESULT RESIDES IN $A28-$A2F 

1 FETCH NUMBR FOR CONVRSN 
1WBAT TYPE OF CONVSN REQUIRED? 

' 1GO FETCH DECIMAL NO. AND CONVT TO HEX 
!CONVERT THE HEX TO FP 
1GO PRINT RESULT 
1CONVSN TO FP DESIRED.INIT 
1GO FETCH FP NUMBER 

7SAVE SIGN OF NUMBER 

1EXTRACT EXPONENT OF NO. 

1 EXP IS 0, SO NUMBR IS A FRACTN, 
1EXP ). 0 
;EXP <. 0 ,MAKE POSITIVE. 
1AND CRK IF NUMBR IS TOO SHALL 
;NOT TOO SMALL,GO CONVERT. 
;TOO SMALL, SO EXIT 
; IS NUMBR TOO LARGE? 
;YES. SET TO MAX INTGR 
;NO. MASK OFF HI BITS 
;MULT MANTISSA BY EXP 
; (M*2**El 
;PUT FRACTNL PART IN 03 

;AND INTGR PART IN OS 

;CONVERT INTGR TO DEC 

;CONVERT FRACTN TO DEC 
;PRINT RESULT AND EXIT 
;SET RESULT TO MAX VALUE 

•----------------------------------------------------------------------
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• 
* THIS SUBROUTINE ADDS 16 DIGITS BCD NUMBERS 
* A4 POINTS TO ONE OF THE OPERANDS,A)· TO THE OTHER AND 
* WHERE RESULT IS STORED • 
• 
BCDADD MOVEM.L 

MOVE.W 
ABCD 
ABCD 
ABCD 
ABCD 
ABCD 
ABCD 
ABCD 
ABCD 
MOVEM.L 
RTS 

A3-A4 ,- (A7) 
i4,CCR 
-(A4) ,-(A3)• 
-(A4),-(A3) 
- (A4) ,- (A3) 
- (A4) ,- (A3) 
-(A4) ,-(A3) 
-(A4) ,-(A)) 
- (A4) ,-(A)) 
- (A4). ,- (A3) 
(A7)+,A3-A'4 

:RESET FLAGS 
1ADD LOWEST BYTES 
:ADD BYTES B1 
:ADD BYTES B2 
1ADD BYTES B3 
:ADD BYTES B4 
1ADD BYTES BS 
:ADD BYTES B6 
:ADD BYTES B7 

(BO) 

•------------------------------------------------------------* THIS SUB CONVERTS DECIMAL AND HEX NUMBERS TO ASCII 
* AND STORES THESE IN THE MSGBUF. THE MOST SIGNIFICANT 
* CHARACTER IS ,STORED FIRST. NUMBER TO BE CONVERTED IS 
* IN DO ON ENTRY • 
• 
ASCII 

LOOPY 
LOOP X 

SAVE 

MOVEM.L 
MOVE.L 
MOVE.L 
ASL.L 
ROXL.B 
DBF 
AND.B 
ADD.B 
CMP.B 
BLE 
ADD.B 
MOVE.B 
DBF 
MOVEM.L 
RTS 

D0-D3,- (A7l 
i7. D3 . 
t3,D2 
U,DO 
U,D1 
D2,LOOPX 
f$F,D1 
i$30,D1 
t$39,D1 
SAVE 
t7 ,D1 
D1, (A6) + 
D3,LOOPY 
(A7)+,D0-D3 

1CHAR COUNT 
1BIT COUNT 
1PUT CHAR IN D1, 
1STARTING WITH THE MSC 

:CONVERT CHAR TO ASCII 

1IS CHAR A HEX? 
rNO. 
rYES. THEN ADD 7 
1SAVE ASCII IN BUFFER 
1FETCH NEXT CHAR 

•-------------------------------------------------------------------* THIS SUB CONVERTS THE FRACTIONAL PART OF THE FP 
* NUMBER TO DECIMAL.NUMBER TO BE CONVERTED IS IN D3 
* ON ENTRY ,RESULT IS IN D4 ON EXIT • 
• 
FRACTION 

LEA 
LEA 
LEA 
MOVE.L 
AND.L 
LSL.W 
LSR.W 
SUB.L 
MOVE.L 
MOVE.L 

NXTBIT BTST 
BEO 
MOVE.L 
LSL.W 
LEA 
ADD.W 

MOVEM.L D0-D3/A0-A4,-(A7) 
DBUFINI,AO 
(AO) ,A1 
RESULT,A3 
i$0F,D0 
f$7FFF,D3 
U,D3 
D2,D3 
D2,D2 
D2,-4 (A3) 
D2,-8 (A3) 
D2,D3 
BITZRO 
D2,D4 
i3,D4 
8(A0) ,A4 
D4 ,A4 

:BIT COUNT 
:MASK OFF HI 
1DENORMALIZE 
1 (M*2U-B) 

BITS 
NUMBER 

:SET RESULT TO ZERO 

:IS BIT N~O? 
1 'lES, IGNORE 
:NO. ADD DECIMAL EQV TO 
:RESULT 
:(COMPUTE ADDR OF DEC NO.) 
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* 

BSR 
DBF 
MOVE.L 
MOVEM.L 
RTS 

BCDADD ;BITZRO ADDQ.B U,D2 
DO,NXTBIT 
-8 (A3),,D4 7FETCH RESULT 
(A7)+,D0-D3/A0-A4 . 

* THIS SUB CONVERTS THE. INTEGER PART OF DENORMALIZED FP 
* NUMBER TO DECIMAL. ON ENTRY NUMBER IS IN OS AND ON EXIT 
* RESULT IS IN OS. 
* 
INTEGER MOVEM. L 

LEA 
LEA 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
SUB.L 
MOVE.L 

LOOP MOVE.W 

* 

DIVU 
MOVE.W 
ASL.L 
OR.B 
SWAP 
ANDI.L 
DBF 
MOVE.L 
MOVEM.L 
RTS 

D0-D4/A0-Al,-(A7) 
DBUFINT,AO 
(AD) ,lil 
i$2710, (All+ 
i$3E8,(Al)+ 
i$64 ,:(Al) + 
i$0A, (Al)+ 
iOl,(Al)+ 
04,04 
14,00 
(AO)+,Dl 
Dl,DS 
oS,D2 
t4,D4 
D2,o4 
os 
i$FFFF,DS 

:STORE 
1STORE 
7STORE 
1STORE 
JSTORE 

10**4 
10**3 
10**2 
10**1 
10**0 

;LOOP COUNT 
;FETCH DIVISOR 
I NUMBER/DIVISOR 
1RETRIEVEQUOTIENT 
;AND SAVE IN D4 

JNUMBER=REMAINDER 

DO,LOOP 7REPEAT WITH ANOTHER DIVISOR 
D4,DS rPUT RESULT IN DS & EXIT 
(A7)+,D0-D4/A0-Al 

* THIS IS THE INITIALIZATION. IT COMPUTES AND SAVES THE 
* DECIMAL EQUIVALENTS OF THE BITS OF THE MANTISSA 
* 
INITLZE MOVEM.L 

LEA 
LEA 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.L 
LEA 
LEA 

LOOPIY MOVE.L 
MOVE.L 
BSR 

* 

DBF 
MOVEM.L 
RTS 

D0-Dl/AO~A3,-(A7) 
DBUFINI,AO 
(AO) ,Al 
tO, (All+ JSAVE SMALLEST DEC EQV 
i$1S2S, (Al)+ 
i$8789, (Al) + 
i$062S, (All+ 
il4,Dl ;DIGIT COUNT 
(Al) ,A3 1POINT 
-8 (Al) ,A4 
(A4)+, (A3)+ ;PUT IN THE NEXT DIGIT LOCTN 
(A4)+,(A3)+ rAND DOUBLE IT 
BCDADD 
Dl,LOOPIY 
(A7)+,D0-Dl/A0-A3 

* THIS SUBROUTINE OUTPUTS A MESSAGE REQUESTING NUMBER 
* TO BE ENTERED • 
• 
VALUES LEA 

LEA 
BSR 
MOVE.W 
MOVE.W 

MSGBUF,AS 
(AS) ,A6 
SPACE 
i'EN', (A6)+ 
I 'TE', (A6) + 

rOUTPUT A FEW LINE FEEDS 
;PUT MSG IN BUFFER 
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EXITl 
• 

MOVE.W 
MOVE•W 
MOVE.W 
MOVE.W 
MOVE.W 
TRAP 
Dc;w 
LEA 
TRAP 
DC;W 
MOVE.B 
MOVE.B 
CMP.B 
BNE 
MOVE.B 
RTS 

t 1 R 1 , (A6)+ 
i 1 N1 ,(A6)+ 
I 1 UM', (A6)+ 
• I BE I • (A6) + 
1 1 R I. (A6) + 
us 
$2 
(AS) ,A6 
ns 
$1 
tO ,NTYPE 
(AS)+,DO 
1 1 $ 1 ,DO 
EXITl 
U,NTYPE 

:OUTPUT MESSAGE TO TERMINAL. 

:READ FP NUMBER FROM CONSOLE 

:ESTABLISH TYPE OF CONVERSION 
:AND SET FLAG ACCORDINGLY 
:IS IT FP-TO-DECIMAL? 
:NO.MUST BE DECIMAL-TO-FP 
:YES. THEN SET FLAG AND 

• THIS SUBROUTINE FETCHES THE FP NUMBER FROM THE BUFFER 
• ONE CHARACTER AT A TIME. (THE 3-BYTE FP NUMBER HAS SIX 
* CHARACTERS) • 
• 
FETCHFP MOVEM.L DO'-Dl/AS,- (A7) 

SUB.L D3,D3 
MOVE.L tS,Dl :CHAR COUNT 

LOOPFC MOVE.B (AS)+,DO :FECTH CHAR 
CMP.B f$39,D0 :IS CHAR A-F? 
BLE HEXl :NO.MUST BE LESS THAN 10 
SUB.B t7,D0 :YES. CONVERT TO ·HEX 

HEXl AND.B f$F,D0 :MASK OFF HI BITS 
LSi:..L f4,D3 :MAKE ROOM FOR CHAR IN REG 
OR.B D0,D3 :PUT CHAR IN REG 
DBF Dl,LOOPFC 
MOVE.L D3,FPNUM :SAVE FP NUMBER 
MOVEM.L (A 7) +, 00-Dl/AS 
RTS 
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0 THIS· SUB CONvERTS DECIMAL NUMBER TO FLOATING PT. 
• NUMBER IS EXPECTED IN THE .FOLLOWING FORMAT': .. N=lt/('l:O .. E) ,WHERE E=0,1,, .61 X IS IN HEX • 
• E.G 163.·567 IS EXPRESSED AS: X=163567 ,E=3, 
• ON ENTRY, 00: ·CONTAINS THE SIGN OF X iD1 E AND D3 x • 
• ON• EXIT D3· CONTAINS THE FP EOUIVQLENT • 
• 
DTFP LEA DBUFINI,AO 1SAVE THE POWERS OF 10 

MOVE.W ll$00.41,i(A0),+ 
MOVE.W B$4000 ,i(AO)i+ 
MOVE.W 0$0044 ,)(l\0) + 
MOVE.W 0.$5000, (AOl:+ 
MOVE.W 0$0047·,•(A0) + 
MOVE.W OS64oo ,.(AD)+ 
MOVE.W 0$004A, .(AO) + 
MOVE.W 0$7000, (AO) + 
MOVE.W 0$.004E, (AO)'+ 

•MOVE•W I$4E20, (AO) + 
MOVE.W 8$0051, (AO)+ 
MOVE.W 8$61A8', (AO) + 
MOVE.W 0$0054, (AO) + 
MOVE.W 8$7A12,(A0)+ 
MOVE.W 8$0059, (AO)+ 
MOVE.W 0$4C4B, (AO) + 
LEA DBUFINI,AO 
CMP.B 00,01 
BEQ XEROD 
LSL.W 02,01 
MOVE.L 0 (AO ,Dl.W) ,02 
BSR FDIV 

ZEROD TST.B DO 
BEO DONE 
NEG.W D3 

DONE RTS 
• 
0 NORMALIZE X 
• 
NORMX MOVEQ.L 179,05 

MOVEQ.L 115,04 
MOVEQ.L 015,06 
TST.W D3 
BEQ ZEROX 
CMP.L 132768,03 
BGE XGE 

NORMX1 ADD.W D3,D3 
DBMI D4,NORMX1 
SUB.B D4,D6 
LSR.W tl,D3 
SUB.B D6,D5 

FORMATX SWAP os 
MOVE.W D3,D5 
MOVE.L D5,D3 

EXITX RTS 
ZEROX CLR.L 03 

BRA EXITX 
XGE ADDQ.L tl,DS 

LSR.L tl,D3 
CMP.L 032767,03 
BGT XGE 
BRA FORMATX 
RTS 
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FETCHDE MOVEM'L 
SUB.L 
SUB.L 
SUB.L 
MOVE.W 
MOVE.B 
MOVE.B 
CMP.B 
BEQ 
MOVE.B 
BRA 

NXTCHAR CMP.L 
BEQ 
MOVE.B 

RADIX CMP.B 
BNE 
MOVE.B 
BRA 

NOTDOT TST. B 
BEQ 
ADDQ.B 

DOTSET AND.L 
MOVE.L 
SWAP 
MULU 
SWAP 
TST.W 
BNE 
MULU 
ADD.L 
ADD.L 
BITS 
BRA 

EXITJ MOVE.L 

• 

MOVE.L 
MOVEM.L 
RTS 

D2/D4,-D6,-(A7) 
DJ,DJ 
DS,DS 
D6,D6 
BASE,D4 
(AS) +,DO 
U,Dl 
··-·,DO 
NXTCHAR 
liO,Dl 
RADIX 
A5,A6 
EXITJ 
(AS)+,DO 
ll'.' ,DO 
NOT DOT 
u,D6 
NXTCHAR 
D6 
DOTS ET 
U,DS 
I$F,D0 
D3,D2 
DJ 
D4,D3 
DJ 
DJ 
EXITJ 
D4,D2 
D2,D3 
DO,DJ 
EXIT] 
NXTCHAR 
Dl,DO 
DS,Dl 
(A7)+,D2/D4-D6 

.:DETERMINE SIGN OF NUMBER 

:IS IT NEGATIVE? 
:YES. LEAVE ,FLAG SET TO 1 
:NO.MUST BE· POSITIVE. RESET FLAG. 
:AND GO SAVE. 
:ALL CHAR FETCHED AND SAVED? 
:YES. THEN EXIT . 
:FETCH NXT CHAR 
:CHECK WHETHER IT IS A DECML PT 
:AND SET FLAG ACCORDINLY 
:SET DECIMAL PT FLAG 
: 
:IS DECML PT FLAG SET ? 
:NO. THEN STILL .INTEGER 
:INCR POWER OF DIVISOR 
:CONVERT NO. TO HEX 

:WORK ON THE HIGHER WORD 

I 
:CHECK FOR OVERFLOW 
:VALUE IS TOO LARGE 
:NOW WORK ON LO WORD 
:PUT BOTH WORDS TOGETHER 
:ADD THE NEXT NUMBER 
:IF THERE IS OVERFLOW EXIT. 

7PUT RESULT IN APPROPRIATE REG 

* THIS ROUTINE OUTPUTS THE RESULT OF DECIMAL-TO-FP CONVERSION 
* TO THE DISPLAY • 
• 
OUTPUT! LEA 

LEA 
BSR 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE. L 
BSR 
TRAP 
DC.W 
BSR 
TRAP 
DC.W .. 

• 

MSGBUF,AS 
(AS) ,A6 
SPACE 
i'DE', (A6)+ 
f'CI',(A6)+ 
f'MA', (A6)+ 
f'L-', (A6)+ 
f'TO',(A6)+ 
i'-F', (A6)+ 
f'P1', (A6)+ 
0$DOA, (A6) + 
Dl,DO 
ASCII 
us 
$2 
SPACE 
us 
0 

:PUT LF AND CR 

:OUTPUT MSG 
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• 
* THIS PART OF THE ROUTINE PRINTS THE RESULT. 
*THE NuMBER TO BE.CONVERTED IS PRINTED ALONG WITH THE 
* RESULT; HEX .NUMBERS TO BE OUTPUT ARE ·FIRST 
* CONVERTED TO ASCII . 
• 
OUTPUT2 LEA MSGBUF,AS 

LEA (AS) ,A6 
BSR SPACE ;OUTPUT .A FEW LINE FEEDS 
MOVE.W i'FP', (A6)+ ;PUT MSG IN BUFFER 
MOVE.W 11'-T', (A6)+ 
MOVE.W t•o-•, (A6)+ 
MOVE.W i'DE', (A6)+ 
MOVE.W I'CI'' (A6)+ 
MOVE;W i'MA', (A6)+ 
MOVE.W i'L:',(A6)+ 
MOVE.W II$00A, (A6) + ;PUT CR & LF 
MOVE.L FPNUM,DO ; FETCH FP NUMBER 
BSR ASCII ;CONVERT IT TO ASCII 
MOVE.B ' =' ,.(A6) + 
TST.B Dl rPUT SIGN OF NUMBER 
BEQ PLUS 
MOVE.B i'-',(A6)+ 
BRA ANSWER 

PLUS MOVE.B i'+',(A6)+ 
ANSWER MOVE.L os,oo ;CONVERT INTGR TO ASCI I 

BSR ASCII 
MOVE.B i'.', (A6) + 
MOVE.L D4,D0 ;CONVERT FRACTN TO ASCII 
BSR ASCII 
TRAP us ;PRINT MSG,FPNUM & RESULT 
DC.W 2 
BSR SPACE 
TRAP OlS ;EXIT TO VME BUG 
oc.w 0 

•----------------------------------------------~--------------
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Appendix A 11 F.ORTR'AN and Minitab Programs for Off-line 

Removal of OA. 

This appendix gives FORTRAN source codes and minitab 

~acros used in the off-line analysis. Apart from .a few 

instructions and graphics routines which are machine 

dependent (see later), the FORTRAN codes conform to the 

ANSI FORTRAN standard [1,2]. In these and other programs 

described in later appendices, the programs have been 

developed in stages, with the intermediate stages provi-_

ding data for later stages. This approach was adopted to 

reduce the computing overheads. Of course, a command-input 

file can be easily written to combine the appropriate 

programs so that the final result is obtained in one run. 

Several programs are listed here. Each main program has 

several dependent subprograms, most of which are located 

in the same file as the main program. Those not in the 

same file as the main program are referred to as external 

subprograms or subroutines, and have in most cases been 

developed as standard library of programs for general use. 

The purpose of each subprogram is given as comments just 

before its listing. The purpose of the main programs are 

described briefly here. 

1. Program WFM.FTN 

This program together with the subprogram RDATA is used to 

read data from a binary file, and written into a user-speci 

fied file. The resulting data file normally provides the 

input data for subsequent analysis. 
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2. Program MTBPLOT.FTN 

This program tOge.ther ~ith the associated intern~l and 

external subprograms (NGRWPH, ACF and CCF; the last two 

are contained in a file called CORREL.FTN) is used to read 

six columns of da•ta from user-specified data fil~, ,plo·t 

the data directly, or their ACfs , or the 6rosscorrelation 

functions between the data columns. Upto 8 data fi.les may 

be obtained. 

3. Program ONECHN 

This program is used to study one parameter models. The 

program together with the external subroutines RDATA, NGRAPH 

and ACF reads data from a binary file, corrects the EEG for 

arte.fact using the four one-parameter models described in 

chapter 2, and plots the corrected EEG and their ACFs. 

4. Program MTBDATA.FTN 

This program is similar to WFM.FTN. The main difference 

between them is that it generates also the data required 

for model 4E (appendix AJ); this program was used in the 

preliminary investigation of models. 

MINITAB Programs 

1. Program OLS.MTB 

This program together with the associated macro ESTMATE.MTB 

is used to study the models defined in section 2.2 using the 

OLS method. The program uses the statistical package called 

MI~ITAB, which allowed extensive investigation to be carried 

out relatively easily. To use the program, the data to be 
• 

analized is first written into a file 'MTB.DATA' and then 

the program is run. 
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2. Program DIFF.MTB 

This program is the same as program OLS.MTB, the only 

d'ifference being that the da.ta is differenced prior to 

processing. 

3. Program OADIFF.MTB 

This program is used to analyze the data. It allows OLS 

method to be performed and computes the corrected EEGs 

and the OA estimates as well as the differences between the 

OAs. The processed data are written into files which serve 

as inputs to further stages of analysis, e.g plotting of 

the data. 

4 .. Program OADIFF1.MTB 

This program is similar to OADIFF.MTB. However, whereas 

OADIFF.MTB allows OLS method to be performed on several models 

OADIFF1.MTB allows OLS to be performed on six models. These 

were models that were used in the preliminary analysis of 

models. 

Index to programs 

Program WFM.FTN 

11 MTBPLOT.FTN 

11 ONECHN.FTN 

11 MTBDATA.FTN 

Subprogram RDATA.FTN 

11 NGRAPH 

11 CORREL.FTN 
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A94-95 
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A97-98 
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Subprogram 

Program OLS.MTB 

11 DIFF.MTB 

11 OADIFF.MTB 

11 OADIFFl.MTB 

11 OLSAR.MTB 

Macro ESTIMATE.MTB 

11 GLS2.MTB 

11 GLSJ.MTB 

11 GLS4.MTB 

References for Appendix A11 

[ 1] ANSI subcommitte XJJJ 

Clarification of FORTRkN standards.-Second Report. 

COMM. ACM., 14, 1971, pp 628-642. 

[2] ASA Committee XJ FORTRAN VS BASIC FORTRAN. 

C o m m . A CM . , 7 , 1 9 64- , pp 59 1 - 6 2 5 . 

Notes 

Pa,ge 

A102 

A102 

A103-105 

A106 

A107-108 

A109-113 

A 114 

A 114 

A 1 1 5 

The main differences between the FORTRAN codes given below 

and the standards above are in input-output codes. E.G 

the FORTRAN given here uses OPEN$A and CLOSE$A which are 

commands specific for the PRIME computers. Also the graphics 

routines are system dependent. 
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PROGRAM WFM.FTN 
c 
C THIS PROGRAM, TOGETHER WITH THE SUBPROGRAM 'RDATA' 
C IS USED TO READ DATA FROM A BINARY FILE AND WRITE 
C TO A DATA FILE FOR FURTHER PROCESSING. 
c 

COMMON VL(1024) ,.VR(1024) ,HL(1024) ,HR(1024) 
INTEGER*2 FNAME(20)· . 
COMMON. /VDATA/EEGr(1024) ,EEG2(1024).,FNAME 
COMMON /VEEGF/EEGF(l024) 
DATA L2/0/ 
NPT=1024 
N=1024 
IPLOT=1 
WRITE ( 1, 10) 

10 FORMAT( 'ENTER BATNO'•). 

c 

READ(1,*)L1 
L4=0 
CALL RDATA·( L1, L2 ,,L3, L4) 

C READ DATA AND REMOVE MEAN 
c 

c 

CALL MEAN(N,VL,VLM) 
CALL MEAN(N,VR,VRM) 
CALL MEAN(N,HL,HLM) 
CALL MEAN(N,HR,HRM) 
CALL MEAN(N,EEG1,EEGM) 
WRITE(6,40) (VL(I) ,VR(·I) ,HL(I) ,HR(I) ,EEG1(I) ,I=1,1024) 

40 FORMAT{5(Fl0.5,2X)) 
CALL EXIT 
END 

c------------------------------------------~--c 
SUBROUTINE MEAN(NPTS,DATA,RMEAN) 
DIMENSION DATA(NPTS) 
RMEAN=O.O 
DO 20 I=1,NPTS 

20 RMEAN=RMEAN+DATA(I) 
RMEAN=RMEAN/FLOAT(NPTS) 
DO 30 I=1,NPTS 

30 DATA(I)=DATA(I)-RMEAN 
RETURN 
END 
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· PI!OGltAM MTBPLOT.FTN --- ------·---c 
C THIS PROGRAM (AND THE INTERNAL SUBPROGRAMS) IS USED 
C TO READ SIX COLUMNS, OF DATA, PLOT THE DATA 
C DIRECTLY OR THEIR ACFS OR THE CROSS CORRELATION 
C FUNCTIONS BETWEEN THE DATA COLUMNS. 
c 

COMMON /XVAL/Xl ( 1024) ,X2,(1025) 
COMMON /MT.OATA/ C0(1024) ,Cl'(l024) ,C2(1024) ,C3(1024) 

+ ,C4 (1024) ,CS ( 1024) 
INTEGER FNAME(20) 
N=l024 
FREQ=l2S.O 
NCORL='Sl3 
DO 45 I=l,N 
IMl=I-1 
I2='I-NCORL 
Xl (I) =FLOAT(IMl) /FREQ 

45 X2(I)=FLOAT(I2)/FREQ 
X2(1025)=512.0/FREQ 
CALL DEVICE(IDEV) 
WRITE(l,S) 

5 FORMAT('ENTER NUMBER OF FILES TO PROCESS') 
READ(l,*)NFILES 

c 

DO SO NTIMES=l,NFILES 
CALL GETNAM (FNAME) 
CALL MTBRD(FNAME) 

C SELECT HOW DATA SHOULD BE PLOTTED 
c 

WRITE ( 1,10) 
10 FORMAT('ENTER 0 FOR TIME 1 FOR ACF 2 FOR CCF') 

READ(l,*)IST 
IF(IST .EQ. O)CALL AMPL(C0,Cl,C2,C3,C4,CS,IST,N) 
IF(IST .EQ. l)CALL ACFN(CO,Cl,C2,C3,C4,CS,IST,N) 
IF(IST .EQ. 2)CALL CCFN(CO,Cl,C2,C3,C4,CS,IST,Nl 

50 CONTINUE 

c 

CALL DEVEND 
CALL EXIT 
END 

c---------------------------------------------------------c 
SUBROUTINE AMPL(CO,Cl,C2,C3,C4,CS,IST,N) 

c 
C THIS SUBPROGRAM TOGETHER WITH SUBPROGRAM NGRAPH 
C IS USED TO PLOT DATA DIRECTLY 
c 

c 

DIMENSION CO (1024) ,Cl (1024) ,C3 (1024) ,C4 (1024) 
+,CS(l024) 

COMMON /XVAL/Xl(l024) ,X2(1025) 
NCORL=Sl3 
CALL NGRAPH(N,Xl,CO,O,IST) 
CALL NGRAPH(N,Xl;Cl,l,IST) 
CALL NGRAPH(N,Xl,C2,2,IST) 
CALL NGRAPH(N,Xl,C3,3,IST) 
CALL NGRAPH(N,Xl,C4,4,IST) 
CALL NGRAPH(N,Xl,CS,S,IST) 
RETURN 
END 

c----------------------------------------------------c 
SUBROUTINE ACFN(CO,Cl,C2,C3,C4,C5,IST,N) 

c 
C THIS SUBPROGRAM TOGETHER WITH SUBPROGRAMS ACF 
C AND NGRAPH ARE USED TO COMPUTE THE ACFS OF THE DATA, 
C AND TO PLOT THESE 
c 

DIMENSION C0(1024) ,Cl(l024) ,C2(1024) ,C3(1024) 
+ ,C4 (1024) ,CS (1024) 

DIMENSION ACFCO(l024) ,ACFC1(1024) ,ACFC2(1024) 
+,ACFC3(1024) ,ACFC4(1024) ,ACFCS(l024) 

COMMON /XVAL/Xl(l024) ,X2(102S) 
NCORL=l024 
N=Sl2 
CALL ACF(NCORL,CO,ACFCO) 
CALL ACF(NCORL,Cl,ACFCl) 
CALL ACF(NCORL,C2,ACFC2) 
CALL ACF(NCORL,C3,ACFC3) 
CALL ACF(NCORL,C4,ACFC4) 
CALL ACF(NCORL,C5,ACFCS) 
CALL NGRAPH(N,Xl,ACFCO,O,IST) 
CALL NGRAPH(N,Xl,ACFCl,l,IST) 
CALL NGRAPH(N,Xl,ACFC2,2,IST) 
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c 

CALL NGRAPH(N,XliACFC3,3,IST) 
CALL NGRAPH(N,Xl,ACFC4•,4,IST) 
CALL NGRAPH(N,Xl,ACFCS,S,IST) 
RETURN 
END 

c------------------------------------------------------c 
SUBROUTINE CCFN (CO ,Cl,C2,C3 ,C4 ,CS, IST,N) 

c 
C THIS SUBPROGRAM' AND SUBPROGRAMS XCF AND NGRAPH 
C ARE USED TO COMPUTE THE: CCF BETWEEN THE DATA 
C COLUMNS, AND TO PLOT THESE. 
c 

DIMENSION C0(1024) ,Cl('l024) ,C2(1024) ,C3(1024) 
+,C4 (1024) ,C5'(1024) 

DIMENSION XCFC0(1025) ,XCFC1(1025) ,XCFC2(1025) 
+ ,XCFC3('1025) ,XCFC4 ( 1025).,XCFC5 ( 1025) 

COMMON /XVAL/Xl(l024) ,X2(1025) 
NCORL=5l3 
CALL XCF(NCORL,C·O,Cl,XCFCO) 
CALL XCF(NCORL,CO,C2,XCFC1) 
CALL XCF(NCORL,CO,C3,XCFC2) 
CALL XCF(NCORL,Cl,C2,XCFC3) 
CALL XCF(NCORL,Cl,C3,XCFC4) 
CALL XCF. (NCORL,C2 ,C3 ,XCFCS) 
CALL NGRAPH(N,X2,XCFCO,O,IST) 
CALL NGRAPH(N,X2,XCFCl,l,IST) 
CALL NGRAPH(N,X2,XCFC2,2,IST) 
CALL NGRAPH(N,X2,XCFC3,3,IST) 
CALL NGRAPH(N,X2,XCFC4,4,IST) 
CALL NGRAPH(N,X2,XCFC5,5,IST) 
WRITE(6,10) (XCFCO(I) ,XCFCl(I) ,XCFC2(I) 

+.,XCFC3 nl ,XCFC4 (I) ,XCFCS (I) ,1=513, 523) 
10 FORMAT(6(Fl0.5,2X)) 

RETURN 
END 

c 
c------------------------------------------------c 

SUBROUTINE GETNAM (FNAME) 
c 
C THIS SUBPROGRAM REQUESTS FOR AND READS FROM 
C THE TERMINAL THE NAME OF FILE CONTAINING THE DATA 
c 

INTEGER*2 FNAME(20) ,TBUFF(20) 
DATA TBUFF /'NONAMEGIVEN 
WRITE (1,8) 

8 FORMAT('GIVE NAME OF FILE TO BE PROCESSED') 
READ(l,lO)FNAME 

10 FORMAT(20A2) 
IF(FNAME(l) .EQ. ' ')GO TO lOO 
DO 20 I=l,20 

20 TBUFF(I)=FNAME(I) 
RETURN 

lOO DO 120 !=1,20 
120 FNAME(I)=TBUFF(I) 

RETURN 
END 

c 
c------------------------------------------------------c 

SUBROUTINE MTBRD(FNAME) 
c 
C THIS SUBPROGRAM READS THE DATA FROM THE FILE 
C GIVEN IN SUBPROGRAM GETNAM 
c 
$INSERT SYSCOMIA$KEYS 

COMMON /MTDATA/CO(l024) ,Cl(l024) ,C2(1024) ,C3(1024) 
+ ,C4 ( 1024) ,CS ( 1024) 

INTEGER*2 FNAME(20) ,RKEY 
LOGICAL OPEN,CLOSE 
RKEY=3 
NLEN=40 
OPEN=OPEN$A(A$READ,FNAME,NLEN,RKEY) 
IF(.NOT. OPEN)GO TO 1700 

• I 

READ(.?,*) (CO(I) ,C1(I) ,C2(I) ,C3(I) ,C4(I) ,CS(I) ,I=l,1024) 
CLOSE=CLOS$A(RKEY) 
IF (CLOSE)·RETURN 
WRITE(1,30)FNAME 

30 FORMAT('*** CANT CLOSE FILE',20A2,'***') 
STOP 1 

1700 WRITE(l,JS)FNAME 
35 FORMAT('*** CANT OPEN FILE 1 ,20A2,'***') 

STOP 2 
END 
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PROGRAM ONECHN.FTN• 
c 
C THIS PROGRAM ~ND THE ASSOCIATED SUBPROGRAMS 
C ARE USED TO STUDY ONE P~RAMETER MODELS 
c 

DIMENSION EEGCVL(1024) ,EEGCVR(1024) ,EEGCHL(1024) 
DIMENSION EEGCHR(l024) . . 
INTEGER*2 .FN~E 
COMMON VL(1024) ,VR(1024),BL(l024) ,HR(1024) 
COMMON /VDATA/EEG1'(1024) ,EEG2 ( 1024) ,FN~E ( 20) 
COMMON /XVAL/X(1024) 
DATA L2/0/ 
NP.T=1024 
N=1024 
DO 45 I=1,1024 
IM1=I-1 

45 X(I) =FLO~T.(IM1)/125.0 
C~LL DEVICE(IDEV) 
WRITE(1,2) 

2 FORMAT('ENTER NO OF RECORDS TO BE PROCESSED') 
RE~D(1,'*)NTIMES 
DO 5 M=1, NTIMES . 
WRITE(1,10) 

10 FORMAT(' ENTER BATNO') 
RE~D(1,*)L1 . 
L4=0 

c 
C RE~D OAT~ ~D REMOVE THE ME~ FROM E~CB DATA COLUMN 
c 

c 

C~LL RD~T~(L1,L2,L3,L4) 
C~LL ME~N(N,VL,VLM) 
CALL ME~N(N,VR,VRM) 
CALL ME~(N,HL,BLM) 
C~LL ME~N(N,BR,HRM) 
C~LL ME~(N,EEG1,EEGM) 

C REMOVE 0~ FROM EEG USING EACH OF THE FOUR 
C SINGLE P~RAMETER MODELS IN TURN, COMPUTE 
C THE ~CFS OF TB EEGCS, AND PLOT BOTH EEGCS AND ACFS 
c 

C~LL ONECBN(VL,EEGCVL,N) 
CALL ONECBN(VR,EEGCVR,N) 
CALL ONECHN(RL,EEGCHL,N) 
C~LL ONECRN(HR,EEGCHR,N) 
C~LL VMPLOT(EEGCVL,EEGCVR,EEGCBL,EEGCHR) 

5 CONTINUE 

c 

C~LL DEVEND 
C~LL EXIT 
END 

c------------------------------------------------------c 
SUBROUTINE ME~(NPTS,DAT~,RME~) 

c 
C SUBROUTINE USED TO COMPUTE ~D REMOVE ME~ FROM 
C ~N ~RRAY. THE MEAN-CORRECTED D~TA OVERWRITES THE 
C OLD D~T~. 
c 

DIMENSION D~T~(NPTS) 
RME~=O.O 
DO 20 I:,.1, NPTS 

20 RMEAN=RME~N+DAT~(I) 
RME~N=RME~/FLO~T(NPTS) 
DO 30 I=1,NPTS 

30 D~T~(I).=DAT~(I) -RME~N 
RETURN 
END 

c 
c------------------------------------------------------c 

c 

SUBROUTINE ONECRN(X,DOUT,N) 
DIMENSION X(1024) ,DOUT(l024) 
INTEGER*2 FNAME 
COMMON /VDAT~/EEG1 (1024) ,EEG2 (1024) ,FN~E ( 20) 
~=0.0 
8=0.0 
D=O.O 

C OBT~IN THE COV~RI~NCE OF THE MEASURED D~T~ AND THE 
C P~RAMETER ESTIMATE, ~K. 
c 

DO 10 I=1,N 
~=A+EEG1(I)*X(I) 

10 B=B+X(I)*Xjl) 
~K=~/B 
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c 
C REMOVE EMA ESTIMATES ·FROM THE EEG 
c 

DO 20 I=1 ;N 
20 DDUT (I) =EEG1 (I) -X·(I·)·*AK 

RETURN• 
END 

c 
c-----------------------~--------------~--------------
c 

SUBROUTINE VMPLOT(D1,D2,D3,D4) 
c 
C THIS SUBPROGRAM, TOGETHER WITH SUBPROGRAM· ACF, 
C ALLOWS THE ACFS OF THE DATA IN ARRAYS D1,D2,D3,D4 
C TO BE SEPARATELY COMPUTED. 
c 

c 

DIMENSION D1(1024) ,D2(1024) ,D3'(1024) ,D4(1024) 
DIMENSION D5(1024) ,D6.(1024) 
DIMENSION ACF1(1024) ,ACF2(1024) ,ACF3(1024) 
DIMENSION ACF4'(1024) 
NCORL=1024 
CALL ACF(NCORL,Dl,ACF1) 
CALL •ACF.(NCORL,D2,ACF2) 
CALL ACF(NCORL,D3,ACF3) 
CALL ACF (NCORL,D4 ,ACF4) 
CALL RGRAPH(D1,D2,D3,D4,0) 
CALL RGRAPH(ACF1,ACF2,ACF3,ACF4,1) 
RETURN 
END 

c-----------------------------------------------------------
c 

SUBROUTINE RGRAPH(D1,D2,D3,D4,IST) 
c 
C THIS SUBPROGRAM TOGETHER WITH NGRAPH ALLOWS FOUR 
C GRAPHS TO BE PLOTTED ON ONE PAGE. 
c 

DIMENSION D1(1024) ,D2(1024) ,D3:(1024) ,D4(1024) ,D5(1024) 
DIMENSION D6(1024) 
COMMON /XVAL/X (1024) 
N=1024 
CALL PICCLE 
CALL NGRAPH(N,X,D1,0,IST) 
CALL NGRAPH(N,X,D2,1,IST) 
CALL NGRAPH(N,X,D3,2,IST) 
CALL NGRAPH(N,X,D4,3,IST) 
RETURN 
END 
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PROGRAM MTBDATA.FTN 
c 
C THIS PROGRAM, TOGETHER WITH THE SUBPROGRAM 'RDATA' 
C IS USED TO READ DATA FROM A BINARY FILE AND WRITE 
C TO A DATA FILE FOR FURTHER PROCESSING, 
c 

DIMENSION TEMP(1024) 
COMMON VL(l024) ,VR(1024) ,HL(l024) ,HR(1024) 
INTEGER*2 FNAME(20) 
COMMON /VDATA/EEG1.(1024) ,EEG2(1024) ,FNAME 
COMMON /VEEGF/EEGF(1024) 
DATA L2/0/ . 
NPT=1024 
N=1024 
IPLOT=1 
WRITE (1,10) 

10 FORMAT ('ENTER BATNO') 
READ (·1, *).L1 
L4=0 
CALL RDATA(L1,L2,L3,L4) 

c 
C READ DATA AND REMOVE MEAN 
c 

c 

CALL MEAN(N,VL,.VLM) 
CALL MEAN(N,VR,VRM) 
CALL MEAN(N,HL,HLM) 
CALL MEAN(N,HR,HRM) 
CALL MEAN(N,EEG1,EEGM) 

C OBTAIN THE DELAY TERM FOR MODEL 4E 
c 

DO SO I=2,1023 
SO TEMP(I)=VL(I-1)+VL(I+1) 

c 

TEMP ( 1) =VL (2) 
TEMP(1024)=VL(1023) 

C WRITE ALL DATA TO A FILE 
c 

WRITE(6,40) (VL(I) ,VR(I) ,HL(I) ,BR( I) 
+,EEG1(I) ,TEMP(I) ,I=1,1024) 

40 FORMAT(6(F10.S,2X)) 
CALL EXIT 
END 

c 
c---------------------------------------------c 

SUBROUTINE MEAN(NPTS,DATA,RMEAN) 
DIMENSION DATA(NPTS) 
RMEAN=O .0 
DO 20 I=1,NPTS 

20 RMEAN=RMEAN+DATA(I) 
RMEAN=RMEAN/FLOAT(NPTS) 
DO 30 I=1,NPTS 

30 DATA(I)=DATA(I)-RMEAN 
RETURN 
END 
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SUBROUTINE RDATA(L1,L2,L3',L4) 
c 
C THIS SUBROUTINE READS DATA FROM A GIVEN BINARY FILE AND 
C CONVERTS IT TO REAL FORMAT 
c 

REAL MEEG1,MEEG2 
COMMON VL(1024) ,VR(l024) ,HL(1024) ,HR(1024) 
INTEGER*2 FNAME(20) 
INTEGER BATNO, INP(1024) 
COMMON /VDATA/EEG1 (•1024) ,EEG2 (1024) ,FNAME 
LOGICAL CSE 
DATA N,CSE/1024, .FALSE./ 
BATNO=L1 
IF(L4 .GT. O)GO TO 25 
CALL GETNAM(FNAME) 
WRITE ( 1, 8) FNAME 

8 FORMAT('DATA FILE ',20A2,///) 
C CHECK WHETHER THE WHOLE FILE IS TO BE READ 

IF(L2 .EQ. O)GO TO 25 
10 WRITE(1,15) 
15 FORMAT('ENTER BATCH NO• OR (-1) TO QUIT') 

READ (1, *) BATNO 
'IF(BATNO .LT. 0 .OR. BATNO .GT. 191)GO TO 299 

25 WRITE(1,20)BATNO 
20 FORMAT('BATNO=',I5) 

L=BATNO 
C READ THE DATA AND CONVERT TO REAL FORMAT. 

CALL DATIN(L,INP,FNAME,SF1,SF2,SAMRAT,CSE) 
DO 30 I=1,N 

30 VL(I)=FLOAT(INP(I))*SF1 
L=L+1 
CALL DATIN(L,INP,FNAME,SF1,SF2,SAMRAT,CSE) 
DO 40 I"1,N 

40 VR(I)=FLOAT(INP(I))*SF1 
L=L+1 
CALL DATIN(L,INP,FNAME,SF1,SF2,SAMRAT,CSE) 
DO 50 I=1,N 

50 HL(I)=FLOAT(INP(I))*SF1 
L=L+1 

-CALL DATIN(L,INP,FNAME,SF1,SF2,SAMRAT,CSE) 
DO 60 I=1,N 

60 HR(I)=FLOAT(INP(I))*SF1 
L=L+1 
CALL DATIN(L,INP,FNAME,SF1,SF2,SAMRAT,CSE) 
DO 70 I=1,N 

70 EEG1 (·I) =FLOAT ( INP (I) ) *SF2 
L=L+1 
CALL DATIN(L,INP,FNAME,SF1,SF2,SAMRAT,CSE) 
DO 80 I=1,N 

80 EEG2(I)=FLOAT(INP(I))*SF2 
WRITE(l,90)SF1,SF2 

90 FORMAT('SF1= ',F8.6,' SF2" ',F8.6) 
L3=1 
IF(L2 .EQ. 0 .AND. L4 .LT. 31)RETURN 

240 CSE=.TRUE. 
CALL DATIN(L,INP,FNAME,SF1,SF2,SAMRAT,CSE) 
RETURN 

299 L3=0 
IF(BATNO .EQ. -1)GO TO 240 
WRITE ( 1, 300) 

300 FORMAT('ILLEGAL BATCH NO.-NO SHOULD BE BETWEEN (0) AND (191)') 
GO TO 10 
END 

c 
c-------------------------------------------------c 

6 
8 

10 

20 

100 
120 

c 

SUBROUTINE GETNAM(NAME) 
INTEGER*2. NAME(20) ,TBUFF(20) 
DATA TBUFF /'NONAMEGIVEN 
WRITE ( 1, 8) 
FORMAT('GIVE NAME OF FILE TO BE PROCESSED') 
READ(1,10)NAME 
FORMAT ( 20A2) 
IF(NAME(1) .EQ. ' ')GO TO 100 
DO 20 I=1,20 
TBUFF(I)=NAME(I) 
RETURN 
DO 120 I=1,20 
NAME(I)=TBUFF(I) 
RETURN 
END 

c--------------------------------------------------
~ 
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c 
·SUBROUTINE DATIN(IBATNO,IDATA,RNAME,SF1,SF2,SAMRAT,CSE) 

$INSERT SYSCOMI A$KEYS ' 
INTEGER*2 IDATA(1024).,0NAME(20) ,RNAME(20) ,TITLE(36) ;NME(6) 
INTEGER* 2 RWKEY ;NLEN ,NLEN2, PRIMNO, NBAT, IBATNO, IAA1 ( 4) 
LOGICAL OPEN,NEOPEN,CSE 
DATA NEOPEN /.FALSE./ 
RWKEY=1 
PRIMN0=1 
NLEN=40• 
NLEN2=NLEN/2 
IF (NEOPEN) GO TO 1300 
IF.(CSE) RETURN 

900 OPEN=OPEN$A(RWKEY,RNAME,NLEN,PRIMNO) 
IF-(•.NOT. OPEN)GO TO 1700 

·eo 1000 IC=1, NLEN2 
1000 ONAME(IC)=RNAME(IC) 

NEOPEN=; TRUE. 
READ(5,3000,END=1800,ERR=1900)NME,SF1,SF2 
READ (·5~ 3'010 ,END=1800, ERR=1900) MAXBAT 
READ(5;3020,END=1800,ERR=1900)TITLE 
DO 234. IL=l; 4 

234 IAA1(IL)=TITLE(IL+20) 
DECODE (8,236,IAA1)SAMRAT 

236 FORMAT(F8.4) 
1100 READ (5 ,END=l800,ERR=1900) NBAT 

READ(5iEND=1BOO,ERR=1900) (IDATA(I) ,!=1,1024) 
IF.(NBAT .NE. IBATNO)GO TO 1100 
NBAT=NBAT+l: 
RETURN 

1200 OPEN=CLOS$A(PRIMNO) 
IF.(.NOT. OPEN)GO TO 1600 
NEOPEN=.FALSE. 
RETURN 

1300 IF(CSE)GO TO 1200 
DO 1400 IC=1,NLEN2 

1400 IF(ONAME(IC) ;NE. RNAME(IC) )GO TO 1500 
IF(IBATNO .GE. NBAT)GO TO 1:100 

1500 OPEN=CLOS$A(PRIMNO) 
IF(OPEN)GO TO 900 

1600 WRITE(1,1610)0NAME 
l610' FORMAT (' *** CANT CLOSE FILE ' , 20A2,' ***') 

STOP 1 
1700 WRITE ( 1,1710) RNAME 
1710 FORMAT('*** CANT OPEN FILE ',20A2,' ***') 

STOP 2 
1800 WRITE(1,1810)RNAME 
1810 FORMAT('*** END OF FILE ',20A2,' ***') 

STOP-3 
1900 WRITE(1,1910)IBATNO,RNAME 
1910 FORMAT('*** ERROR TRYING TO READ BATCH ',I5,' FROM FILE ',20A2,' *** 

+.) 
STOP 4 

3000 FORMAT(6A2,2F8.6) 
3010 FORMAT(I4) 
3020 FORMAT(36A2) 

END 
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SUBPROGRAM NpRAPH.FTN 
c 
C ROUTINE TO ·PLOT A GRAPH ON ONE OF SIX PARTS OF 
C A •PAGE, THUS UPTO SIX' GRAPHS CAN BE PLOTTED ON 
C ONE ·PAGB IF CALLED SIX TIMES. 
c 
c 
c 
c 
c 
c 

X 
y 
ING 
IST 

HOLDS X~AXIS DATA 
HOLDS DATA TO. BE PLOTTED 
SPECIFIES PART OF'THE ·PAGE 
SPECIFIES THEY-AXIS LABEL 

TO PLOT GRAPH 

SUBROUTINE NGRAPH (N, X, Y, ING, IST) 
DIMENSION. X•(N). ;Y (N) 
INTEGER*2 ILAB1(7) ,ILAB2(2) ,ILAB3(2) 
DATA ILAB1,ILAB2,ILAB3/'amplitude (uV)' ,•acf ',''ccf '/ 
Xl=O. 
IF(MOD(ING,2) .EQ. l·)Xl=llO, 
Yl=S.7. . 
IF(ING .LT. 2)Yl=l15, 
IF(ING .GT. J)·Yl=O, 
X2=Xl+l00. 
Y2=Y1+_70, 
IF ( ING .GT. 0) GO TO l:S 
CALL PICCLE 

15 CALL WIN002'(Xl,X2,Yl,Y2) 
CALL CHASIZ(2.4,2.4) 
CALL GRAF(X,Y,N,O) 
AX1=X2-50,0 

c 

AX2=X1+10,0 
AY1=Yl+5.0 
AY2=Y1+20,0 
CALL MOVT02(AX1,AY1) 
CALL CHAHOL('time (sec)*.') 
CALL CHAANG ( 90 ,) 
CALL MOVT02(AX2,AY2) 
IF(IST .EQ, O)CALL CHAARR(ILAB1,7,2) 
IF(IST .EQ, l)CALL CHAARR(ILAB2,2,2) 
IF(IST .EQ. 2)CALL CHAARR(ILAB3,2,2) 
CALL CHAANG ( 0. ) 
RETURN 
END 

c-----------------------------------------------~---• c 
SUBROUTINE DEVICE(IDEV) 

c 
C THIS SUBROUTINE NOMINATES THE GRAPHICS DEVICE TO 
C BE USED FOR PLOTTING GRAPHS. 
c 

WRITE ( 1,10) 
10 FORMAT(·'ENTER 1 TOI VIEW 2 FOR CC906 3 FOR CCBJI'l 

READ ( 1, *).IDEV 
IF(IDEV .EQ, l)CALL T4010 
IF(IDEV .EQ, 2)CALL CC906 
IF(IDEV ,EQ, ))CALL CC81 
RETURN 
END 
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SUBPROGRAM' CORREL. FTN• 
c 
C THIS PROGRAM.CONTAINS: THREE ,SUBPROGRAMS: 
C ACF - COMPUTES A 513 POINT ACF FROM A 1024-POINT •DATA 
C (FOR POSITIVE LAGS ONLY) 
C :sMEAN - TAKES OFF THE D.C ·OR MEAN VALUE FROM THE DATA 
C BEFORE ACF OR XCF' IS CALCULATED 
C XCF - COMPUTES A 1025-POINT XCF FROM TWO, 1024-POINT 
C DATA (513~POINT XCF IS CALCULATED FOR BOTH 
C P,OSITIVE AND •NEGATIVE LAGS) 
c 

SUBROUTINE ACF (NCORL, DATA, AUTQCF.) 
C THIS ·suBROUTINE .COMPUTES AND RETURNS TO THE MAIN PROGRAM 
C THE AUTOCORRELATION FUNCTION OF AN NPOINT-DATA 

c 

DIMENSION DATA'(-1024) ,AUTOCF (NCORL) 
DOUBLE PRECISION STORE 
INTEGER* 2 Z1 
COMMON /ICOV/ICVO 
NPOINT=1024 
CALL SMEAN(NPOINT,DATA,AMEAN) 
DO 25 I=1,NCORL 
II=I'-1 
STORE=O• 
Z1=NPOINT-II 
DO 20 J=1,Z1 

20 STORE=STORE+DATA(J)*DATA(J+II) 
25 AUTOCF(I)=STORE 

IF(ICVO .EQ. 1)RETURN 
STORE=ABS(AUTOCF(1)) 
DO 30 I=1,NCORL 

30 AUTOCF(I)=AUTOCF(I)/STORE 
RETURN 
END 

c-------~------------------------------------------
c 

SUBROUTINE SMEAN(NPTS,DATA,RMEAN) 
C THIS SUBROUTINE COMPUTES AND REMOVES THE MEAN 
C OR DC VALUE FROM AN NPOINT-DATA 

c 

DIMENSION DATA(NPTS) 
DOUBLE PRECISION RMEAN 
RMEAN=O. 
DO 20 I=1,NPTS 

20 RMEAN=RMEAN+DATA(I) 
RMEAN=RMEAN/FLOAT(NPTS) 
DO 30 I='1,NPTS 

30 DATA'(!) =DATA (I) -RMEAN 
RETURN 
END 

c--------------------------------------------------c 
SUBROUTINE XCF(NCORL,DATA1,DATA2,CCF) 

C THIS SUBROUTINE COMPUTES THE CROSS CORRELATION FUNCTION 
C OF TWO NPOINT DATA 

DIMENSION DATA1(1024) ,DATA2(1024) 
DIMENSION CCF (·1025) 
DOUBLE PRECISION SUM1,SUM2,A,B,BIG 
COMMON /ICOV/ICVO 
NPOINT=1024 
NCORL1"NCORL+l 
NPT=NPOINT+1 
CALL SMEAN(NPOINT,DATA1,AMEAN1) 
CALL SMEAN(NPOINT,DATA2,AMEAN2) 
A=O. 
B=O. 
DO 20 I=1,NCORL 
Il=I-1 
I2=I+NCORL-1 
I3=NCORL1-I 
SUM1=0. 
SUM2=0. 
J=NPOINT-I1 
DO 10 K=1,J 
SUM1=SUM1+DATA1 (K) *DATA2 (K+Il) 

10 SUM2=SUM2+DATA2(K)*DATA1(K+I1) 
CCF(I2)=SUM1 

20 CCF(I3)=SUM2 
IF(ICVO .EQ. 1)GO TO 40 
DO 30 L=1,NPOINT 
A=A+DATA1(L)*DATA1(L) 
B=B+DATA2(L)*DATA2(L) 

30 CONTINUE 
BIG=SQRT(A*B) 
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DO 25 I=l,NPT 
25 CCF (I) =CCF (I) /BIG 

RETURN 
40 DO 50 I=l,NPT 
50 CCF (I) =CCF ( H/NPOINT 

RETURN 
END 
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IPROGRAM USED TO ANALYZE THE PERFORMANCE OF 
iOF MODELS • tREAD DATA AND REMOVE THE MEAN VALUES 
i 
READ 'MTB.DATA' Cl-CS 
MEAN Cl Kl 
MEAN C2 K2 
MEAN C) K3 
MEAN C4 K4 
MEAN CS KS 
SUBTRACT Kl Cl Cl 
SUBTRACT K2 C2 C2 
SUBTRACT K3 C3 C3 
SUBTRACT K4 C4 C4 
SUBTRACT KS CS CS 
NAME Cl= I VL' ,C2= I VR' ,Cl= I BL ·~,C4= I BR I ,CS= I EEG I 

NAME C6='VLD',C7='VRD',CB='HLD',C9='HRD',Cl0='EEGD' 
NAME CBO='Kl' ,CBl='K2' ,CB2='K3' ,C83=''K4' 
NAME cB4='TKl',CBS='TK2',CB6='TK3',CB7='TK4' 
NAME CBB='VAR{E) ',CB9='RKSQ',C90='CK',C9l='FK' 
NAME C92='MODEL' 
LET Cll='HL'-'HR' 
LET Cl2='HL'*'HR' 
LET Cl3='VL'*'VL' 
LET Cl4='VL'-'VR' 

• IPERFORM OLS ANALYSIS ON DATA USING THE MACRO 'ESTIMATE.MTB' 

• EXEC 'ESTIMATE.MTB' 1 
STOP 

PROGRMI DIFF. MTB 

I 
IPROGRAM USED TO ANALYZE THE PERFORMANCE OF MODELS 
0: FOR THE OLS WITH DIFFERENCED DATA METHOD 
I 
READ 'MTB.DATA' Cl-CS 
MEAN Cl Kl 
MEAN C2 K2 
MEAN C3 K) 
MEAN C4 K4 
MEAN CS KS 
SUBTRACT Kl Cl Cl 
SUBTRACT K2 C2 C2 
SUBTRACT K3 C) Cl 
SUBTRACT K4 C4 C4 
SUBTRACT KS CS CS 
NAME C6='VL',C7='VR',C8='HL',C9='HR',Cl0='EEG' 
NAME CB0='Kl',CBl='K2',CB2='K3',CB3='K4' 
NAME CB4='TKl',CBS='TK2',CB6='TK3',CB7='TK4' 
NAME C88='VAR{E) ',C89C.'RKSQ' ,C90='CK' ,C9l='FK' 
NAME C92='MODEL' 
I 
IDIFFERENCE THE DATA 
I 
DIFF Cl, 'VL' 
DIFF C2, 'VR' 
DIFF C3,'HL' 
DIFF C4, 'HR' 
DIFF CS, 'EEG' 
LET Cll='HL'-'HR' 
LET Cl2='HL'*'HR' 
LET Cl3='VL'*'VL' 
LET Cl4='VL'-'VR' 
i 
iPERFORM OLS ANALYSIS ON THE DIFFERENCED DATA 
I USING THE MACRO 'ESTIMATE.MTB' 
I 
I 
EXEC 'ESTIMATE.MTB' 1 
STOP 

A102 



PROGRAM OADIFF.MTB 

• I PROGRAM ·USED TO PERFORM· •PICTORIAL COMPARISON 
IOF MODELS . • tREAD DATA AND REMOVE THE· MEAN VALUES • 

• READ 'OADIFF.DATA' Cl-CS 
MEAN Cl Kl 
MEAN C2 K2 
MEAN CJ K3 
MEAN C4 K4 
MEAN CS K5 
SUBTRACT Kl Cl Cl 
SUBTRACT K2 C2 C2 
SUBTRACT KJ CJ CJ 
SUBTRACT K4' C4 C4 
SUBTRACT KS CS CS 
NAME Cl='VL',C2='VR',C3='HL',C4='HR',C5='EEG' 
LET Cl:l='HL'-'HR' 
LET Cl2='HL'*'HR' 
LET Cl'l='VL'*'VL' 
LET Cl4='VL'-'VR' 

• #PERFORM OLS ANALYSIS ON THE DATA USING THE 
I VARIOUS MODELS 
I 
BRIEF 2 
REGRESS 'EEG' 1 'VL' Cl9r 
NOCONSTANT.J 
COEFF C2lr 
XPXINV Ml. 
LET C4l=C2l(l)*'VL' 
BRIEF 2 . 
REGRESS 'EEG' 1 'VR' Cl9r 
NOCONSTANTr 
COEFF C22r 
XPXINV Ml. 
LET C42=C22(l)*'VR' 
BRIEF 2 
REGRESS 'EEG' 1 'HL' Cl9r 
NOCONSTANTJ 
COEFF C23r 
XPXINV Ml. 
LET C43=C23(l)*'HL' 
BRIEF 2 
REGRESS 'EEG' 1 'HR' Cl9J 
NOCONSTANTJ 
COEFF C24r 
XPXINV Ml. 
LET C44=C24(l)*'HR' 
BRIEF 2 
REGRESS 'EEG' 2 'VL','HL' Cl9r 
NOCONSTANTr 
COEFF C25J 
XPXINV Ml. 
LET C4S=C2S(l)*'VL'+C25(2)*'HL' 
BRIEF 2 
REGRESS 'EEG' 2 'VL'i'HR' Cl9J 
NOCONSTANTJ 
COEFF C26r 
XPXINV Ml. 
LET C46=C26(l)*'VL'+C26(2)*'HR' 
BRIEF 2 
REGRESS 'EEG' 2 'VR','HL' Cl9r 
NOCONSTANTJ 
COEFF C27r 
XPXINV Ml, 
LET C47=C27(l)*'VR'+C27(2)*'HL' 
BRIEF 2 
REGRESS· 'EEG' 2 'VR', 'HR' Cl9r 
NOCONSTANTr 
COEFF C28r 
XPXINV Ml. 
LET C48=C28(l)*'VR'+C28(2)*'HR' 
BRIEF 2 
REGRESS 'EEG' 2 'VL', 'VR' Cl9r 
NOCONSTANTr 
COEFF C29r 
XPXINV Ml. 
LET C49=C29(l)*'VL'+C29(2)*'VR' 
BRIEF 2 
REGRESS 'EEG' 2 'HL','RR' Cl9r 
NOCONSTANTr 
COEFF C30r 
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XPXINV Ml. 
LET C50=C30(1)*'HL'+C30(2)·*'BR'· 
BRIEF 2 
REGRESS 'EEG' 2 'VL' ,CH Cl91 
NOCONSTANT; 
COEFF C31; 
XPXINV Ml. 
LET C51=C31 (1) *'VL'+C31-{2)*Cll 
BRIEF 2 . 
REGRESS ''EEG' 3 'VL.', 'HL''• 'HR' C19r 
NOCONSTANT; 
COEFF ·C32; 
XPXINV Ml. 
LET C52=C32 (1) * 'VL' +C32 (·2)•* 'RL' +C32 ( 3) *'HR' 
BRIEF 2 
REGRESS 'EEG' 3 'VL','VR'.,'HL' C19r 
NOCONSTANT1 
COEFF C33; 
XPXINV Mi. 
LETC53=C33(1)*'VL'+C33(2)*'VR'+C33(3)*'HL' 
BRIEF 2 
REGRESS 'EEG' 3 'VL','VR','HR'C19; 
NOCONSTANT; 
COEFF ·C34; 
XPXINV Ml. 
LET C54=C34 ( 1) * 'VL' +C34'( 2).* 'VR' +C34 ( 3) *'HR' 
BRIEF 2 
REGRESS 'EEG' 3 'VR','BL','HR' C19l 
NOCONSTANT; 
COEFF .C35; 
XPXINV Ml. 
LET CSS=C35(1)*'VR'+C35(2)*'HL'+C35(3)*'HR' 
BRIEF 2 
REGRESS 'EEG' 4 'VL','VR','HL','HR' Cl9J 
NOCONSTANT; 
COEFF C36; 
XPXINV M1, 
LET CS6=C36(1)*'VL'+C36(2)*'VR'+C36(3)*'RL'+C36(4)*'HR' 
BRIEF 2 
REGRESS 'EEG' 4 'VL',C13,'RL','HR' C191 
NOCONSTANT; 
COEFF C37; 
XPXINV Ml. 
LET-C57=C37(1)*'VL'+C37(2)*C13+C37(3)*'BL'+C37(4)*'BR' 
BRIEF 2 
REGRESS 'EEG' 4 'VL', 'RR' ,C14,C11 C191 
NOCONSTANT; 
COEFF C38r 
XPXINV Ml. 
LET C58=C38(1)*'VL'+C38(2)*'BR'+C38(3)*C14+C38(4)*C11 
BRIEF 2 
REGRESS 'EEG' 4 'VL' ,C12, 'RL', 'RR' C191 
NOCONSTANT; 
COEFF C39; 
XPXINV Ml. 
LET C59=C39(1)*'VL'+C39(2)*C12+C39(3)*'BL'+C39(4)*'HR' 

• fOBTAIN THE OA DIFFERENCES 

• LET C61=C45-C41 
LET C62=C52-C45 
LET C63=C56-C52 
LET C64=C58-C52 
LET C65=C59-CS2 
LET C1l=C48-C42 
LET C72=C55-C48 
LET C73=C56-C55 
LET C74=C58-CSS 
LET C75=C59-C55 • IOBTAIN THE CORRECTED -EEGS 

• LET C81='EEG'-C41 
LET C82='EEG'-C45 
LET C83='EEG'-C52 
LET C84='EEG'-C56 
LET C85='EEG'-CS8 
LET C86='EEG'-C59 
LET C87='EEG'-C42 
LET C88='EEG'-C48 
LET C89='EEG'-CSS 
LET C92='EEG'-C42 
LET C93='EEG'-C43 
LET C94='EEG'-C44 
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I 
iSAVE BOTH THE OA DIFFERENCES AND THE EEGS FOR FURTHER 
I PROCESSING. . 
0 
WRITE 'OADIFFOLD.DATA' C4l,C61-C65 
WRITE 'OAOLD. DATA' C4l,C45 ,C52 ,C56 ,C58 ,C59 
WRITE 'OADIFFNEW.DATA' C42;C7l-C75' 
WRITE 'OANEW, DATA' C42 ,C48',C55 ,C56 ,C58 ,C59 
WRITE 'EEGCOLD.DATA' C81-C86 
WRITE 'EEGCNEW.DATA'' C87-C89,C84-C86 
STOP 
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PROGRAM OADIFF .• MTB. 

0 
IPROGRAM USED FOR THE PRELIMINARY COMPARISON OF 
OMODELS, BY THE PICTORIAL METHOD • 

• OREAD DATA AND THE MEAN VALUES • • 

READ 'OA.DATA' Cl-C6 
MEAN Cl Kl 
MEAN C2 K2 
MEAN C3 K3 
MEAN C4 K4 
MEAN CS KS 
SUBTRACT Kl Cl Cl 
SUBTRACT K2 C2 C2 
SUBTRACT K3 C3 C3 
SUBTRACT K4 C4 C4 
SUBTRACT KS CS CS 
NAME Cl='VL',C2a'VR',C3=~HL',C4='HR',C5='EEG' 
LET Cll~'HL'-'HR' 
LET Cl2~'HL'*'HR' 
LET Cl3~'VL'*'VL' 
LET Cl4~'VL'-'VR' 
0 
i PERFORM OLS ANALYSIS ON DATA USING MODELS 2A, 3A, 4A 
I 4B, 4D, AND 4E, AND FOR EACH MODEL OBTAIN THE OA 
0 ESTIMATE 

• BRIEF 2 
REGRESS 'EEG' 2 'VL', 'HL' Cl9; 
NOCONBTANT; 
COEFF C2S; 
XPXINV Ml. 
LET C4S=C2S(l)*'VL'+C2S(2)*'HL' 
BRIEF 2 
REGRESS 'EEG' 3 'VL·', 'HL', 'HR' Cl9; 
NOCONSTANT; 
COEFF C32; 
XPXINV Ml. 
LET CS2=C32(l)*'VL'+C32(2)*'HL'+C32(3)*'HR' 
BRIEF 2 
REGRESS 'EEG' 4 'VL·','VR','HL','BR' Cl9; 
NOCONSTANT; 
COEFF C36; 
XPXINV Ml. 
LET CS6=C36(l)*'VL'+C36(2)*'VR'+C36(3)*'HL'+C36(4)*'HR' 
BRIEF 2 
REGRESS 'EEG' 4 'VL' ,Cl3, 'HL', 'BR' Cl9; 
NOCONSTANT; 
COEFF C37; 
XPXINV Ml, 
LET CS7=C37 ( 1) * 'VL '+C37 ( 2) *Cl3+C37 ( 3)·* 'HL' +C37 ( 4) *'HR' 
BRIEF 2 
REGRESS 'EEG' 4 'VL',Cl2,'BL','HR' Cl9; 
NOCONSTANT; 
COEFF C39; 
XPXINV Ml. 
LET CS9=C39(l)*'VL'+C39(2)*Cl2+C39(3)*'HL'+C39(4)*'HR' 
BRIEF 2 
REGRESS 'EEG' 4 'VL',C6,'HL','HR' Cl9; 
NOCONSTANT; 
COEFF C40, 
LET C60=C40(l)*'VL'+C40(2)*C6+C40(3)*'HL'+C40(4)*'HR' 

• OOBTAIN OA DIFFERENCES AND SAVE BOTH OA DIFFERENCES 
lAND OAS FOR FURTHER ANALYSIS • 

• LET C62=CS2-C4S 
LET C63=C56-C52 
LET C64=C57-C52 
LET C6S=CS9-CS2 
LET C66=C60-CS2 
WRITE 'OADIFFOLD.DATA' C62-C66,C62 
WRITE 'OAOLD•DATA' C4S,CS2,C56,C57,C59,C60 
'!TOP 
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PROGRAM OLSAR.MTB . -
t: PROGRAM IS USED TO STUDY THE OLS WITH RAil DATA, OLS WITH DIYFERECF.D DATA, 

lAND AR(l) ESTIMATION-;r.reTHODS -USINGMODELSJ0;4A~--
lAND 4D, AND ALLOWS COMPARISON: OF THE OFF-LINE 
lAND ON-LINE RESULST 

• tREAD DATA AND REMOVE MEAN VALUES • 

• READ 'MTB.DATA' Cl-CS 
MEAN Cl Kl 
MEAN C2 K2 
MEAN CJ KJ 
MEAN C4 K4 
MEAN CS KS 
SUBTRACT Kl Cl Cl 
SUBTRACT K2 C2 C2 
SUBTRACT KJ CJ CJ 
SUBTRACT K4 C4 C4 
SUBTRACT KS CS CS 
NAME Cl='VL',C2~'VR',C3='HL',C4='9R',CS='E£G' 
NAME C6='VLL',C7='VRL',C8='HLL',C9='HRL',Cl0='EEGL' 
NAME ClS='VLST',Cl6='VRST',Cl7='HLST',Cl8='HRST' 
NAME Cl9='EBGST';C80='VLD' 
NAME Cll='VRD' ,Cl2='HLD' ,ClJ='HRD' ,Cl4='EEGD' • tDIFFERENCE THE DATA 
i 
DIFF 'VL','VLD' 
DIFF 'VR', 'VRD' 
DIFF 'HL','HLD' 
OIFF 'HR' ,-'HRD' 
DIFF 'BBG','BBGD' 
LET C8l='BL''*'HR' 
LET C82='HLD'*'HRD' 

• t·PERFORM OLS IIITH RAW AND WITH DIFHRENCEO DATA, AND AR(•l) ANALYSIS ON DATA 

OUSING MODEL 3D, AND OBTAIN ESTIMATES OF OAS AND EEGCS • 

• BRIEF 2 
REGRESS 'BEG' 3 'VR','HL','BR' C9S: 
NOCONSTANT: 
MSE Kl: 
COBFF C24: 
XPXINV Ml. 
LET C5l=SQRT(Kl)*C95 
LET C54='EEG'-C51 
BRIEF 2 
REGRESS 'EEGD' 3 'VRD', 'HLD', 'HRD' C9.5 1 
NOCONSTANT: 
MSE Kl: 
COEFF C24: 
XPXINV Ml. 
LET C64=C24 (1)'* 'VR '+C24 (2) * 'HL' +C24 (3) *'HR' 
LET C6l='EEG'-C64 
LET C22=C51 
ACF 1 C22 ,C97 
LET Cll='VR' 
LET C32='HL' 
LET C33= 0BR' 
EXEC 'GLSJ.MTB' 3 
LET C7l=C22 
LET C7 4= '.EEG' -C71 

• IREPEAT ABOVE OPERATIONS USING MODEL 4A • BRIEF 2 
REGRESS I EEG I 4 I VL I , I VR I, 1 RL'', I HR I C95 ~ 
NOCONSTANT: 
MSE Kl: 
COEFF C24: 
XPXINV Ml. 
LET C52=SQRT(Kl)*C95 
LET CS5='EEG'-CS2 
BRIEF 2 
REGRESS 'EEGD' 4 'VLO','VRD','HLD' ,'HRD' C95: 
NOCONSTANT: 
MSE Kl: 
COEFF C24: 
XPXINV Ml. 
LET C65=C24 (1•) * 'VL' +C24 ( 2) * 'VR' +C24 ( 3) * 'HL' +C24 ( 4) *'HR' 
LET C62='EBG'-C65 
LET C22=C52 
ACF 1 C22,C97 
LET C3l='VL' 
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LET C3l~'VL''' 

LET C32~'VR'' 
LET C33~'BL'' 
LET C34='BR' 
EKEC 'GLS3,,MTB' 3 
LET cn~c22 
LET C75~'EEG'-C72 
i 
IREPEAT ABOVE OPERATIONS USING MODEL 40 

• BRIEF 2 
REGRESS 'EEG' 4 'VR' ,C8l,'HL', 'HR' C95r 
NOCONSTANTJ 
MSE Klr 
COEFF C24r 
KPUNV Ml. 
LET C53=SQRT(Kl)*C95 
LET C56='EEG'-C53 
BRIEF 2 
REGRESS 'EEGD' 4 'VRD' ,C82, 'HLD', 'HRD' C95r 
NOCONSTANT7 
MSE Klr 
COEFF C24: 
KPXINV Ml. 
LET C66=C24(l)*'VR'+C24(2)*C8l+C24(3)*'BL'+C24(4)*'HR' 
LET C63='EEG'-C66 
LET C22=C53 
ACF 1 C22 ,C97 
LET C3l='VR' 
LET C32=C81 
LET C33='BL' 
LET C34='HR' 
EKEC 'GLS3.MTB' 3 
LET C73=C22 
LET C76~'EEG'-C73 
I 
ISAVE PROCESSED DATA FOR LATER USE • 

• WRITE 'OLS3D4A4D.DATA' C54,C5l,C55,C52,C56,C53 
WRITE 'DIF3D4A4D.DATA' C64,C6l,C65,C62,C66,C63 
WRITE 'ARS3D4A4D.DATA' C74,!=7l,C75,C72,C76,C73 
STOP 
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tPROGRAM PERFORMS OLS ANALYSIS ON' DATA FOR 
tSEVERAL MODELS • 

• SSQ 'EEG' K20 
•BRIEF 2 
REGRESS 'EEG' 1 'VL' Cl9; 
NOCONSTANT; 
MBE K1; 
COEFF C21r 
XPXINV M1. 
LET K31=1023.0*K1 
LET C88(1)=K31/1022.0 
DIAGONAL M1 ,C60 
LET C41=C88(1)*C60 
BRIEF 2 
REGRESS 'EEG' 1 'VR' C19r 
NOCONSTANTr 
MSE K2r 
COEFF C22r 
XPXINV M1. 
LET K32=1023.0*K2 
LET C88(2)=K32/1022.0 
DIAGONAL M1,C60 
LET C42=C88 ( 2).*C60 
BRIEF 2 
REGRESS 'EEG' 1 'HL' C19r 
NOCONSTANTr 
MSE K3r 
COEFF C23r 
XPXINV M1. 
LET K33=1023.0*K3 
LET C88(3)=K33/1022.0 
DIAGONAL M1,C60 
LET C43=C88(3)*C60 
REGRESS 'EEG' 1 'HR' C19r 
NOCONSTANTr 
MSE K4r 
COEFF C24r 
XPXINV Ml. 
LET K34=1023.0*K4 
LET C88(4)=K34/1022.0 
DIAGONAL M1,C60 
LET C44=C88(4)*C60 
BRIEF 2 
REGRESS 'EEG' 2 'VL','HL' C19r 
NOCONSTANTr 
MSE KS; 
COEFF C25; 
XPXINV M1. 
LET K35=1022.0*K5 
LET C88(5)=K35/1021.0 
DIAGONAL M1,C60 
LET C45=C88(5)*C60 
BRIEF 2 
REGRESS 'EEG' 2 'VL','HR' C19r 
NOCONSTANT; 
MBE K67 
COEFF C26r 
XPXINV Ml. 
LET K36=1022.0*K6 
LET C88(6)=K36/1021.0 
DIAGONAL M1,C60 
LET C46=C88(6)*C60 
BRIEF 2 
REGRESS 'EEG' 2 'VR','HL' C19r 
NOCONSTANT; 
MSE K7; 
COEFF C27r 
XPXINV Ml. 
LET K37=1022.0*K7 
LET C88(7)=K37/1021.0 
DIAGONAL M1,C60 
LET C47=C88(7)*C60 
BRIEF 2 
REGRESS 'EEG' 2 'VR','HR' C19; 
NOCONSTANTr 
MBE K8; 
COEFF C28r 
XPXINV M1. 
LET K38=1022.0*K8 
LET C88(8)=K38/1021.0 
DIAGONAL M1,C60 
LET C48=C88(8)*C60 
8RIEF 2 
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REGRESS 'EEG' 2 'ITii' , 'VR' Cl9: 
NOCONSTANT: 
MSE K9r 
COEFFC29r 
XPXINV Ml. 
LET K39=1022,0*K9 
LET C88 (9) =K39/1021. 0 
DIAGONAL Ml,C60 
LET C49=C88(9)*C60 
BRIEF 2 
REGRESS 'EEG' 2 'HL','HR' Cl9: 
NOCONSTANT: 
MSE KlO: 
COEFF•C30: 
XPXINV 'ML 
LET K40=l022. O*KlO 
LET C88,(10)=K40/1021. 0 
DIAGONAL Ml,C60 
LET'CSO=C88(10)*C60 
BRIEF 2 
REGRESS 'EEG' 2 'VL' ,Cll C19: 
NOCONSTANTr 
MSE <Kll: 
COEFF C31: 
XPXINV Ml. 
LET K41=1022.0*Kll 
LET CBB (11) =KH/1021. 0 
DIAGONAL Ml,C60 
LET .C5l=C88(ll)*C60 
BRIEF 2 
REGRESS 'EEG' 3 'VL','HL','HR' Cl9r 
NOCONSTANTr 
MSE KU: 
COEFF C32r 
XPXINV Ml. 
LET K42=1021.0*Kl2 
LET C88(12)=K42/l020.0 
DIAGONAL Ml,C60 
LET C52=C88(12)*C60 
BRIEF 2 
REGRESS 'EEG' 3 'VL','VR','BL' Cl9: 
NOCONSTANT: 
MSE H3: 
COEFF C33: 
XPXINV Ml. 
LET K43=1021.0*Kl3 
LET C88(13)=K43/1020.0 
DIAGONAL Ml,C60 
LET C53=C88(13)*C60 
REGRESS 'EEG' 3 'VL', 'VR', 'HR' Cl9r 
NOCONSTANT: 
MSE Kl4: 
COEFF C34: 
XPXINV Ml. 
LET K44=102l.O*Kl4 
LET C88(14)=K44il020.0 
DIAGONAL <Ml,C60 
LET C54=C88(14)*C60 
BRIEF 2 
REGRESS 'EEG' 3 1 VR 1 1 1 HL','H~' Cl9: 
NOCONSTANT: 
MSE Kl5r 
COEFF C35: 
XPXINV Ml. 
LET K45=1021.0*K15 
LET C88(15)=K45/1020.0 
DIAGONAL Ml,C60 
LET C55=C88(15)*C60 
BRIEF 2 
REGRESS 'EEG' 4 'VL','VR','BL','BR' Cl9: 
NOCONSTANT: 
MSE Kl6: 
COEFF C36: 
XPXINV Ml. 
LET K46=1020.0*Kl6 
LET C88(l6)=K46/1019.0 
DIAGONAL Ml,C60 
PRINT C36,C60 
PRINT Kl6 
LET C56=C88(16)*C60 
BRIEF 2 
REGRESS 'EEG' 4 'VL' ,Cl3, 'HL', 'HR' Cl9: 
NOCONSTANT: 
MSEK17r AllO 



COEFF CJ7,, 
XPXINV M1. 
LET K47=1020.0*K17 
LET C88(17)=K47/1019.0 
DIAGONAL M1,C60 
LET C57=C88(17)*C60 
BRIEF 2 
REGRESS 'BEG' 4 'VL' ,'HR',Cl4,C11 C19: 
NOCONSTANT7 
MSE Kl81 
COEFF CJ87 
XPXINV Ml. 
LET K48=1020.0*Kl8 
LET C88(18)=K48/1019.0 
DIAGONAL M1,C60 
LET C58=C88(18)*C60 
BRIEF 2 
REGRESS 'EEG' 4 'VL',C12,'HL','HR' C19J 
NOCONSTANT1 
MSE K19r 
COEFF C39r 
XPXINV Ml. 
LET K49=1020. O*Kl9, 
LET COS.( 19).=K49/1019. 0 
DIAGONAL Ml,C60 
LET C59=C88(19)*C60 
GENERATE l,STBP 1,TO 19,PUT IN C92 

• iOBTAIN THE STANDARD ERRORS OF THE PARAMETER 
IESTIMATES FOR THE VARIOUS MODELS • 

• LET C84(1).=C21(1)/SQRT(C41(1)) 
LET C84 ( 2) =C22 ( 1)/SQRT (C42 ( 1)) 
LET C84(3)=C23(1)/SQRT(C43(1)) 
LET C84 (4) =C24 (1)/SQRT(C44 (1)) 
LET C84(5)=C25(l:)/SORT(C45(1)) 
LET C85(5)=C25(2)/SORT(C45(2)) 
LET C84(6)=C26(1)/SQRT(C46(1)) 
LET C85(6)=C26(2)/SQRT(C46(2)) 
LET C84(7)=C27(1)/SQRT(C47(1)) 
LET C85(7)=C27(2)/SQRT(C47(2)) 
LET C84(8)=C28(1)/SORT(C48(1)) 
LET C85(8)=C28(2)/SORT(C48(2)) 
LET C84(9)=C29(1)/SORT(C49(l)) 
LET C85(9).=C29(2)/SQRT(C49(2)) 
LET C84(10)=C30(1)/SQRT(C50(1)) 
LET C85(10)=C30(2)/SQRT(C50(2)) 
LET C84(1l)=C31(1)/SORT(C51(1)) 
LET C85(1l)=C3l(2)/SQRT(C51(2)) 
LET C84(12)=C32(1)/SQRT(C52(1)) 
LET C85(12)=C32(2)/SQRT(C52(2)) 
LET C86(12)=C32(3)/SQRT(C52(3)) 
LET C84(13)=C33(1)/SQRT(C53(1)) 
LET C85(13)=C33(2)/SQRT(C53(2)) 
LET C86(13)=C33(3)/SQRT(C53(3)) 
LET C84(14)=C34(1)/SQRT(C54(1)) 
LET C85(14)=C34(2)/SQRT(C54(2)) 
LET C86(14)=C34(3)/SQRT(C54'(3)) 
LET C84(15)=C35(1)/SQRT(C55(1)) 
LET C85(15)=C35(2)/SQRT(C55(2)) 
LET C86(15)=C35(3)/SQRT(C55(3)o) 
LET C84(16)=C36(1)/SQRT(C56(1).) 
LET C85(16)=C36(2)/SQRT(C56(2)) 
LET C86(16)=C36(3)/SQRT(C56(3)) 
LET C87(16)=C36(4)/SQRT(C56(4)) 
LET C84(17)=C37(1)/SQRT(C57(1•)) 
LET C85(17)=C37(2)/SQRT(C57(2)) 
LET C86(17)=C37(3)/SQRT(C57(3)) 
LET C87(17)=C37(4)/SQRT(C57(4)) 
LET C84(18)=C38(1)/SQRT(C58(1)) 
LET C85(18)=C38(2)/SQRT(C58(2)·) 
LET C86(18)=C38(3)/SQRT(C58(3)) 
LET C87(18)=C38(4)/SQRT(C58(4)) 
LET C84(19)=C39(1)/SQRT(C59(1)) 
LET C85(19)=C39(2)/SQRT(C59(2)) 
LET C86(19)=C39(3)/SQRT(C59(3)) 
LET C87(19)=C39(4)/SQRT(C59(4)) 

• tOBTAIN AND PRINT THE PARAMETER ESTIMATES OF THE VARIOUS 
tMODELS • 

• LET C80(l)=C21(1) 
LET C80(2)=C22(1) 
LET C80(3)=C23(1) 
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LET C80 (4)=C24 ( 1) 
LET C80(5)=C25(1) 
LET C81(5)=C25(2) 
LET C80(6)=C26(1) 
LET C81(6)=C26(2) 
LET C80(7)=C27(1) 
LET C81(7)=C27(2) 
LET C80 ( 8) =C28 ( 1) 
LET C81(8)=C28(2) 
LET C80(9)=C29(1) 
LET C81(9)=C29(2) 
LET.C80(10)=C30(1) 
LET C81(10)=C30(2) 
LET C80(11)=C31(1) 
LET C81(11)•C31(2) 
LET C80(12)•C32(1) 
LET C81(12)=C32(2) 
LET C82(12)=C32(3) 
LET C80(13)=C33(1). 
LET C81(13)=C33(2) 
LET C82(13)•C33(3) 
LET C80(14)=C34(1) 
LET C81(14)=C34(2) 
LET C82(14)=C34(3) 
LET C80(15)•C35(1) 
LET C81(15)=C35(2) 
LET C82(15)=C35(3) 
LET C80(16)•C36(1) 
LET C81(16)=C36(2) 
LET C82(16)=C36(3) 
LET C83(16)•C36(4) 
LET C80 (17).=C37.('1) 
LET C81 (17) =C37 ( 2) 
LET C82 ( 17).=C37.( 3) 
LET C83(17)=C37(4) 
LET C80(18)•C38(1) 
LET C81(18)=C38(2) 
LET C82(18)•C38(3) 
LET C83(18)=C38(4) 
LET C80(19)=C39(1<) 
LET C81(19) =C39 (2) 
LET C82(o19) =C39 ( 3) 
LET C83(19)=C39(4) 
PRINT C92,C80-C87 
f 
tOBTAIN AND PRINT THE TEST STATISTICS FOR THE VARIOUS 
fMODELS 
t 
LET C89('1)=1.0,-K31/K20 
LET C89(2)=1.0-K32/K20 
LET C89(3)=1.0~K33/K20 
LET C89(4)=1.0-K34/K20 
LET K70=102J.Oj1022.~ 
LET C89.(5)=1.0-K70*K35/K20 
LET C89(6)=1.0-K70*K36/K20 
LET C89.(7)•1.0-K70*K37/K20 
LET C89'(8) =1. O-K70*K38/K20 
LET C89(9)=1.0-K70*K39/K20 
LET C89(10)=1.0-K70*K40/K20 
LET C89,(11) =1. 0-K70*K41/K20 
LET K70=1023. 0/1021.0 
LET C89(12)=1.0-K70*K42/K20 
LET C89(13)=1.0~K70*K43/K20 
LET C89(14)=1.0-K70*K44/K20 
LET C89(15)=1.0-K70*K45/K20 
LET C89 (16) =1. o~K70_*K46/K20 
LET C89(17)=1.0-K70*K47/K20 
LET C89(18)=1.0-K70*K48/K20 
LET C89(19)=1.0-K70*K49/K20 
LET K70=1022.0 
LET C90(1)=(K31/C88(16))-K70 
LET C90 ( 2) = (K32/C88 ( 16).) -K70 
LET C90(3)=(K33/C88(16))-K70 
LET C90(4)=(K34/C88(16))-K70 
LET K70=1020.0 
LET C90(5) =(K35/C88(16);)-K70 
LET C90(6)=(K36/C88(16))-K70 
LET C90 ( 7) = (K37 /C88 (<16).) -K70 
LET C90(8)=(K38/C88(16))-K70 
LET C90(9)=(K39/C88(16))-K70 
LET C~0(10)=(K40/C88(16))-K70 
LET C90(ll)=(K41/C88(16)).,;K70 
LET K70=1018.0 
LET C90 ( 12) = (K42/C88 ( 16)) -K70 
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LET C90 ( 12) = (K42/,C88.(16)) -K70 
LET C90(13)=(K43/C88(I6) l-K70 
LET C90 ( 14) = (K44/C88}16)•)-K70 
LET C90(15)=(K45/C88(16)•)-K70 
LET K70=1016.0 
LET C90 ( 16) = (K46/,C88 ( I6)i) -K70 
LET C90 ( 17) = (K4 7 /C88 (Uli) -K70 
LET C90 ( 18) = (K48/,C88,( 16)!) -K70 
LET C90 ( 19) = (K49/C88 ('16)') "'-K70 
LET K70=1021.0 . 
LET C91 ( 5) =K7.0* (K31-K35)/K35 
LET C91(6)=K70*(K31-K36)/K36 
LET C91(7)=K70*(K32-K37)/K37 
LET C91 (8) =K70* (K32-K38)•/K38 
LET C91 ( 9) =K70* (K3l-K39)/K39 
LET C91(10);.K70*(K33-K40f/K40 
LET C91(11)=K70*(K31-K4I)/K41 
LET K70=1020.0 
LET C91(12)=K70*(K35-K42)/K42 
LET C91 (13) =K70* (Kl5-K43) /K43 
LET C91(14)=K70*(K36-K44)/K44 
LET C91(15)=K70*(K37-K45)/K45 
LET K70=1019.0 
LET C91 (16) =K70* (K42-K46)/K46 
LET C91 ( 17) =K70* (K42-K47)/K47 
LET C91(18)=K70*(K36-K48)/K48 
LET C91(19)=K70*(K42-K49)/K49 
PRINT C92,C88-C91 
END 
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MARCO GLS2.MTB 

'LAG C22·,C20 
BRIEF 2 
REGRESS C22 1 C20: 
NOCONSTANT.: 
COEFF ,C23. 
LAG '·EEG' , 'EEGL' 
LAG C31,'VRL' 
LAG C32, 'RRL' 

.LET 'EEGST' ='EEG' -C23 (1) * 'EEGL; 
LET 'VRST'=C31-C23(l:):*'VRL' 
LET 'RRST'=C32-C23(l)'*'RRL.'' 
BRIEF 2 
REGRESS· 'EEGST' 2 'VRST', 'RRST' C95: 
NOCONSTANT: 
MSE K1: 
COEFF C24: 
XPXINV Ml. 
LET C96=SQRT(K1)*C95 
ACF 1 C96 ,C97 
LET K2=C97 ( l) 
LET K3=2.0* (.l.O-K2) 
LET K32~1022.0*K1 
LET K33=K32/1020.0 
DIAGONAL M1,C4l 
LET C42=K33*C41 
LET C43'(l)=C24(1)/SQRT(C42(1),) 
LET C43(2)=C24(2)/SQRT(C42(2)) 
LET C22=' EEG'- (C24 ( 1'):*C3l+C24 ( 2) *C32) 
END 

t1ACRO GLS3. MT!l 

LAG C22,C20 
BRIEF 2 
REGRESS C22 1 C20: 
NOCONSTANT: 
COEFF C23. 
LAG 'EEG',' EEGL' 
LAG C31, 'VRL' 
LAG C32, 'RLL' 
LAG C33, 'RRL' 
LET 'EEGST'='EEG'-C23(1)*'EEGL' 
LET 'VRST'=C31-C23(1)*'VRL' 
LET 'RLST'=C32-C23(1·).*'RLL' 
LET 'RRST'=C33-C23(l:)*'RRL' 
BRIEF 2 
REGRESS 'EEGST' 3 'VRST','RLST','RRST' C95: 
NOCONSTANT: 
MSE K1: 
COEFF C24: 
XPXINV Ml. 
LET C96=SQRT(K1)*C95 
ACF 1 C96;C97 
LET K2=C97.( l) 
LET K3=2.0*(1.0-K2) 
LET K32=1020.0*K1 
LET K33=K32/1019.0 
DIAGONAL Ml,C41 
LET C42=K33*C41 
LET C43(1)=C24(1)/SQRT(C42(1•)) 
LET C43(2)=C24(2)/SQRT(C42(2)) 
LET C43(3)=C24(3)/SQRT(C42(3)) 
LET C22:'EEG'-(C24(l)*C3l+C24(2)*C32+C24(3)*C33) 
END 
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MACRO GLS4;MTB 

LAG C22,C20 
BRIEF 2 
REGRESS C22 1 C20J 
NOCONSTANTJ 
COBFF C23. 
!.AG 'EEG', 'BBGL' 
LAG C31, 'VLL' 
LAG C32, 'VRL' 
LAG C33, 'HLL' 
LAG C34, 'HRL' 
LET 'EBGST' ~·EEG' -C23 (1)·* 'BEGL' 
LET 'VLST'~C31-C23(l)*'VLL' 
LET 'VRST'~C32-C23(l)*'VRL' 
LET 'HLST'=C33-C23(l)*'HLL' 
LET 'HRST'~C34-C23(l)*'HRL' 
BRIEF 2 
REGRESS 'EBGST' 4 'VLST';'VRST','HLST','HRST' C95! 
NOCONSTANT 1 
MS!! Kl'1 
COEFF C24! 
XPXINV Ml. 
LET C96=SQRT(Kl)*C95 
ACF 1 C96,C97 
LET K2~C97(1) 
LET K3~2.0*(1.0-K2) 
PRINT K2,Kl 
LET K32=1019.0*Kl 
LET K33~K32/l018.0 
DII'.GONAL Ml,C41 
LET C42=K33*C41 
LET C43(l)=C24(1)/SQRT(C42(1)) 
LET C43(2)=C24(2)/SQRT(C42(2)) 
LET C43(3)~C24(3)/SORT(C42(3)) 
LET C43 (4) =C24 ( 4) /SQRT(C42 (4)) 
LET C22~'EEG'-(C24(l)*C3l+C24(2)*C32+C24(3)*C33+C24(4)*C34) 
END 
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~ppendix A1·2 FORTRAN Programs fof On-line R~moval o~ OA 

Th~s appendix gives the relevant programs used for on-lihe 

analysis. There is one main program~ ONLC~TN.FTN,which 

contains several subroutines, and a set of library of 

subprograms for the three on-line algorithms described in 

chapter 4, viz
1 

Recursive least squares, square root and 

UD algorithms. The library of subprograms are in a common 

file called ONLALG.FTN. The main program, ONLCRTN.FTN, also 

makes use of a number of othar subprograms, some of which 

were given in appendix All; these are: RD~TA (used to read 

data from a binary file- see the appendix All; NGRAPH and 

NGRFS which are used to plot various graphs (e.g parameter 

estimates, corrected EEG ). 

As discussed in the last appendix, some of·the codes in the 

programs are system dependent. These are mostly, commands 

used to open and close files (e.g. OPEN$A) and the graphic 

routines which are mostly calls to a graphic package on the 

PRIME system called GINO-F. Apart from these system dependent 

codes, the programs are standard FORTRkN IV codes. 
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PROGRAM ONLCRTN.FTN 
c 
C THIS PROGRAM, TOGETHER WITH SEVERAL OTHER ROUTINES·, 
C IS USED TO REMOVE OCULAR ARTEFACTS FROM THE EEG 
C USING ONE OF THREE USER-SPECIFIED ON-LINE ALGORITHMS 
C (THESE-ARE RLS,SQRT AND UD FILTERS). 
c 

INTEGER*2 FNAME(20) 
COMMON VL(1024),VR(1024) ,HL(1024),HR(1024) 
COMMON /VDATA/EEG1(1024) ,EEG2(1024) ,FNAME 
COMMON /XVAL/X(1024) 
COMMON /INTLV/ALPHA,GAMMA,THETAO 
DATA L2/0/ 
NPT~1024 
N~l024 
DO 45 I~1,N 

IM1~I-1 
45 X(I)~FLOAT(IM1)/125.0 

c 
C SPECIFY GAMMA. AND THE INITIAL VALUES FOR 
C P (OR S OR U). 
c 

WRITE (1,16) 
WRITE ( 1,18) 
WRITE ( 1, 20) 

16 FORMAT ('ENTER ALPHA -INITIAL VALUE FOR PS'·) 
18 FORMAT(' GAMMA -THE FORGETTING FACTOR') 
20 FORMAT (' AND THETA ( 0) - .THE INITIAL VALUE FOR THETA') 

READ(1,*)ALPHA;GAMMA,TBETA0 
CALL DEVICE(IDEV) 

c 
C SPECIFY AND THEN READ THE EEG RECORD TO PROCESS 
c 

WRITE ( 1,10) 
10 FORMAT ('ENTER BATNO') 

READ(1,*)L1 

c 

L4~o 

CALL RDATA(L1,L2,L3,L4) 
IF(LJ .EQ. O)GO TO 100 

C REMOVE MEAN FROM THE DATA 
c 

c 

CALL MEAN(NPT,VL,VLM) 
CALL MEAN(NPT,VR,VRM) 
CALL MEAN(NPT,HL,HLM) 
CALL MEAN(NPT,HR,HRM) 
CALL MEAN(NPT,EEG1,EEGM) 

C SELECT ON-LINE ALGORITHM TO USE 
c 

WRITE ( 1, 30) 
30 FORMAT ('ENTER 0 FOR RLS l FOR SQRT 2 FOR UDU') 

READ (1, *) !TYPE 
CALL ADAPTV(NPT,N,Ll,ITYPE,IPLOT) 

5 CONTINUE 
100 CALL DEVEND 

CALL EXIT 
END 

c 
c--------------------------------------------------
c 

SUBROUTINE ADAPTV(NPT,N,Ll,ITYPE,IPLOT) 
DIMENSION EEGC3(1024) ,EEGCA(1024).EEGCD(1024) 
DIMENSION TBETA3(4096) ,THETAA(4096) ,THETAD(4096) 
DIMENSION RSS3(1024) ,RSSA(1024) ,RSSD(1024) 
DIMENSION RSQ3(1024) ,RSQA(l024) ,RSQD(1024) 
DIMENSION OAJ (1024) ,OAA(l024) ,OAD(1024) 
DATA NPAR3,NPAR4/3,4/ 
DATA IDJ,IDA,IDD/3,4,5/ 
CALL XYVAL(THETA3,EEGC3,RSS3,RSQ3,0A3,NPAR3,ID3,ITYPE) 
CALL XYVAL(THETAA,EEGCA,RSSA,RSQA,OAA,NPAR4,IDA,ITYPE) 
CALL XYVAL(THETAD,EEGCD,RSSD,RSQD;OAD,NPAR4,IDD,ITYPE) 
CALL OAGRAF(OA3,EEGC3,0AA,EEGCA,OAD,EEGCD,N) 
CALL THGRAF(THETA3,THETAA,THETAD,N) 
CALL SSGRAF (RSS3, RSSA, RSSD, RSQ3, RSQA, RSQD, N) 
RETURN 
END 
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c 
c---------------------------------------------------~ 
c 

c 

SUBROUTINE OAGRAF.(DO iD1 ,02 ,DJ ,04 ,oS ,N) 
DIMENSION DO ( 1024),01 (1024).,02 ( 1024) ,DJ'( 1024) 
DIMENSION 04(1024),.05(1024) 
COMMON /XVAL/X(1024) 
CALL PICCLE 
CALL NGRAPH(N,X,DO,O,O) 
CALL NGRAPH (N, X ,01, 1, 0) 
CALL NGRAPH(N,X,D2,2,0) 
CALL NGRAPH(N,X,DJ,J,O) 
CALL NGRAPH(N,X,D4,4,0) 
CALL NGRAPH(N,X,DS,S,O) 
RETURN 
END 

c---------------------------------------------------c 

c 

SUBROUTINE TRGRAF(D0,D1,D2,N) 
DIMENSION 00(4096) ,01(4096) ,02(4096) 
COMMON /XVAL/X(1024) 
ISCALE=J . 
CALL PICCLE 
CALL NGRFS1(N,J,X,DO,O,J,ISCALE) 
CALL NGRFS1(N,4,X,D1,2·,J,ISCALE) 
CALL NGRFS1(N,4,X,D2,4,3,ISCALE) 
RETURN 
END 

c-----------------~---------------------------------c 
SUBROUTINE SSGRAF(DO,D1,D2,DJ,D4,DS,N) 
DIMENSION DO (1024) ,01 (1024) ,02 (1024) ,DJ (1024) 
DIMENSION 04(1024) ,05(1024) 
DIMENSION DD0(4096) ,001(4096) 
COMMON /XVAL/X(1024) 
I1=2*N 
DO 10 I=1,N 
DDO(I)=DO(I) 
DD0(HN)=D1Hl 
DDO (I+Il) =D2 (I) 
DD1 (I) =DJ (I) 
DD1 (I+N) =04 (I) 

10 DD1(I+I1)=DS(I) 

c 

CALL PICCLE 
CALL NGRFS1(N,J,X,DD0,0,6,ISCALE) 
CALL NGRFS1(N,J,X,DD1,2,7,ISCALE) 
RETURN 
END 

c---------------------------------------------------c 
SUBROUTINE XYVAL(PARM,DOUT,RSS,RSQ,OA,NPAR,ID,ITYPE) 

c 
C XN IS A VECTOR OF EOG DATA 
C THETA 
C PS 

IS A VECTOR OF PARAMETER ESTIMATES (NPAR*1) 
IS COVARIANCE MATRIX OF THE EOG DATA (NPAR*NPAR) 

c 
DIMENSION PARM(4096) ,DOUT(1024) ,RSS(1024) ,RSQ(1024) ,OA(1024) 
COMMON VL(1024) ,VR(1024),HL(1024) ,HR(1024) 
N=1024 
IF(ID .LT. S)GO TO 110 
DO 150 I=1 ,N 

150 VL(I)=HR(I)*HL(I) 
110 CONTINUE 

c 

CALL ONLSUB(PARM,DOUT,RSS,RSQ,OA,NPAR,ITYPE) 
RETURN 
END 

c------------------------------------------------
c 

SUBROUTINE ONLSUB(PARM,DOUT,RSS,RSQ,OA,NPAR,ITYPE) 
c 
C XN VECTOR OF EOG DATA 
C THETA 
C PS 

VECTOR OF PARAMETER ESTIMATES 
COVARIANCE MATRIX 

c 5 
c u 
c 

SQUARE ROOT VECTOR 
VECTOR FOR THE UPPER TRIANGULAR MATRIX 

DIMENSION XN ( 4) , PS ( 4, 4) ,THETA ( 4) ,BST (1024) ,S ( 10) , U ( 10) 
DIMENSION PARM(4096) ,DOUT(1024) ,RSS(1024) ,RSQ(1024) ,OA(1024) 
INTEGER*2 FNAME(20) 
COMMON /VDATA/EEG1(1024) ,EEG2(1024) ,FNAME 
COMMON /INTLV/ ALPHA,GAMMA,THETAO 
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COMMON /INTLV/ ALPRA,Gr.MMA,.THETAO 
DATA Jl,J2,J3/1024,2048, 30.72/ 
N~l024 

NPT~N· 

DO 40 I~l,lO 
S(IJ.~o.o 

U(Tl~o.o 
40 CONTINUE 

DO 50 I~l,4 
DO 50 J~l,4 
PS(I,Jl~o.o 

50 CONTINUE 
WRITE(l,l2) 

12 FORMAT('ENTER NUMBER OF CYCLES') 
READ(l,*)NTIMES 

C INITIALIZE THETA AND THE COVARIANCE MATRIX PS 
c 

DO 10 t~l,NPAR 
TRETA(I) ~THETAO 
PS(I,I)=ALPHA 
IK= (I+l) *I/2 
S(IK)=ALPRA 
U(IK)=ALPRA 

10 CONTINUE 
WRITE ( 1, l'll)'ALPHA,Gr.MMA,NPAR 

111 FORMAT,(·lX, 'ALPHA=' ,F6. 3, 'GAMMA=' ,F6. 3, 'NPAR=', IS) 
SFl=NPT/(NPT-NPAR) 
SF2=1.0-SF1 
RSSl=O.O 
SSTl~O.O 
DFl=O.O 

c 
C REMOVE OCULAR ARTEFACT RECURSIVELY 
c 

DO 25 Ml=l,NTIMES 
DO 20 Il=l,NPT 
CALL XVALl(XN,NPAR,Il) 
Y=EEGl ( tl') 
IF(ITYPE .EQ. O)CALL RLSFLT(Y,XN,PS,THETA,NPAR,E,GAMMA,Il) 
IF(ITYPE .EQ. !)CALL SQRTFL(Y,XN,S,TRETA,NPAR,E,GAMMA) 
IF(ITYPE .EQ. 2)CALL UDUFLT(Y,XN,U,TRETA,NPAR,E,GAMMA,Il) 
PARM (Ill =THETA ( l) 
PARM ( Il+Jl) =THETA ( 2) 
PARM(Il+J2)=THETA(3) 
PARM(Il+J3)=THETA(4) 
DOUT(Il)=E 
OA(Il)~Y-E 
RSSl=GAMMA*RSSl+E*E 
SSTl=GAMMA*SSTl+EEGl ( Il) *EEG! (Ill 
DFl=l.O+GAMMA*DFl 
RSS(Ill~RSSl/DFl 
SST(Ill~SSTl 
IF(ABS(SSTll .GT. 0.00000llRSO(Ill=(SF2+SFl*RSSl/SSTll 

20 CONTINUE 
25 CONTINUE 

c 

RETURN 
END 

c----------------------------------------------------c 
SUBROUTINE XVALl(XN,NPAR,Ill 

C PRIME THE VECTOR X WITH BOG DATA 
c 

DIMENSION XN(4l 
COMMON VL(l024) ,VR(l024) ,HL(l024l ,HR(l024l 
XN(ll~VR(Ill 
XN(2) =HR(Il) 
XN (3) ~RL (Ill 
XN ( 4) ~VL (Ill 
RETURN 
END 
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SUBPROGRAM ONLALG.FTN 

SUBROUTINE RLSFLT (Y., X, P, THETA, NPAR, E ,GAMMA, I~) 
c 
C THIS SUBROUTINE IS ·BASED ON BIERMAN'S CODING OF THE KALMAN 
C FILTERING ALGORITHM. IT COMPUTES THE PARAMETER ESTIMATES, 
C THE OA ESTIMATES AND THE CORRECTED EEG USING RECURSIVE LEAST 
C SQUARES 
c 
C INPUTS: 
C Y,X OUTPUT SAMPLE AND EOG DATA VECTOR 
C THETA VECTOR ·oF PREVIOUS PARAMETER ESTIMATES 
C GAMMA THE FORGETTING FACTOR. 
C NPAR NUMBER OF PARAMETERS IN THE MODEL 
C Il SAMPLE NUMBER' 
C P THE COVARIANCE MATRIX 
c 
c 
c 
c 
c 
c 

OUTPUTS: 
THETA 
E 
p 

UPDATED PARAMETER ESTIMATE VECTOR 
THE CORRECTED EEG SAMPLE 
UPDATED COVARIANCE .MATRIX 

DIMENSION X (4) ,P(4,4) ,THETA(4) ,V(4) ,G(4) 
PERR=Y 
SF=l.O/GAMMA 
DELTA =GAMMA 
DO 10 I=1,NPAR 
V(l) =0.0 
DO 5 J=1,NPAR 

5 V(I)=V(I)+P(I,J)*X(J) 
PERR=PERR-X(I)*THETA(I) 

10 DELTA=DELTA+X(I) *V(I) 
DO 20 I=1,NPAR 
G(I)=V(I)/DELTA 
THETA(I)=THETA(I)+G(I)*PERR 
DO 20 J=I, NPAR 
P(I,J)=(P(I,J)-G(I)*V(J))*SF 

20 P(J,I)=P(I,J) 
E=Y 

c 
C REMOVE THE EMA ESTIMATE FROM THE EEG 
c 

DO 30 I=1,NPAR 
30 E=E-X(I)*THETA(I) 

RETURN 
END 

c 
c----------------------------------------------------c 

SUBROUTINE MEAN(NPTS,DATA,RMEAN) 
DIMENSION DATA(NPTS) 
RMEAN=O.O 
DO 20 I=1,NPTS 

20 RMEAN=RMEAN+DATA(I) 
RMEAN=RMEAN/FLOAT(NPTS) 
DO 30 I=1,NPTS 

30 DATA(!) =DATA(!) -RMEAN 
RETURN 
END 

c 
c----------------------------------------------------c 

SUBROUTINE SQRTFL(Y,X,SQRTP,PAR,NPAR,E,GAMMA) 
c 
C CLARKE"S CODING OF PETERKA S ALGORITHM 
C INPUTS: 
C Y,X EEG SAMPLE AND EOG DATA VECTOR 
C PAR VECTOR OF PREVIOUS PARAMETER ESTIMATES 
C NPAR NUMBER OF PARAMETER ESTIMATES 
C SQRTP SQUARE ROOT OF P 
C GAMMA FORGETING FACTOR 
c 
C OUTPUTS: 
C E CORRECTED EEG SAMPLE 
C THETA UPDATED PARAMETER ESTIMATES 
C SQRTP UPDATED SQUARE ROOT OF P 
C G KALMAN GAIN VECTOR 
c 
C G KALMAN GAIN VECTOR 
C THETA VECTOR OF PARAMETERS TO BE ESTIMATED 
C NPAR NUMBER OF PARAMETERS TO BE ESTIMATED 
C FORGT SQUARE ROOT OF THE FORGETTING FACTOR GAMMA 
c 

DIMENSION X(4) ,SQRTP(10) ,G(4) ,PAR(4) 
PERR=Y 
DO 5 I=1,NPAR 
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DO 5 Ia1,NPAR 
5 PERR2 PERR-PAR(I)*X(I) 

FORGT•SQRT(GAMMA) 
SIG .. FORGT 
SIGSQ•FORGT*FORGT 
IJ•O 
JisO 
DO 10 J•1,NPAR 
J1•J-1 
FJ•O.O 
DO 20 Ia1,J 
JI•JI+1 

20 FJ•FJ+SQRTP(JI)*X(I) 
AaSIG/FORGT 
B"'FJ/SIGSQ 
SIGSQ•SIGSQ+FJ*FJ 
SIG•SQRT (SIGSQ} 
A•A/SIG 
G(J)sSQRTP(JI)*FJ 
SQRTP(JI)"'A*SQRTP(JI} 
IF(J1 .EQ. O)GO TO 31 
DO 30 I•1,J1 
IJsiJ+1 
SQP•SQRTP (IJ) 
SQRTP(IJ)=A*(SQP-B*G(I}) 
G(I)•G(I)+SQP*FJ 

30 CONTINUE 
31 CONTINUE 

IJ•IJ+1 
10 CONTINUE 

DO 40 I•1,NPAR 
PAR(I}•PAR(I)+G(I)*PERR/SIGSQ 

40 CONTINUE 
E•Y 
DO 50 I•1,NPAR 

50 E•E-X(I)*PAR(I) 
RETURN 
END 

c 
c----------------------------------------------------c 

SUBROUTINE UDUFLT(Y,X,U,THETA,NPAR,E,GAMMA,I1) 
c 
C THIS SUBROUTINE IS BASED ON BIERMAN'S CODING OF THE UDU 
C FILTERING ALGORITHM. IT COMPUTES THE PARAMETER ESTIMATES, 
C THE EMA ESTIMATES AND THE CORRECTED EEG USING RLS METHOD. 
C INPUTS: 
C U UPPER TRIANGULAR MATRIX WITH D(I) STORED IN U(I,I) 
C Y,X OUTPUT SAMPLE AND EOG DATA VECTOR 
C THETA VECTOR OF PREVIOUS PARAMETER ESTIMATES 
C GAMMA THE FORGETTING FACTOR 
C NPAR NUMBER OF PARAMETERS IN THE MODEL 
C I 1 THE SAMPLE NUMBER 
C OUTPUTS: 
C U UPDATED UPPER TRIANGULAR MATRIX 
C B THE UNWEIGHTED KALMAN GAIN 
C THETA UPDATED PARAMETER ESTIMATES 
C E CORRECTED EEG 
c 

DIMENSION X{4) ,U(lO) ,TBETA{4) ,B(4) ,V(4) 
SF•1.0/GAMMA 
PBRR•Y 
DO 2 Js1, NPA.R 

2 PERRaPERR-X(J)*THETA(J) 
M•1 
V(1)•X(1) 
DO 10 J•2,NPAR 
V(J)aX(J) 
J1•J-1 
DO 5 l(s1,J1 
M• M+1 

5 V(J)aV(J)+O(M)*X(K) 
M=M+1 

10 B(J)•U(M)*V(J) 
B(1)aU(1)*X(1) 
ALPHAsGAMMA+B(1)*V(1) 
DELTA•1.0/ALPHA 
U(1)aU(1)*DELTA 
M•1 
DO 25 J=2 ,NPAR 
BETA1=ALPHA 
ALPHA=ALPHA+B(J)*V(J) 
P=-V(J)*DELTA 
DELTAa1.0/ ALPRA 
J12 J-1 
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DO 20 K=l,Jl 
M=M+l 
BETA=U(M) 
U(M)=BETA+B(K)*P 

20 B(K)=B(K)+B(J)*BETA 
M=M+l 

25 0 (M) =0 (M)i*,BETAl*DELTA*SF 
PERR=PERR/ALPRA 
DO 30 J=l;NPAR 

30 THETA (J) =TBETA'(J) +B (J) *PERR 
E=Y 
DO 35 I=l,NPAR 

35 E=E-X(I)*TRETA(I) 
RETURN 
END 
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SUBPROGRAM NGRFS.FTN 

SUBROUTINE NGRFSl (N ,NGRF ,X, DIN, ING .:IST', I SCALE) 
c 
C THIS SUBROUTINE PLOTS MULTIPLE CURVES ON A SET' 
C OF AXES WITH SELECTABLE Y-AXIS SCALING AND POSITION OF 
C ORIGIN. THE PART OF THE'PAPER TO PLOT THE GRAPHS IS 
C ALSO SELECTABLE 
c 
C N -THE NUMBER OF POINTS PER CURVE 
C NGRF -THE NUMBER OF CURVES TO BE PLOTTED 
C X -CONTAINS THE VALUES FOR X-AXIS . 
C DIN -CONTAINS ALL THE 'DATA POINTS TO BE PLOTTED 
C WITH DATA FOR CURVE 1 OCCUPYING THE FIRST N POSITIONS 
C ING -DETERMINES WHAT PART OF THE PAPER THE GRAPHS 
C ARE PLOTTED 
C IST -DETERMINES THE Y-AXIS LABELLING 
C !SCALE-DETERMINES THE TYPE OF LABELLING FOR Y-AXIS 
c 

c 

DIMENSION Y(l025) ,DIN(l0240) ,X{l025) 
INTEGER*2 ILAB0(4) ,ILAB1(2) ,ILAB2(2) ,ILAB3(9) ,ILAB4(5) 
INTEGER*2 ILAB5'(5) ,ILAB6(8) ,ILAB7.(7) 
DATA ILAB0,ILABl,ILAB2/'AMP(UV) ','ACF ','CCF '/ 
DATA ILAB3,ILAB4/'estmted parameters','ERROR NORM'/ 
DATA ILAB5/'parameters'/ 
DATA ILAB6,ILAB7/'sample variance•,•mult cor coeff'/ 

C DETERMINE THE PART OF THE PAGE TO PLOT GRAPH 
c 

c 

Xl=O. 
IF(MOD(ING,2) .EQ. l)Xl=llO.O 
Yl=57.0 
IF(ING .LT. 2)Yl=ll5.0 
IF(ING .GT. 3)Yl=O.O 
X2=Xl+lOO.O 
Y2=Yl+70.0 
CALL WIND02(Xl,X2,Yl,Y2) 
CALL CHASIZ(2.4,2.4) 
NLEN=B 

C DETERMINE THE RANGE OF DATA TO PLOT 
c 

CALL MAXVAL(BBEG,BEND,DIN,N,NGRF) 
IF(X(l) .GE. O.)GO TO 50 
IOR=O 
XJ=Xl+SO.O 
Y3=Yl+35.0 
VBEG=-5.0 
VEND=S.O 
NINTS=lO 
AXl=X2-7.0 
AX2=X3 
AYl=YJ-5.0 
AY2=Y2-6.0 
GO TO 60 

50 IOR=l 

c 

X3=Xl+20.0 
Y3=Yl+l7.0 
VBEG=O .0 
VEND=9.0 
NINTS=9 
AXl=X3+20.0 
AX2=X3-15.0 
AY1=Y1+8.0 
AY2=Y3 
ISCLEX=J 
ISCLEYci2 

C POSITION AXES, DRAW AND LABEL THESE 
c 
60 

c 

CALL 
CALL 
CALL 
CALL 
CALL 
CALL 
CALL 
CALL 
CALL 
CALL 

AXIPOS(IOR,X3,Y3,90.,1) 
AXIPOS(IOR,XJ,Y3,50. ,2) 
AXISCA ( ISCLEX ,NINTS, VBEG, VEND, 1) 
AXISCA (·ISCLEY ,NLEN,BBEG,BEND, 2) 
AXIDRA'(2,1,1) 
AXIDRA(-2,-1,2) 
MOVT02 (AX1 ,AY1) 
CHAHOL('time (sec)*.') 
MOVT02 (AX2 ,AY2) 
CHAANG (90.) 

C PLOT THE CURVES 
c 

IF(IST .EQ. O)CALL CHAARR(ILAB0,4,2) 
IF.(IST .EQ. 1)CALL CHAARR(ILAB1,2,2) 
IF(IST .EQ. 2)CALL CHAARR(ILAB2,2,2) 
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IF(IST .EQ. 2)CALL CRAARR(ILAB2,2,2) 
IF(IST .EQ. 3)CALL· CRAARR(ILAB3,.9,2) 
IF(IST •EQ. 4)CALL .CRAARR(ILAB4.,5,2) 
IF(IST .EQ. S)CALL CRAARR(ILABS,S,2) 
IF(IST .EQ. 6)CALL CRAARR(ILAB6,8;2) 
IF(IST .EQ. 7)CALL CRAARR(ILAili,7,2) 
CALL CRAANG(O.Of . 
DO 70 I=1,NGRF 
CALL NPLOT(DIN,N,Y,I) 

70 CALL GRACUR(X,Y,N) 
RETURN 
END 

c 
c---------------------------------------------------c 

SUBROUTINE NPLOT(DIN,N,YiiST) 
c 
C TRIS SUBROUTINE ALLOWS NCURVES TO BE PLOTTED 
C ON ONE GRAPH 
c 

DIMENSION Y(-1025) ,DIN(10240) 
Il=(IST-1)*N 
DO 10 I=1,N 

10 Y(I) =DIN(Il+I) 
RETURN 
END 

c 
c--------------------------------------------------c 

SUBROUTINE MAXVAL(BBEG,BEND,DIN,NiNGRF) 
DIMENSION DIN(10240) 

C SUBROUTINE TO ASSIGN TRE START OF Y-AXIS (BBEG) TO 
C TRE MAX NEG DATA VALUE AND THE END OF Y-AXIS(BEND) 
C TO TRE MAX POSITIVE DATA VALUE. 
c 

BBEG=O.O 
BEND=O.O 
NTOT=N*NGRF 
DO 10 I=1,NTOT 
IF(DIN(I) .LT. BBEG)BBEG=DIN(I) 
IF(DIN(I) .GT. BEND)BEND=DIN(I) 

10 CONTINUE 
WRITE(1,20)BBEG,BEND 

20 FORMAT('BBEG,BEND',2F12.4) 
RETURN 
END 
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Appendix A 13 Spectra·! A'nalysis Programs 

This appendix includes FOR.TR:AN source codes for the two 

spectral analysis methods describ~d in chapter 3. There 

are two main programs used in the spectral analysis, 

WELCH.~TN' and CORLTN.FTN. Each main program has several 

dependent subprograms located in the same file, and exter-

nal. library of subprograms. The purpose of the main 

program and subprograms is given as comments at the start 

of each program listing. 

The data to beo.nalysed is contained in a file, a•rranged in 

six columns or arrays, representing for example, VR, HR, 

EEG, EEGC, VL, HL, in raw forms or as preprocessed data. 

For the Welch method, when the program is run it requests 

for the name of the data file and reads the data, the name 

of the gra·phics device to use, the window length and the 

window function to use, then for each of the first four 

data read the spectra is computed and plotted. Cross spectral 

analysis follows the same approach, except that the quantities 

computed and plotted are, spectra of the first (or the 

second) and third data columns, coherence, cross spectra, 

and gain functions between the two data columns. 

For the correlation method, the procedure is essentially 

the same. In this case however, after the data to be 
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analysed is read, the autocorrelation functions o·f each 

da.ta is first computed and this is then used to compute the 

spectral estimates in the subroutine ASPEC after windowing 

The tr~nsform algorithm u~ed here is due to Jenkins and Watts 

[ 1 ] • 

The minitab macro FREQPLOT.MTB reads the raw data (VL,VR 

HL, HR, EEG) from a data file' MTB.DAT~,removes the mean 

from the samples, corrects the EEG for OA using OLS and 

differencing methods, and writes the mean-corrected and 

llrep roe e s sed data into se pa·ra t e data f i 1 e s, f!\C:~ I·:IIAIA and 

FREQ2.DATA. These files normally contain the data us~d by 

the programs WELCH.FTN and CORLTN.FTN. 

Index to Programs 

1 . WELCH.FTN A128-131 

2. CORLTN.FTN A132-135 

3. FFT.FTN A136 

4. FGRAPH.FTN A137-138 

5/ FREQPLOT.MTB A139 

[ 1 ] J ENK INS and WATTS 

Spectral analysis and its Applications. Holden dBy 1968. 
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PROGRAM WELCH.FTN 

c 
C THIS PROGRAM IS USED TO STUDY THE POWER 
C AND CROSS POWER SPECTRA OF THE BOG, THE EEG 
C AND THE CORRECTED EEG 
C THE COHERENCE SPECTRUM 
C BETWEEN THE EOG AND THE EEG, AND THE SYSTEM GAIN 
c 

COMMON / XVAL/Xl(257) 
COMMON /MTDATA/ CO (1024) ,Cl (1024) ,C2 (1024) ,C3 (1024) 

+,C4(1024) ,C5(1024) 
INTEGER*2 FNAME(20) 
N•l024 
FREO•l25 .0 
DO 10 I•l,257 

10 Xl(I)•(FREO*FLOAT(I))/FLOAT(N) 
CALL DEVICE(IDEV) 
CALL GETNAM (FNAME) 
CALL MTBRD(FNAME) 
WRITE ( 1, 15) 

15 FORMAT('ENTER 1 FOR DIFERENCED DATA 0 OTHERWISE') 
READ(l,*)IDIFF 
WRITE(l,20) 

20 FORMAT('ENTER 0 FOR AUTOSPEC, 1 FOR CSPEC') 
READ(l,*)ISPEC 

c 
c 

IF(ISPEC .EQ. O)CALL ASPEC(CO,Cl ,C2,C3,C4,C5,IDIFF) 
IF(ISPEC .EQ. l)CALL CSPEC(CO,Cl,C2,IDIFF) 
CALL DEVEND 
CALL EXIT 
END 

c--------------------------------------------------------c 
SUBROUTINE ASPEC(CO,C1,C2 ,C3,C4,C5,IDIFF) 

c 
C THIS SUB. CONTROLS THE COMPUTING OF THE 
C SPECTRAL ESTIMATES OF THE DATA IN THE 
C FIRST FOUR COLUMNS. 
c 

c 

DIMENSION W(513) 
DIMENSION CO (1024) ,Cl (1024) ,C2 (1024) , C3 (1024), 

+C4 (1024) ,C5 (1024) ,SOM(257) 
CALL VWNDOW(W,E,LSEG) 
NSEG•(2048/LSEG)-l 
CALL PSD(CO,SUM,W,E,LSEG,NSEG,O,IDIFF) 
CALL PSD(C1,SOM,W,E,LSEG,NSEG,1,IDIFF) 
CALL PSD(C2,SOM,W,E,LSEG,NSEG , 2,IDIFF) 
CALL PSD(C3,SUM,W,E,LSEG,NSEG,3 ,IDIFF) 
RETURN 
END 

c----------------------------------------------------------c 
SUBROUTINE PSD(DIN,SOM,W,E , LSEG,NSEG,ING,IDIFF) 

c 
C THIS SUB COMPUTES THE FINAL SPECTRAL ESTIMATES FOR 
C EACH DATA COLUMN BY AVERAGING OVER K PERIOOOGRAMS 
c 

5 

30 
20 
c 

DIMENSION SOM(257) ,DIN(l024) ,DOOT(513) ,W(513) 
DIMENSION Y ( 25 7) 
COMMON /XVAL/ Xl(257) 
NPT,.65 
N•l024 
DO 5 IZ,.l,NPT 
SUM(IZ)•O . O 
DO 20 KSEG•1,NSEG 
CALL PSDl(DIN,KSEG,NPT,DOUT,W,LSEG) 
DO 30 IZ• l,NPT 
SUM(IZ)•SUM(IZ)+DOUT(IZ) 
CONTINUE 

C COMPUTE LOG OF SPECTRA AND CORRECT FOR DIFFERENCING 
C IF NECESSARY 
c 

PI•4.0*ATAN(l.O) 
FRE0•125.0 
DO 40 K3•1,NPT 
IF(SUM(KJ) .LE. O.O)SUM(Kl)•O.Ol 
XX,.X1 (K3) /FREO 
XY• 4.0*SIN(PI*XX)*SIN(PI*XX) 
Y(K3)=ALOG10(SUM(K3))-ALOG10(NSEG*E) 

40 IF(IDIFF .EQ. 1)Y(K3)=Y(K3)-ALOG10(XY) 
CALL MINVAL(Y,NPT) 
CALL FGRAPH(NPT,Xl,Y,ING,O) 
RETURN 
END 
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c----------------------~-------~--------------------~----c 
C THIS SUBROUTINE COMPUTES THE PERIODOGRAM. 
C FOR THE Kth SEGMENT AF.TER WINDOWING AND 
C ZERO PADDING 
c 

SUBROUTINE PSDl(DIN,KSEG,NPT,DOUT,W,LSEG) 
DIMENSION DIN(l024) ,DOUT(513).,W(513) 
COMPLEX X (U24) 
ND=LSEG/2 
N=l024 
KMl=KSEG-1 
DO 10 I=l, LSEG 
Il=I+KM1*ND 

10 X (I) =CMPLX (DIN(U) *W(I) ,0,0) 
c 
C ZERO PAD THE WINDOWED DATA 
c 

LPl=LSEG+l 
DO 20 I=LPl, N 

20 X(I)=CMPLX(O.O,O,O) 
CALL FFT (X ,N, 0) 
DO 30 K=l,NPT 

30 DOUT(K)=CABS(X(K))*CABS(X(nJ 

c 
c 

RETURN 
END 

c----------------------------------------------c 

c 

SUBROUTINE CSPEC(CO,C1,C2,IDIFF) 
DIMENSION C0(1024) ,C1(1024) ,C2(1024) ,W(513) 
CALL VWNDOW(W,E,LSEG) 
NSEG=(2048/LSEG)-1 
CALL CSD(CO,C2,W,E,LSEG,NSEG,O,IDIFF) 
CALL PICCLE 
CALL CSD (Cl,C2 ,W ,E, LSEG ,NSEG ,1, IDIFFJ 
RETURN 
END 

c-----------------------------------------------c 
SUBROUTINE CSD(Cl,C2,W,E,LSEG,NSEG,ING,IDIFF) 

c 
C THIS SUBROUTINE COMPUTES THE COHERENCY SPECTRUM 
C AND THE SYSTEM GAIN 
c 

DIMENSION Cl(l024) ,C2(1024) ,W(513) ,XSPEC(257), 
+YSPEC(257) ,COHSQ(257) ,GAIN(257) ,SQ(257) 

COMPLEX XYSPEC(257) 
COMMON /XVAL/ X1(257) 
NPT=65 
DO 5 K=1,NPT 
COHSQ(K)=O.O 

5 GAIN(K)=O.O 
CALL PSD.(Cl,XSPEC iW ,E, LSEG ,NSEG, 0, IDIFF) 
CALL PSD(C2,YSPEC,W,E,LSEG,NSEG,1,IDIFF) 
CALL CSD1(Cl,C2,W,E,LSEG,NSEG,XYSPEC) 
PI=4.0*ATAN(1,0) 
FREQ=l25.0 
DO 10 K=l,NPT 
SQ(K)=CABS(XYSPEC(K!') 
SS=XSPEC(K)*YSPEC(K) 
IF(SS .GT. O,O)CORSQ(K)=SQ(K)*SQ(K)/SS 
IF(XSPEC(K) .GT. 0.0)GAIN(K)=10'.0*ALOG10(SQ(K)/XSPEC(K)) 
IF(SQ(K) .GT. O.O)SQ(K)=lO.O*ALOGlO(SQ(K)) 
XX=X1(K)/FREQ 
XY=4.0*SIN(PI*XX)*SIN(PI*XX) 
IF(IDIFF .EQ. 1)SQ(K)=SQ(K)-ALOG10(XY) 

10 CONTINUE 
CALL FGRAPH(NPT,Xl,CORSQ,2,2) 
CALL FGRAPR(NPT,Xl,GAIN,3,3) 
CALL FGRAPH(NPT,X1,SQ,4,1) 
RETURN 
END 
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c 
c----------~---------------------------------------c 

SUBROUTINE CSDl (Cl ,C2 ,W ,E,LSEG,NSEG ,XYSPEC) 
c 
C THIS SUB. COMPUTES THE CROSS- PERIODOGRAM 
C FOR THE KTH SEGMENT AFTER WINDOWING AND 
C ZERO PADDING 
c 

DIMENSION Cl (·1024) ,C2 (ol024) ,W,( 513) 
COMPLEX DOUT ( 257) ,XYSPEC ( 257) . 
NPT=65 
N=l024 
DO 5 IZ=l,NPT 

5 XYSPEC (IZ) =CMPLX (0. 0, 0. 0) 
DO 20 KSEG=l,NSEG 
CALL CSD2 (Cl,C2,KSEG,DOUT;W·,LSEG) 
DO 30 lZ=l ,NPT 

30 XYSPEC(IZ)=XYSPEC(IZ)+DOUT(IZ) 
20 CONTINUE 

c 

RETURN 
END 

c~---------------------------~---------------c 
SUBROUTINE CSD2(Cl,C2,KSEG,DOUT,W,LSEG) 

c 
C THIS SUB COMPUTES THE UNSCALED CROSS 
C SPECTRUM FOR THE KTH SEGMENT AFTER WINDOWING 
C AND ZERO PADDING. 
c 

DIMENSION Cl (1024) ,C2 (1024) ,W(513) 
COMPLEX X(1024) ,Y(l024) ,DOUT(257) 
NPT=65 
N=l024. 
ND=LSEG/2 
KMl=KSEG-1 
DO 10 I=l,LSEG 
Il=I+KMl*ND 
X(I)=CMPLX(Cl(I1J*W(I) ,0.0) 

10 Y(I)=CMPLX(C2(I)*W(I) ,0.0) 
LP1=LSEG+1 
DO 20 I=LP1,N 
X(I)=CMPLX(O,O,O.OJ 

20 Y(I)=CMPLX(O.O,O.O) 
CALL FFT(X,N,O) 
CALL FFT.(Y ,N, 0) 
DO 30 K=1,NPT 

30 DOUT(K)=X(K)*CONJG(Y(K)) 
RETURN 
END 

c 
c------------------------------------------~------c 

SUBROUTINE VWNDOW(W,E,LSEG) 
c 
C THIS SUB ALLOWS THE SELECTION OF THE WINDOW 
C TO BE USED IN THE COMPUTATION OF THE 
C SPECTRAL ESTIMATES 
c 

DIMENSION W(513) 
WRITE ( 1,10) 

10 FORMAT('ENTBR SEGMENT LENGTH') 
READ(1,*)LSEG 
IF(LSEG .GT. 513)GO TO 99 
WRITE(l,20) 

20 FORMAT('ENTBR 0 FOR BANNING 1 FOR BARTLET 2 FOR PARZEN') 
READ(l, *) IW 
IF(IW .EQ. O)CALL HANNG(W,E,LSEG) 
IF(IW .EQ. 1)CALL BARTLT.(W,E,LSEG) 
IF(IW .EQ. 2)CALL PARZEN(W,E,LSEG) 
RETURN 

99 WRITE(1,100) 
100 FORMAT('SEGMENT LENGTH TOO LONG') 

STOP 
END 
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c 
c---------------~----------------~-------
c 

c 
c 

SUBROUTINE BARTLT (W ,E, LSEG) 

C GIVEN THE SEGMENT. LENGTH, LSEG, THIS SUB. COMPUTES 
C THE COEFFICIENTS FOR THE BARTLET.WINDOW FUNCTION 
c 

DIMENSION W.( 513) 
LSEG2~LSEG/2 
LSEG~2*LSEG2+l: 
E=O·.O 
DO 10 K~l,LSEG 
K1~K-l 
X1=FLOAT(K1-LSEG2) 
W (K) =1·. 0-2. O*ABS (X1) /FLOAT(LSEG-1) 
E~E+W(K),*W(K) 

10 CONTINUE 

c 

RETURN 
END 

c---------------------------------------c 
SUBROUTINE HANNG(W,E,LSEG) 

c 
C GIVEN THE SEGMENT LENGTH, LSEG, THIS SUB COMPUTES 
C THE COEFFICIENTS FOR THE BANNING WINDOW FUNCTION 
c 

DIMENSION W(513) 
E=O.O 
LSEG2=LSEG/2 
LSEG=2*LSEG2+1 
PI=4. O*ATAN ( l. 0) 
DO 10 K=1,LSEG 
K1=K-1 
X1=2.0*FLOAT(K1-LSEG2) 
T2=PI*X1/FLOAT(LSEG-1) 
W(K)=0.5+0.5*COS(T2) 
E=E+W {K) *W (K) 

10 CONTINUE 

c 

RETURN 
END 

c---------------------------------------------------c 
SUBROUTINE PARZEN(W,E,LSEG) 

c 
C GIVEN THE SEGMENT LENGTH, LSEG, THIS SUB COMPUTES 
C THE COEFFICIENTS FOR THE PARZEN WINDOW FUNCTION 
c 

DIMENSION W(513) 
LSEG2=LSEG/2 
LSEG4=LSEG/4 
LSEG=2*LSEG2+1 
LSEG21=LSEG2+1 
LSEG41=LSEG4+1 
DO 10 K=1,LSEG2 
T1=FLOAT(2*K)/FLOAT(LSEG-1) 
T2=1.0-T1 
IF(K .LT. LSEG41)W(LSEG21+K)=1.0-(6.0*T1*T1*T2) 
IF(K .GB. LSEG41)W(LSEG21+K)=2.0*T2*T2*T2 
W(LSEG21-K)=W(LSEG2l+K) 

10 CONTINUE 
W(LSEG21)=1.0 
E=O.O 
DO 20 K=l, LSEG 
E=E+W(K)*W(K) 

20 CONTINUE 
RETURN 
END 
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PROGRAM CORLTN.FTN 
c 
C THIS PROGRAM IS USED TO STUDY THE POWER 
C SPECTRA OF THE BOG, THE EEG AND THE 
C CORRECTED EEG BY THE CORRELATION METHOD 
c 

COMMON /XVAL/Xl ( 2S7) 
COMMON /MTDATA/ CO (1024) ,Cl(l024) ,C2 (1024) ,C3 (1024) 

+,C4 (1024) ,CS (1024) 
INTEGER FNAME(20) 
N=l024 
FREQ=l2S.O 
NF=N-1 
MAXM=Sll 
DO 10 I=l,2S7 

10 Xl(I)=FREQ*FLOAT(I)/(2.0*FLOAT(NF)) 
CALL DEVICE(IDEV) 
CALL GETNAM (FNAME) 
CALL MTBRD(FNAMB) 
WRITE ( 1, 30) 

30 FORMAT('ENTER 1 FOR DIFFERENCED DATA 0 OTHERWISE') 
READ(·l,*) IDIFF 

c 

CALL ACFN (CO ,Cl ,C2 ,C3 ,C4 ,CS, IDIFF, NF ,MAXM) 
CALL DEVEND 
CALL EXIT 
END 

c------------------------------------------------------c 
SUBROUTINE ACFN(C0,Cl,C2,C3,C4,CS,lDIFF,NF,MAXM) 

c 
C THIS SUB IS USED TO CONTROL THE COMPUTATION AND 
C PLOTTING OF THE SPECTRA 
c 

c 

DIMENSION CO (1024) ,Cl (1024) ,C2 (1024) ,C3 (1024) 
+ ,c4 (1024) ,cs (1024) 

DIMENSION SPEC0(1024) ,SPEC1(1024) ,SPEC2(1024) 
+, SPEC3 ( 1024) ,SPEC4 (1024) ,SPECS ( 1024) 

CALL SPECOM(CO,SPECO,MAXM,NF,O,IDIFF) 
CALL SPECOM(Cl,SPEC1,MAXM,NF,1,IDIFF) 
CALL SPECOM (C2 ,SPEC2 ,MAXM,NF, 2, IDIFF) 
CALL SPBCOM(C3,SPEC3,MAXM,NF,3,IDIFF) 
CALL SPECOM(C4,SPEC4,MAXM,NF,4,IDIFF) 
CALL SPECOM(CS,SPBCS,MAXM,NF,S,IDIFF) 
RETURN 
END 

c--------------------------------------------------~-----c 
SUBROUTINE SPECOM (DIN, SPEC ,MAXM ,NF, ING, IDIFF) 
DIMENSION DIN(l024) ,ACFD(1024) ,SPEC(1024) ,Y(2S7) 
COMMON /XVAL/Xl(2S7) 
PI=4. O*ATAN ( l. 0) 
FREQ=12S.O 
NCORL=Sl3 
NPT=129 
CALL ACF(NCORLiDIN,ACFD) 
CALL ASPEC(ACFD,MAXM,NF,SPEC,M) 
DO 10 K=l,NPT 
IF(SPEC(K) .LE. 0.0)SPEC(K)=0.1 
XX=Xl(K)/FREQ 
XY=4.0*SIN(PI*XX)*SIN(PI*XX) 
Y(K)=ALOGlO(SPEC{K)) 

10 IF(IDIFF .EQ. l)Y(K)=Y(K)-ALOG10(XY) 
CALL MINVAL(Y,NPT) 
CALL FGRAPH(NPT,Xl,Y,ING,O) 
RETURN 
END 
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c 
c------------------------------------------------------c 

SUBROUTINE ASPEC(COV,MAXM,NF,SPEC,M) 
c 
C THIS ROUTINE COMPUTES THE SMOOTHED AUTOSPECTRUM OF THE 
C DATA WHOSE COVARIANCE IS' GIVEN .YN 'COV' 
c 
c 
c 
c 
c 
c 
c 
c 

c 

INPUTS: COV 
MAXM 

NF 

OUTPUT: 
M 

AUTOCOVARIANCE OF SERIES TO BE TRANSFORMED 
MAXIMUM NUMBER OF LAGS IN COV 

NUMBER OF FREQ. POINTS DESIRED 

SPEC SMOOTHED AUTOSPECTRAL ESTIMATES 
TRUNCATION POINT FOR SPECTRAL WINDOW 

DIMENSION COV(513) ,SPEC(1024) ,11'(513) 
PI=4. O*ATAN ( l. 0) 
CALL VII'NDOW(M,II') 
MP2=M+2 

C CALCULATE SMOOTHED AUTOSPECTRAL ESTIMATES 
c 

WHITE(1,ll)M,NF 
11 FORMAT('ASPECM,NF:',2I6) 

DO 2 I=1,NF 
IM1=I-1 
U1=FLOAT (IM1) /FLOAT (NF) 
VO=O.O 
V1=0.0 
C=COS (PI*U1) 
DO 1 K=2,M 
K1=MP2-K 
V2=2.0*C*V1-VO+COV(Kl)*W(K1) 
VO=V1 

1 V1=V2 
2 SPEC(I)=2.0*(COV(1)+2.0*(V1*C-V0)) 

RETURN 
END 

c 
c------------------------------------------------------------c 

SUBROUTINE TUKEY(M,W) 
DIMENSION 11'(513) 
PI=4.0*ATAN(1.0) 
DO 10 K=1,M 
K1=K-1 
T1=PI*FLOAT(K1)/FLOAT(M) 
T2=COS (T1) 

10 W(K)=0.5*(1.0+T2) 
RETURN 
END 

c 
c---------------------------------------------~-----------------c 

SUBROUTINE· BARTLT(M,W) 
DIMENSION 11'(513) 
WRITE(l,2)M 

2 FORMAT('BARTLET,M=' ,IS) 
DO 10·K=1,M 
K1=K-1 
T1=FLOAT(K1)/FLOAT(M) 

10 W(K)=1.0-T1 
RETURN 
END 

c 
c----------------------------------------------------------c 

SUBROUTINE PARZEN(M,Wl 
DIMENSION W(513) 
M2=M/2 
M3=M2+1 
DO 10 K=1,M2 
Kl=K-1 
T1=FLOAT(K1)/FLOAT(M) 
T2=T1*T1 
T3=T1*T2 
W(K)=1.0-6.0*T2+6.0*T3 

10 CONTINUE 
DO 20 K=MJ,M 
K1=K-1 
T1=1.0-FLOAT(K1)/FLOAT(M) 

20 W(K)=T1*T1*T1*2.0 
RETURN 
END 
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c 
c---------------~------------------------------------
c 

c 

SUBROUTINE CSPEC(EV,OD,NF,M;COSPEC,QSPEC,SO,MAXM) 
DIMENSION EV( S13) ,OD ( SlJ) ,COSPEC ( 1024) 
DIMENSION OSPEC (1024) ,SQ(1024),,W(Sl3) 

C THIS SUBROUTINE COMPUTES THE SMOOTHED. CROSS SPECTRAL 
C ESTIMATES FROM THE EVN AND ODD. LAG CROSS CORRELATION ESTIMATES 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

INPUTS: 
EV 
OD 

EVEN LAG CROSS CORRELATION ESTIMATES 
ODD " 

M,MAXM,NF 

OUTPUTS: 
COSPEC 
OSPEC 
so 

OUADRATURE COMPONENTS OF THE SPECTRAL ESTIMATES 
SQUARED MAGNITUDE SPECTRAL ESTIMATES 

CALL VWNDOW(M,W) 
PI=4. O*ATAN ( 1. 0) 
MP2=M+2 
DO 2 I=1,NF 
IM1=I'-1 
VO=O.O 
V1=0.0 
ZO=O.O 
Zl=O. 0 
C=COS ( (PI*IM1) /NF) 
SN=SIN((PI*IM1)/NF) 
DO 1 K=2,M 
K1=MP2-K 
V2=2.0*C*V1-VO+EV(K1)*W(K1) 
Z2=2. O*C*Z1-ZO+OD (Kl) *W (K1) 
VO=V1 
V1=V2 
ZO=Z1 

1 Zl=Z2 
COSPEC(I)=2.0*(EV(1)+2.0*(V1*C-V0)) 
OSPEC(I)=4.0*Z1*SN . 

2 SO(I)=COSPEC(I)*COSPEC(I)+QSPEC(I)*OSPEC(I) 
RETURN 
END 

c 
c-----------------------------------------------------------c 

SUBROUTINE MLTCOR(COV,VR,HR,EEG,MAXM,ICOV) 
c 
C THIS PROGRAM CALCULATES AUTOC AND CROSS CAVARIANCES 
C OF THE EOGS AND EEG. 
c 
c 
c 
c 
c 
c 
c 

10 

110 

20 
30 

INPUTS: VR,HR 
EEG1 
ICOV 

( . ) 

=0 PROGRAM COMPUTES COVARIANCBS 
=1 PROGRAM COMPUTES CORRELATIONS 

OUTPUT: COV COVARIANCES 
COR CORRELATIONS 

DIMENSION X ( 1024, 3) ,COV ( Sl3, 3, 3) ,COR (S13, 3, 3) 
DIMENSION VR(1024) ,HR(1024) ,EEG(1024) 
DOUBLE PRECISION SUM 
INTBGER*2 FNAME(20) 
N=102"4 
NCORL=MAXM+2 
NS=3 
DO 10 I=1,N 
X (I ,1) =VR(I) 
X (1, 2) =HR(I) 
X(I,3)=EEG(I) 
CONTINUE 
WRITE (1,110) 
FORMAT ( 'XVAL OK' ) 
DO 30 L=1,NS 
DO 30 J=1,NS 
DO 30 K=1,NCORL 
Kl=K-1 
SUM=O.O 
NZ1=N-,K1 
DO 20 Il=1,NZ1 
SUM=SUM+X·( Il ,J) *X (Il+K1,L) 
COV(K,J,L)=SUM/FLOAT(N) 
IF(ICOV .EQ. OJRETURN 
DO SO L=1,NS 
DO SO J=1,NS 
DO SO K=1,NCORL 
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DO 50 K=1,NCORL 
50 COR(K ,J, L) =COV(K-,J, L) /SORT (COV ( 1 ,J ,j) *COV (1; L, L),) 

RETURN 
END 

c 
c---------------------------------------------------------------
c 

SUBROUTINE VWNDOW(M;W) 
DIMENSION W(513) 
WRITE (1, 10) 

10 FORMAT ('ENTER M'·) 
READ (1, *)M 
IF(M .GE. 513)GO TO 99 
WRITE (1, 20) 

20 FORMAT('ENTER 0 FOR TUKEY,1 FOR BARTLET,2 FOR PARZEN') 
READ (1, *) IW 
IF(IW .EQ. O)CALL TUKEY(M,W) 
IF(IW .EQ. 1)CALL BARTLT(M,W) 
IF(IW .EQ. 2)CALL PARZEN(M,W) 
RETURN 

99 WRITE(1,100) 
100 FORMAT('M IS TOO LARGE') 

STOP 
END 
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SUBPRO SUBROUTiNE FFT."FTN 

SUBROUTINE FFT(X,N,INV) 
C THIS SUBPROGRAM IMPLEMENTS THE FFT ~LGORITHM TO 
C COMPUTE THB DISCRETE FOURIER COEFFICIENTS OF ~ 
C D~T~ SEQUENCE OF N POINTS. 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

c 

C~LLING SEQUENCE FROM THE. MAIN PROGRAM: 
aLL FFT(X,N,INV)' 

N NUMBER OF D~T~ POINTS 
X COMPLEX ~RRAY CONT~INING THE D~TA 

SEQUENCE_- THE OFT COEFFS. ~RE RETURNED IN 
THE SI'.ME ~RRAY. 

INV FL~G FOR DIRECTION OF TRANSFORM 
INV~O FOR FORW~RD TRANSFORM 
INV=1 FOR INVERSE TRANSFORM 

COMPLEX X(N) ,W,T,CMPLX 

C C~LCUL~TE THE NO. OF ITERATIONS(LOG.N TO B~SE 2) 
c 

c 

ITER~O 

IREM=N 
10 IREM=IREM/2 

IF.(IREM .EQ. O)GO TO 20 
ITER=ITER+1 
GO TO 10 

20 CONTINUE 
SIGN=-1.0 
IF(INV .EQ. 1)SIGN=1.0 
NXP2=N 
DO 50 IT~1,ITER 

C COMPUT~TION FOR EACH ITERATION 
C NXP:NUMBER OF POINTS IN PARTITION 
C MSP2:NXP/2 
c 

c 

NXP=NXP2 
NXP2=NXP/2 
WPWR=3.141592/FLOAT(NXP2) 
DO 40 M~1,NXP2 

C aLCUL~TE THE MULTIPLIER 
c 

c 

ARG=FLO~T(M-1)*WPWR 
W~CMPLX(COS(ARG) ,SIGN*SIN(~RG)) 
DO 40 MXP=NXP,N,NXP 

C COMPUT~TION FOR E~CH P~RTITION 
c 

c 

J1=MXP-NXP+M 
J2= .Jl+NXP2 
T=X (Jl) -X (J2) 
X(J1)=X(J1)+X(J2) 

40 X(J2)=T*W 
50 CONTINUE 

C UNSCRAMBLE TBE BIT-REVERSED OFT COEFFS. 
c 

N2=N/2 
N1=N-1 
J~1 
DO 65 r~1,N1 
IF(I .GE. J)GO TO 55 
T='X(J) 
X (J) =X(I) 
X(I)=T 

55 R=N2 
60 IF(R .GB. J)GO TO 65 

J=J-R 
K=K/2 
GO TO 60 

65 J=J+R 
IF(INV .EQ. 1)GO TO 75 
DO 70 I=1,N 

70 X(I)=X(I)/FLOAT(N) 
75 CONTINUE 

RETURN 
END 
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SUBPROGRAM fGRAPH.FTN 

c 
C THIS ROUTINE PLOTS A GRAPH ON ONE OF SIX 
C PARTS OF A PAGE. TRUS . ·OPTO SIX GRAPGS C AN BE 
C PLOTTEO ON ONE, 'PAGE IF CALLED TIMES. 
c 
c 
c 
c 
c 
c 

X 
y 
ING 
IST 

HOLDS X-AXIS DATA 
HOLDS DATA TO BE PLOTTED 
SPECIFIES PART OF THE PAGE TO 
SPECIFIES THE Y-AXIS LABEL 

SOBROOTINE FGRAPH(N,X,Y,ING,IST) 
DIMENSION X(257) ,Y(257) 
INTEGER* 2 ILAB1' ( 7) , ILAB2 ( 7) 
INTEGER*2 ILAB3(5),ILAB4(2) 

PLOT GRAPH 

DATA ILAB1, ILAB2/' LO<J power (PSD) ' , '·Log power (CSD) '1 
DATA ILAB3,ILAB4/'coherence ','Gain'/ 
X1=0. 
IF(MOD(ING,2) .EQ. 1)X1=110.0 
Y1=57.0 
IF(ING .LT. 2)Yl=H5. 
IF ( ING .GT. 3) Y1=0. 
X2=X1+100.0 
Y2=Yl+70.0 
IF(ING .GT. O)GO TO 15 
CALL PICCLE 

15 CALL WIND02(X1,X2,Y1,Y2) 
CALL CBASIZ(2.4,2.4) 
CALL GRAF(X,Y,N,O) 
AX1=X2-60.0 

c 

AX2=X1+10.0 
AY1=Yl+5.0 
AY2=Yl+20.0 
CALL MOVT02(AX1,AY1:) 
CALL CHAHOL ( 'Freq (Hz) *.') 
CALL CBAANG(90.0) 
CALL MOVT02(AX2,AY2) 
IF(IST .EQ. O)CALL CHMRR(·ILAB1,7,2) 
IF(IST .EQ. 1)CALL CBMRR(ILAB2,7,2) 
IF ( IST • EQ. 2) CALL CHMRR( lLAB3, 5, 2) 
IF(IST .EQ. 3)CALL CHMRR(ILAB4,2,2) 
CALL CHMNG(O.O) 
RETURN 
END 

c-----------------------------------------------------c 
SUBROUTINE DEVICE(IDEV) 

c 
C THIS SUBROUTINE NOMINATES THE GRAPHICS DEVICE 
C TO BE OSED FOR PLOTTING GRAPHS 
c 

WRITE (1, 10) 
10 FORMAT('ENTER 1 TO VIEW, 2 FOR CC906, 3 FOR CC81') 

READ(1,*) IDEV 

c 

IF(IDEV .EQ. 1)CALL T4010 
IF(IDEV .EQ. 2)CALL CC906 
IF(IDEV .EQ. 3)CALL CC81 
RETURN 
END 

c---------------------------------------------------c 
SUBROUTINE MINVAL(DIN,NPT) 

c 
C SUBROUTINE TO NORMALIZE THE SPECTRAL ESTIMATES 
c 

DIMENSION DIN(257) 
PMIN=DIN ( 1) 
DO 10 I=2,NPT 
IF(DIN(I) .LT. PMIN) PMIN=DIN(I) 

10 CONTINUE 
DO 20 I=1,NPT 
OIN(I)=DIN(I)-PMIN 

20 CONTINUE 
RETURN 
END 
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c 
c----------~---------------~-----------------------------
c 

SUBROUTINE•GETNAM(FNAME) 
c 
C THIS SUBROUTINE REQUESTS FOR AND READS THE NAME 
C OF THE DATA FILE TO' BE PROCESSED 
c 

INTEGER*2 FNAME ( 20) ,TBUFF ( 20) 
DATA TBUFF /'NONAMEGIVEN 
WRITE(1,8) 

8 FORMAT('GIVE NAME OF FILE TO BE PROCESSED') 
READ(1,10)FNAME 

10 FORMAT ( 20A2) 
IF(FNAME(1) .• EQ. I ')GO TO 100 
DO 20 I~1,.20 

20 TBUFF(Il~FNAME(I) 
RETURN 

100 DO 120 I~1,20 
120 FNAME(I)~TBUFF(I) 

RETURN 
END 

c 
c------------------------------------------------------
c 

SUBROUTINE MTBRD(FNAME) 
c 
C THIS SUBROUTINE READS TBE DATA FROM THE SPECIFIED 
C DATA FILE 
c 
$INSERT SYSCOMIA$KEYS 

COMMON /MTDATA/C0(1024) ,C1(1024) ,C2(1024) ,C3(1024) 
+,C4(1024) ,C5(1024) 

INTEGER*2 FNAME ( 20) ,RKEY 
LOGICAL OPBN,CLOSE 
RKBY~3 

NLBN=40 
OPEN~OPEN$A(A$READ,FNAME,NLEN,RKEY) 
IF(.NOT. OPEN)GO TO 1700 

'I 

READ(.?,*) (CO(I) ,C1(I) ,C2(Il ,C3(I) ,C4(I) ,CS(I) ,I=1,1024) 
CLOSE=CLOS$A(RKEY) 
IF (CLOSE) RETURN 
WRITE(1,30)FNAME 

30 FORMAT('*** CANT CLOSE FILE',20A2,'***'l 
STOP 1 

1700 WRITE(1,35)FNAME 
35 FORMAT('*** CANT OPEN FILE ',20A2,'***') 

STOP 2 
END 

A138 



PROGRAM FREQPCOT.MTB 

iPROGRAM USED TO PREPROCESS DATA FOR THE 
iSPECTRAL ANALYSIS 

• ICOHPUTE AND REMOVE MEAN FROM DATA 
READ 'MTB.DATA' Cl-CS 
MEAN Cl •Kl 
MEAN C2 K2 
MEAN C3 K3 
MEAN C4 K4 
MEAN CS KS 
SUBTRACT Kl Cl Cl 
SUBTRACT K2 C2 C2 
SUBTRACT K3 C3 C3 
SUBTRACT ·K4 C4 C4 
SUBTRACT KS CS CS 
NAME Cla'VL',,C2=-'VR' ,C3='.RL'',C4='HR' ,C5a'EEG' 
NAME Cll='VRD' ,Cl2='HLD' ,Cl3='HRD' iC14='EEGD' • tDIFFERENCE THE DATA 
t 
DIFF 'VR'; 'VRD' 
DIFF 'HL', 'HLD' 
DIFF 'HR','HRD' 
DIFF 'EEG','EEGD' • tPERFORM OLS FOR BOTH RAW AND DIFFERENCED DATA • BRIEF 2 
REGRESS 'EEG' 3 'VR','HL','BR' C967 
NOCONSTANT1 
MSE Kl1 
COEFF C247 
XPXINV Ml. 
LET C6l=C24(l)*'VR'+C24(2)*'BL'+C24(3)*'HR' 
LET C8l='EEG'-C61 
PRINT C24 
BRIEF 2 
REGRESS 'EEGD' 3 'VRD','HLD','HRD' C9S: 
NOCONSTANT1 
MSE Klr 
COEFF C24: 
XPXINV Ml. 
LET C62=C24 ( 1) *·'VR' +C24 ( 2) * 'HL' +C24 ( 3) *'HR' 
LET C82='EEG'-C62 
PRINT C24 
LET 'VRD' (1)=0.0 
LET 'HRD' ( 1) =0. 0 
LET 'EEGD' (1)=0.0 
LET C82(1)=0.0 
LET C9 S ( 1·) =0. 0 

' tSAVE PREPROCESSED DATA FOR USE IN SPECTRAL ANALYSIS • WRITE 'FREQTESTl.DATA' 'VR', 'HR', 'EEG' ,C81, '·VR', 'HR' 
WRITE 'FREQTEST2.DATA' 'VRD', 'HRD', 'EEGD' ,C82,C9S, 'HRD' 
STOP 
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Appendix A14 Digital Filtering Progr~ms 

A main program, EOGFILTER, is used to. filter the EOG noise, 

The data to be anlyze~ is contained in a data file, arr~nged 

in six columns rep·resenting VL, V·R, HL, HR, EEG1, EEG2. 

When program is run, it requests for the name of the data 

file, the name of the file containing the filter length and 

coefficients. The ~oefficients are then used to filter out 

the EOG noise, and the filtered and unfiltered data are 

written to another file for further processing (eg plotting). 
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PROGRAM EOGFILTER.FTN 
c 
C THIS PROGRAM· IS USED TO REALISE THE •EOG FILTR 
c 

DIMENSION VR(l024) ,HR(l024) 
COMMON /MTDATA/ C0(1024),Cl(l024) ,C2(1024) ,C3(1024) 

c 

+,C4(1024) 
COMMON /HBDATA/HB ( 40) 
INTEGER*2 FNAME(20) ,FCOEF(20) 
ITYPEl=l 
ITYPE2=2 
NPT=l024 

C GET NAMES OF DATA FILE, COEFF. FILE, AND READ COEFFS, 
C AND DATA 
c 

c 

CALL GETNAM(FNAME,ITYPEl) 
CALL MTBRD(FNAME,ITYPEl,N) 
CALL GETNAM ( FNAME, ITYPE2) 
CALL MTBRD(FNAME,ITYPE2,N) 

C SAVE VR AND HR, THEN FILTER THE EOGS 
c 

DO 5 I=l,NPT 
VR(I) =CO (I) 

5 HR(I)=Cl(I) 
CALL FILTR(N) 
WRITE(6,10) (vR(I) ,CO(I) ,HR(I) ,C1(1) ,C2(1) ,C3(1), 

+I=l,NPT) 
10 FORMAT(6(F12.5,2X)) 

STOP 
END 

c 
c------------------------------------------------------c 

SUBROUTINE GETNAM(FNAME,ITYPE) 
INTEGER*2 FNAME(20) ,TBUFF(20) 
DATA TBUFF /'NONAMEGIVEN 
IF(ITYPE .EQ. 1)WRITE(1,8) 
IF(ITYPE .EQ. 2) WRITE(1,12) 

8 FORMAT('GIVE NAME OF FILE TO BE PROCESSED') 
12 FORMAT('GIVE NAME OF FILE FOR COEFF') 

READ(1,10)FNAME 
10 FORMAT(20A2) 

IF(FNAME(1) ,EQ, ' ')GO TO 100 
DO 20 1=1,20 

20 TBUFF(I)=FNAME(I) 
RETURN . 

100 DO 120 1=1·, 20 
120 FNAME(I)=TBUFF(I) 

RETURN 
END 

c 
c------------------------------------------------------c 

SUBROUTINE MTBRD(FNAME,ITYPE,N) 
$INSERT SYSCOMIA$KEYS 

COMMON /MTDATA/C0.(1024) ,C1(1024) ,C2(1024) ,C3(1024) 
+,C4(1024) 

COMMON /HBDATA/HB(40) 
INTEGER*2 FNAME(20) ,RKEY 
LOGICAL OPEN,CLOSE 
RKEY=3 
NLEN=40 
OPEN=OPEN$A(A$READ,FNAME,NLEN,RKEY) 
IF(.NOT, OPEN)GO TO 1700 
IF(ITYPE .EQ. 2)READ(7,*)N 
K=(N+l)/2 
IF(ITYPE .EQ. 2)READ(7,*) (HB(I) ,I=1,K) 
IF(ITYPE .EQ. 1)READ(7,*) (CO(I) ,C1(1) ,C2(I), 

+C3(I) ,C4'(1) ,1=1,1024) 
CLOSE=CLOS$A(RKEY) 
IF (CLOSE) RETURN 
WRITE ( 1, 30) FNAME 

30 FORMAT('*** CANT CLOSE FILE',20A2,'***') 
STOP 1 

1700 WRITE(l,35)FNAME 
35 FORMAT('*** CANT OPEN FILE ',20A2,'***') 

STOP 2 
END 
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c 
c-----------------------~-------~--------~---~~------
c 

SUBROUTINE FILTR(N) 
COMMON /MTDATA/ VR(1024),,RR(1024) ;C2 (1024) ,'C3 (1024) 

c 

+ ,C4('1024) 
COMMON /HBDATA/RB(40) 
CALL FILTER(VR,BB,N) 
CALL FILTER(RR,RB,N) 
RETURN 
END 

c-------------------------------------------------------
c 
c 
c 
c 
c 
c 

c 

SUBROUTINE TO CALL FILTER ALGORITHM 
GIVEN AN· ARRAY OF DATA TO·BE FILTERED (1024 
A FILTERED ARRAY OF THE SAME SIZE WITH 
ZERO ·PRASE SHIFT IS RETURNED 

SUBROUTINE FILTER(DAT,H,N) 
DIMENSION DAT(1024) iDATEX(1064) ,R(40) 
N2=2*N 
NS=(N+1)/2 

C SET UP EXTENDED DATA ARRAY 
c 

c 

DO 10 I=i,1024 
10 DATEX(I)=DAT(I) 

M"1024+NS-1 
DO 20 I=102S ,M 

20 DATEX(I)=O. 

C INITIALISE FILTER 
c 

CALL FILT(1,X,Y,R,N,N2,NS) 
c 
C CALL FILTER ALGORITHM FOR EACH DATA POINT 

SAMPLES) 

C REMOVE DELAY AND STORE RESULTING 1024 SAMPLES 
c 

c 

DO 30 I=1,M 
CALL FILT(O,DATEX(I) ,Y,R,N,N2,NS) 
IF(I.LT.NS) GO TO 30 
IEX=I-NS+l: 
DAT(IEX)=Y 

30 CONTINUE 
RETURN 
END 

c---------------------------------------------------------
c 
C FILTER ALGORITHM BASED ON RABINER 
C UTILISING IMPULSE RESPONSE SYMMETRY 
c 

SUBROUTINE FILT (!NIT, X, Y., R,N ,N2, NS) 
DIMENSION H(40) ,XSAV(100) 
IF(INIT.EQ.O) GO TO SO 
DO 10 I=1,N2 

10 XSAV(I)=O. 
IPT=N+1 
RETURN 

SO XSAV ( IPT) =X 
XSAV ( IPT-N) =X 
Y=O. 
M=NS-1 
DO 60 I=1,M 

60 Y,;,Y+R (ol) * (XSAV(IPT-I+l) +XSAV( IPT-N+I)) 
Y=Y+H (NS) *XSAV( IPT-NS+l) 
IPT=IPT+l 
IF(IPT.GT.N2) IPT=N+1 
RETURN 
END 
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Appendix A l5 68000 }lP A·ssembly language Program 

for the OAR System 

There are essentially two d'iffe~ent OAR system softwares, 

namely, one using the UD algori.thm and another the 

fixed parameter algorithm. Both share a number of subroutine~ 

since most of their operations are similar. Infact, the 

fixed parameter algorithm is obtained by a trivial modi-

fication to the full on-line algorithm that uses the UD 

algorithm. 

The UD algorithm consists of a main program called UDMAIN.ASM 

and several subrou.tines; one for acquiring da-ta, 8ADATA; 

one for outputing data, OUTPUT, another for updating the 

UD elements, UDFLT etc. These programs have been described 

in detail in the main text (chapter 6). 

The fixed parameter algorithm consists of only two speDfic 

routines, viz, FXDMAIN (the main program, which is very 

similar to UDMAIN) ,and FX·DCRTN analogous to UDCRTN. As 

examination of the program listing will show (p A~49) 

the fixed pa·rameter algorithm h<>.s only a few lines of codes specific to it. 

However, the algorithm makes use of a number of subrou-

tines that belong to the UD on-line algorithm. These include 

OADATA for acquiring data,_ the interrupt service routine, 

• 
the output routines and the floating point arithmetic routines. 
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OAR System Default Values 

As stated in the .main te~t, when the OAR system p~bgrams 

are r·un, they request for certain system constan.ts,, viz, 

the number of parameter estimates, NPAR, the number of EEG 

channels to correct for OA, NEEG, etc. The following are 

the ranges within which the constants should be. The lower 

limits are used as defaults. 

2 ~ NPAR ~4 

5 ~ NCHN !: 20 

~ NEEG ~ (NCHN-NEOG) 

NEOG = 4 

~ EEGC ~ NEEG 

~ EEGMb( NCHN-EEGC) 

0 ~ UEOG ~ (NCHN-EEGC-EEGM) 

0 = UPAR .._ tt-~ctlt-1- e-~sc. -E:.e.C.I\1--Ileoq 

where NPAR is the number of parameter estimates, which 

effectively determines the models to be used (see model 

definitions in chapter 6); NCHN the number of channels 

to acquire data from (NCHN is determined internally from 

the values of NEEG and NEOG). NEOG is the number of EOGs 

(this is fixed at 4) r NEEG is the number of EEG channels from 

which OA is to be removed; EEGC is the number of corrected 

EEGs to output to the EEG machine; EEGM is the number of 

measured EEGs to output to the EEG machine; UEOG is the num
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ber of EOGs to output to the EEG :machines; UPAR is the number of 

parameter estimates to output to the EEG maChine. The philosophy 

behind the default values is that the number of EEG channels to correct 

should not exceed the total .number of channels less the EOGs nor 

should the total number of variables to output to the EEG machine exceed 

the total number of channels available. 

Chang:i:rtg the Sampling frequency 

To change the sampling frequency, a'll that needs to be done is to change 

the programmable timer module's counts. The instruction 'MOVE.W $7C3l,D3 1 

at the present gives a sampling frequency of 128Hz. The following table 

gives the values to use to give different sampling frequencies. 

COUNT 
$7C31 

$9F31 

~1\731 

FREQ 
128Hz 

100Hz 

95Hz 

The instruction given above is at location $F04018 in ROM, ancl so cannot 

be changed. It is therefore necessary to first move the OAR software into 

RAM, alter it and then run it from RAM. 

Memory Map 

1 . Data Memory 

Address 

980-FF 
A00-27 
A28-37 
A38-47 
A48-A57 
A58-97 
A98-AA7 
AA8-E7 
AE8-F7 

Mnemonic 

THETA 
u 
B 
V 
X 
y 

XBAR 
YBAR 
XMEAN 
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description of data 

Ocular artefact parameters 
Opper unit triangular matrix 
Unsealed Kalman gain vector 
a local vector 
EOG data vector 
EEG data vector 
EOG data duplicate 
EEG data duplicate 
Mean vector for EOG 



Address 

AF8-837 
B38-BE8 
83C-83F 
840-843 
844-47 
848-48 

Constants 
B4C 
84D 
84E 
84F 
850 
851 
852 
853 
854 
856 
856 

r/o devices 

860-63 
864-67 
868-68 
86c-86F 
870-73 
874-77 
878-78 
B7C-7F 
880-883 
884-887 

MISCELLANEOUS 

890-93 
894-97 
898-98 
B9C-9F 
BAO-A3 
8A4-A7 
BA8-8A8 
BAC 
880-81 
884-885 
886-87 
888-889 

USER locations 
C00-03 
C04-07 
C08-COB 
coc 

Mnemoni~ 

YMEAN 
ALPHA 
BETA 
DELTA 
GAMMA 
NETA 

NPAR 
NPAR-1 
NPAR-2 
NCHN 
NEEG 
NEOG 
EEGM 
EEGC 
EOG 
PAR 
DVALID 

PTM 
FPSEL 
" 
ADCSTC 
DACSTC 
MUX 
DMUX 
PGA 
WDSTS 
SHLD 

ADCMIN 
FP MAX 
FPtJNE 
DGAMMA 
DTHETAO 
DUO 
NEGMAX 
~U:$6tj-
OFFST1 
OFFST2 
OFFSTJ 
DACMAX 

UTHETAO 
uuo 
UGAMMA 
UN PAR 
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descrigtlQil 

Mean vector for EEG 
used in UD update 
" 
" 
forgetting factor 
( 1-GAMMA) 

number of parameters 

no of EEG and EOG channels 
no of EEG channels to correct 
no of EOG channels to acquire 
no of raw EEG to output 
no of corrected EEGs to output 
number of EOGs to output 
number of parameters to o tput 
Data valid flag 

programmable timer 
FP devices (reserved) 
" 
ADC address 
DAC address 
multiplexer 
demultiplexer 
Prog. gain amplifier. 
Window detector status 
output sample and holds 

min FP value 
max FP value 
floating point ONE. 

for OA 

Defaul·t value for gamma ( 407F80) 
default value for THETA 
default value for U·(O) 
minus 1 for FP 

off set 
" 
" 
max DAC value 

user defined ~(00 
user defined U(O) 
usaer specified GAMMA 
user specified PAR 



COD UEEGM user specified no of EEGs 
COE UEEGC user specified EEGC for output 
COF UNCHN 11 number of.channels ( EOG and EEG·) 
ClO UN EEG 11 number of EEGs for correction 
c 11 UEOG '

11 number of EOGs 

Note: Some of the user specified parameters above are not requested for 
at run time, but may be specified -by physically changing or entering 
the desired values at the appro~riate loc~tions. 

2. Program Memory. 

Ad.d.I:e.ss 
F04000-053 

F04054-079 

F0407A-OA6 
F040~tJ-: ~73 

F04394-603 

F646.10-637 

F04638-6B7 

F046B8-6FD 

F046FE-763 

F04784-7E9 

F047EA-7FB 

F047FC-897 

F648B8-8F9 

F048FA-A09 

F04AOA-A37 

F04A38-A6F 

F04A90-AA5 

F04AA6-B1D 

F04B1E-B65 

F04B66-B83 

F04BA4-BED 

Erogram na[ne 
UDMAIN 

FXDMAIN 

FXDCRTN 

OAUSER 

OAINIT 

EXIT 

FADD 

FMUL 

FDIV 

OADATA 

INTERRUPT 

DSAVE 

UDCRTN 

IJDFLT 

PERR· 

ESTMATE 

SCALE 

eUTPUT 

FLTINT 

DACOUT 

ERROR 
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Purpose 
main program for on-line OA removal 

main prog for fixed para methOd 

removal control routine 

Fetches user specified constants 

initialization routine 

Exit routine for FP arithmetic. 

Floating point addition routine 

Floating point multiply 

Floating point divide routine 

Data acquisition routine 

Interrupt service routine 

Saves acquired data 

removes OA using UD algorithm 

updates elements·of UD filter 

Computes predictiG~ error 

updates parameter estimates 

scales parameters for output 

outputs processed data 

floating point to integer convsr. 

converts data. to analogue 

outputs error message when too 

many paramet. are specified. 



* 
* ROUTINE TO OUTPUT A WARNING WHEN TOO MANY EEG CHANNELS OR 

* PARAMETERS ARE SPECIFIED BY THE USER 

* 

ERROR LEA ~Fee,A5 INITREG WITH BUFFER 

LEA (A5) ,A6 

MOVE.W *'TO', (A6l+ PUT MESSAGE IN BUFFER 

MOVE.W .:/f-'0 I' (A6 )+ 

MOVE.W #:'MA I ' ( A6) + 

MOVE.W #-' NY I ' ( A6) + 

MOVE.W #I C'' (A6)+ 

MOVE.W "''HN',(A6l+ 

MOVE.W J-, s I ' ( A6) + 

MOVE.W :t!• OR I ' ( A6) + 

MOVE.W -it· pI' (A6) + 

MOVE.W #"' AR I ' ( A6) + 

MOVE.W -lt I AM I ' ( A6) + 

MOVE.W t"•ET', (A6)+ 

MOVE.w *'ER', (,A6)+ 

MOVE.W -t•s I' (A6)+ 

TRAP 4f15 ;OUTPUT MESSAGE. 
DC.W 2 

BSR SPACE ;PUT SPACES FOR CLARITY. 

TRAP #15 

DC.W 0 
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• 
* UDMAIN.ASM 
* THIS IS·THE MAIN PROG FOR THE REMOVAL OF .OA BY 
* THE OD FACTORIZATION METHOD .• 
• 
START LEA USTACK,A7 

MOVE.W I$2700,SR ;DISABLE INTERRUPTS 
BSR USER ;FETCH USER' SPECFD CONSTANTS 
BSR INIT ;INIT SYSTEM 
MOVE.L IROM+INTSVC,AVECTR ;INIT INTERPT VECTR 
MOVE.W 1$7C3l,D3 l.INIT PTM FOR 8MS INTRPT 
MOVEA.L PTM,AO ;'FETCH CR013 ADDR 
MOVE.B 001,2(A0) 1 ADDRESS CRil 
MOVE.B 101, (AO) ;PRESET LATCHES 
MOVEP.W D3,4(A0) ;INIT TIMER LATCHES 
MOVE.B I$C6, (AO) ;ENABLE TIMER 
MOVE.W 0$2SOO,SR ;ENABLE INTERPT 

• 
*ENDLESSLY LOOP AROUND UNTIL DATA IS VALID 
* 

LEA DVALID,AS I 
DMOVE TST.B (AS) ;IS DATA FLAG SET? 

BEQ DMOVE ;NO. GO TEST AGAIN. 
BSR OADATA ;YES. GO ACQUIRE DATA, 
BSR UDCRTN ;UPDATE UD ELEMNTS & REMOVE 
BSR OUTPUT ;AND OUTPUT DATA TO M/C 
LEA DVALID,AS ;CLEAR DATA FLAG AND 
MOVE.B 10, (AS) ;WAIT UNTIL DATA FLAG IS 
BRA DMOVE ;AGAIN SET. 

•------------------------------------------------------------------
* FXDMAIN - THIS IS THE MAIN PROG FOR THE FIXED PARAMETER ALGORITHM 
*------------------------------------------------------------------

MOVE.B OO,DVALID 
LEA USTACK,A7 

DMOVE LEA DVALID,AS 
TST.B (AS) ;IS DATA FLAG SET? 
BEQ DMOVE ;NO. THEN GO CHECK AGAIN 
BSR OADATA ;YES. GO ACQUIRE DATA 
BSR FXDCRTN ;THEN GO REMOVE OA. 
BSR OUTPUT ;OUTPUT PROCESSED DATA 
LEA DVALID,AS ;CLEAR DATA FLAG 
MOVE.B IO,(AS) 1 AND WAIT UNTIL DATA FLAG 
BRA DMOVE ;IS AGAIN SET 

OA, 

•---------------------------------------------------------------------
* 
* FXDCRTN THIS SUBROUTINE CONTROLS THE REMOVAL OF OCULAR ARTEFACTS 
* BY THE FIXED PARAMETER ALGORITHM 
* 
FXDCRTN LEA 

MOVE.L 
MOVE.L 
BSR 
MOVE.L 
SUB.L 
MOVE.B 
SUBQ.B 
SUB.L 
LEA 

EEGCRT MOVE.L 
BSR 
MOVE.L 
ADD.B 
DBF 
RTS 

XBASEiA1 
4 (Al) ,02 
8 (Al:) ,03 
FMUL 
D3 ,12 (A1) 
DO,DO 
NEEG,DO 
tl,DO 
D1,D1 
YBASE,A3 
(A3).,D4 
PERR 
D3, (A3)+ 
tl6,ill 
DO,EEGCRT 
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;FETCH X(3) (HR) 
;FETCH X(4) (HL) 
1 COMPUTE HR*HL 
;SAVE AS· X(2) (VL = HR*HL) 

;INIT REGS. 

1 FETCH EEG SAMPLE 
;REMOVE OA FROM SAMPLE 
;SAVE CORRECTED EEG SAMPLE 
;UPDATE ESTIMATES POINTER 
;ALL EEG· CHS CORRECTED? 



• 
• 
* OAUSER.ASM 
* PROG REQUESTS FOR AND OBTAINS USER SPECIFIED CONSTANTS 
• 
•---------------------------------------------------------------• 
* SUBR SPACE - PUTS SPACE BETWEEN REQUESTS FOR CLARITY 
• 
SPACE MOVEM.L 

LEA 
LEA 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
TRAP 
DC.W 
MOVEM.L 
RTS 

AS-A6,-(A7) 
MSGBUF,AS 
(AS) ,A6 
0$ '•DOA', (A6) + 
0$ '.DOA', (A6) + 
i$ '.DOA', (A6) + 
f$ '.DOA', (A6) + 
f$'DOA', (A6)+ 
us 
t2 
(A7)+,AS-A6 

1INIT REGS 

70UTPUT FIVE SPACES 

*------------------------------------------------------------• SUBR FECTCH.ASM - FETCHES THE NUMBER GIVEN BY THE USER 
• 
FETCH 

NXTNUM 

BXITO 

MOVEM.L 
SUB.L 
MOVE.W 
CMPA.L 
BEQ 
MOVB.B 
AND.L 
MOVE.L 
SWAP 
MULU 
SWAP 
TST.W 
BNE 
MULU 
ADD.L 
ADD.L 
BVS 
BRA 
MOVEM.L 
RTS 

D0/D2/D4/AS,-(A7) 
D3,D3 
BASB,D4 
AS,A6 
BXITO 
(AS)+,DO 
I$F,D0 

D3,D2 
D3 
D4,D3 
D3 
D3 
EXITO 
D4,D2 
D2,D3 
DO,DJ 
EX ITO 
NXTNUM 
(A7)+,D0/D2/D4/AS 

1GO FETCH NEXT NUMBER 

•---------------------------------------------------------------
• THIS IS THE ENTRY POINT FOR THE ROUTINE 'USER.ASM'. 
* REQUESTS FOR THE NUMBER OF EEG CHNS TO BE CORRECTED • 
• 
USER LEA 

LEA 
MOVE.W 
BSR 
MQVB;W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVB.W 
MOVB.W 
MOVE.W 
MOVB.W 

MSGBUF,AS 
(AS) ,A6 
UO,BASE 
SPACE 
i'·EN', (A6) + 
i'TE',(A6)+ 
i'R ', (A6)+ 
#'NO', (A6) + 
#' O',(A6)+ 
i'F ',(A6)+ 
i'EE', (A6)+ 
i'G ',(A6)+ 

1INIT BUFFER POINTERS 

1GO OUTPUT A SPACE 
!REQUESTS FOR NO OF BEG 
1 CHNS TO BE CORRECTED. 

AlSO 



* 

MOVE.W 
MOVE.W 
MOVE.W' 
MOVE.W 
MOVE.W 
MOVE.W 
M.OVE.W 
MOVE~W 
MOVE.W 
MOVE.W 
TRAP 
DC•W 
LEA 
TRAP 
DC.W 
BSR 
MOVE.B 
ADDQ.B 
MOVE.B 

i.'CH 11o (A6) + 
i'NS',(A6)+ 
I'T',(A6)+ 
0,'0 'I o (A6)+ 
,., BE', (A6) + 
0' C',, (A6)+ 
t'OR', (A6)+ 
I'RE'. (A6)+ 
I'CT', (A6)+ 
i'ED.', (A6)+ 
us 
02 
(AS) ,A6 
us 
il 
FETCH 
D3;UNEEG 
t4,D3 

·Dl,UNCHN 

rGO FETCH THE NUMBER GIVEN 

riNIT UNEEG WITH NUMBER 
rALSO !NIT ONCHN AS 
rUNCHN = UNEEG+4 

* REQUEST FOR THE NUMBER OF PARAMETERS TO USE IN MODEL 

* 

* 

BSR 
LEA 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
TRAP 
DC.W 
LEA 
TRAP 
oc.w 
BSR 
MOVE.B 

SPACE 
(AS) ,A6 
t'EN' I (A6)+ 
i'TE', (A6)+ 
I'R ',(A6)+ 
I'NO',(A6)+ 
0' 0', (A6) + 
i'F ', (A6)+ 
i'PA'', (A6)+ 
I'RA', (A6)+ 
i'ME''• (A6)+ 
I'TE'. (A6) + 
I'RS'. (A6)+ 
i' T'·,(A6)+ 
i'O',(A6)+ 
t'US' I (A6)+ 
0'E',(A6)+ 
ilS 
02 
(AS) 1 A6 
us 
i1 
FETCH 
D3,UNPAR 

rGO FETCH THE NUMBER GIVEN 

riNIT NPAR WITH NUMBER 

* REQUEST FOR THE. NUMBER OF CORRECTED EEG CHNS TO OUTPUT 
* (EEGC) 

BSR 
LEA 
MOVE.W 
MOVE.W 
MOVE.W 
MoVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 

SPACE 
(AS) ,A6 
i'EN', (A6)+ 
I'TE'. (A6)+ 
0' R ' , (A6)' + 
I'NO', (A6)+ 
t'.o',(A6l+ 
i'F 'I (A6)+ 
I'EE', (A6)+ 
I'GC', (A6)+ 
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* 

MOVE.W 
MOVE•W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
TRAP 
oc.w 
LEA 
TRAP 
oc.w 
BSR 
MOVE.B 

0' T' ,.(A6)+ 
i'O• '..(A6)+ 
O'BE'. (A6)+ 
0' o• dA6)+ 
I' UT' ,.(A6r+ 
I'PU' ,;(l\6)+ 
O'T ','(A6)+ 
us. 
02 
(AS) ,A6 
01S 
01 
FETCH 
03 ,UEEGC 

;GO FETCH THE NUMBER GIVEN 

;INIT EEGC WITH NUMBER 

* REQUEST FOR THE NUMBER OF RAW EEGS TO OUTPUT 

* 

* 

BSR 
LEA 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE•W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W· 
MOVE.W 
TRAP 
oc.w 
LEA 
TRAP 
oc.w 
BSR 
MOVE.B 

SPACE 
(AS) ,A6 
i'EN', (A6)+ 
O'TE', (A6)+ 
I'R ', (A6)+ 
O'NO'. (A6)+ 
I' 0', (A6) + 
I'F ',(A6)+ 
I'EE', (A6) + 
I'GS', (A6)+ 
I' T',(A6)+ 
I'O ',(A6)+ 
f'BE',(A6)+ 
I' 0', (A6)+ 
t' UT' , ( A6) + 
f'PU', (A6)+ 
f'T ',(A6)+ 
us 
12 
(AS} ,A6 
us 
11 
FETCH 
03,UEEGM 

;GO FETCH THE NUMBER GIVEN 

;INlT EEGM WITH NUMBER GIVEN 

• REQUEST FOR THE NUMBER OF EOG CHANNELS TO OUTPUT 

* 
BSR 
LEA 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MoVE.W 
MQVE,W 
MQVE,W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE,W 

SPACE 
(AS) ,A6 
i'EN', (A6) + 
t'TE',(A6)+ 
t'R '., (A6)+ 
f'NO', (A6}+ 
t'O',(A6}+ 
i'F ',(A6)+ 
O'EO', (A6}+ 
t'GS', (A6)+ 
0' T', (A6)+ 
f'O ',(A6}+ 
f'BE', (A6)+ 
i' O',(A6)+ 
t'UT', (A6)+ 
t'PU', (A6)+ 
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* 

MOVE.W 
TRAP 
DC.W 
LEA 
TRAP 
oc.w 
BSR 
MOVE.B 

i'T ',(A6)+ 
us 
12 
(AS) ,A6 
us 
u 
FETCH 
Dl,UEOG 

rGO FETCH THE NUMBER GIVEN 

riNIT EOG WITH NUMBER 

* REQUEST FOR THE NUMBER OF PARAMETERS TO OUTPUT 

* 

* 

BSR 
LEA 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
TRAP 
DC.W 
LEA 
TRAP 
DC.W 
BSR 
MOVE.B 

SPACE 
(AS) ,A6 
i'EN',(A6)+ 
i'TB', (A6)+ 
'i'R '• (A6)+ 
i'NO', (A6)+ 
I' o•, (A6l + 
I'F •• (A6)+ 
i'PA', (A6)+ 
t'RA', (A6)+ 
I'ME', (A6)+ 
I'TB',(A6)+ 
I'RS',(A6) 
i' T', (A6)+ 
I'O ',(A6)+ 
I'BB',(A6)+ 
t' o•, (A6l + 
i'UT', (A6)+ 
t'PU', (A6)+ 
t'T ',(A6)+ 
us 
12 
(AS) ,A6 
us 
il 
FETCH 
Dl,UPAR 

rGO FETCH THE NUMBER GIVEN 

riNIT PAR WITH NUMBER 

* DISPLAY 'OA REMOVAL IN PROGRESS' MESSAGE 

* 
BSR 
LEA 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
TRAP 
DC.W 
RTS 

SPACE 
(AS) ,A6 
t'OA',(A6)+ 
•• I. (A6)+ 
i'RE', (A6)+ 
t'MO',(A6)+ 
I'VA',(A6)+ 
I'L '• (A6)+ 
i'IN', (A6)+ 
i' P', (A6)+ 
i'RO', (A6)+ 
I'GR',(A6)+ 
t'BS',, (A6)+ 
I 0 S 1 

0 (A6) + 
us 
12 
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• 
*-------------------------------------------------------------------------• SUBR INIT.ASM 
* INITIALIZES POINTERS, AND SYSTBM CONSTANTS WITH USER SPECIFIED 
* CONSTANTS IF THESE ARE VALID OTHERWISE DEFAULT VALUES ARE USED. 
* 
INIT 

GDFLT 

MOVE .W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
LEA 
MOVE.L 
BGT 
MOVE.L 
MOVE.L 
MOVE•L 
NEG.W 
MOVE.L 
BSR 
MOVE.L 
MOVE.B 
CMF.B 
BLE 
CMP.B 

i$FE,PTM' 
t$801:1, PTM+2 
0$FF,D0 
DO,ALU 
i$FF40,ALU+2 
DO ;MPY 
I$FF50,MPY+2 
DO·,ADCSTC 
I$FF60,ADCSTC+2 
DO,DACSTC 
t$FF68,DACTSTC+2 
DO ,MUX 
i$FF70 ,MUX+2 
DO ,DMUX 
i$FF72,DMUX+2 
DO ,PGA 
i$FF74,PGA+2 
DO,WDSTS 
i$FF76,WDSTS+2 
DO,SHLD 
I$FF78,SHLD+2 
t$4C,ADCMIN 
1$C000,ADCMIN+2 
0$7F .. FPMAX 
I$7FFF,FPMAX+2 
0$4l,FPONB 
t$4000,FPONE+2 
1$4 0, DGAMMA 
i$7F80 ,DGAMMA+2 
t$3D,DTHETA0 
0$6666,DTBETA0+2 
f$3C,DU0 
I$6666,DU0+2 
i$4l,NEGMAX 
I$C000,NEGMAX+2 
f$40,XS64 
I$8000,0FFST1 
I$800,0FFST2 
I$50,0FFST3 
t$FFF, DACMAX 
GAMMA,AO 
UGAMMA,DO 
GDFLT 
DGAMMA,DO 
DO, (AO)+ 
DO,D2 
D2 
FPONE,D3 
FADD 
D3, (AO)+ 
UNPAR,DO 
U,DO 
NPDFLT 
14,DO 
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!INITIALIZE TIMER ADDR. 

J 
JINIT ALU ADDR. 
J PTMMSB ADDR 

1 STORE FPMAX 

JSTORE FP ONE 

JSTORE GAMMA DEFAULT 

JSTORE THETA DEFAULT 

rSTORE U(O) DEFAULT 

1STORE NBGMAX 

1STORE XS64 
1STORE OFFSTl 
JSTORE OFFST2 
rSTORE OFFST3 
1 STORE MAX DAC VALUE 
JFETCH USER SPEC GAMMA,CHECK ITS 
JVALIDITY ,STORE IF VALID OTHERWISE 
JDEFAULT 

JCOMPUTE 1-GAMMA 

!FETCH UNPAR,CHECK VALIDITY,STORB 
1 IF OK, OTHERWISE DEFAULT TO 2 



BLE 
NPDFLT MOVE.B 
NPSAV MOVE.B 

SUB.B 
MOVE.B 
SUB.B 
MOVE.B 
MOVE.B 
CMP.B 
BLT 
CMP.B 
BLE 

NCHDFLT MOVE. B 
NCHSAV MOVE.B 

MOVE.B 
BLE 
SUB.B 
CMP.B 
BGE 

NEDFLT MOVE.B 
NESAV MOVE.B 

MOVE.B 
MOVE.B 
BLT 
CMP.B 
BLE 

ECDFLT MOVE.B 
ECSAV MOVE.B 

MOVE.B 
MOVE.B 
BLE 
SUB.B 
CMP.B 
BLE 

EMDFLT MOVE.B 
EMSAV MOVE.B 

MOVE.B 
BLT 
SUB.B 
CMP.B 
BLE 

EODFLT MOVE.B 
EMSAV MOVE.B 

MOVE.B 
BLT 
SUB.B 
CMP.B 
BLE 

UPDFLT MOVE.B 
UPSAV MOVE.B 

MOVE.L 
TST.W 
BLE 
MOVE.L 
SWAP.W 
CMP.B 
BHI 
LSL.W 
EORI.W 
BPL 

NPSAV 
I2,DO 
DO,NPAR 
01,DO 
DO.,NPAR+1 
01,DO 
DO,NPAR+2 
UNCHN,DO 
I5,DO 
NCHDFLT 
f20 ,DO 
NCHSAV 
05,DO 
DO,NCRN 
UNEEG,D1 
NEDFLT 
14 ,DO 
D1,DO 
NESAV 
U,D1 
D1,NEEG 
t4 ,NEOG 
UEEGC,DO 
ECDFLT 
NEEG,DO 
ECSAV 
tl,DO 
DO,EEGC 
NCRN,D3 
UEEGM,DO 
EMDFLT 
EEGC,D3 
D3,DO 
EMS AV 
01,DO 
DO,EEGM 
UEOG,DO 
EODFLT 
EEGM,D3 
D3,DO 
EODSAV 
IO,DO 
DO,EOG 
UPAR,DO 
UPDFLT 
EOG,D3 
D3,D0 
UPSAV 
OO,DO 
DO,PAR 
UTHETAO,DO 
DO 
TRDFLT 

D0,D3 
D3 
i64,D3 
TRDFLT 
U,D3 
U6384,D1 
TRSAV 
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:COMPUTE AND SAVE NPAR•1 

rCOMPUTE AND SAVE NPAR-2 
:FECTH USER SPEC NCHN CHECK 
rVALIDITY,DEFAULT·TO 5 IF NOT 

rFETCH UNEEG, CHECK ITS VALIDITY 

riS NEEG .LE. (NCHN-NEOG) ? 
:YES. THEN SAVE. 
:OTHERWISE DEFAULT TO 1. 

:SET NUMBER OF BOGS TO 4. 
:FETCH UEEGC,CHECR VALIDITY AND SAVE 

:FETCH UEEGC,CHECK VALIDITY AND SAVE 

:IS EEGM .LE. (NCRN-EEGC) ? 

:FETCH USER SPECIFIED BOG CRNS FOR 
:OUTPUT, CHECK VALIDITY 

:FETCH USER SPECIFD NO OF PARAMETERS 
rFOR OUTPUT 

:FETCH THETA(O) ,CHECK VALIDITY 
:SAVE IF OK 

:CHECK THAT THETA IS NORMALIZED 



BPL THSAV 
THDFLT MOVE.L DTHETAO;DO 
THSAV MOVE.L 03l,D3 

LEA PBASE,AO 
!NITRE MOVE.L D0.'(A0)+ 

DBF D3 o.INITHE 
MOVE'L IO,DO 
MOVE.L 17B,D1 
LEA (AO),,A1 

ZROUXY MOVE.L DO, (Al)+ 
DBF 'D1,ZROUXY 
MOVE. L UUO ,DO 
TST.W DO 
BGT UOSAV 
MOVE.L DUO,DO 

UOSAV SUB.L D1,D1 
MOVE.B NPAR+1,D1 
MOVE.L tl,D2 

UINIT MOVE.L t4,D4 
MOVE.L D2,D3 
ADDQ.B tl,D3 
MULU D2,D3 
LSR.W tl,D3 
SUB.B 01,D3 
MULU D4;D3 

• 

MOVE.L D0,0(AO,D3.W) 
ADDQ.B 01,D2 
DBF D1,UINIT 
MOVEA.L PGA,A5 
MOVE.W U, (AS) 
MOVE.B IO,DVALID 
RTS 

!INITIALIZE ALL 64 THETA'S WITH 
ITHETA(O) 
1ZERO ALL U,X,Y 

1FETCH U(O) ,CHECK VALIDITY AND SAVE 

1DEFAULT TO SYSTEM U(O) 
!INITIALIZE ALL U(I,I) WITH U(O) 
1USE VECTOR SUBSCRIPTING 
;I~l 

; IK=I 
1IK=I+1 
1 I (!+1) =IK 
1 IK=I ( !+1) /2 
!IK=IK-1 
1IK=IK*4 
1STORE U(O) AT U(IK) 
11=!+1 

1SELECT PGA HI GAIN 

1INIT DATA FLAG 

Al56 



* * DATA ACQUISITION ROUTINE 
• 
OADATA MOVEM.L D0-'D7/A0-A6 1 -(A7) 

LEA BUFFER,AO 
MOVEA.L MUX,A1 
MOVEA.L ADCSTC,A2 
MOVEA.L PGA,A3 
MOVEA.L WDSTS,A4 
MOVE.W MPT,D6 
MOVE.B IO,D7 
MOVE.L 14,D1 
MOVE.L U,DO 
SUB.L D2,D2 
MOVE.B NCHN,D2 
SUB.L U,D2 
MOVE.W DO, (A1) 
MOVE.W (A4) ,D4 
MOVE.W D4 I (A3) 
MOVE.W DO I (A2) 

NXTCH MOVE.W 4(A2) ,DJ 
ANDI.W U,DJ 
BHI NXTCH 
MOVE.W D7 I (A1) 
MOVE.W 101 I (AJ) 
MOVE.W D4,D5 
ADDQ.W tl,DO 
MOVE .• W DO ,.(A1) 
MOVE.W (A4) ,D4 
MOVE.W D4 ,(AJ) 
MOVE.W (A2) ,D3 
ASL.W D1,D3 
MOVE.W DO, (A2) 
BSR DSAVE 
DBF D2 1 NXTCH 
MOVE.W D6,MPT 
MOVEM.L (A7)+,D0-D7/A0-A6 
RTS 

1SAVE REGS. 
;INITIALIZE ADDR REGS. 

;FETCH CURRENT ·BUFFER POINTER 

;INITIALIZE COUNTERS 
; INIT CH COUNTER 

;SELECT CH 1 OF MUX 
;READ WINDOW STATUS 

;START ADC 
1END OF CONVERSION? 

1GROUND MUX TO REDUCE XTALK 
rRESET PGA TO HIGH GAIN 
1SAVE WINDOW STATUS 
1SELECT NEXT CH OF·MUX 

1READ WINDOW STATUS AND USE TO 
1SELECT GAIN OF PGA 
;READ 12 BIT SAMPLE 
1SHIFT LEFT 4 PLACES 
1START ADC OF NEXT CH SAMPLE 
;SAVE CONVERTED SAMPLE(PRESENT CH) 
;ALL CH CONVERTED? IF NO CNTINUE 
1 SAVE POINTER 

*----~--------------------------------------------------------------• 
* INTRRUPT SERVICE ROUTINE 
• 

TAS DVALID 
BNE ERROR1 
MOVEA.L PTM,AO 
MOVEP.W 2 (AO) ,DO 

rWAS DATA FLAG CLEARED? 
1 THEN PROG TOO SLOW- REPORT. 
;CLEAR INTERRUPT FLAG 

RTE 1 RETURN FROM INTRPT 
•-----------------------------------------------------------------------------• 
* DSAVE- SUBROUTINE TO SAVE THE SAMPLE FROM THE ACQUISITION ROUTINE .THE MEAN 
* IS REMOVED BEFORE SAVING SAMPLE IN THE WORK AREA. . 
• 
DSAVE 

BNFULL 

MOVEM.L 
MOVE.W 
BTST 
BNE 
ADDQ.B 
SUB.B 
MOVE.L 
SUB.W 

D0-D2/D7/A1,-(A7) 
XS64,D1 
IO,D5 
HGAIN 
Ol,D1 
D5,D5 
U1,D0 
OFFST1,D3 
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1SAVE REGS. 
I 
;WAS HIGHER GAIN SELECTED? 
;YES. NO ADJUSTMENT NEEDED 
;(INC EXPONENT) 
;SET UP REGS FOR NORMALIZATION 
;ADC MAX EXP. 
!.REMOVE OFFSET FROM SAMP 



TST;W 
BEO 
BPL 
MOVE,W 
NEG.W 
TST,W 
BMI 

SPLNORM ADD,W 
DBMI 
ADD.B 
LSR.W 
SWAP.W 
MOVE.W 
MOVE.L 
SUBQ,B 
BNE 
NEG.W 

RMVMEAN MOVE.L 
MOVE.L 
BSR 

RMVM MOVE.L 
LEA 
LEA 
MOVE.L 
MOVE.L 
BSR 
MOVE.L 
BSR 

SPLSAV MOVE.L 
NEG.W 
MOVE.L 
MOVE.L 
BSR 
MOVE.L 
MOVE.L 
ADDQ.B 
MOVEM.L 
RTS 

SADCMIN LEA 
MOVE.L 
BRA.S 

ZSAMPLE CLR.L 
BRA 

D3 
ZSAMPLE 
SPLNORM 
01,[)5 
D3 
D3 
SADCMIN 
D3,D3 
DO,SPLNORM 
DO,Dl 
U,D3 
Dl 
D3,Dl 
Dl,D3 
tl,D5 
RMVMEAN 
D3 
NETA,D2 
D3,D5 
FMUL 
D3,DO 
XMEAN,AO 
XBASE,Al 
0 (AO,D7 ,W) ,D3 
GAMMA,D2 
FMOL 
D0,D2 
FADD 
D3,0(Al,D7.W) 
D3 
D3,D2 
D5,D3 
FADD 
D3,0(Al,D7,W) 
D3,80(Al,D7.W) 
i4,D7 
(A7) +,DO·-D2/D7/Al 

ADCMIN,A5 
(A5) , D3 
RMVMEAN 
D3 
RMVM 
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1 IS SAMPLE .ZERO? 
rYES. ·SET FLOATING PT NO TO· ZERO 
1SAMPLE IS POSITIVE. NORMALIZE 
1 SAMPLE IS NEG. 
rMAKE: POSITIVE 
1 IS IT STILL :NEG?. 
:YES. MOST BE ADCMIN· 
1 NORMALIZE SAMPLE 

rADJOST El(P. AND MANTISSA 

1 POT SAMPLE .INTO CORRECT 
:FP FORMAT 

1 RECOVER SIGN OF SAMPLE 

1 REMOVE MEAN FROM SAMPLE 

1 ( 1-GAMMA)·*X (m+l) 

rFETCB X_(m) 

7GAMMA*X_(m) 

1 ( 1-GAMMA) *X (m+l) +GAMMA*X (m+l) 
7SAVE AS X(m+l) -
1REMOVE MEAN• FROM SAMPLE 

1 SAVE MEAN-'CORRECTED SAMPLE 

' :UPDATE POINTER 
1 RECOVER REGS • 



•-------------~-----~-----------------------------------------------------• 
* OACRTN THIS SUBROUTINE CONTROLS THE CRRECTION OF OCULAR ARTEFACTS 
• 
UDCRTN LEA. 

MOVE.L 
MOVE.L 
BSR 
MOVE.L 
BSR 
SUB.L 
MOVE.B 
SUBQ•B 
SUB.L 
LEA 

EEGCRT MOVE.L 
BSR 
BSR 
MOVE.L 
BSR 
MOVE.L 
ADD.B 
DBF 
RTS 

XBASE,Al 
4(A1) ,D2 
8 (AI) ;DJ 
FMUL. 
DJ,12(A1) 
UDUFLT 
DO,DO 
NEEG,DO 
U,DO 
D1,D1 
YBASE,AJ 
(A3) ,D4 
PERR 
ESTMATE 
(A3) 1 D4 
PERR 
DJ., (AJ)+ 
U6,D1 
DO,EEGCRT 

;FETCH X(3)• (HR) 
;FETCH X(4) (HL) 
; COMPUTE HR*HL 
;SAVE' AS X(2) (VL = HR*HL) 
;UPDATE UD.ELEMENTS 

;INIT CNTRS AND REMOVE 
1 OAS FROM THE EEG SIGNALS 

; FETCH EEG SAMPLE 
;OBTAIN ITS PERR Y-THETA*X 
;UPDATE COEFFICIENTS 

; REMOVE OA FROM EEG AND 
;SAVE CORRECTED EEG SAMPLE 
;UPDATE ESTIMATES POINTER 
;ALL EEG CHS CORRECTED? 

•--------------------------------------------------------------------• 
*UDUFLT- THIS ROUTINE UPDATES THE ELEMENTS OF THE UDU' FILTER 
• 
UDUFLT LEA 

LEA 
LEA 
LEA 
LEA 
LEA 
SUB.L 
SUB.L 
SUB.L 
MOVE.B 
MOVE.B 
MOVE.L 
MOVE.L 
MOVE.L 
BSR 
MOVE.L 

JLOOP MOVE.L 
SUB.B 
MOVE.L 

KLOOP MOVE.L 

• 

MOVE.L 
BSR 
MOVE.L 
BSR 
MOVE.L 
DBF 
MOVE.L 
MOVE.L 
BSR 
MOVE.L 
LEA 
DBF 

UBASE,AO 
XBASE,A1 
BBASE 1 A2 
(AO) ,AJ 
(A1) ,A6 
(A2) ,AS 
DO,DO 
D1,D1 
DS,DS 
NPAR+2,DS 
DS,DO 
$20 (AS) ,DJ 
D3, $10 (AS) 
(AO)+,D2 
FMUL 
DJ, (AS)+ 
DS,D1 
DO,D1 
$20 (AS) ,D4 
(Al)+,D3 
(A0)+,D2 
FMUL 
D4;D2 
FADD 
DJ,D4 
D1,KLOOP 
D4, $10 (AS) 
(AO)+,D2 
FMUL 
DJ, (AS)+ 
(A6) ,A1 
DO,JLOOP 
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;MAKE COPIES OF ADDR PTRS 

;FETCH X (1) 
;V(1)=X(1) 
;FETCH U(l) ,M=M+1 
;U(1)*X(1) 
;=8(1) 
;INIT K COUNTER 
;J1=J-1 
;FETCH X(J) 
; FETCH .X·(K).; K=K+1 
;FETCH U(M) ;M=M+1 
;U(M)*X(K) 
;FETCH V(J) 
;V(J) +U(M) *X (K) 
;=TEMP (V(J)) 
;K GT. J1? 
;YES. v.(J)=V(J)+U(M)*X(K) 
iFETCH U(M);M=M+1 
;U(M)*V(J) 
;B(J)=U(M)*V(J) ;J=J+1 
;RESET K .COUNTER;K=1 



* * UPDATE B AND U VECTORS 
LEA (A2) ,A6 1INIT_ADDR REGS. 
LEA (A2) ,AS 
LEA DELTA,AO 
LEA ALPHA,A1 
MOVE.L $10 (AS) ,D2 .JFETCH '1(1) 
MOVE.L (AS)+,DJ !FETCH B(1)r.J=2 
BSR FMUL rB(1)*V(1) 
MOVE.L .GAMMA,D2 1 FETCH GAMMA 
MOVE.L D2,D4 1SAVE IN TEMP 
BSR FADD 1GAMMA+B ( 1) •v ( ll 
MOVE.L DJ, (Al) 1SAVE AS ALPHA 
MOVE.L FPONE,D2 
EXG D2,DJ 
BSR FDIIJ 11/ALPHA 
MOVE.L DJ, (AO) 1BAVE AB DELTA 
MOVE.L (AJ) ,D2 rFETCH U(l) 
BSR FMUL !U(l)*GAMMA*DELTA 
MOVE.L DJ,(AJ)+ r=U ( 1) 
SUB.L Dl,Dl 
MOVE.L DS,DO 

.J.JLOOP MOVE.B DS,Dl I 
BUB.B DO,Dl ,.rl=.J-1 
MOVE.L (Al) ,D4 1SET BETAl=ALPHA 
MOVE.L $10 (AS) ,DJ 1FETCH IJ(.J) 
MOVE.L (AS) ,D2 1 FETCH B (.J) 
BSR FMUL rB(.J)*V(.J) 
MOVE.L (All ,D2 1FETCH ALPHA 
BBR FADD 1 ALPHA"+B (.J) *V.(.J) 
MOVE.L DJ, (Al) r=ALPHA 
MOVE.L (AO) ,DJ 1FETCH DELTA 
MOVE.L $10 (AS) ,D2 1 FETCH V (.J) 
BSR FMUL rV(.J)*DELTA 
NEG.W DJ 
MOVE.L DJ,D6 rP=-V(.J)*DELTA 
MOVE.L FPONE,DJ 
MOVE. L (Al) ,D2 !FETCH ALPHA 
BSR FDIV 1 1/ALPHA 
MOVE.L D3, (AO) r=DELTA 

KKLOOP MOVE.L (A3) ,D7 IBETADU(M) 
MOVE.L D6,D3 
MOVE.L (A2) ,D2 rFETCH B(K) 
BSR FMUL rB(K)*P 
MOVE.L D7,D2 
BSR FADD 1BETA+B(K)*P 
MOVE.L D3,(A3)+ 1=U(M) ,M=M+l-
MOVE.L D7,D3 1FETCH BETA 
MOVE.L (AS) ,D2 rFETCH B(.J) 
BSR FMUL rB(.J)*BETA 
MOVE.L (A2) ,D2 1FETCH B(K) 
BSR FADD IB(K)+B(.J)*BETA 
MOVE.L D3, (A2)+ 1=B(K) ,K=K+l 
DBF Dl,RKLOOP 1K GT • .Jl ? 
MOVE.L (AO) ,D3 1YES. FETCH DELTA 
MOVE.L D4,D2 rFETCH BETAl 
BSR FMUL 1BETAl*DELTA 
MOVE.L (A3) ,D2 
BSR FMUL IU(M)*BETAl*DELTA 
MOVE.L GAMMA,D2 
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MOVE.L 
BSR 
MOVB.L 
LEA 
MOVE.L 
DBF 
RTS 

GAMMA,D2 
•FDIV. 
DJ ,:(All+ 
(A6) ,A2 
(A5)+,D2 
DO,JJI.OOP 

J=O·(M}',M=M+l 
1RESET K CO!JNTERJK=l 
JJ=J.+l 
1J GT. NPAR? 

*--------------------------------------------------------------------• 
* PERR - ROUTINE TO COMPOTE PERR AND THE CORRECTED EEG SAMPLE 
* PERR=Y-THETA*X 
• 
PERR MOVB.L 

LEA 
LEA 
SUB.L 
MOVE.B 

PERLOOP MOVE.L 
MOVB.L 
BSR 
NEG.W 
MOVB.L 
BSR 
MOVE.L 
ADDQ.L 
DBF 
MOVB.L 
RTS 

D0,-(A7) 
XBASE,Al 
PBASE,A6 
DO,DO 
NPAR+l;DO 
(Al)+,D2 
0 (A6,Dl.W) ,D3 
FMUL 
DJ 
D4,D2 
FADD 
D3,D4 
t4,A6 
DO,PERLOOP 
(A7)+,D0 

1FETCH X(I) 
1FETCH THETA(I) 
;X(I)*THETA(I) 

. 1 NEGATE PRODUCT 
1FETCH Y 
;Y-X (I) *THETA(I) 

1 I=I+l 
;I GT. NPAR? 

·-----------------------------------------------------------------------• 
* ESTMATE - ROUTINE TO UPDATE THE COEFF. ESTIMATES FOR EACH EEG CH 
• 
ESTMATE MOVE.L 

LEA 
LEA 
SUB.L 
MOVB.B 
MOVB.L 
BSR 
MOVE.L 

ESTLOOP MOVB.L 
BSR 
MOVB.L 
BSR 
MOVB.L 
MOVE.L 
ADDQ.L 
DBF 
MOVE.L 
RTS 

D0,-(A7) 
BBASE,A2 
PBASE,A6 
DO,DO 
NPAR+l,DO 
DELTA,D2 
FMUL 
D3,D4 
(A2)+,D2 
FMUL 
0 (A6,Dl.W) ,D2 
FADD 
D3,0(A6,Dl.W) 
D4 ,D3· 
t4,A6 
DO,ESTLOOP 
(A7)+,D0 

;PERR=PERR*DELTA 
;POT IN TEMP 
!FETCH B(I) JI=I+l 
rB(I)*PERR 
1FETCH THETA(I) 
JTHETA(I)+B(I)*PERR 
1=TRETAH·l 
1FETCH PERR 
1I=I+l 
1I GT. NPAR? 

*-------------------------------------------------------------------------

Al61 



*----------------------------------------------------------------------~ 
* 
* SUBR OADOUT.ASM - CONSISTS OF A CONTROL SUB 'OUTPUT' AND 
* THREE AUX SUBS, AND USED TO OUTPUT PROCESSED DATA TO EEG M/C. 
*-----------------------------------------------~--~-------~-------------
* SUBR SCALE- USED TO SCALE PARAMETERS BY 256 BEFORE OUTPUTING TO 
* BRING IT WITHIN THE: DAC RANGE. ALSO 'CALLS SUBRS 'FLTINT' AND 'DACOUT' 
* 
SCALE 

* 

MOVE.L 
SWAP 
ADDQ.B 
SWAP 
MOVE.L 

D3,Dl 
Dl 
iB,Dl 
Dl 
Dl,D3 

* CONVERT SAMPLE TO INTEGER AND OUTPUT TO EEG M/C 
* 
CALLS BSR 

BSR 
ADDQ.B 
RTS 

FLTINT 
DACOUT 
U,DO 

*-------------------------------------------------------------------
* SUBR OUTPUT - CONTROLS THE OUTPUT SUBS. 
* 
OUTPUT MOVEA.L DACSTC,A4 

MOVEA.L DMUX ,AS 
MOVE.L U,DO 

*OUTPUT THETA, IF SPECIFIED 
SUB.L D4,04 
MOVE.B PAR,D4 :FETCH NO OF PAR FOR 0/P 
SUB.B U,D4 :WAS ANY SPECIFIED? 
BLT OUTEOG :NO. THEN GO CHECK BOGS 
LEA.L PBASE,AO :YES. THEN GOUTPUT THETAS 

LPAR MOVE.L (AO) +.,D3 
BSR SCALE 
DBF D4 ,LPAR 

* 
* OUPUT RAW BOGS, IF SPECFIED BY ·USER 
* 
OUTEOG SUB.L D4,o4 

MOVE.B EOG,D4 :REPEAT ABOVE FOR BOGS 
SUB.L U,D4 
BLT OUTEEG 
LEA XBASE, (AO) 

LX BASE MOVE.L (A0)+,03 
BSR CALLS 
DBF D4,LXBASE 

* * OUTPUT RAW EEG, IF SPECIFIED BY ·USER 
* 
OUTEEG SUB.L 

MOVE.B 
SUB.L 
BLT 
LEA 

LYBASl MOVE.L 
BSR 
OBF 

OUEEGC SUB.L 
MOVE.B 
SUB.L 

04,D4 
EEGM,D4 
U,D4 
OUEEGC 
YBASE, 80 (AO) 
(A0)+,03 
CALLS 
04,LYBAS1 
D4,o4 
EEGC,D4 
u,D4 

:REPEAT ABOVE FOR EEG (RAW) 

:REPEAT ABOVE FOR EEGC 
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BLT OEXIT 
LEA YBASE, (AO) 

LYBAS2 MOVE.L (AO)+,DJ 
BSR CALLS 
DBF D4,LYBAS2 

OEXIT RTS 

*-------~----------------------------------------------------------------
* 
*FLTINT - SUBROUTINE TO CONVERT SAMPLE FROM FLOATING PT TO 12 BIT INTEGER. 
* 
FLTINT MOVEM.L 

MOVE.L 
MOVE.L 
TST.W 
BEO 
MOVE.W 
ADD.B 
SWAP.W 
SUB.B 
CMP.B 
BLT 
CMP.B 
BGE 
ASR.W. 

ADOFFST ADD. W 
BXITFTI MOVEM.L 

RTS 
MAXVAL MOVE. W 

TST.W 
BMI 
MOVE.W 
BRA 

ZER01 CLR.W 
BRA 

D1-D2/D4 ,- (A7) 
DJ,D4 
DJ,D2 
DJ 
ADOFFST 
XS64,D1 
#15,D1 
D2 
D2,D1 
i4,Dl 
MAXVAL 
U5,D1 
ZBR01 
D1,DJ 
OFFST2,DJ 
(A7)+,D1-D2/D4 

#0,03 
D4 
EXITFTI 
DACMAX,DJ 
EXITFTI 
DJ 
ADOFFST 

I 
1MAKE COPIES OF SAMPLE 

1IS SAMPLE=O? 
1YES. ADD OFFSET AND EXIT 

;ADD REGISTER LENGTH 
;OBTAIN EXPONENT OF SAMPLE 

;IS SAMPLE TOO LARGE? 
1YES. SET TO MAX VALUE 
;IS SAMPLE TOO SMALL? 
;YES 

1ADD OFFSET TO NUMBER 

;RESET TO MAX NEG VALUE 
;WHAT IS SIGN OF SAMPLE? 
;-VE. EXIT ROUTINE 
; +VE. SET TO MAX +VE VALUE 

•---------------------------------------------------------------------
* 
* DACOUT - ROUTINE TO OUTPUT A 12 BIT SAMPLE TO TRE DAC/MUX/S+H/EEG M/C 
* 
DACOUT MOVEM.L 

MOVE.W 
SUB.L 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVE.W 
MOVEM.L 
RTS 

D2/D5,- (A7) 
i21,D5 
D2,D2 
D2,6(A5) 
05, (A5) 
DJ, (A4) 
DO, (A5) 
D0,6(A5) 
(A7)+,D2/DS 
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;SAVE REGS ON STACK; AND THEN 
;INIT THEM. 

;SEND HOLD COMMAND TO ALL S+HS 
;AND DISABLE DEMUX CHANNELS. 
;START DAC OF SAMPLE. 
;SELECT DEMUX CHANNEL. 
;SEND SAMPLE COMMAND TO A S+H. 
; RETRIEVE REGS FR STACK AND 
;EXIT 



Appendix A16 Costing of the OAR system Hardware 

Notes 

MVE110-1 Microcomputer+ Memory 

Instrumentation amplifiers 

Multiplexers/Demultiplxers 

ADC/DAC 

Operational amplifiers 

Comparators 

Sample and Holds 

Integrated Circuits 

Instrument Racks + Accesories 

Connectors (DIN and 43-way types) 

IC sockets (DIL) 

IC sockets (wire wrap) 

Wrapping Wires 

Capacitors 

Resistors+potentiometers 

Diodes 

Floating point chip set 

Double euroboards +printed circuit boards 

Total 

1. The FP chip set is not used at the present 

Price (£) 

1182. 10 

282.25 

64.25 

71 .88 
46.88 

2.50 

167.40 

40.00 

107.44 

114.39 

7.76 

20.00 

21.00 

30.47 

28.44 

1.80 

760.00 

80.00 

3028.56 

2. The cost above does not include some items that were drawn 

from the department store but were not paid for. 
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Ocular Artefacta in ~he Electroencepbaloaram. 

Electroencephalogram (EEG) ai&Dals are veil known to be seriously 

obscured by tbe superimpoaitioo of large electrical po~entiala associated 

vitb eye mvemeuta (EH) aod/ol' bliok.a, The source of these potential& is 

the cameo-retinal dipole and ahort-circuiting-of it by tbe eyelid 

(Billyard, 1974). Tbua EH results in dipole motiou and scalp potential 

changes, mdified by aay associated eyelid movement. Bliolta represent· the 

ease of temporary closure of the eyelids and the corresponding artefact 

is due to tbe motion of the eyelid over the cornea (Hatauo, et al, 1?7Si 

Barry and Jooea, 1965). These EH, eye lid aad blink artefactS are 

referred to collectively as ocular artefacts (OA). It is necessary to 

be. able to remove the OA from the measured EEG so that the true EEG 

record can be studied. Fbteu.mple, it has been found that OAa are 

associated closely with the CNV response of co-operative normal subjects 

(Weerts and Laos, 197li Straumanis et al, 1969i Wasman et al, 1970; 

Hillyard, 1974i Low et al, 1966). Because the Coritinsent Nesative 

Variation (CNV) of Huntington's Cborea (HC) patients is of diagnostic 

value (Jervis et al, 1984) and is frequently completely obliterated by 

DA ve have devoted a considerable effort- to identify the beet means to 

remove tba OA from the EEG (lfeachor et al, Papers A and B in preparation). 

In thi1 paper ve review the cau~es of OAs and methods proposed for removing 

~from the EEG and include our Conclusions on the effectiveness of 

different OA remval methods (Jervis et al, 1980). We WIB the term 

"Electro-oculogram (EOG)" to refer to the electrical potential measured 

beNeen tvo electrodes placed close to the eyes and dUe to OA-a. 

The Causes of Ocular Artefacts 

The human eye contains an electric dipole with a positive cornea and 

negative retina. When the eyes move the electric dipole changes orientation 



so that the associated electric potential on the scalp, BHA, chansea. 

There are several types of ocular movement (Shackelli 1967; ~ouag·aod 

Sheena, ·1975) Of vhich the more -relevant to EEC .. vork are described' here. 

Bllnka, Figure l, are cbaracterlaed,by a b~iaf artefact potential of 

betveea 0.2 ·and 0;4 a in duration anl occur at iatanals of 1~10 s. 

Barry and Jonea (l96S) and :Katauo et al (1975) above~ that the blink 

potential vas attributable to tbt!J. ejelid ~mOvini _over- the cornea and not 

to eyeball movement aS vas previously thought. When the eyelid moves 

over the cornea it aborts the Positive cornea to the EOG ele'ctrode. 'ft'lia 

aborting effect is removed vhen the eyelid is again raised. It was also 

show. (Corby and ltopel, 1972; Overton .md Shagaaa, ·1969) that the scalp 

distribution of blinks· vas different from t_bat of'normal EH, and ther-e

fore probably had a separate orfgin. 

Saccadic eye movements, Fi,ure 2, ar-e rapid conjugate movements of speeds 

between 100 and 500 degree s- 1• Normal everyday. move-:aei:its of the eye 

' 

from one fixation point to another come under this category. These include 

the "jump and pause" fiution movements performed when reading or scanning 

a visua 1 field. 

During vortical eye movements vitb the eyes open, a brief potential 

r-emarkably similar- to blink potential la sometimes observed ln the EOG 

(Barry and Jones, 1965; Ford' 1959). ThiS ar-tefact vas called rider

artefact by Ford and vas later demonstrated (Berry and Jones, 1965) to be 

due to eyelid movement. Rider artefact is ·reported to occur mostly 

during vertical eye movementsor- blink r-eflex. We have, hoveVer, 

observed it in both voluntary ver-tical and horizontal EOG records, 

Figui"e 2. 



Smooth pursuit :movements inVolve tracking smoothly visual targeu 

travelling at about 1-30 de& ,-•. Smootb compensatory-EMS are used to 

compensate for ~e motion of tbe head or trunk .during trackina. 

Optokinetic oyatasmfc EM ia e~icited·by a visual field wbicb contains 

repeated patteraa. Tbe potential change produced in optokinetic oyata~ 

follows a cbaracteriatic aaV tooth pattern. The eye fixates on a part of 

the field and tracks lt·aa in pursuit movement. Tben there is a return 

saccade, and the process is repeated. 

la convaraence EH the eyeballs ·move in opposite directions. This EH 

occurs when tbe eyes focus from far to near objects. 

Miniature or ·fixation EMs include a number of movements that are generally 

leaa than dearee in amplitude and occur when the eyes are supposedly 

stationary, sa for example during a fixation on a stationary target. The 

three main miniature EHs are flicks. drifts and tremor. Flicks, or micro

aaccadea, are amall EMS laatina for about JO ms and whicb are performed to 

correct a drift and redirect the eyes to tbe fixation target. Drift is a 

alCN involuntary EH durins fiDtion tbat IDaltea· the eye Wandf:r awaJ from a 

target for abort periods of time before correction by flicks. Tremors are 

rapid oscillatory EKs wbicb may be superimpoaed on flicks and drifta. 

Flicka and drifts from both eyes are partiallY correlli.ted while tremor is 

a discoojugate EH.. Tbe existence of miniature £H:meaaa there is always 

a measureable EOC sigaal and. this is important because it meana the 

signal is "perahtently u:citing" vhicb is a oecesaary requirement 

for our on-line recursive leasr. squares ocular artefact removal technique 

(lfeachor et al, Paper 8 1 ia preparation). 

Eye flutter is a rapld eye lid IDOVeme.nt that teads to occur when the eyes 

are closed or nearly closed; Flutter frequency is usually io the 
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range J-7 Hz but occasionally in the ranae of B-10 Bz and sometimes as 

high as 14 H•. 

The Measurement of Ocular Hovemen'u 

Optical methods of detecting EH.have been developed (Young and Sheena · 

l97S). In moet Cases they oonaiat of a liiht aource, optical detectors, 

and a .lens system~ The· •limiting diaadvaataaea of opt:ical metboda includes 

that they cannot be used on unco-operative aubjecta such as children and 

some :Patierit categoi~es, that··they are bulkj, and •that they may not giVe 

an outpUt when the eyes• are cloaedo 

Eye and eyelid movements C'aD :tre detected from the resulting electro

oculograms (EOCa). (Rillyard, 1974; Shackell, 1967_; Quitter et al, 1977). 

The advantages of the EOG method are that all types of eye movements are 

detected including voluntary and involuntary, vertical, horizontal, and 

diagonal movements. EOCs are easy to record from skin electrodes placed 

around the orbit, some of vbich are often already placed for EEG recordloa. 

The method can be used whether t~e eyes are·open ~r_ closed. It. is also 

9lmple and can be set up quickly·vith miniaal calibration. Whether the 

EEG ever contributes· to the EOG has n~t ·been detl!lrmined. 

The main disadvantages of the EOG ml!thod are that (i) the relative con

tributions of movement of the eyeball ln the orbit and the eyelid over 

the cornea cannot be distinguished (Hillyard, 1974), (li) tbere·is a 

substantial discrepancy between upward Shifts of gaze vith the ayes open 

compared with the downward shirt (U>-lOZ). Overton and Shagass (1969) have 

suggested this is related to a difference in eyelid displacement between 

upva_r~ "!l)d ,downward moVeiDI!rits, ciU) the_ ~atil.ired. potential may inclUde 

electromyographic (EHG) signals from orbital and temporal. muscles although 



;::/" 

I 

• 

; 

these can bO filtered out using law pass filters, (iv) 1low rolling 

eye movamentl· oceunin& during drowaiaeae may be impossible to 

diatioguiab from "paycbogalvanic svay" which are slow drifts of poteatial 

rel8ted to cbaagea la akin impedance, (v) physical movements of the 

recurdins·elactrode can occur especially if plac~d over a pulsating 

artery, or if the electrode is poorly applied. The use of a suitable 

filter may remove mains interference usually associated with high impad-

ance electrodes. 

there ia m EOG magnitude variability betveea individu.all and also a 

variatiOD vitbin an individual, depeadiaa on background luminance (leading 

to the uae of tbe EOG as a measurement of dark adaptiori) and also with the 

level of anxiety aod·atate of alertness. 

The diaadvantaaea of the above method have led to the technique ·of 

lq~edance Oculosrapby (Geddes et al, 191Ji Sulliva:o. and llelfmea, 1963). 

lmpedauce oculograpby is based on the principle that tbe impedance 

across the eye chaagea as the eye moves. A similar electrode placP.ment 

method aa used for tbe EOG ia employed but in addition a low level high 

frequency currant iS injected into the electrodes. Movement of the 

eye changes tbe current distribution and produces a modulating signal 

vbich is proportiooal to the change in impedance between the electrode&. 

This impedance change can be e&tracted from the output of a demodulator. 

AlthoUgh the technique ia supposed to eliminate some of tbe disadvantages 

of the EOC technique it has seldom -been used. 

Electrode Placements in Electro-oculograpby 

Figure 3 shows some EOG electrode placements which have been used. The 

placements are determined by the need to obtain maximum information 
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~egarding an ocular mOvement and to use a mdnimum number of electrodes 

to record aDd identify the hodaontal aad vil!l't_lcal coiDponenta of ocular 

movement. Electfodes are placed across aad close ·to the eyes in the 

horizontal and vertical planes at the upper and lover orbital ridges 

(Above and below the eyes) and the outer and inner canthi. These may 

be referred to as the vertical aad horizontal EOG channels respectively. 

lt has already been pointed out that to obtain an acceptably good 

estimate-of OA more than one EOC slgoal shoUld be used· in the model (Glrtoo 

·and ltami.ya, 1971) _and our findings are- in agi'eeCJe.Qt (Jervia et al, 1980i 

Jervls et al ln preparatloai tfeadhor et at, Paper A and Paper B in pre

paration). It is knovn that th~,QA at any p~int .oo the scalP la a 

function of the EOGs of both eyes O::lrton and· ~amiya, 1973; Reoderaon 

et al, 1975), This rules out placement (a) in Fi,ure l. The arrangement 

• 

of Figure Jb has the advantage of usins fev electrodes and· minimises cross

coupling becween the horizontal and vertical channels which can be a problem 

in ~ltiple electrode placement (Youas and Sheena, 197S; lfeacbor et al, 

Paper .A in preparation). Unfort~ately, the met~od· combines. the ~ri

zmtal EOGs of the two eyes. As has been noted (QuUter et al, 1977) 

and confirmed by our work (lfeacbor et al, Paper A in preparatio~ there 

are significant differences betveen the vave abapei Of th8 left and right 

EOCs especially during horizontal eye mvement. Tbus electrode place-

menta that keep the EOGs·of the left and right eyes separate would be 

a better choice. For the same reasons the placel!l!nts of (d), .(e) and 

(f) if Figure J are also· unsuitable. Electrode plAcements (g), (h) and 

(i) are designed to overcome some of the above disadvantages. Electrode 

place~nt (j) is sensitive to VEH, HEH~and blinks, but the,EOC recorded 

by this method dOes not distinSuish be~een VEM and HEM. lt has been 

pointed out (Connolly and Klelman, 1978) that this distinction may be 
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unnecessary If all that is required fa the' ability to meaaure the 

potential cbaoaa due to OA. This idea of aiaale Cbanuel recording may be 

a:rteuded to reduc:e the cootam.ination Of the EoG,by the EEG:by uaing the 

electrode plac:..emaat (k). In our work (Jervis .et ·!11• ·UBOi Jervia et al, 

in preperationi lfeacbor et al,'Papar A and Paper 8 ia preparation) ve 

found the beat c:orrectioa vas obtained uaias one vertical cba.nnel and some 

combination of tbe two horizontal c:hannela. Bovever, we did.aot investigate 

the plaCements of Figure ) (j) and (k). 

S Ketboda for the le.mval and Control of Ocular Artefacta 

S.l Rejection Methods. OA ia controlled in the rejection methods by dia

cardiag data thought to contain sigplficant OA. Tbis c:an lead to 

an unacceptable loss of data. la same Event Related Potential (EBP) 

studies sections of the record containias OA-8lao contain useful iafor

matioa aud deletion of these sections could make the data unrepresentative 

(Verleger et al, 1982, Gratton at al, 1983). A common technique has been 

to monitor one EOG channel and to consider that when the leVel exceeded 

some 'fh:ed threshold the corresponding EEG channels coatained un

acceptable levels of artefact (John et al, 1977). The threshold is 

subjectively determined' prior tO the experiment u that level of EOG 

for vhich oo vestige of the EOC caa be seen in the EEG. \le have sbova 

that visual inspection of an EEG cannot be used to determine whether all 

the artefact haa been removed (Jervi& et al, 1980: in prep~ ration) and 

so this method leads to the acceptance of'!EG recorda vitb relatively lov 

levels of artefact as being artefact free. 

Cevia et al (1977) described a method for on-line computer rejection 

of artefact contaminated EEG segments in the frequency domain. 'The 
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method is based on the assumption that artefacts duo to body move-

ment, eye mOvement, and muscle action occupy known .f~equeacy bands. If 

the activity .la any of these banda:lacreaaed significantly above the pre

experimental value, t~e correapondlos BEG aegmenta were rega~ded aa 

coutaminatad by artefact and vere rejected. There are aeveral.dia

advaatasea· associated with this metbod. It cannot be used la studies 

la~olviag ·UDco-operative subject&, the aasuilpt1oa that the artefact& 

are confined to specific frequency bands·may·be wrong, and,EEG segments 

containing senuine slov-vave activities can be rejected (~arlov and 

Rl!mond, ·t98t; Covin et d, 1977). The authors fouad that nearly a 

third of the data rejected by this method would not have been rejected 

by the clinician. They also found that tbeir method could not be 

applied !'fhere ,£Ks were continuOus as ·it resulted io the rejection of 

the entire recorda. Cotman et al (1973) also used a spectral technique. 

They observed tbat the spectra of EEGa cootainina OA were often different 

in shape to t~Ose containing pathologiCal alov waves. They developed 

an algorithm to distinguish betveeo the tvo tioda of waves. When an 

OA vas detected, features eztracted from the corresponding EEG.vere 

assigned a love~ Ueight. HOwever, the method vill result in a lover 

veigbt being assigned to genuine pathological alow:vaves because of the 

occasional similaritY of the two ~pectra (Go~ et al, 1973; Cotman 

et al, ~975). 

5.2 Eye Fixation Methods. To reduce the amount of data lost by the ,rejection 

method the subjects are often asked to flzate their eyes on-a target and 

sometimes to avoid blinking or _moving their eyes at critical times during 

the experiment. However, Rovland (1968) claimed that as many as SO% of 

the subjects could not .fixate successfully. They ~escrlbed a more 

controlled·vay- of redUci~B 0~ by fiaation~ the- subject vas required to 

detect a square ,wave displayed on a visual display unit (VDU). This 
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resulted in a reduction of EKAa but not of blink 8rtefacti. Tbe method 

could alio Cause m!c~o-aaccadea as the subject searched the VDU for the 

1quare wave. Papakoatop0ulo8 Ot al (1973) found that by askiaa the 

aubject to focua oa his ovn eyes in a mirrot directly in front of him 

the·amoUot of rejected data,vas significantly reduced. 

5.3 EOG Subtraction Hatboda 

These methods probably offer the beat means of removios OA from EEGs. 

All of the aetboda are based oo the principLe that the measured EEC 

is a linear combination of the backsround EEG and"tbe OA. 

(a) Off-line methods 

la discrete form 

a 
• t e.aj(i) + e(i) 

i•l J 
• 1, 2, .... m (I) 

where y(i) and z(i) are the a~lea of the measured EEC and the EOCs 

respectively and e(i) is the true back~round EEG vbicb may be regarded 

as an. error term. The 8j are constants of proportionality called the 

ocular artefact parametera • and n ls, the numbet' of parameteu ln the 

model. If the ej cao be estimated then e(i) may be estimated as 

• 1. 2 •...• m (2) 

where the A. at"e the estimates of the e. and eci> is the esti~te of e(i). 
J J 

The pt'oblem tben is One of estimating the ej. 

It is usually assumed that the background EEG ia uncort'elated noise with 

zero expectation. We. hovevet'. have found that there is a significant 

amount of correlation in the background EEG and have taken steps to allov 
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for it (lfeachor et al, Paper A In preparation). It la also generaily 

assumed that the EOC and the EEG are not correlated. In some methods it 

la assumed tbat the OA_paramaters are time-invariant (Barlov and Rimoad, 

1981: Girton and ltamiya, 1973; Blllyard.and' Gal&:mboa_, 1970), 

More recently Blllyard (1974) concluded that ,the time-invariant asaumptlon 

was not always correct due to the effect of ejelid position, and that la 

in agreeme~t with our findings (lfeacbor et al, Paper A, in preparation). 

Hlllyard and Calamboa (1970) tried to remove OA aaeociated Vith_CHVa. 

They first assumed that the artafBcts for upvard and downward !MS were 

equal and opposite but soon realised that this vas aot true, They 

observed that an upward EH produced a potential change tbat vas to-

301 smaller than for a downward EH. They sboved that as much as 211 

of the measu~ed CNV could be due to EHA, tbe~eby emphasising the 

Lmpo~taace of being able to ~emove !HA. 

Verleger et al (1982) pointed out the lack of ~uaatitative aasesament 

of the reliability and validity of ocular artefact removal techniques. 

Tbis is the problem to vhich ve have been addressing ourselves for 

same time (Jervis et al 1980; Jervis et al, in preparation; Ifeacbor 

et al, Paper A in.preparation). Verleger et al used the electrode 

placement of Figure la and, as ve have Shown, mOre th&u one EOG ~nel 

is oecessary for OA removal (Jervis et al, in p~eparation: lfeachor et 

at, Paper A). Ye~leser et al obtained the estimated f. of equation (2) 
J 

by applying the method of least aqwnu to their ooc ~OC chanrlel· mdel. 

Cratton et al (1983) recognised that mat of the existing correction 

methods do not distinguish between·EH·and blink artefacts, and· that the 

a. were usually regarded as ~ostants prior to and during the experiments. 
J 

Th~y also pointed out that there are differences betveen voluntary 
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aud hvohmtary EMs which may lead to differences in the A j 'a obtained 

before and during the experiments. Tbua they identified and obtained 

separate parameter estimates for blinks and~. They shoved that the 

!RP obtained from the corrected EEG resembled the ERP obtained from 

iaaisoific~tly con~aminated realiaationa. The method is time coaaumdas 

and vould be very ez:peaaive in computing time for multi:-channel 

situations: lt is not suitable for use on-line. 

Whitton et al (1978) have decribed an off-line EOC subtraction· tJethod in 

the frequency domain. Their method suffers from several disadvantages 

which include the use of only one EOG·aigoal and the assumption of time 

invariance Of ej for each subject. The method is also time-consuming and 

not suitable for multi-channel use or on-line applications. 

Quitter et al (1977) have described an off-line ~A removal procedure 

vbi~b involves cross-oorrelatina the EOG channels with the EEG channel(a). 

la this method the correction parameters ej are obtained directly from 

the data. The values of 8 j are different for different data. Only cvo 

EOG Channels were used~ The electrode placement used is shown in Figure 

J(i). ·This arrangement keeps the left and right EOCa separated, so their 

coutributiona to OA· in the EEG eau be accowted for separately. It ia 

noteworthy that these authors pointed out that the EOCs from the two 

eyes are different, particularly during KEH. 

Quitter et al's technique has been extended. by Jervis et sl (1980; in 

prepar8tion) to three aod four parameter models. Their electrode place-

ment was as in Figure 3 (g). Jervis et al introduced an autocorrelatiou 

teChnique to test quantitatively the effectiveness of OA removal. They 

performed experimeats in whicb a number of subjects carried out nearly 

periodic VEHs, HEMs, and diagonal EHs. This produced rectangular wave 



contamdnation of the EEG. Assuming that the OA vaa-~ot completely 

~emoved hom the co~rected EEG, the latter would contain a remanent 

rectangular wave. The amplitude of tbia vas Usually too small to be 

detected by eye in the background EEC, but vhen the corrected EEG·vaa 

auto-correlated it frequently manifested itself as a nearly pe~iodic 

triangular vave. This provided;& sensitive teat for remaaeat artefact 

and also·alloved the authors to.establis~ the beat OA-removal technique. 

ThUs, they foUnd that the analpgue correctloo method of KcCallum and 

Welter (1968) vas inferior to the correlatioa technique (Jervis et al, 

1980i in-preparation), They ·also shoved that a four-channel correction 

model involving both the vertical and t~ hori~tal channelS of both 

eyes Vas the moat effective aad that while the use of the 

vertical chBDnel due to only oo.e eye migbt _be necessary, the EOCs for 

the HEMS of both eyes vera essential. The suggested reason vas that durinB 

HEMS the dipoles of the ~ eyes tended to oppose each other. This iS 

not true of VEHa in vhich ·the _dipoles of both eyes move in conjugation. 

Both Jervis et al (1980i in preparation) and Quitter et al (1977) suggested 

that the Use of both vertical EOGa could le8d to over""':correctioa in some 

cases. This sugaestion has been confirmed by our later wo~ (Ifeedhor 

et at, Paper A)-. 

Fortgens aod OeBruio- (1983) used the Least Squares approach to obtain 

the 8j for a four EOG channel model. They·proved theoretically that 

four EOG channel& were necessary for complete co~~ection of the con-

taminated EEG. However, they assumed that four uncorrelated EOG channels 

existed. We have since shovn that there are not four uncorrelated EOG 

channels (lfeachor et al, P~per A in preparatlori) aloce for example 

VEHs produce horizontal as vel I as vertical EOCa. 

The most important correCtion techniques described so far in which ej 

is not assumed invariant have been the correlation technique of 
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Quitter et al (1977), and the Least Squares approach taken by, for 

example, Fortgena and De Bruin (1983). Until now these techniques have 

been regarded as quite distinct. However, it la wortb noting that va 

have ahovo that both lead tp exactly the same expressions for the 8j 

(Ifeacbor et al. Paper A in preparation). The two methods simply 

provide different Vaya of visu&lisiua the determination of ej. 

(b) On-liae metbada 

la app.licatioua requiring real-time analysis, the delay involved when 

off-line methods are employed is unacceptable. Tbe trend in EEG signal 

process in& is clearly towards real time processing (Harrls 1 198li 

Barlov, 1979) and it is tben necessary to remove the artefact on-line. 

HcCallum and Waiter (1968) described an analogue on-line EHA removal 

technique. One end of a 24 k.O potentiometer vas cotme:cted to a frontal 

EE~_electrode and the other end to linked earlobe& (see Figure 4). The 

central terminal of the potentiometer was adjusted by trial and error 

until visual inspection of the corrected EEG showed no evidence of EHA. 

Disadva~taies of the method include that manual aettins up is required, 

which is very time conaumina particularly on multi-channel recordings, 

and is also subjective and inaccurate. Also Jervis et al. (1980i in 

preparation) shaved that visual inspection of corrected EEGs does not 

reveal the level of reSidual artefact, and it is assumed that the 

correc.tioo coefficient is fiud throughout the experiment and is the 

same for V!Hs, HEMs and blinkS. We (lfeachor et al 1 Paper A and Papei- B 

in preparation) have shown that these assumptions are uatrue. Also 

Jervia et al (in p_reparation) have shOwn that this analogue technique 

may actually be unsuitable for removing artefacts due to VEH, and for 

all subjects tested there was a degree of coupliag between the EOC and 

EEG when the EOG changed rapidly. This was probably due to the RC 



netuo~k farmed by the potentiometer resistance and the ·alectro-chemical 

capacitance of the electrode-akin interface. This effect vas reduced 

vhen a larger value potentiometer (1 KO) vas used. The presence of 

this RC time conat~nt" will result La distortion of the EOG ·and hence 

false artefact correction. Wasman at al (19JD) reported that their 

attempt to use this method vas unauccasaful as it resulted in a 

positive QIV. 

Girton aud lamiya (1973) also used. a poteatiometer adjus~nt method 

(see Pigu~e 5). Their technique inCorporated three 1r0dificadons to the 

above method. The EOGa used vere measured round! tbe eyes; the use .of 

differential ampt'ifien improv~d the signal-to-noise ratio and the 

reliability of the system; both the vertical and horizontal components 

of the EOGs were included. B~ever, this system can be adjusted for 

only one settins and ·therefore cannot correct for botb blinks and EMAs. 

Also the horicoatal EOG vas measured across both eyes. 

Barlaw and Rfmond ·(1981) introduced a fUrthe~ improvement in that 

the same EOG signals vere used- fOr correcting EMA for each of the 

EEG channels used. There vas also a facility for independently switChing 

the vertical and horizontal EOGs in or out of the circuit, and for 

changing the polarity of the EOG. The method suffers the disadvantages 

of •those due to· KcCallum and Waiter (1968) and to Girtoa and Kamiya 

(1973) •· Further disadVantages of these methods are that they are Wl

suitable for use with unco-operative subjects. 

We have discussed the disadvantages of presently available on-liae and 

off-line OA correction,procedu~es. A common factor was that the correction 

paumeter was regarded as fixed for a particular subject .and length1 of data. 
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We have developed si. on-line OA removAl ;technique vhich 

coatinUQuely updates the parameters of tbe OA removal model 

based upon recursive leatt squares ·\RLS) techniques vhicb ve 

are now -in the proceaa of imp leraenting on-line in a microprocessor-

based instrument. 

6 Quantitative Aaseaameot of Ocular Artefact Removal 

Ve~lage~ et al (1983) attempted to establish the reliability or otherwise 

of subject-specific parameter estimates since other workers found that the 

parameters vera subject-specific. Their implied conclusion vas that the 

subject-apeciflc estimates vere unreliable. Bovever, the assumption vas 

made that the par~te~ eat~te 8j for any individual vould be the aams 

for both a comparison and a coacept-learniog task. Different ocular move-

menta may, however, be elicited io the two ·tasks vbich would iavalidate 

the assumption. This uould be particularly so with the 67 subjects 

aged 10 to 13 years used in their eKperimeot, and of vhom 2S vere mentally 

retarded. The ~de variation in the estimates for each task and between 

tasks is probably larsely due to senuine factors and perhaps to the in-

adequacy of the model used. Their one-parameter model neither corrected 

for HEH nor catered for. t-he differential Contribution of blinks and the 

effects of lid position. 

Gratton et al (1983) assessed the constancy of the parameter estimates over 

different trials for the same subjects in and between ezperimental sessions. 

Their results showed that for a siven subject the parameter estimate was 

not constant durins or betveen experimental sessions and that there are 

inter-subject differences in· the parameter estimates. They also showed 

that the variation in the subject specific parameter estimates becween 

sessions ia larger than during a given session 1 which they pointed out may 

be due to not placins the electrodes at exactly the s~me position in the 
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aessioni. This VBriation emphaBiaea the need fo~ correcting not only on 

an lndividuat basis but alao adaptively. 

Verleger et al (1982) ·investigated the validity_ of their correction 

procedure Using the criteria ·that Visual -lnspeetlon of the corrected !!G 

o~ ERP derived from it ahould show little trace of EOG and the BRP should 

not be attenuated, that the procedure ,should give aubat8atial benefita 

over the rejectiao method ia terms of data loss, and that the covarlance 

between t~e corrected ERP and the lOG should be lover than that betveea 

the BRP derived fl'om the rejection method and the EOC. Tbe covariance 

criterioa shoved that the correctioo_procedure v&a significantly superior 

to the rejectiou lll!thod. Tbla vaa to be ezpected since the correction 

criterion ia the mi.aimisatioa of the cov8dalice- betvaen the measured EOG 

and EEG. Grattoa et al (1983) aaaesaed the validity of their correction 

procedure by determining hov different the ERP frOm the cor-rected EEG 

ia to the true ERP. Rete the true ERP vas taken to be that obtained from 

trials vith inaiguificant artefact sel~cted by .the rejection method. To 

obtain a· quantitative assessment they computed a deviation lode• wbich 

vas the sum of squares of the deviations of the Corrected'ERP from the true 

ERP. They concluded i:bat iD general the corrected ERP resembled the 

true ERP mre than the uncorrected one, that ,vhea the· EEC Corltaiaed 

little OA the correction procedure sli~tly increased the deviation 

index, and that the correction procedure reduced the variance of 

the ERP. The Validity of the method rests upon a common assumption that 

the ERP from trial& selected by the rejection Cl!thod is a good estimate 

of the ERP, but as the authors point out this assumption may sometimes be 

incorrect. For example, if the nWiiler of trials used to nbtain the 

estimate of the true ERP is smal1, the noisy. EEG would affect -i:he average. 

Furthe~re, rejection methods inevitably accept trials with low level 

artefact which could affect the result. SUCh effectS •may explain vhy 
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the deviation index never becomes zero. EKamiains their results in some 

detail auggeata that they are not all reli8ble. For ·example, for subject 

2 la their Table Ill the iodicee la two seaaiona, before correction were 

28.74 and 6,04 respectively, ~he smaller value iodic&ting that there 

vaa little BMA in the triAls. After correction the indices became 19.82 

and S.63 respectively. One vould have e~ected the two- indicee to tend 

to similar values. The difference auggeats that the correction procedure 

may not have removed all the artefacts. 

Tbe authors have carried out further e•tenaive inveatigationsof the 

effectiveness of ocular artefact removal methods and these will be 

described elsewhere (Jervia et al, in preparatioa;· Ifeacbor et al, Papers 

A aad B in preparation). 

Other Practical Problems of Removing EHA from the EEG 

A disadvantage of using the EOG in removins OA is that it may contain 

other artefacts not related to ocular movement. These artef&cts may 

include electro-myographic (EKC) signals resulting from.muscle action, 

coatamio.atioa of the EOG by the frontal EEG signals. or electric in-

terfereOce picked-up by the electrodes. Because' in the EOG subtraction 

method a fraction of one or more of· the EOG signals is subtraCted from 

tbe measured EEC, any artefacts ia the EOC vould be introduced into the 

EEG as "secondary artefacts". The technique usually used to deal vith 

this problem is to filter out the EOC artefacts which are mostly high 

frequency activities (Ford, 1959; Reiman et al. 1974; ShaCkell. 1967; 

Weerts and Lang 1 1971). Whittoo et al (1978) in their spectral analysis 

of the EOG and the EEC have found that there is little shared activity 

between the tvo signals above 8 Bz. For this reasoa they employed low 

pass filtering to re~mve any high frequency activities in the EOG above 

this range. To avoid the introduction of phase distortion they filtered 
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ln both directions of time. We ha9e ·studied this problem and are Lri 

agreement with 'these authors about tbe·hl&h frequeacy.aature of the 

secondary artefact and that. lov pass filtering Is probably the J:leat Way 

to deal vlth· the problem. However, the: siiaple filter used by Whltton 

et al (1978) woUld introduce amplitude distortion of the EOG signals, and 

their double direction filtering approach, apart from not completely 

removing pbaae·diatortioa because of ead effects, cannot be used for 

on-line correction. A better approach. la to use an efficient zero phase 

lov pasa digital Finite Impulse Response· filter (Bamer et al, in pre-

par'atlou). 

The eKtent of the effect of aecaadary artefact has not been settled. 

Verleger et al (1982) stated that the effect of EEG contamination vas by 

8nd· larl.e unnoticeable. Quitter et al (1971) reported a small increase 

in noise in tbe EEC signals after correction which vas only significant 

in a few caaea. Shakell (1967) stated that in moat cases the EEC con-

tamination was leas than the equivalent of balf a degree of eye move-

IDI!nt, thus m.iking the problem insignfticant. In aome subjects vith 

relatively large EEC contaminated·EOCs, no apparent relationship vas 

found between the .scalp EEC and the.EOC contamdnatlon. We (lfeachor et 

al, Paper B in preparation) have studied the variation of the estimates 

of the mode 1 paraaeten 9. vii:b time and f(nmd that the variaoce of a~ 
J J 

for those EOG channels which contained relatiVeilJ more noi'se vere larger 

than for less noisy EOCa. we interpreted this as indicating that secondary 

artefacts do affect the correction process. 

It is usuallj asswDed that 'the ·background EEC is not correlated. with the EOC 

(eg'Quilter et al (l97i); Fortgens and De Bruin (1993);. Cratton et al 0983)). 

We have fowtd that ·the background EEC is signfficantly correlated (lfeachor et 
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al. Paper A in,preparation). and have had to take this into accouat by 

representing the reaidu4la·as an autoragreuive aeriea. This technique 

overcomes the affect of the correlation, 

~e removal of OAa by the EOC subtraction technique baa to be considered 

carefully when OAs maY be present together vitb the BBPs or with 

pa:thological slow w8vea of interest. Since the fraction of the EOC 

subtracted is obtained from the degree of correlation between the EOG 

sad ita compooeat in the EE~. the presence of ERPs or slow waves of 

aimi.lar shape to the OA can lead to the subtraction of a fraction vhich 

depends on the BHP or slow wave as well as the EOC. ibis results in over

conection. For e:umple 1 it ia ver-y difficult to distinguish betveen the 

electrical potential contributed by eye movement aod the true CHV potential 

(Weerts et al, 1973; Straumania et al, 1969i Billyard ~d Galamboa, 1970i 

Wasmao et al, 1970). Kuras and Binnie (1970) used judicious electrode 

placement to distinguish between OA and slow waves. It will probably 

be necessary to distinguish between the various ERP components, slow 

waves, and OAa by e~ins the propagation of the electric potential& 

over the acalp by using a number of scalp electrodes. This is au area 

we hope to iavestipte in the near future. 

Another problem liea in the possibility of overloading the amplifier 

and analogue-to-digital conversion system. Quitter et al (1977) found 

this to be tb&ir moat significant problem. Overloading causes erroneous 

parameter estimates and hence a reduction in the effectiveness of the 

coaverter. The c.oamon approach is to set the dynamic range of the 

analogue-to-diJ{tal converter (ADC) such that overloading is infrequent. 

This often involves a compro~se between utilising most of the dynamic 

range of the converter and avoiding overload. Verleger et al (1982) 

reported e data loss of about ~~ because of overloading. We have introduced 
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a method of dynamically chanalns ~he raage of _the ADC· vhicb ahould 

allevh.i:.e- the overload -problem. 
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SUKIWIY 

Tbia paper constitutes a review of ocular artefact• in the human electro

eocaphalogram (EEG). The .cauaea of the artefaCts are explained. Methods 

for their removal from the lEG are reviewed aad the effectiveness of the 

different metboda is discussed. 

Besides coverios the existing literature. the tezt is latenperaed with 

coamenta derived from our ovn obae['Vatioua. It la shown that analogue 

aubtr&ctioa techniques are inferior in many aspects to techniques based upon 

parameter eatimatlao using the Least Squares Technique (to vhich correlation 

correctioa belongs). It is ahowu that the different types of ocular artefact 

ie eye movement artefact (EMA), and blink artefact caa never both be 

simultaneously completely removed, although overall satisfactory OA removal 

can be achieved. Hodela us8d in removing OA from the EEG are discussed. 

Reference is made to ways of asseaaing the effectiveness of the different 

models. 

the correlation of the backgroUDd EEG, normally assumed to be random, . is 

mentioned together with autogressive modelling techniques vhich reduce 

the effects of correlation. In a ·look ahead we also mention our recunive 

least squares approach for on-line realtime removal of OAs vbich is to be 

iqJlemeoted ia a microprocessor-based system. 
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Soamaire 

Ce mSmoire eoostitue un compte-rendu des artefacts ocutaires (OA) apparalaaaat 

dans 1'8lectro enaephal~gramme (EEG) humaiD. LeUra causes sont ezpliqueea. 

Des mfith~dea pour leur suppression aont,paaa~ea ea revUe et leur efflcaclt' 

diacut~e. 

Outrecouvrant la documentation actuelle, le texte est parseme de commentairea 

d'rivaot de nos propres observationS. I1 est moo.tri· que lea techniques de 

soustractioa aoalogue aont Lnf~rleures, par de nombreUK aspects, a celles baa6ea 

sur ~·_est~matiC:m·param8triqUe utilisant la technique des moindres card:& (auquelle 

La correction correlative· appartient). It est moo.tr6 que lea dlff6renta types 

d'OA, celui du moUvemeat de Poeil .(EHA) et celui du cligoOtemeut ne peuvent 

itre aimultan~ment totatement auppri~s, bien que la suppression enti~rement 

satisfaisante de l'un :des duex·peut ~otre achev€e. Las mod~lea utiliafa pour 

la suppression de l'OA de l'EEC aont discutfis. Une r'ffreoce est faite aux 

moyeos d'estimatio~ de l'efficadte des dUUrenta modflea. 

La correlation de l'EEG de base, normalemeat aasUr~e d'€t~e fortuite, est 

ltl!ntiOOnf!e avac lea· techniques de difffreoi:ciatioo et celles de modile auto

regresaif qui en riduiaent lea effete. 

En prEviaion, nous mentionnona ~galement aotre approche rlcidiviste des moiodrea 

cards pour une suppre_ssioo des OAs i connection directe qUi doit 1tre rfaliaee 

sur un ays ti!me a microprocesseur. 
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DIGITAL FILTERING OF PHYSIOLOGICAL SIGNALS WITH HIHJHAL 

'DISTORTION 

The.paeeband amplitude characterletlce of diqltal filters 

used ln physioloqical appli'ciltiOna is qenerally poor, qreater 

emphasis being placed on precise phase -linearity. Followinq a 

brief review of the dlqital tilterinq techniques commonly 

employed and thel~ associated~rrors, a method for desiqninq 

linea£ phase filters with excellent amplitude characteristics 

is discussed. The desiqn and· implementation of such a filter 

suitable for onlirie and offline proceaainq of the 

electrooculoqram is then presented. 

ICEYWORDS: 

Digital' filterinq, minimal distortion, electrooculoqram 
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1. INTRODUCTION 

Digital filt8ring has become an important feature in the 

processing ot phyaioloqical signals such •• 
electroe~cephaloqram I EEG) and electrooculogram (EOG) for 

diaqnostic aid or to reduce slqnal contamination,(Verburg et al 

1914, Whit ton et al 1978). The desire for exact phase 

linearity in the paasband which results in r:ero phase 

distortion of the vanted signal has limited the choice of 

digital filters in these applications. Less attention has been 

paid to the amplitude characteristic in the paaaband than we 

feel iB justif led. In fact any deviation freED unity 

transmission in the passband introduces distortion into the 

filtered siqnala. In addition to the pool" passband amplitude 

characteristics of filters which have been used in this field, 

the technique of phase cancellation by time reversal·sometimes 

employed· (see for example Coppola 1979) will be shown to be 

unreliable. 

In conno~tion vith onqoinq research into the problem of 

ocular artefact (OA) in the EEG a requirement arose to filter 

EOG siqnals to remove secondary artefact unrelated to ocular 

~vement, such as external electrical interference, muscle 

artefact and cross couplinq from the frontal EEG. Due to the 

subsequent application for the EOG it was· important that the 

filter introduced the minimum possible distortion into the true 

EOG. The filter vas required for off line and on line 

processinq, the online filter being part of a larqer process 

4-0 



and hence time critical. After a detailed' survey of the 

possible design and Lmplementation technique~ the excellent 

methods of HcClellan et al (1973) and Rabiner 11977) were 

selected as thB beSt approach. Due to the advent of advanCed 

16 bit microprocessors and the erficlency of Rabiner'a 

alqorithm a purely software implementation was possible for 

both requirements. 

In the next seCtion a ·brief review of digital filter types is 

giVe~, the problems assoclate4 with uslnq IIR filters are 

outlined and the.advantaqes of HcClellan'a desiqn are defined. 

·FOllowing this the desiqn and implementation of a filter 

suitable for reducing noise in thB EOG is discussed 8nd its 

effect on typical data is illustrated. 

Jt ·Should be noted here that although filtering of the EOG is 

discussed, the methods employed are equally suitable for other 

physiol~gical applications. 
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2. DIGITAL ·FILTERING METHODS 

Digital r.ilterB ·maY be loosely split into two types, Unite 

impll&e response IFIR) and infinite im.p.~lse response (IIR) wit.h 

l"ecuraion relationships as given by eqns. 

respectivelY. 
"'"N•I 

y(nJ•~h(mJxln-m) 
m•o 

,.k-:1 

y(nJ•Lalmlyln-mJ 
"'"-0 

"'= l-1 

~ [h(m)x(n-ml 
... o 

where r y(nJ-= the output time sequence 

K(ri)• the input time sequence 

hlml• filter coefficients 

a(m)• filter coefticlents 

and 

N • number of coefficients for FIR filter 

k,l • numbers of coefficients for IIR filter 

2 

(I) 

(21 

Exact phase linearity may only be obtained from an IIR filter 

if one or both of the following criteria are met a 

1. ~11 the poles of the transfer function lie on the 

unit circle in. the z plane. 

2. The filter is unreallseable in realtime. 

Clearly, the first criterion considered in isolation leads to 

an unstable filter since the z plane ·poles must reside inside 

the unit circle for stability. However, LynnC1971) has used 

this criterion to obtain stable linear phase IlR filters with 

integer coefficients by placiriq zeros equispaced around the 

unit circle in the Z plane and cancelling selected zeros with 

corresponding poles to form paaabanda. Due to the rapid 



processing speed of these fi'ltll!rs, they represent an economical 

solution to many Online physiological filtering requirements. 

However, the amplitude of the frequ~ncy response of an rth 

order lowpass filter using Lfnn•a design is given by equation 

). 

l . (!!!!!.I) ]r s1n 1 

sin ( "1r) 
______ Ill 

From this it can be seen that the passband is defined bY the 

width. of the main lobe vbich is in turri set by the sampling 

period (T) il~d the parameter H. If the filter is nonnalised to 

unity gain, unity transmission only occurs at DC, the de~iatiOn 

from unity increasing rapidly·vith frequency over any frequency 

band defined within the main lobe. To achieve qreater 

attenuation in the stopband requires increasing the order (r) 

and hence the deviation in the passband. Recently ·LynnC198l) 

has described another class of integer coefficient IIR filters 

offering improved frequency amplitude characteristics vhich he 

has named transversal resonator digital filters (trdf). The 

synthesis of a filter to approKimate a desired freqUency 

response· by this method firstly involves the conversion of the 

frequency specification to an equivalent impulse response for 

which Lynn uses an N point FFT routine. T!"le trdf is then 

designed to app~oximate this impulse response in the time 

domain. The procedure does not involve any minimisation of the 

deviation between the specified amplitude of the frequency 

response and that obtained by inte~polation between the N 

frequency samples taken. No account is taken of this deviation 

ln .the paper and all of the ripple evident in the design 
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example of bandpass- filte~s fo~ EEG arialyaia is attributed to 

impulse response quantiaation. It is difficult to predict the 

deviation from the desired response at the deaiqn ata9e using 

thh method. Consequently, as the author indicated in hie 

conclusions, for applications not involving tight constraints 

on ·the amplitude of the frequency reaponae these filters 

provide an excellent solution but vhare the deviation from the 

desired response la to be closely controlled, they do not 

represent the best solution. The EOG filter, aa discussed Ln 

section 3, falls into the latter category. 

Others have employed· the second criterion to achieve linear 

phase by applying the same filter twice, once in the positive 

time direction and once in the negative time direction. 

looppolo 1979, Whitton et ol 1978, Verburg et al 1974). 

Consider a digital filter with impulse response h(n) and 

transfer functio~ H(Z). Figure 1. shows t.he two methods of 

using this filter to form a time reversal ITR) filter with new 

~pulse response hy~(n) and transfer function ~A(Z), How if 

I(Z) is the Z transform of t.he sequence x(n), then the Z 

transform·of the time reversed sequence x(-n) is X(Z- 1), Thus 

for method 11 

HnCe;ul ""Hlej.,;IHie-j") • ln<eju)j
1 

and for method 2: 

HTI\(e~~~ • H(e~"'l+H(e-,;w) .. 21H(e~u)lcos.,(I.J) 

Hethod 1 produces a superior result and is the method generally 

adopted because the amplitude chor~cteristic is not scaled by 

the cosine of the original phase function. To de~nstrate the 

44-



phase cancellation, consider a, simple non linear phase FIR 

filter with Ngl. ·Figure 2 shows the ori9inal and resulting 

impUlse responses when this filter la used to realise a TR 

filter- by method 1. Clearly, the TR filter introduces zero 

ph88e distortion since hyR(nJ la symmetrical about the time of 

application of the lmpJlae• ( n-0 J. In ·order ·to produce this 

e•act symmetry all of the sequence hln) must be present prior 

to reversing the time axis. When usin9 liR filters, the 

impulse response is theoretically infinite and therefore h(nJ 

cannot be compl"etely present prior to th8 time reVersal. In 

practice the response is truncated to prevent machine 

underflow. This introduces errors in the symmetry or hTR(nJ 

and· some phase diStortion results. This effect la exaggerated 

in fl9ure l where the response of the FIR filter la truncated 

at values l"ess than or- equal to unity. The asymmetry of the 

resultln9 response implies phase distortion and indicates that 

the amplitude response will not be as expected. It la 

therefore important to ensure that hiRJ for the IJR.filter used 

has decayed to such a value that errors in symmetry resulting 

from its truncation are negligible prior to reversing the time 

a•ls. It ahoul"d be ,noted that serious errors can result from 

truncation of the response at the end of the data array on the 

first filter application. This causes di&tortio~ of samples 

towards the end of the filtered data array, the amount of 

distortion being dependant upon the rate-of decay of the IIR 

filter's time response. Another drawback,of this method is its 

inapplicability to realtlme procegslng. 
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Exact phase linearity is obtained from PIR filters by 

ensuring at the design stage that the filter coefficients and 

hence the impulse response are,symmetrical about a given point 

Caample position IH-1)/2). There are basically three well 

known techniques for designing FIR filters (Rabiner and Gold 

1975 I. 

1. The WlNDOW method. 

2. The I"REQUENCY SAMPLING method. 

3. The OPTIMAL (minimax error) method. 

Of these the window method is the commonest in this field 

probablY due to the simplicity of the procedure. Although 

adequate filter responses may be achieved by using "optimal' 

window functions such as the Kaiser window, the frequency 

response obtained is not optimal in any rigid sense. The pass 

and stopband edge frequencies cannot be specified at the deslqn 

stage since the design process ~nvolves convolution in the 

frequency domain which "smea~s' any tranSition frequencies into 

transition bands. Ripples introduced into the response by the 

same process satisfy no' criteria fo~ m.inilllising the deviation 

from the desired response. The frequency samplinq method 

produces superior results to the window method but involves 

complex linear proqrammin9 and is not recommended since the 

optimal method of McClellan et al (19731 produces even better 

results using a Fortran design program (Rabiner and Gold 1975). 

AB shown by KcClellan et al ( 1973), the optimal desiqn is 

formulated as a Chebysh8v approKi.Jnatlon problem ensuring that 

the peak error of approximation is minimised over the entire 

4b 



ranqe of the ~ppro•iriation. Given the bend edqe frequencies, 

·the number ot coefficients and the required, function in each 

band leq. pass, stop); the Remez multiple exchange algorithm 

(cheney 1966, Reme& 1957) is employed to obtain the filter 

coefficients which optlmise the deviation in each band in a 

HINIMAX sense. The band' edge frequencies remain unchanged by 

the design process. Also, a Weighting function on the 

deviation in each-band allovo the optlmlsad. deviation between 

different bands to ,be traded relative to one-another. Ttiis 

method was hence Selected aa-.the bes~- design procedure for the 

EOG filter. 
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l. 'ftiB EOG FILTER 

ocular movement related signals in the ~·are low frequency 

actiVities typically below 8Hz (see for example Whltton et al 

1978). Thus the EOG filter vas designed to satisfy the 

specifications given tn figure 4. The number of 

multiplications all~d so as to give sufficient time for all 
,9)5 

the comp~tatlona following the filter was set at a maximum of 

19 between samples. This. implies a maklmum of l7 coefficients 

in a linear phase FIR filter. 
942 

Using McClellan•"s design roUtine, the absolute value of the 

deviation in each band is not specified by the designer but la 

obtained via the optimisation procedure. Hence the specified 

deviations may be met either by iteration of the program inputs 

alone or by calculation of the initial inputs using equations 

available in Rabiner and Gold ( 197_5) followed by iteration. A 

form of the second approach WDB adopted in the EOG filter 

deeiqn. Since all of the filter specifications except for fp 

vere essentially variable, equation 4 was used to obtain the 

ranqe of possible solutions shown in figure 5 by calculatinq 

,6·f for the maxJ.mum allowable deviations and a tange of 

numbers of filter' coefficients, H,~ 37 • 

. llf= N.:.l [ 1 + 4f(6.,6a) p-!6.,6,) _ 1] 
Z.f(6,,6J (N-1) 

141 

wher'e fa • At +tp 

fa • normalised atopband edqe ftequency 
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fp a normalised passband edge frequency 

~ • transition width 

61 • passband deviation 

6,. • , stopband deviation 

This defined the curved lover boundary in figure 5, the top 

boundary beinq set by faa20Hz and' ~he side boundary by N•l7. N 

was implicitly odd to avoid a non integer number of samples 

delay through the filter. Prom this the program ·inputs marked 

lxl were used with a ranqe of weighting functions to obtain the 

curves shown in figure 6 from the desi9R program. It can be 

seen from figure 6 that there exists a po~~t on the curve for 

Na29 where the deViation in each band is the same as for N=31. 

A sllllilar result occurs between N=-31. and Ha]]. These a_re 

e•traripple solutions (Rabiner and Gold 1975) and are 

particularly efficient. The solution selected on the basis of 

these results was the predicted eKtraripple solution for Na29 

which was obtained with a weig~ting function of 9,1 giving, pass 

and stopband deviations of -51.49d8 and -ll.4ldB respectively. 

The frequency response of this ·filter is plotted in figure 7 

which shows it to be a scaled extraripple solution (Rabiner and 

Gold· 19751. It should-be noted that this filter not only has a 

precisely linear phase chaiacteristic but ,also has a well 

defined·paasband in which the deviation from unity traftsm!ssio~ 

is minimal in a KJNIMAX sense. The filter coefficients are 

·listed ·in table 1. F?r,oomparison the response of a third 

order integer coefficient filter vith N~5 (equa~ion Jl which 

meets the required stopband specification ls shown dotted in 

flqure 1. The response la markedly inferior to the,optimal 

.. 
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desiqn, IIWI.Ki.mum de'!'iation in t.he paaaband being +1 .1S6dB as 

opposa'd to -sr. 49 · dB. In order to achieve a comparable 

pasaband deviation from a Kaiser window designed filter would 

require 17 coefticlents rather than the 29 required by the 

optimal desiqn. 

Direct fo~·realisation of a FIR filter requires calcUla~ion 

of the recursion relationship, equation (1». This involves H 

additions, N multiplications and H-1 shifts per output sample. 

Use of a moving pointer eliminates the H-1 shifts but then 

requires a check on the index of every sample to ensure that 

the storage array is not exceeded. An alqorithm for direct 

form realisation of FIR filters vas suggested by, Rabiner 

( 19771. The incoming data sample is stored twice hence 

generating an array of 2N samples for an H point filter. In 

this vay use of a·movinq pointer is permitted and all of the 

data samples required t«? calculate an output sample ~y be 

simply addressed relative to the pointer without checking that 

the index lies within the bounds of the array during the 

calculation. A slight modification of Rabiners algorithm to 

take account of impulse response symmetry for a linear phase 

filter reduces the require~ number of multiplications to 

CH+1)/2 and leads to a very efficient software realisation. 

Figure 8 shows filtered and unfiltered data for typical 1024 

sample records of EEG and EOG taken at a sampling frequency of 

128Hz and filtered using a Fortran implementation of the 

optimal EOG filter based upon the precedin~ discussion. It is 

50 



cleat from this ·figure that although the noise in the EOG is 

,considerably redUcea,the true EOG remains, visibly undiatortad. 

The filtered version of the corresponding EBG record very 

clearly shows. the contamination from the EOG • The filtered 

EEG amplitude ocale has been ftutomatically adjusted from that 

of the unflltered EEG by the comp.~ter during printinqo, this 

also applies to figure 9. PJgure 9 shows estimates of relative 

power spectral density. :rot the recorda of figure B. These vera 

obtalned:by taking the autocorrelation function of the data, 

windoving with a Turkey. wtrdov and computing the Fourier 

tra~aform of the reBult. The spectral power below 10Hz la seen 

to be the same before and after filtering whereas there is 

clearly. a reduction in alqnal power above 10Ha. studi~s 

indicate that an equivalent fixed po~nt routine for the ~ 

filter in 68000'pP assembly language will require approx~tely 

0~27ms to filter and return a data· sample at a clock frequency 

of 'BHHz. Also, assuming EOG samples quantlaed·to 12 bits and 

utll'hlng 32 bit internal working theta la negligible predicted 

difference in .frequency response du8 to the fixed point 

comp.~tatlona. 

"' 
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4. CONCLUSION 

In concluSion, th~ deslqn and software realisation of a 

filter suitable for reducing noise in the BOG without 

corrupting the oculai information has been presented. It la 

s~qnificant that a fixed point software routine may realise 

this filter in realtlme without detrement to the frequency 

response. This has been made possible by the eftic1ent 

alqorith:m employed and the advent of advanced 16 blt 

m.lcroprocessors. It is hoped that this paper wtll stimulate 

qreater 1nterest in the methods presented, hence leading to the 

use of better filter& for physioloqical applications. 
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TABLE 1 

Filter coefficients for EOG lovpaaa filter. 

H( o I - -0 •. 11191174£-01 • H(281 

H( " • -O.J8l90798£-02'• HU71 

H( 21 • o.73Dl4BD1E-D2- H(261 

H( ll - 0.1169l427E-D1 • R (25 I 

H( 41 - 0.18245798£-01 • H(24) 

H( SI • o. 78111941£-02 • HUll 

H( 61 • -0.7S10S876E-D2 • H(221 

H( 71 • -O.l1717S09E-01 •HUll 

H( 81 a -0.41073106£-DI • H(20 I 

H( 91 g -0.31341068£-01 • R( 191 

H(101 • 0.13298627£-DI • H( 181 

H( 111 " 0. 7901 154SE-0 I • H( 171 

H(121 • 0.15616089£-00 = R( 161 

H(lll • O. 21316704£-DD • Ht 15 I 

H (141 • 0.2J729908E-00 
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PIGURB LBGBND 

PtGURB 1. 

Two,methods of cancelling phase distortion by time reversal. 

Hle.i
111

) ··HCzllz=~·l:uce;ulle~•111"1 

For method. 1z a,AczJ • uczJucz-11 

For method 2z HyRIZ) • H(Z)+H(z- 11 

PIGURE·2. 

Illustration of lm~lse response symmetry produced by time 

reversal. 

(a) h{n) a positive time impulse response. 

(b) h{~nl • negative time impulse response. 

{c) hT8 (n) • overall time reversal impulse response, h{n)•h(-n) 

PIGURB l. 

Effect of truncation on resulting impulse response symmetry. 

(a) h(n} • positive ttme impulse response with h(2) truncated. 

(b) h(-n) ~ negative time impulse response. 

(c) h 1~(n) • overall tLme reversal impulse response, h(n)•h(-n) 

FiGURE 4. 

EllG fi iter design spec! f ioa.tions. 

passband dev1at1on·61 aO. 003 1-SOdB) 

stopband_ deviation 61 01(1. 01 1-lOdB) 

passband edqe frequency,fp=0.078 110 Hz) 

stopband edqo frequency,fS(0.156 120 Hz) 

number of coefficients,N-' 37 

samplin9 frequency,Pe~12B Hz 

transition width,Af,0.078 



F'IGURE S. 

Ranqe of possible solutions. (shown unshaded) 

ts • stopband edge frequency 

N number of filter coefficients. 

• selected initial.program inputs. 

FIGURE 6. 

Deviations returned by design proqram for fp-0.078 (10Hz), 

fs•0.148 119Hz). 

6~.... passband. deviation 

61"" stopba~d.deviatlon 

N a number of filter coefficients 

PlGURE 7. 

Frequency response of opt~al PIR filter for EOG vith response 

of a simple integer coefficient filter 

{a)complete response, (b)passba~d response. 

FIGURE B. 

Typical data for subject repeatedly blinking. 

shown dotted. 

(a) unfi~tered 

EEG, (b) filtered BEG, (c)unfiltered EOG, (d)filtered EDG. 

FIGURE 9. 

Estimated rebtive power spectrlil densities t?Orreapondinq to 

figure B. (alunfiltered EEG, (b}flltered EEG, lchmfilterd 

F.XX;, (d)filtered EXXi. 
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INVESTIG~TIO~ A~D CO~P~RISON OF SO~E ~ODELS FOR REMOVING 

OCULAR ~RTEF~CTS FRO~ EEG SIGNALS 

Eye or lld movement produces a change In the electrostatic 

f leld associated vlth 'the corneo-retlnal dipole. This tleld Is 

propagatetl vlth decreasing strength across the scalp. Thus a 

scalp signal may contain both cerebral signals and ocular 

artefacts (0~) poteritlals due to eye. and/or eye lld movement. 

The 0~ In the l!lectroencephalogram (EEG) .should be removed or at 

least controller! because it may reduce the clinical usefulness 

of diagnostic signals and.hamper the automatic analysis of the 

signals· (e.g. Me Callum and' Waiter l968rRIHyard 1974rGotman 

et al 1975:Qullter et al l977rGratton et al 1983). 

Several partial solutions have been proposed for removing 

the 0~ from the EEG. These can be divided Into three categories: 

Eye FIKatlon,Rejectlon and l!lectrooculoqram (EOG) subtraction 

methods. The eye fixation method does not give satisfactory 

control of the OA in a~·l cases, but may be used: to supplement 

the other two. tn rejection methods, sections of an EEG record 

vhere the level of OA exceeds some predeflned level are deleted. 

This may lead to an unacceptably high wastage of data ln,for 

example, studies involving children and· uncoope~:atlve adults 

vhere eye movement (EM) could be uncontrollable. Verleger 

et al (1982) found that 62' of the dsta could be lost through 

rejection and that their EOG subtraction method vas superior. 

to the r.e.jectlon method. OA contaminated records may also 

contain useful information, and deletion of these sections 

would both lose data and make lt unrepresentative 

(Gratton et al 1981)• 

The EOG subtraction method,,.tn our vlev, offers the most 

promising vay of dealing vlth the problem of OA In the EEG. 
!.? 
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However, the.various techniques reported so far do not 

completely solve the problem• thus, new approaches are 

contlnuaily being developed (e.g Qullter et al 1977, Barlow 

and Remond l98lJGratton et al l983JFortqens and De Bruln 19831. 

The BOG subtraction methods are based on the principle that 

the OA is additive to the background ~I!G. ·-rhus in discrete 

form we have: 

BI!G (I) • OA ( ll + e (I) 

• 9BOG(il + e(il Ill 

where BBG(II and e(il are the measured and the true BEGs 

respectively. 8 ,t_he correction coefficient or OA parameter , 

is the fraction of the BOG that is measured at the BEG 

electrode as artefact and EOG(l•) is the measured !OG.Thus if 

the coefficient 8 can be estimated then the 'true' EEG can be 
A 

recovered by subtracting 9BOG(il from BEG(il in 111. The various 

BOG subtraction techniques differ primarily in the way 9 Is 

estimated, in the number of BOG signals that Is used In (11 

a.nd the way these are measured (compare for example,Hi llyard 

1974JGirton and Kamlya l973JQullter et al l977,Verleger et al 

19821 Jervls et al 1980). 

Verleger et al (19821 suggested that differences In the 

value of 8 betvee~ lndlvlduala could be due to random errors 

and not to qenulne factors. There are hovever,differences 

between subjects which woul~ lead to genuine differences in 

their OA parameters. These Include Inter-subject differences 

ln anatomical structures (e.q differences in size and shape 

of face and h·eadl which would lead to <IHferent electrode 

separations. Inter-subject differences in the values of 

9 have been reported (e.g. Glrton and Ka10lya 19731 ,although 

in some cases they we[e small (e.q. G[atton et at l~BJ) and 
lo 
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In· others they vere only significant for blin-s (e.g. Corby 

and Ropel 1q121. 

Some vor-ers accept that the coefficients should be obtained• 

for each I ndl vidual, but cons Id er the subject-spec If le eo eH I cl ents 

time-Invariant (e.g Glrton and Ramlya l.97J;Darlow arid Remand 1981). 

It has been ~stabll Rhed that bll nks an<! vert lcal eye movement, for 

example, require different correction coefficients (Overton and 

Shagass l969;Corby and Kopel l972;Gratton. et al 19831. Even 

vhen only one type of ocular movement Is predominant the position 

of the eve lids could slg'liflcantly alter the coefficients 

(Ril'lyard 19741. Thus subject-speci·flc coefficients should not 

be assumed time-t nvar l ant. In these approaches, e_st lftla tes of 

8 were obtained subjectively by havlnq the subjects move their eyes 

voluntarily prior to the experiment. Rovever,Gratton et al 119831 

pointed out that there may be dlffetences between voluntary and 

involUntarY ocula[ movements which. may lead to differences in the 

correction coefficients obtained before and during the experiment. 

Some recent !!OG subt<actlon techniques have attempted to 

take Into account the factors discussed above (Quitter et al 1977; 

Jervls et al l980;1n ptepa<atlon; Gratton et al I983;Fo<tgena and 

De B<uln 19831. In these techniques 9 Is obtained directly from 

the data. Gratton et al (19831 described a method vhere eye 

movement and blink artefacts were separately detected arid 

corrected.Thls represents- some improvements over most other OA 

removal methods, but lt is tlm~ consuming ln a multtchannel 

situation and where many EOG slqnals are used, and may only 

be suitable for off-line use. 

It Is Important to determine wheth~r a mo<lel adequately 

describes the BOG-OA relationships. In particular, Is the 

assumption or a linear <elatlonshlp between the I!!OGs and the 
11 
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OA reasonable?.Which and how many EOG slqnals should be used 

to obtain optimum removal of OA? Girton and hmiya (19131 and 

Quitter et at (19771 pointed out that to obtain a reasonably 

good estimate of OA, more than one EOG siqnat should be used. 

This view is confirmed by our results. Jervis et at (t980, 

in prep.aration) extended Quitter et at•s approach to three 

and four parameter models (utilisinq three and four EOGs 

respectlvely)an~ found that the three parameter model was 

better than the 2 parameter model.They also found that the 

four parameter model was best. Portqens and De Bruin (1983) 

reached similar conclusions However, there shout~ be no 

need to use all the EOGs in a model because often they are 

highly correlated, and our results confirmed this. 

There remained a need to carry out a systematic 

comparison of the various models to establish their relative 

effectiveness In removinq OA from the EEG. This paper extends the 

work of Jervi·s et al (1980J in preparation) to find the most 

effective model for implementation on-line. A number of models 

were studied and their effectiveness of correction compared. 

A common assumption in the least squares method,to which 

the EOG subtraction method belonqs, is that the error terms e(ll 

(which represent t~e backqround ~EG) are uncorrelated. We faun~ 

that the assumption Is not valid and qlve a simple method to 

reduce the effects of correlation on the parameter estimates. 

METHODS AND MATERIAL 

Apparatus,subjects and Data Acquisition 

The data Use~ in this lnvestigatlon was obtained in a 

previous study (see Jervls et al,l980,ln preparation). Separate 

vertical and horizontal EOG slqnals were recorded for each eye 
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from sllver-otlver chlorIde elec.trodes placed above and below the 

eye, anti from a·lmllar electrodes at the out'!r canthus anti thE! 

nasion. Thls e\ectr~e placeme.nt qave maximUm information about 

ocular movements and allowed the hor.l zontal and Vert teal components 

to be measured separately. The EEG signal was derived from 

sllver-sllver chloride electrodes placed at the vertex referred 

to linked earlobes. These signals were fed Into an &-channel 

Electroencephaloqraph to produce a !'JBper chart record and Into a 

data acquisition system (DASJ .• In the DAS, the signals were 

first high pass filtered (cut off frequency, 0.16 RI) to minimize 

drift, low pass filtered (cut oH frequency, lO Rz)' to filter 

out mains frequency and to reduce allaslnq, and then digitized, 

Volunteers vlth no known eye defects were asked to make 

periodic eye movements In the vertlcal,horl•ontal and diagonal 

directions between pairs of light emitting diodes located on a 

wooden screen. ~his corresponded to about 20° of eye movement. 

The Subjects were also asked to blink at regular Intervals. 

This ensured that the performance of the models were evaluated 

under a given type of OA; 

Several 8-sec lengths of EEG records (each record consisted of 

1024 samples from each of the four EOG and the BEG channels) were 

acqul red for each subject and for· each type of ocular movement 

(vertical eye movement (VBMJ,horlzontal eye movement (HEM), 

dlaqonal eye movement (DEMJ and• blink) and stored on a disk under 

the control of a PdP 8 minicomputer. The acquired data was later 

transferred to a maln frame computer for analysis. 

2 Data Preprocessing 

The mean of the data samples of each channel vas compute~ an~ 

removed ·.frOm f!'ach sample •. Any low frequency trend waS remoVed' by 

di'fferenclng. Dlfferenclnq also helped to reduce the .effecto of 
~~ 
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ser.lal correlation of the backqround EEG on the estimates of 9. 

rhis qave two setS of data for each EEG record viz: 

(a, Data ~egments with the mean removed (raw data). 

Cbl Data seqments from (al and also dlfferenced• (dlfferenced datal. 

Some Properties of the ~easured Data 

A preliminary analysts of the. data s~qments of each record 

was carried out to identify those properties of the data that couid 

affect the results of OA removal. Three properties of interest 

were, the relationship between the EEG and the ocular artefacts, 

the linear dependencies between the EOGs, and the EOG artefacts. 

Scatter diagrams were used to study the relationships between the 

ocular artefacts and the EEG, and between the EOGs themselves. 

To assess the extent of the linear dependencies (or colllnearlty) 

between the EOGs we examined their correlation matrices and the 

associated etgenvalues. Strong coltinearity is accompanied by 

one or more very small eigenvalues and can lead to difficulties 

In computation and statistical analysis (Silvey,L969;Johnston 

1972;Chatterjee and Price 19771. 

The EOG may contain other artefacts that are not related to 

ocular movement, such as electromyoqraphic (EMG) siqnals resultlnq 

from muscle action and contamination of the EOG by the ~rontal EEG 

signals. Because l~ the BOG subtraction method ve merely subtract 

fractions of one or more EOG signals ~ram the measured F.EG, any 

artefacts ln the BOGs would be introduced into the corrected EEG as 

'secondary artefacts'. We studied this problem by examininq plots 

of the preprocessed data. 

4 Description of Ho~els and the removal alqorlthm 

(al Hodela used In the lnvestlqatlon 

The form of the models used Is qlven ln equation 121 

0 



mi(l) "81VLUI + 82VRUI + 83"r,UI + 84f\!111 + e(ij 1 • I, •• M (2) 

vhere EBG(I),e(ll are the lth samples of the measured and bac~qround 

BBC respectively. v.L(I) ;HL(Il ue the vertical and: horizontal left 

BOGs respectively. V,R(I),HR(I'l• are the correspondlnq right BOGs 

and M la the number ·of data points for each variable. 8
1 

to 8
4 

,the 

correction coefficients, are the· fractions of the corresponding 

BOGs that reach the BEG electrode aa artefact. 

The following are the variations of (21 vhlch vere used 

In the Investigation: 

Model name EOG•s used .In (2) 

2.1\ vL, "x. (92 " 84 • 0) 
2B VL•f\! 192 = 83 = 01 
2C VR•"x. (91 o'94 = 01 
2D VR•f\! (91 = 9

3 
= .o) 

2E vL,vR (9] • 94 • 0) 
2F "x..~ (91, = 92 = 01 
2G VL' l"x, -f\!1 (eJ • 9~ • O;VR = '"x. """R') 
lA VL•"x.•~ (92 " 0) 
]8 VL,VR•"x. (94 • 01 

JC VL,VR,HR 
(03=01 

30' VR, HL,._I-!P. (0,•01 

4A VL,VR·'HL,HR 

48 VL' (VLxV1),HL'HRI (VR= (VLxVLII 

4C VL' (VL -VR),I'-,•~ (VR= (VL-Vlll.l · 

40 VL' ("x,~l i"x,•f\! (V R = ("x, ""R 11 

Model 21\ Is an approximation .,f the model used by Quitter et al 

(1977) .Model 2G almul:ates what appears to be a popular two

parameter model (e.g Batlow and R'mond 198l).tt has t~e advantage 

o·f having reduced coupl,lnq betvee·n the vertical and the horizontal 

·~5' 
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~00 slqnats,but combines the EOGs ot boti't eyes· which may be diffecenb 

(Qui Iter et al,l977). Modela lA and 4A were used by Jervis et at 

(19BO,In preparation!. The latter is al•o an approximation of the 

model used by Fortgens and De Bruln (19811. Model 48 attempts to 

correct for pcsslble non-llnearitles which may be present. Model 

4C attempts to minimize th~ effects of depenrlenctes betWeen the 

EOGs (due to. couPling and conjugate eye movement) ,while model 

40 attempts to compensate for possible non-linear interaction 

between the horizontal EOGs. It llas been suggested that the ocular 

dipoles tend-to oppcae each other In their effects during HEM 

(Jervla et al1ln preparation). Other models were Included to ensure 

that all 'possible' models were compared. 

Additionally, four stnqle parameter models, each 

contatninq one of the four EOG· signal, were used to correct for 

ocular artefact. The aim here was to verify whether or not 

single parameter models could :satisfactorily remove 

ocular artefacts from EEG signals. 

(b) OA Removal Algorithm -the Ordinary Least Squares Method 

Assumlnq that e(ll is an uncorrelated sequence with zero 

mean and constant variance then optimum estimates of the coefft-

cients 9 can be obtained, uslnq the ordinary least squares (OLS) 

method, by mlnlmlz!nq the sum of squares of e(il In !2). This 

leads to equation J (see the appendix): 

!11 
A 

where &,the parameter estimate (estimate of the correction coeffi-

X,the EOG matrla, and Y a vector ot EEG qaMples, ar~ respectively: 

11. 

I 
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X VL (il VRI!I 

VL(2) VR(2) 

'1.'1' 
"r. (2) 

~(i) 

~(2) 

VL (M) ''R (M) "r_ (M) "R (HI 

y = m;( l) 

m;(21 

m;(M) 

Thus 8 can be-obtained using anv suitable ~atrtx inversion technique 

Havinq obtained 9, estimates of the 0~ and hence the background EEG 

can be obtained as a 

A - x3 (4) !'! • y 
T 

" E(l' e(2) ....• ,M_D where I!! . ,.. 
The estimates of the error terms or the background EEG, !'! , are 

referred to as the restduals. Implicit in the OLS method is the 

assumption that the EOGs are not perfectly collinear . If they are th en 

the inverse of the matrix (XT X) will not exist and the parameter 
,.. 

estimates e, cannot be obtained. 

It ls worth noting that all the EOG subtraction methods that 

appear in the literature under different names are essentially least 

squares methods and thus subject to the above assumptions. For 

example,we show in the appendix that the correlation technique method 

used by Quitter et al (1977) an~ Jervis et al (1980,in preparation) 

is in fact an OLS method. 

S Criteria used to Compare the Performance of the Models 

Quantitative and pictorial criteria were used in the compa-

rison of models. They were inten~ed t~ be complementary . 

(a) Minimization of the ~um of Squares of the !EG 

~s discussed above, each model minimizes the sum of squares of the 

error teem • Thus minimum sum of squares of the estimates of the 

error terms (or residual sum of squares) can be used as a criterion 

for comparlnq the models. To t•~e into account the decrease of 
'\"'. 



the residual sum of squa~es· with the number of parameters In a 

model ,we used instead the residual var lance qlven by (SJ. 

(Welsberq 1980). 

l 
S, • Rssp I (M-p-11 (5) 

where Rss, and p are respecttvely,,the resld~al sum of squares and 

the number of parameters in the model. Models with small 

residual varlances are considered good models. (e.q. Welsberq,l980), 

(b) Mallows' Statistic, ·Cp. 

A model Is a subset of a larqer model If the latter contains 

all the variables in the former plus one or more variables. 

Subset models yield biased estimates except when the variables 

omitted are unimportant. Thus a subset model ls to be prefer-red if 

the bias of Its estimates is small. A criterion that can be used 

to choose between models is Mallow's statistic, C (Mallow 1971, 

Hocklnq l976,Welsberg 1980), 

Cp • (Rss,v5• .. ) -t lP - ti\ (6) 

where S~ is the residual variance from the full model,here 

taken to be model 4A. A good model should have a Cp value close 

to p,whlch in our case should be no more than about 4 as no 

model has more than four- 'Parameters. If models have Cp values 

that dl'ffer by only small amounts, they may have comparable 

performance. Therefore,we used a somewhat more relaxed criterion 

to ensure that all 'good' models were lnclu~ed. Thus a model was 

'good' If its Cp value vas about ·ten or less, After stutlylng 

several records a pattern emerged and the 'good' models were 

then subjected to further analysis. 

(c) OA Estimates and their differences as measures of perfocmance 

A complementary method 11aed to study the per-tocmance ot the 
u 



,models was: to compare pt'ots of OA P.Stlmates from the various models 

and also the ,1 fferences between these estimates. The di'fference 

between the OA estimates of any two models Is equivalent to the 

difference between the corresponding corrected ~I!Gs. This approach· 

may be described as a pictorial form· of 'F-Test' and lt enabled us 

to judge visually the effects of addlnq extra terms In the model. 

To relate the differences to !M, plots of the autocorrelatlon 

functions (ACF) of the differences may also be obtained, 

6 Atitocorrelation In ·the Bac;:kground I!I!G and Durbln-Watson Statlstlc 

·A crucial assumptlon In the least squares method Is that the 

error terms, e(i),are uncorrelated .If this· assumption Is violated 

then the parameter estimates obtained ·by the OLS method are lnneffl

clent as they no longer have minimum variance, and tests of signifi

cance based on the sUm of squareS are no lonqer strictly valid. 

(e.g. Cochrane and Orcutt 1949rJohnston l972rChatterjee and Price 

1977). 

The Durbin-Watson statistlc,d, (Durbin and Matson 1950rl951~, 

defined ln .(·7) ,, can he used ·to :test for the existence cif B.utocorre-

latlon ln the error terms. Since ln qeneral the error terms are 

not directly available, the test Is applied to the reslduals (the 

estimates of the error terms). 

-d = •=t [;111 - e(i-11] 
2 

M 

2:: 2 
1=2 e (il 

d Is close to zero when the reslduals ar~ highly positively 

(7) 

correlated and to 2 when they are .not. Tables giving the upper and 

lower bounds (dL,dUI for d for different percentage points are 

available .for testlnq the slqnlflcance of d (e.g Johnston,\'172). 

If d Is slqnlflcant then some remedial action should ·be taken. 
"If} 
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Correcting for Autocor.relat\on 

A significant value for d might be ~ue to model Inadequacy or 

autocorrelatlon ln the errors. tf the model ls inadequate due to 

the omission of some important variables, or a linear model is 

specified Where ln fact the relatlon~hin betNeen the d~pendent and 

independent variables ts nonllnear, then the residuals from such a 

model will be correlate~. The simple solution in this case Is to 

use the correct model. 

However, tf the error terms are correlated then the OLS 

method will always give correlated res!duals and this can be 

corrected by transforming the data. A way of doing this Is to 

represent the reslduals as an autoregresslve (AR) se~les. 

A form commonly used is: 

n 
e(iJ = 2:;tj e(i-j) +alii (8) 

J=l 
where n ls the order of the AR model·, t the autoregressive 

parameters, and a(ll an uncorrelated sequence. 

If n is set to~ unity then we have the first order AR series which 

ls equivalent to transformlnq !he r!ata ln the following way (see 

the ap\)endlx)l 

y(il = ;lrtl 9 • alil (9a) 

where y(i) = y(i) _ ~(1-l) 1 .RT (1) xTIU-t xT(i-1) (9bl 

y(l)= the measured EI!G'r xT(!) :=EL(!) VR(!) HL(l) '\llj, the 

measured EOGs. 

An estimate of 9 can be· obtained Iteratively uslnq the follow!nq 

algorithm (e.g. Cochrane and Orcutt,lq49;Chatterjee and Prlce,l977). 

Step 1. Obtain OLS estimates of 9 and hence the reslduals from 

;l(i) = y(i) - xT(i) Q l•l,2,.,M 

Step 2. Use OLS to estimate~ from : e(!) • ~e(l-j) + a(!) 
_T -

Step J. Obtain a new set of variables (X(!) and y(!)) a• ln (9b). 
,..,. 



StP.p 4. l!Sf? OI.S to nhtatn 9 , an ~stimnle or 0 fi'O~ (8n) anil 

hencP. a nP.w restrlual a(il=YtU - XTO)fl . Then qo hack lo slep 2 and 

continue until the estimate of~ converges. 

~hen_ 4 converq~s, t is then the estimate of Lh~ paraq•et~rs 

and is used in (2) to obtain estimates of the corrected EEG. 

If e{l) is uncorrelated then~~ 0 and both the OLS and ,the 
~-. 

iterative m~thods lead to the same results. It \s to be noted 

that cl\fferenc\ng used in th~ data preprocessing is a spP.cial 

case of the first orrler AR model,obtained by setting both n an~ ~ 

to unity in {8). 

In the investigation. we used all'_ three estimation methods;)';.:':: 
.... ,. ·., 

viz. o~s, differencing ann iterative methods. 

RF:SU!.TS. 

1. Prop~rties o~ the Mea~urP.n Dnta 

(a) ?he relntion~~ip~ between thP. ocular art~~nr-ts n~n r.nGs 

Ty~tcal olots o~ th~ scatter diagrams of the EOC.s anrl thP. ~~G 

are given in figure 1 for a horizontal eye movement recor~. 

Examination of th~s~ and similar plots for othct ocular 

movements sho·,.,.en that there was sometimes a lin,.i'r relat{onshi:;; 

b!!'tw~~n tht? F.OGs anrl th~ O.Z\s, hut that this was nnt truo:o in all 

ca::;es. 

(b) Col.lin~arity b~tw~en th~ ROGs 

('{} The corr~lation co~fficients between nll pairs of th~ ECG 

voria~les were ~stimated for sP.vera1_ F.RG recoul::; and a repr~sen':a-

tive selection of the correlation matrice~ an~ th~ir e!gcnvalu~~ 

arc given in t~bl.e 1 for different ocular m~vemcnt~. Examination 

of the ta~le sho~eO that in each cas~ there was high corr~lation 

between so:-ne of the E0Gs, an~ at lP.;H;t two of th-:o ~ig~n·Jal_u~s were 

very s~all. In ~act, only the first two eigenvaluc~ in ~ach case 

Ill 



accounted for nearly 99\ o_f the total vac labHity .. 
I (~ 1 +ilz.l x 100,/ll.ll; ll, suqqestlnq strong col-Unear.tty anil that 

i•l 

about two EOGs were redundant. 

For the dlfferenced data ,the correlation coefficients were 

much smaller than ~or the raw data and no eigenvalue was too small. 

For example, after differencinq the eiqenvatues for the record 

given in table I(al were :~l•2.6JD,~2•D.647,}J=D.561, ~4•0.·162. 

Thls suggesteil that differend"l'ng could be used to reduce the effects 

of collinearlty. 

For all types of ocular movement except lateral eye 

movement, the vertical EOGs were more strorigly cotre~ated than the 

horizontal EOGs. The correlation coefficients,for t~e differenced 

data, were typically 0.6 for the horizontal EOGs for REM and 0.75 

for the vertical EOGs for blink or VEM. 

(ill Scatter plots of the EOGs against one another showed linear 

relationship between the EOGs, especially between the tvo vertical 

EOGs arid between the horizontal EOGs • 

(c) EOG Artefacts 

Several EOG and EEG waveforms for both raw and differenced data, 

were .attc!led visually' an'd were '·always contaminated by 'noise'. 

Th.ls may have been ilue to BBG contamination or electromyographlc 

signals etc. It was found that for VEM and blink records the EOG 

level relative to noise .was smaller for the horizontal channels 

than for the vertical channela;The opposite was true for REM. 

tn moat vertical eye movement (VBM) and occasionally ln 

horizontal eye movement records rider artefacts.could.be seen. 

These are transient potentlals,simllar in characterlstlcs.t~ 

blinks, that are superimposed on the normal EOG,especlally during 

vertlcal eye movements wtth the eyes open (Barry and Jones lq65r 

u 
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hlqh c~crelation was n_ot the omission ·of a varl4ble. Similar 

results were obtained for all types of ocular movement. 

A study of the residuals (or corrected EEGs) and their ACFs 

suggested that the error terms e(l) behaved like an autoregcessivt 

series (see for example, ~ox and Jenklns tq7Q) .The residual& 

behaved like •ran~om wal~s· an~ their ACFs ~P.caYed slowly to zero 

Figure 2(11 and 2(111 qlve typical examples for a REM record. 

Flqure 2(illl to 2(vi) qive similar plots but for the dlfferencinc 

and the iterative methods, and these show that all systemat~c 

effects have been removed and the ACP's decreased rapidly to ·zero. 

This was true for all types of ocular movements and was taken as . 

an indication that the autoreqressive representation for e(il vas 

reasonable. Table lll(bl qives results for the test statistics fo1 

the differenclng method and showed that the d statistics were 

nearer 2 than those for the OLS method. Table III(b) also showed 

that only models 2D,JC,JD,4C and 4D satisfied our Cp criterion of 

about ten or tess and, in this instance, are the •good• models. 

Similar conclusions can be drawn from the values of the variance, 

but Cp values are easier to interpret. 

Table IV gives a summarY of the results based on the Cf 

values for both the OLS and the differenclnq methods for the 

various ocular movements for each subject. From the table lt la 

seen that the following models performed well In the OLS and 

differenclnq methods, respectively: (lD,4C and 4DI and (3D,4C). 

We note that these m~els contained (RL,H~I and one or the other 

but not both vertical EOGs,except model 4C which contained VR 

indirectly. It appears that there is no need for more than one 

vertical F.OG signal ln a model. tt is to be noted that models 

contalninq the EOGs of the rlqht eye performed better than those 

contalnlnq the EOGs of the left eye. (cr.rrgpare for e•ample, 
·.~ ·1 



Hatsuo et al 197511• 

2 Single Param~ter Models 

:The .four single parameter models "'ere uSed to correct 

several EBG records for OA, and in many cases the corrected EEGs 

still C'>ntalned a vestige of the EOGs. tt vas ~ound that for blinks 

and vertical eye movements, the models that used vertical ~OGs 

~er formed better than those usi"nq horizontal EOGs- and vlce versa 

for lateral eye movements. 

The mean of the absolute values of the parameter estimates 

and their standard deviations for two slnqle parameter models (uslnq 

VR and RP. respectlvelyl are given In table H for two subjects. 

The values of the standard deviations Indicated that for VE~,bllnk 

and OEM., the single _parameter model which used VR_ gave more 

reliable estimates than the model that used R"'. The opposite vas 

true for lateral eye movement. It Is seen that the estimates for 

the OLS and the dlfferenclnq methods dlffered,but only by small 

amounts if the standard deviations are taken into account. Slmila~ 

results were obtained for models using VL and HL' respectively. 

3 Model Comparison 

(al Quantitative comparison of models 

Several EEG records were corrected for OA ·with the multi-

parameter models defined earlier uslnq the OLS method. In each 

case and for each model the statistics d>Sp and Cp were computed; 

Table IH(al Hats the models and these statistics for a typical 

case. Bxamlnatlon of table tU (a I shoved that the valUes of 

the d statistics were very low for all the models, suqqestlnq 

that the resld~als were highly correlated, and test of slqn~flcance 

was hardl.Y necessary. As all models vere affected·, lncludlng those 

·that contained all the &OGs, this suqqested that the cause of the 



lateral eye movement. For vertical ~ye movement an~ blink it was 

found that models using more than two EOGs did not yield significant 

improvement, especially if one Of the EOGs already included was a 

vertica! on~. 

The corrected ~EGs corresponding to the OA ~stimates given 

in figure J are shown in fiqure 5. Some vestige of the EOG can be 

seen in these waveforms particularly in that of the single parameter 

model. It is note worthy that the differences between these EEGs 

are not as easily seen as they are from figure 4, illustrating the 

sensitivity of our pictorial criterion. A common feature in all 

these models was that rider artefact, when it occurred, was hardly 

ever completely removed. Peaks were often observed in the corrected 

EEG at points corresponding to where the rider artefacts occurred 

in the raw data. 

Similar results to those given above were obtained for the 

differencing and iterative methods.In these cases,however, the 

improvements were more pronounced. Rowever,model 40 did not perform 

as well as in the OLS method. Figure 6 gives the 01\ estimates for 

model JD for the three methods and the differences between these 

estimates. The .figure shoved that the d!fferencinq and Iterative 
oj·~ 1 •~· I-

methods d!ffered·only in 'th~ sfze 
' :.- . ;·..;,..:~ 

of their 01\ estimates,whereas 

the OLS method gaYe results that were dissimilar to either methods. 

DISCUSSIOH 

(a) 1\utocorrelation In the EEG 

our results showed that the background EEG Is highly 

correlated and thus vlolates one of the assumptions of the least 

squares method. Thus optlmum estlmates of the correction 

coefficient cannot he obtained. 1\lthough we have reduced this 

problem by modelling the EP.G a~ a rtrst order autoreqresslve (ARJ 
:-\b 



m0dels 2A anrl 20 or JA •nn 3D 1 . 

The iterative method was applied to some of the •best models•. 

It was found that convergence of the parameter estimates was 

obtained after about two to three iterations. Results very similar 

to those of the di'fferencinq method. were obtained. f"or comparison 

we present results for model 30 usinq the three methods in table V. 

Inspection of the table showed that the results for the dlfferenclnq 

and Iterative methods were ln general slmHar,but differed from 

those for the OLS method. Compare· tor example, the values for 0!. ln 

table V(c) for the three methods. This is to be expected as ~was 

nearly the same for the differencing and iterative methods so the 

methods were nearly equivalent. 

(b) Pictorial comparison of Models. 

Figures 3 and 4 show,respectively, the OA estimates and the 

differences between these estimates for a horizontal eye movement 

record corrected by the .OLS method. FigUre 3 showed that not all 

the OA estimates were the same in amplitude and shapes, suqqestinq 

that the models corrected the EEG. to different extents. It was 

also found that the OA for models 4A and 4C in qeneral contained 

much higher level of noise than any other model. This was probably 

because the EOGs·used in these morlels contained more secondary 

artefacts. Referlng to figure 4;we note that all but flqures 4(lv) 

and 4 (v) contained EOG relat·ed signal in the focm of a rectangular 

wave and only little noise. Figure 4(lv) and (v), associated with 

models that use all four EOGs. (models 4A and 4C);contatned signi

ficant levels of noi·se. This suggested that hacdly any improveme~t 
was achieved by. uslnq al'l four EOCs ln a model. Figure 4(vl•l shows !1 

that only small improvements vas aChl'eved by. including square terms 

( l n ttils case, Rl. x ~ ) l n the model. These results hold for 
?s 



series,hiqher order AA m~els may qive hetter estimates (see for 

example, tssalitson lqQIJ. However, there·are lirawbaCk·s:·tn using 

AR models. Plrstly,t~e data points have only a llmlteli accuracy, 

so that ~lfferenclng leads to a reduction In the accuracy of 

the data. 9ecoridly, these operations are equivalent to high pass 

f·l·tterinq ant! therefore,the correction coefficients are effectively 

det~rmlned only by the chanqes In the data. Thls ln ltself.ls not a 

bad thing since the detection and removal of changes In potential due 

to ocular movement and not eye fixation is· our goal ·ln OA removal. 

(b) CoHlnearlty 

Our lnvestlgatlons have shown that for any ocular movement 

at least a pair of EOGs were ~lghly correlated. The correlation is 

probably because tn most cases both eyes move in unison and there is 

no Isolation between the vertical and horizontal measuring sites. tt 

ts possible therefore, that for som~ ocular artefacts (e.g blink and 

vertical eye movement) a single parameter model ls sufficiently 

sensitive for satisfactory correction. ·Rowev~r, when the best 

possible correction is required or when there ls less correlation 

between the tOGs as ln lateral and random eye movements more EOGs 

are required. However, when additional EOGs are used computational 

difficulties due to colllnearlty may arise (e.g Johnston 1972). 

tf the EOGs were strongly colllnear, as in our case,lt la not 

possible to estimate the exact contribution of each EOG signal 

and the parameter estimates are less reliable fFarrar 1967:Johnston 

(c) Comparison and choice of Hodels. 

A good model should Include at least a horizontal and a 

vertical EOG signal. On the basle of our results lt appears that 

these should be the horizontal and the vertical right EOGs. As 
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mentioned earlier, there Is no need to use both vertical P.OGs 

because they are nearly always'hlqhly .correlated and may Introduce 

sl9nlflcant secondary artefacts Into the BEG. Account should also 

be taken of the various observed effects In the 88G and BOGs, sue~ 

as the opposln9 effects of the eye dipoles durlnq lateral move

ments (Jervls et all in ~;~reparation), and the sl19ht curvatures 

In the scatter dla9rams. We chose model 4D (which used v~,RLxR~, 

R~,R~) for Implementation on-line, but with hlnd-sl9ht thou9ht 

that a model that used cv,.~x~,RL'~l would be a better choice. 

A br let Invest l9at1on confl r'l!ed this to be so. However, If the 

concept of "fever la better• la used then model lD (which uses 

v~,B~,~~ should be used. 

Jervla et al (1980Jin preparation) compared a number of 

models which Included model 4A (which uses all the BOGs) and some 

of ita subsets, using a quantitative test based on the autocorre

latlon functions of the corrected ERGs. They found that model 4A 

vas the best. However,the presence of strong serial correlation 

In the EEG and the lar9e secondary artefacts associated with this 

model could sl9nlflcantly affect the ACP of the corrected EEG and 

make the quantitative results unreliable. Port9ens and De Bruln 

(1981) reached.slmllar conclusions as Jervls et al (1980, 

In preparation) by conslderln9 2- and 4-parameter models. They 

reported that at least four BOGs were required for adequate removal 

of OA, eapeclaly In the frontal r89ions. They also showed theore

tically that four BOG sl9nals were necessary, but we have shown 

that the EOGs are correlated _so that four BOGs are unnecessary. 

The OA models used In this lnvestl9atlon probably do not 

remove completely OA which Is due to rider artefacts. Por the 

rectanqular BOGs used, rider artefacu tended to occur at twice 

the frequency of the BOGs and appeared as peaks In the corrected 
~B 



EEG • Ex<lmination of a number of correctl!d' gees from records that 

C6ntained r,\der artl!fact sugqested that this may be the source 

of the second harmonic. reporte<l' by Jervls et al (In preparation). 

The Inability of the OA models to deal with multiple artefacts 

Is mainly because all data points are given equal weight In the 

estimation of ·o and only simultaneous changes in the EOGs and the 

BP~ signals are taken into account. Some form of dynamic model 

that does not qlve equal velght to all M <lata points vould appear 

to be more appropriate. Models encorporating some of these Ideas 

have been simulated on a main frame computer and will be the theme 

of a future paper In which attention will be focused on on-line 

removal of OA. 

SUMMARY 

This paper compares the performance of several models for 

removing ocular artefacts from BEG signals using quantitative 

and pictorial cdter la. These Include most of the models reported 

in the literature and some new ones. tt vas shown that for most 

ocular movements there were at least a pair of BOGs that were 

strongly correlated. Thus there Is no need to use all four 

EOGs (one vertical and one horizontal for each eye). Using the 

er! ter la It was found that regardless of the type of ocular 

movement,there was always a smaller model that has a performance 

that is comparable or better than the full model. Overall the 

mod.el using the vertical right EOG (Vfl), the two horizontal BOGs 

(HL and H~l and their product (HL x H~l gave the best performance. 

The model using the vertical right BOG and the two horizontal EOGs 

was found to be the best three-oarameter model. This updates the 

conclusions of Jervls et al (1980:ln preparation) and Fortgens 

an<l De Bruin 1198)). 

The common assumptlon,lmpllclt in all BOG subtraction methods, ., 



that the error terms (which represents the .bsc~qround l!EGl are 

uncorrelated was shown to be Invalid, The effects of this Invalid 

assumption on ~the ocUlar artefa~t parameter estimates were reduced 

by modelling the error terms as a first order autoreqresslve 

ser·ies. 
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E'l'UDE ET COt·\PANAJ SOtJ DE QUELQUES HODEI~ES SERVhNT A 

SOUSTIU\l HE J,ES ARTEFAC'I'S OCUI.AI-RES DES SIGN/\UX EEG 

HJ:SU>IF. 

Cet e~:PosC compare le fonctionncment de plusieurs modCles 

servant a supprimer lcs artefacts oculaires dans les siqnaux 

EEG en utilisant des criteres quantitatifs et imag~s. Ceux-in 

comprennent la plupart des modCles mentionnes dans la document

ation plus quelques uns de nouveaux. Il a ~t~ d~montr~ que 

pour la plupart des mouvcmcnts oculaires, il y avait au mains 

deux EOG·gUi avaient une corr~lation etroitc. Il n'est done 
/ 

pas necessairc d'util-iser les quatre EOGs (un vertical et un 

horizontal_ pour chaque ~il), En .utilisant les crit~res, on a 

constatC que, que! que soit le type de mouvement oculaire, il 

y avait toujours un mod~le plus petit dent le fonctionnement 

~tuit comparable ou superieur au mod~le grandeur nature. Dans 

!'ensemble, le mod~le utiiisant le EOG vertical droit EOG (VR) 

les deux F.OGs horizontaux (IlL et HR) et leur produit (HLxiiR) 

fournissait le meilleur r~sultat. Le modele utilisant le EOG 

vertical droit et les deux EOGs horizontau·x s'ave"ra 'Ctre le 

mod€le aux trois param~t.:rcs le mei llcur. Ccci _met a_ jour les 

conclusions de Jervis et al (1980; en preparation) et Fortqens 

et De nruin (!1983). 

L'hypoth~se commune, implicitc dans toutes les m~thodcs de 

soustraction EOG, selon laquelle les termes d'erreur (qui 
.... ,. / "" / " represcn!_e EEG de fond ne sont pas lies, s 'est revel cc et re 

non valable. Les effets de cette faussc hypoth~se sur les 

evaluations du parametre artefact oculaire sent reduits par 

le modelage des termes d'erreur comme une serie autoregrcssif 

de premier ordre. 
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Appendix 

A. Th~ least squares and the correlation techniques methods 

The form of the mode l s used in the investigation was given in 

equation (2) and can be written more compactly in matrix form as : 

Y • xe + E (All 

where Y, X,e and ~ ace given by: 

y = 

~="J 
X = 

C''' 
VR(l) 11. (1) 

~'] .EE:;!2) VL(2) VR(2) '\!2) ~(2) 

rn:;(m) VL(m) VR(m) fl.. (m) ~(m) 

E = f<ll e(2) 

The suffix T indicates transposition . 

Ordinary leas t squares (OLS) estimates of 9 are obtained by 

minimizing the sum of squares of the error terms,J: 
"' 

J • ~e"l(i) = ETE 

i=l (Y-X9)T (Y-X9) 

Differentiating J with respect to a and simplifying gives 

XTY = (XTX)9 

~VL(i)~(i) 

~VR(i)~(i ) 

~:>t,ti)~ (i) 

t"R2 (i) 
I 

If we define the elements of (XTY) and (XTX ) as follows: 

\' "Vr. = 
1
L;EE:;(i)VL (i ) 

\' 
~ = ?-; EE:;(i)VR(i ) 

I 

MHL = Lrn:; (ilf1. (1) 
I 

M = ~EEG(i)HL (i) HR ; .1{ 

p = \',, 2(1) 
VL 1--'L . 

(J\2) 



A =~(ilfl.( i) B =?-:VR(i)VL(i) ; C =~~(i)VL( i ) 

D =~(i)VR(i) CcL~ fl.! i )VL (i) ; CCR =~~(i)VR(i) 

and s ubstituting into (A2) we obtai n equation (A1) which is ide ntic al 

to the results of Jervis et al (1980,in pre9aration). 

Mvr. PVL B Ccr. c a, 

"VR B PVR D CCR 92 = (A3) 

'\n. CC!.. D PHL A 93 

~ c CCR A PHR 94 

Identical results to those of Quitter et al (1977) can be obtained 

by consideri ng only a 2-parameter model,e.g: 

EEG(i) = e1vL(il + a 2f1.!il + e (il 

Proceeding as before leads to the following normal equation: 

~ EEG(i)VL (il 

~ EEG (ilf1. !i ) l 
If we now define the elements of the vectors and matix as 

Cv =t::EEG(i)VL (i) ; SJ =l:EEG(llfl. (i) ; 

Pv =tvL
2

1il 1 PH =~ •1,
21

(1} we obtain: 
I ' 

(M) 

(AS) 

(A6) 

which i~ multiplied out is identical to equations (8) and {9) of 

Quitter et al (1977). Thus we see that the leasts quares approach 

is simply a more formal way of deriving the normal equations than 

the so called correlation techniques. 

The correlation tech n iques approach is instructive in the 

sense that it reveals the need to make certain assumpt i ons about 



.· 

the error termR which is not aooarent in the format t~ast squares 

method. This can ~e illustrated as follows. tf we multiply equation 

(A41 by VL(i) and HL(i) separately, and sum each result over 

all M data points (using a sliqhtly more refined method than 

Quitter et al,l977) we ~ave: 

[ f=•uvL'J u·L'"' ~ VLiii'LIJ [61- • ~e(UVL(ij 
L:m;<tl"r.cu LVL(i)"r_(i) ~ "r_2(i) 92 Le(1)"r_(i) 
i ; 

Notice the similarity between (A2), (AS) and (A71 . Thus (A7) may 

written more compactly as: 
T T T 

X Y • (X X)9 + X !: 

T 

(A7) 

be 

(A8) 

It is seen that to obtain 9, lt ls necessary that X E • 0 . That is, 

that the EOG and the EEG (or error terms) are uncorrelated. This ls 

the explicit assumption that ls made in correlation techniques and 

is met if the error terms,e(i) are a random sequence. We have seen 

this assumption is untenable ln the OA problem. 

8 Autocorrelation in the Error terms 

Equation (21 in the main text may be written as in (81) 

y(i) 1• 1,2 .•• M (81) 

where y(i);: EEG(i), th~ ith sample of the EEG 

xT(i) =. [vL VR '\. R~ a matrix of the ith samples of the EOGs 

e and e(l) are,respectively, the ocul'r artefact parameter and t he 

the error terms. Also, y(i-1) = XT(i-119 + e(i-1) 

so that e(i-1) = yli- 1) - XT(i-1)~ (82) 

Now if the error ter~ ls represented as a first order autoregressive 

series then : 

e(i) = {e!i- 11 + a(i) (83) 
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Thus (81) becomes: 

y(i) = XT(i) + i'e(i-1) + a(i) 

substituting (82) into (84) and rearranging gives 

ylil - ljlyti-11 = GT111- fb?u-1~9. atil 

or y(i) = exT(i) + a(il 

·. 

Thus, representing the error terms as in (83) la equivalent to 

transforming the data as in (85). 

99 

(84) 

(85) 
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FIGURE LEGC::'ID 

Fiqure l . Scatter ~ia~rams of the Ef.G and P.OGs for a horizontal 

eye movement record (A.TSl6). The symbol * on the 

diaqraNs Indicates a slnqle 9Qint,t~e numbers qive counts 

of ~oints that fall on the same sent and the symbol + is 

used where the count excP.eds 9. (i) P.EG vs ver tica l riqht 

EOG (ii) EEG vs horizontal right EOG. 

Fiqure 2. Comparison of the residuals and their autocorrelation 

functions (ACF) for a horizontal eye movement record 

(JSS48) for the three estimation methods . Ill, lilil 

and (v) reslduals for the OLS, differencing and 

iterative methods, respectively . (ill, (Lv) and (vi) 

the corresponding A~Fs . 

Figure l . Estimates of the ocular artefacts for a HEM record (AJSl6) 

using (i) model lA (ii) model 2A (iii)model lA (iv) model 4A 

(v) model 4C (vi) model 40 . 

Figure 4. Differences between the (i) raw ~EG and the corrected EEG 

using model lA (ill OA estimates of models 2A and lA 

(iii) OA estimates of models lA and 2A (lv) OA estimates of 

models 4A and lA (v) OA estimates of models 4C and lA 

(vi) OA estimates of mode ls 40 and lA. 

Figure 5. Waveforms of the corrected EEG corresponding to t he OA 

estimates of figure ~ . 

Figure 6. Comparison of the OA estimates for a blink record (AJS114) 

using the three estimation methods with model 30. (i), (iii) and 

(v) OA estimates for the OLS ,dlfferencing and the iterat ive 

methods. (ill, (iv) and (vi) Differences between the OA esti

mates for OLS and di fferenci nq methods,OA estimates of OLS and 

iterative methods, and the OA estimates of differencing and 

Iterative methods. 
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Table I 

Correlation Matrices a nd their eig~nvalues for th~ EOGs for 

(a) a vertical eye movement Reco rd (JSS36) (b) a blink record (AJS106 

(c) a horizontal ~Y~ movement Rec o rd (AJS 36) (d) a diagona l eye move-

ment record (AJS54) 

VL v ... H._ HI'. v._ V({ HL 11 ... 
lfL l. 000 1.000 
VR 0.990 1.000 0.967 l. 000 
ilL 0.917 0.926 1.000 0.956 0.960 t. 000 
:1" 0.894 0.907 0.976 1.000 0.942 0.'143 0.'143 l. 000 

Eigenvalues:Al=3.606,A2=0 . \64 E ig~nvalu~s:A\=3.876,A2=0 . 078 

)\)=0. 0 20 ,./14=0 . 0 tO AJ=o.oJJ,~=o.otJ 

~ ~. =156 . 36 
+ 

(a) (b) L:~. =120 . 30 
i .. ' 

V._ v.., IlL H~ 
V.._ 1.000 

v._ 
1.000 

VR " .... I!IZ 

v.., 0.653 1.000 0 . 994 1.000 
H._ -0 . 662 -0.258 1.000 0.955 0 . 949 1. 000 
HR. 0.799 0.430 -0 . 957 l. 000 -0.761 -0.733 - 0 .849 1 .000 

E i.gen•13\ues: At=). 012, A2=0. 933 "-ig envalues:~\=3.628,~2=0 .330 

AJ=o . oJ7,A4=o . ot6 ~J=o . o3 6 ,A4 =o.o o ~ 

t .t~ (c) \ '1\\ =83. 99 ( d ) =1'17 .75 

'= 1 •=1 

10(, 

'· 



Table It 

" Mean parameter estimates (9) and t heir standar~ deviations (SO) 

for r ecord~ corrected for OA wlth single parameter model~ that 

use<'l VR and 11~ for the OLS and differenr.inq methods. 

Vertical F.'1 Blink 1 

Subject OLS D!Uerenr.l n'J OLC:: niffercncinq 

(V~) (FI~ ) (V") (HR) ( V,\) (Ill{ ) (VI() (HI{) 
,. 
9 0 .16 0.52 0 . 14 0.33 0 . 07 0.23 0 . 09 0. 3L 

AJS sn 0. 03 0.12 ll.01 O.O'i 0.01 O.O'i 0.01 O. O'i 

a O. lll 0,76 0.15 0.34 0 .10 0.3'> 0 . 11 0.4l 
JSS sn 0.04 0 . 38 0 . 02 0 . 09 0 . 01 0.2\ 0.01 ll .P 

- - ---
HQr iznnta1 P.M Diaq-:>na1 E'l 

Sul>ject OLS Di Hercncinq Oc,S Di fferenr.l nq 

(V() (IIR) (VI( l (HI{ ) (VR l (HR) (VR ) (H .._) 
,. 
e 0.20 0.13 0.28 0 . 16 0. 16 0. 24 0.15 0.18 

AJS so 0.14 0.022 0. 1 0.037 0.07 O.O'i 0.05 O.ll 

e 0 . 38 O.ll 0.22 o. 22 0. 18 0 . 2Q 0. 18 0.3') 
JSS so 0.07 0.04 0.08 0.1 2 O.OA 0.10 0.11 0.24 ·-
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Table li I 

Test statistics fo~ the multl!>a~amete~ models fo~ a blink 

~eco~d (.&.JSll4) (a) OLS method (b) Diffe~encing me thod. 

table Ill (a) 

Mode l sf' Cp d 

lA 41.49 67 . 15 0 . 35 
21\ 45.58 23. J3 0 . 35 
2R 17.50 58.32 o. J4 
2C 45,56 2J . 81 0 . 34 
21) 44 . 97 10.30 0.37 
2E 45.55 23.62 o. J4 
2F 48.95 101.62 0. JJ 
2G 47,03 57 . 49 o. 31 
lA H . 78 ·~2. 82 0.36 
3!3 45 .55 24 . 77 ll. 34 
3C 44 . 86 !1 , 90 0.38 
3D 44. 57 2. 34 0,39 
41\ 44 •. 56 • o. 39 
411 46.78 53 . 80 0.36 
4C 44. 56 3 . 00 0,39 
4!) 46.74 52.85 0.36 

table Ill (b) 

Mode l Sp Cp d 

11\ 16.45 166 . 33 1. 59 
2A l S . 41 95. 53 1. 60 
2B 14.45 22.96 l. 52 
2C 15.48 97 . 2l l. 58 
20 14.30 11.94 1. 51 
2E 15 . 48 97.47 1. 59 
2F 14 . 43 2l . 04 1. 51 
2r. 15.46 95 . 90 1. 51 
] &, t4.41 20 . 97 1. 51 
]9 15.50 ?9 . 20 1. 59 
3C 14.27 10 . 61 t. 5 l 
3D 14.16 2.56 1. 49 
4&, t4 .15 • 1. 49 
4B 14.42 22.87 1. 51 
4C 14.15 3.00 1.49 
40 14 . 02 - 6.18 t. 49 

• not aoplicable 

10'1. 
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TablO? lV 

Summ~ry of results based on thO? Cp criterion: the ta~le s hows the 

number of times each model had Cp values of about ten or l ess for 

each ocular movemen t and for biD subjects (AJS and JSS), 

table IV(a) 

HOD:':T, VEM Blinlt Hl'.:"' DE'I 

A.JS JSS A.JS J~S AJS JSS .'IJS JSS TOT AT, 

'2A 0 0 0 0 0 1 1 2 4 

28 0 0 0 0 0 0 2 2 4 

2C 0. 0 0 1 0 0 4 1 6 

2D 0 0 2 I) 2 0 2 3 9 

2F. 0 0 0 0 0 0 3 0 3 

2F 0 0 0 1 0 1 1 0 3 

2r. t 0 0 0 0 0 1 l 3 

3'1 l "l 0 3 0 3 4 5 16 

313 2 2 l 2 l 0 4 1 11; 

3':: 1 0 2 1 l 0 4 5 14 

3 !1 1 2 3 3 3 0 5 4 2l 

4B l l 0 0 0 4 4 5 15 

4C 5 5 3 5 3 4 B 7 40 

40 2 3 3 3 3 3 4 5 26 

ta':lle IV(b) 

~-IOrl'::L VE'·I Blink 111'.:'4 [)~"! 

/\JS .JSS .O..l S JSS .a..lS J<;S 1\,lS .JSS TO'J'AL 

2 !\ 0 0 0 0 0 0 0 0 0 

2!1 0 0 0 0 0 1 0 0 1 

2C 0 0 0 0 0 0 2 1 3 

2D 5 0 3 0 2 l 3 1 15 

2<: 0 IJ 0 0 0 0 l 0 1 

2 F 0 0 l l 0 0 0 2 4 

I 
l.r; 0 l 0 0 0 I) 1 1 3 

3.'1 0 0 l 1 0 1 1 3 7 

: 3'l 0 0 I) 0 1 l 2 2 6 

JC 3 0 2 0 3 1 3 1 l3 

3D 5 5 3 4 3 4 8 ~ 36 

4'3 0 1 0 0 0 1 l 3 6 

4C 5 5 3 5 3 4 8 7 40 

4D 0 0 2 l 0 2 2 3 10 
-.. 



·rab te V 

Compari son of pa ram~ ter estimates,Ourbln-Watso n statistics and 

the au t or egrPss ive parameter f for t he OLS , diffe r encinq and 

ite r ative m~thods using model 3D. 

(a) VEM reco r d ( TSS36), (b) HEM record (l\.1536) 

(c) Dlink r ecor<'l (A,T<;ll4), (d) VEM r ecord (1\,TSO). 

Parame ter Estimates '!'- ratio 

" e, 6-l " 8J '1:91 Tq~ '1'8~ d 

OLS 0 . 121 -0. 2)1 0 . 609 19.36 -4.17 14.61 0.17 
D if f. 0 . 12q -0 .liH 0. 331 9.69 -5 .19 9. 17 1. 81 
I t'!!r. 0.140 -0 . 165 0. 355 11.47 -4.74 9.94 1. 75 

(a) 

OLS 0.091 -0 . l77 - 0.108 4.6'J -15 .4 1 -7.18 0.27 
Oiff 0.330 -0.044 0 . 102 9.99 -2. 46 4.47 1.65 
Iter. 0.306 -0.045 0. 0 77 9.39 -2.64 3 . 50 1. 60 

(b) 

OLS 0.107 0.094 - 0.174 10 . 07 3.16 -4 . 85 0.39 
Diff . 0.051') -0.104 0,304 4.52 -3.37 9 .83 1. 49 
Iter. 0.047 -0 . 105 0.274 4. 24 3.46 8.79 1. 41 

( c) 

OLS 0 . 1158 - 0. 115 0.0564 27. 68 -3.56 2 .43 0 . 22 
Di ff. 0. 129 - 0 .011 0 . 10 5 1'> . 20 - 0 .44 3.94 1. 59 
It~r. 0.132 - 0 . 017 o.on 17 . 02 -0 . 66 3 . 70 l. 52 

(d) 

'1'8,; 
,., 

where Je is the standard erro r for e.i, j:~2,3. 

Ho 

~ 
0 
l 
0.935 

0 
l 
0 . 942 

0 
1 
0.866 

0 
1 
0 . 899 
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. ' 
A NEW ON-LINE ~ETHOD POR REMOVING OCULAR ARTEFACTS ~ROM EEG SIGNALS 

Abstract. 

A method .is de_scrlbed for on-line removal of ocular 

artefacts from the human electroence~haloqrams (EEG). It Uses 

numer_ically stable algori-thms bilsed on the efficient recursive 

least squares • The method is shown to give ·similar results to 

its off-line equivalents. Compared to the present on-line methods 

our approach is super.ior,requiring no subjective manual adjustment 

and it processes al t signals iliqitally. At present, the ,ocular 

artefact removal alqorithms are carried oUt off-line, but can ,be 

carried out in ·real'-time on a mlcroprocesso~. 

Keywords: 'EEG, EOC,ocular artefacts; recursive least squares, 

on-line. 
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A N!':W ON-LINE METHOD FOR REMOVING OCULAR 1\R'l'P.!'ACTS PROM EEG SIGNALS 

IntroductiOn 

Movement of the eye or eyelid produces a contaminatLnQ 

potential in the _Electroencephalogram (EEGJ signals known aa ocular 

artefact (OA). T~e extent of the contamination decreases with scalp 

distance from the eyes. Jn.·both research and routine clinical 

-neurophysiological recordinqs, the presence of OA reduces the 

clinical usefu.lnP.ss of valuable. signals in diagnosis. 

For example, an event-related potential known as the Cont~ngent 

Negative Variation (CNV) which may be of value ln the pre.:.symptomatic 

diagnosis and monitoring of Huntingtons Chorea, is often 

contaminated by ocular artefacts which may be simi11ar in shape to the 

CNV .. (e.g Hi'llyard and Galombos 1970, Wasman et al 1970,Jervis et al, 

1984). In other applications OA hampers the aUtomatic analysis of 

the EEG signals {e.g. Barlow 1979,Quilter et al 197.7, Gotman. et al 

197 5) • 

Several methods have been proposed for removing the OA 

from the EEG, but the electrooculoqram (EOG) subtraction method is 

the most promisin.g. In thfs approach, skin l!lectrodes are ~laced at 

sites near the eyes to measure the change in potential due to move

ment of the eye and/or lid. This potential is called the EOG. To 

remove the OA, appropriate fractions of one or more EOG signals are 

subtracted from the measured EEG (e.g. Quilter et al,l977:Jervis 

et al; in preparation). 

The EOG subtraction method can be carried out either on-line 

(that is as the data is being obtained), (e.q Bar low and Remond 1981) 

or off-line at some later time (e.g. Quitter et al 1977,Ifeachor et 

al, In preparation). The main advantaqe of off-line methods Is that 

more sophisticated removal techniques can be employed. Prevlou~ 



·. 
on-line OA removal methods have been ·simPle and ·somewhat lneff iclent. 

(co~~~re for example, Glrton and Kamlya 1973 ' Portgens and De ·aruin 

1983). Nevertheless, the trend in EEG signal processing is clearly 

towards real-time or near real-time processing (e.g. Rarris 1993, 

Barlow l979,Barlow et al 1981), so that the delay involved when 

off-iine methods are employed is unacceptable. We agree with 

Bart.;~ and Remand (l98ll who concluded that the best solution was 

to r_~move the artefact at the outset. Also a dedicated on-line 

OA removal system will eliminate the computing costs associated 

with off-line methods. 

Previously published. ,on-line methods required manual calibration: 

setting them up was thus time consuming, especially for multichannel 

recording. Also their calibration required subjects to move their 

eyes or blink repetitively. This ruled out their use with infants 

and uncooperative· adults. Addttionally.,.the method of assessing whethet 

the OA. was removed _was. subjective and the whole procedure required 

the operator to be familiar with the method. Furthermore, these 

methods were unable to deal with multiple artefacts,so that if a 

di-fferent ocular artefact occured after calibration, it was not 

remo.ved properly (e.g. Weerts et al,l970). 

tn this pa~er a method is presented which is suitable for 

on-line removal of OA with a performance that is at least as good 

as ·its off'-llne line equl~alents. tt 'le based on the ·well known 

recursive ·least squares method. 

2 Present On-line Ocular artefact Removal methods. 

Only three on-line removal meth~s have been reported in 

detail in the literature vi~ McCallum and ·Halter (1968) ,Girton and 

Kamiya (1973) and 9arlow and Remand (1981). All these methods 

employed analogue techniques to remove OA from the EEG signals. 

HcCallum and Halter (·1968) described one of the first on-line 

·' 



methods for reducing 0~ ln the CNV recordings which used simple 

potentiometer arranqemP.nt. The vertex EEG signal was refer-red to the 

centre terminal of the potentiometer. The other terminals of the 

potentlometer were connected to a frontal EEG electrode and linked 

I 

I 
I 

I 
earlobes. The corrector waS calibrated,prior to recording, by adjusting 

the centre terminal whilst the subject moved his eyes repetitively 

-until there was no trace of 0~ In the EEG. The device was then 

left at this setting during recording. ~s Glrton and Kamfya (19731 

pointed out, this method could not deal satifactorily with lateral 

eye movement artefacts as these were not taken into account, and 

there was the additional difficulty of Interpreting the corrected 

EEG. Jervis et a1 (in preparation} have used this method and found 

it unsatisfactory. Wasman et a1 (19701 reported that their attempt_ 

to use this method was unsuccessful as it resulted in •positive ·cNV•. 

The on-line method described by "Girton and Kamiya (19731 ,like 

the McCallum and Waiter method, used a potentiometer arrangement and 

required manual calibration. Modifications were made to cater 

for lateral eye movement and to improve the signal quality. 

However, a number of workers have used the method and found it 

unwieldy and inefficient in removing ocular artefacts (e.g Gotman 

et al 1975,Whitton et al 19781. 

Bar1ow and Rl!mond (1981} proposed a method that was similar 

I 

i 

1-
j· 
I 
r 

.. ~ 

to that of Glrton and Kamiya (1973}. The essential differences between i 

the two were that Barlow and R€mond's method required fewer amplifiers. 

when used in multlChannel recording and had facilities such as 

those for changing the slgn of the EOGs used to remove the 0~. 

3 The Least Squares estimation of ocular a[tefact parameters. 

~11 the EOG subtraction methods,both off-line and on~llne, 

are essentially formn of the least squares method {Ifeachor et al, in 

]15 



preparation). They a<e based on the assumption that the or. Is llnea<ly 

related to the EOGs. Thus: 
h;, 
1~1,2, •• m (1) 

where y (I) and x.(l) are the samples of the measured EEG and the EOGs 
; J 

respectively. ·e(i) ,the error term, represents the background EEG.The 

aj are the ocular artefact pa_ram_ete_rs and n is the numb'!r of parameters 

in the model. The problem In ocular artefact removal ls,given the 

~Ill and y(ll above to obtain estimates of a 1 to an which are 

then used to obtain an estimate of e(l) In (1). ajcan be estimated 

either off-line or on-line. 

3.1 Off-line Estimation of the ocular artefact parameters,a. 

Assuming that the error terms,e(i), are uncorrelated random 

variables with z~ro me~n and· constant variance, optimum estimates of 

the parameters can be obtained by minimizing the sum of squares of the 
P\ 

error terms,Ja '2:: e.\i,) • This leads to the ordinary least squares 
i:l 

(OLS) estimates of equation 121 which Is the basis of the offllne or. 

removal methods. 

(:Z) 

A 

where ~.~,X~ are respectlvely,vectots of measured ,BEG samples, 

parameter estimates and a matrix of EOG samples qlven byr 

y(l) 3, x1(1) ~Ill "n 11) 

y(2) 
~ 

62 Ym em" V x1121 ~121 "nl2) 

ylml 

\1(, 



The suffix·.m indicates· that each mat£i~ was obtained usinq a1·1 m 

rlata points (Ifeachor "et al,in preparation) .. 

1.2 
. :\.'J.1 -~:1lh':'"" 

On-line Algorithm for removing Ocular Artefacts 
. - . ' U'<).:> :;:. ·- I\ 

As may be apparent, the computation of e(ml in (2) requires 

the use of all samples available. Thus-the amount of data storage 

and computation increase wi'th m. Furthermore, the time conBumlng 

inverse matrix has to be computed each time 9 is to be estimated. 

Clearly this_approach ls'not suitable for real-time or on-line 

estimation • In practice when conti~uous data are being acquired, 

and we wish· to impr~ve our parameter. estimates using the new data, 

recursive methods are preferred. With a recursive algorithm the 

estimates can be updated for each new set of data acquired without 

repeatedly solving the time consuming matrix equation of (2) directtY:.t 

A suitable recursive least squares (RLS) algorithm,which also~~ 

tracks slowly varying parameters is obtained.by exponentially 

weighting the data to gradually remove the effects of old data on 

the estimates. Thus we minimize 

........ tO-i z 
J=L:\ e('-) o<'f<t 

i.=.\ 

J( is referred to as the forgetting factor.The weighting scheme reduce~ 

tp that of OLS when Y=l. Typically Y Is between 0.98 anti 1. Smaller 

values assign too much weight to the more recent data which leads 

to wildly fluctuating estimates. Minimization of J with respect to the 

B's leads to the following sets of equations (see for example, Peterka 

1975,Morrls and Abaza (1976)): 



'"~(m+l) = B(m) + P(m+l) x(m+l)z(mtll 

P(m+ll 

where, 

- P(mlxlmtllxT(mtl)P(mtll~ 
a(m+l) j 

a(m+l) = '( + xT(mtl)P(m)x(mtll 

... 
z (m+ll y(mtll T " - x (rotl)B(ml 

l(m+ll = t(mtll ":2 (mtll xn(mt] 

(la) 

(lb) 

AN 'that Is required to start the alqorlthm even when only the 

f-irst set of samples have been acquired is to assign initial values 

to P(O) and &(0). A common practice is to select arbitrary values for 

9(0) and then set P(O)::~~ C(T,where I is a unit matrix and 0( is a positivt 

constant (Clarke l98lb;Eykoff 1974), This approach can be shown to 

converge to the true values for P and e. (e.g. Eykoff 1974). 

Factorization Alqorlthms 

The RLS method is very efficient and involves exactly the same 

" "number of arithmetic operations between samples, as 9(m+l) and P(m+ll 

in (ll lhave ~lxed•.dimeilsions. This 19 an important requirement for 

ertictent on-line realization. There are however, two main problems 

that may be encountered when the RLS alqorithm is implemented 

directly. Firstly, if ·the siqnal is not 'persistently excltinq' as 

will be the case when there is no ocular·movement, the matrix P"would 

blow up due to scaling by • However, because of miniature eye 

movements and other activities that are normally picked up In the 

EOG channels, this problem may not be so serious In OA removal. 

Secondly., for succesful estimatfon, the matrix P La required. to be 

r 
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positive semidefinite. If this condition is not met, then P does not 

exist and the algorithm becomes unstable. Because of differenclng of 

terms in equation (3b) positive definiteness of P cannot be guaranteed. 

(see for example, Bierman,l976: Peterka,l975). This problem is worse 
I 

in multlparame'ter models,especlally if the variables (BOGs in our case) 

are linearly dependent (Peterka,l975) an~ when the algorithm is 

_·implemented on a small system with flriite word length. When the 

algorithm has iterated for a long time the two terms in the bracket in 

(lbJ are very nearly equal and subtraction of such terms in a finite 

word length system may lead t.o errors and a negative definite P 

.matrix (Clarke l98lb,Bierman 1976)• 

An elegant way of solving t~e problems of 'bloW-up' and numeri-

cal instability is to replace the RLS algorithm with one that is 

numerically better conditioned~ Such alg~rithms factorize the 

matrix P(m+l) so that the differencing of terms in (]b) is avoided. 

We shall briefly descrlpe two of these algorithms which we have 

adopted in our OA removal algorithm. 

(a) The Square root Algorithm 

In the square root method, the matrix P is factored as: 

P(m+ll = 5(m+l)5T(m+ll (4) 

T where S(m+l), an upper triangular matrix and S(m+l) its transpose, 

is a square root of P(m+l). Thus if 5(m+l) instead of P(m+l) is 

updated, the positive definiteness of P(m+l) is guarranteed since the 

. ! .-

product of two square roots is always positive. By rearranging equation 

(lb), 5(m+lJ can be shown to be (Peterka,l975): 

5 (m+l) 7[r 5 (m) H (m) (5) 

where H(m) is an upper triangular matrix. Peterka (1975) has given 

a recursive algorithm for up~ating 5(m+l). 

1.t9 



(b) U-D factorization Algorithm. 

The U-D factorization is an alternative method of updating the cava-

rlance matrix P(m+l) In a numerically stable form (e.g Blerman,l976). 

It ls ln fact a ·,square root- free arranqement of· the conventional 

square root algorithm and thus shares the same properties as the 

latter. In this method P(m+l) Is factored as: 

T 
P(m+l) •· O(m+l)D(m+l)U (m+l) (6) 

where U(m+l) Is a unit upper triangular matrix, OT(m+l) Its transpose 

and D(m+l) a diagonal matrix. Thus instead of· updating• P (dropping the 

suffices for convenience) Its factors U and D are updated. 

Blerman (1976) has.given an algorithm for updating U and D 

recursively for the Kalman filter, which uses the variance of the 

error term,e(i), but not!(. This algorithm has been trivially 

modified for our OA problem to encorporate I( Instead. 

Compared to the square root- filter, 'the u-o method is more 

efficient in terms of storage and computation. Additionally, for 

an n-parameter model, the square root filter requires the evaluation 

of n square roots, Also In the u~o method the elements of D give 

directly the diagonal elements of P which can be used for statistical 

analysis. For these. reasons, we prefer the u-o method. 
-~.-·',: • '."·:..·"'-~"~-.. ~': I • ·;~;~ •• --~\, •' ' :' ,i' •·..L•,, 

·' -,- ,.L 

4 Experimental data 

The data used In the Investigation were obtained In a previous 

study Into the problem of ocular artefacts in the EEG (Jervis et al 

l980;ln preparation). A pair of skin· electrodes were placed above and 

below each eye and others at the nasion and the outer canthi. One 

channel of EEG was obtained from the vertex referred to linked 

ear lobes. Subjects with -no known ·eye defects were asked to· make 

periodic· eye ·mOvements in the vertical and hOrizontal planes 

1/0 
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hetween pairs of light emitting diode~ corresponding to 20° of 

angular displacement. The ECG and EEG· signals were fed to an 

electroencephalograph to produce ·paper record and to a data 

acquisition s~stem where they were filtered, diqitized and stored 

on a disc. The data was later transferred to a mafn frame computer 

for analysis. Fiqure 1 gives typical waveforms of the EOGs and 

the contaminated EEG for a horizontal eye movement. 

5 Models 

The·' models given in (7) below were used in th.e investigation. 

Two of these models (3D and 40) had already been. found to qive the 

best ocular artefact removal in a previous investigation 

(Ifeachor et al, in preparation), where statistical and pictorial 

methods were successfully used to compare ocular artefact models, 

and the third is inclu~ed to show the effects of EOG 'noise' and 

correlation amo~g the EOGs on the parameter estimates. These 

models, in that paper, were referred to as JD,4A and 40. 

Model name Model description 

.3D y(i) = e2VR(i) • e311, lil + e4~111 + e(i) 

·4A y(i) = e 1vL111 + e2valil + e 3"r,lil • e4~111 + e(il 

40 y(i) = e1vL111 + e211,111x ~{1)+-e3"r,l1l + e4~111 + e(i) 

(7a) 

(7b) 

(7c) 

where y(i),e(i) are,respectively the lth :samples of the measured scalp 

signal and background EEG. VL(il and HL(i) are,respectively, the ith 

samples of the vertical and horizontal left eye EOGs. VR (i) and H~~_ (i) 

are the corresponding right eye EOGs. The ej have the usual meaning. 

6 Results and Discussion 

To Verify that the recursive algo~ithms desc~ibed in section 3.2 when 

used on-line will give the same results as the off-line (or batch) 

.1?-1 



methorl·, several EEG records· contaminated by ocular artefacts were 

corrected on a main frame computer using both methods. 

(a) Comparison of the rec~rsive On-line and the Off-line methods. 

Figur,es 2 and 3 give tlie ocular artefact estimates and the 

corrected EEGs for these models for the batch and the U-D methods, 

respectively. IgnorIng the ini Hal trans i.ents, bot!' 'the 011. est lmates . ' 

and the corrected EEG for the two methods are similar. ~able l 

compares the parameter estimates for the batch or conventional offline 

method with those for the UD algorithm after 1024 Iterations. !l.n· 

examination of the table shows that the parameter estimates for both 

methOds are essentially the same,an indication that they are 

equivalent. Similar results to figures·2 and 3 were obtained for 

other types of ocular movement (blinks·,vertical eye movement, 

and diagonal eye move~ent). 

(b) Converqence of .the Parameter estimates. 

To study the behAviour ~f the recUrsive alqorithm between 

samples and its convergence properties, ve obtained and studied plots 

of the variation with time of the parameter estimates,the sample 

variance,s• and the multiple correlation coefficient, R• (e.g Johnston 

1972). The sample variance and multiple correlation coefficient were 
..... --.. ~. ·:-,, ~- ,,.. J . :_.1..•. . • .. .: .. ;:.:: .. ·::.-~.:.. • :_.. 

obtained with the following. appcoxl"!a.te_.rec_ur_~ive equatlo~s,."lse~ the 

appendix) 1 

2 
S (m+ll ~ SS(m+ll /asL(m+l) - n asL(m+.ll > n (Ba) 

2 
R (m+l) • SS(m+11 /S5.rlnt+ll (8b) 

where SS(m+l) and SST(m+l) are,respectively, the sum of squares of 

the residuals and the total sum of squares and given by1 



. 
' 

SS (m+l) = '( SS(m) + e(m+l)e(m•l) (9a) 

(9b) 

,1 --:t .. ·•:·r·l~f. .. ~ .. _ 

n is the number of pa•amete•s in the model and Cl'iiL(COltl) is 9iven by 
... -:.. ~ ..... '! i-~ :_. j 

1 •YasLl~11..~,2_; .;f 
' jcO 

asL(m+l) 

l'igu•es 4(1) to 4(ili) itlust•ate the variation of the pa•a-
1 

meter estimates with time fo[ the u-o algodthm.'-ti: is seen that 

there were initial transi~rits ~s a .result of gciessed initial values 

for U,D and Q,-- after .which they.-~ppeared to converge to sotDe 

value about which they vade~ slowly. We note f•om the flgu•es that 

... " the two parameter estimates ·e, and 91 in figure 4(11) were opposite 

Ln sign, approximately equal' ·tn magnitude and Varied in unison. 

This was because the-corresporidinq EOGs were positively correlated 

(correlation coefficient-, 0_.~53), so ~hat the ef~ects of including 

one EOG Was largely offse_t --~Y. _a_l~s_o l_f!C_luding the other. The same was 

true of 93 and e"" ,_ but .i~ _this case the EOGs were negatively 

correlated (correlatia·n .coefficient, -0.957.). The large variation 

in 91 and 62. was probably because the correspo~dinq: EOGs contained 

a relatively large amou~t of noise unreiated to ocular mo~ement 

(see figu•e l). These effects ·sugges,ted that it is undesi•able to 

include all the EOGs in a model and this ag•ees with our p•evlous 

findings (lfeachor et al, in preparation). 

The variatfon with time of estimates of the residual variance 

s
2 

and the multiple co••elatlon coefficient, R2., a•e depleted in 
. ~ 2. 

flgu•es 5(1-l and 1n1. tt is seen that both S and R inc•eased with 

time, •apldly at fi•st and then slowly. This is an indication that 

these quantities were convergf.ng. 

To slmufate longe• lenqths of data and to ve•ify whethe• the 

parameter estimates have converged, the operation was recycled for 

·r 



the uo, algorithm. That ls, at the end of the data the algorfthm was 

resumed at the_heglnlng of the data without reassigning starting 

values for U,D and 9. Table 2 compares the final values of the para-

meter estimate~ ,the sample variance and.the multiple correlation 

coefficient for the first,second and third cycles with those of 

the batch method. 1t is evident that the quantities· have converged 

by the end of the first cycle. It Is note-worthy that- the final 

values of both the variance and the multiple correlation 

coefficients are reasonably close to those of the-batch method. 

Demonstrating that equations (8a) and (8b) are good estimates of 

these quantities. The traces on the right hand side of figures 4 

and 5 give the parameter estimates,the sample variance and the 

multiple correlation coefficient for the second cycie. They confirm 

that the algorithm had converged. The estimates of the ocular 

artefact and the background EEG In -this case were very similar to 

the results for the batch-method. 

Results very similar to those of the UD algorithm were obtained 

. 
' 

for the ordinary recursive teaRt squares and the square root algorithms 

The -notable difference between them was that they always produced 

different Initial transients due to the starting values for PlO) 

(or .S (0) for the square root algorithm) and·~ 101 • 
. ~ ·!-:·· ·- •. 

7 Conclusions 

The investigation showed that the powerful recursive algorithas 

give simllar results to the off-line methods and can therefore be 

used to remove ocular artefacts from the BEGs. It Is thus possible 

to correct for OA on-line with algorithms that have performance 

at least as good as the oHUne methods. By uslnq a forqetting factor, 

I , of less than 1 the recursive methods would yield better estimates 

as they are able to track slowly varying parameters. We -found. that 

.\'1- 4 



a s uitable value forY i s between 0.99 and 0.999. These effic ient 

algorithms ~an be implemP.nted on a microprocessor-based instrument. 

In such a system a variety of models could be implemented a nd the 

desired model selected by the user. Comparad to the present on-line 

' methods, our approach is superior . tt does not require any manual 

adjustment and all the signal processing required for correction i s 

carried out digitally. The removal algorithms are at the present 

carried out off tine,but can be carried out in real time. 
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~ppenoix. 

Recursive estimation of the residual variance and the multiple 

correlation coeffcient. 

The residual var iance,S2 and the multiple correlation 

coefficient, 'R1 for the batch method may be defined as in (Al) 

(e . g. Johnston 1972): 

(~la) 

(Alb) 

where M and n are the number of samples a nd the number of 

par ameters in the model. SS,the sum of s quares of the residuals 

ann S~ ,the total sum of squares are, respectively, given by: 

SS = ~ e2 
(i) ; !>5.r = ~ y1il 

i ~ l 1=1 

y(i) ,e(i) are, respectively, the ith samples of t he measured 

and corrected EEG. In t he r ecu r sive algorithms it is desirable 

to obtain ~ and R2 recursively. We justify here the recursive 

forms of s2 and R 2 used in the i nvestigation. 

From section 6,the sum o f squa res at each sample 

point may be written as : 

SS (m) =YSS (m-1) + eT(m)e(m) 

='(SS (m-1) + e2 (m) 

since e(m) is a scalar. Similarly, 

SS (m-ll = I SS (m-2) + e
2 !m-1) 

Thus on substituting into (A2 ) SS (m) becomes: 

SS (m) ='f~ (m-2 ) + Ye2 (m-1 ) + e2 <mi 

By successive substitution fo r SS(m-2) ,SS(m-3 ) etc and simplifying 

SS (m) becomes 

..., ..,_, 2 
SS (m) = Ll e ( i ) (A)) 

i: I 

1."-9 



which is the same as the expression for the sum of squares for 

the exponentially weighting scheme. Thus (A2) converges to the 

required form. tn view of (A2) we can write 

SS(m+1) = Y SS(m) + e2 (m+1) (A4) 

' By a similar arqument, the total sum of squares given by 

(AS) also converges to the true total sum of squares. 

5S.r lm+1) = Y 5S.rlm) + i lm+1) (AS). 

tn the exponential weighting scheme, the number of samples 

that effectively contribute to the estimation of O(m+l) at each 

sample point is called the Asytllptotlc Sample Lenght (ASL) (e.g 

Clarke l 9Bla) and it is given by 
00 • 

A5L = 2:: Y' =. 1 (1\6 ) 

\:o 1-Y 
Thus m in (Ala) may be replaced by ASL. A recursive form for ASL 

is given in (A7): 

asL(m+1) = 1 + '( asL(m) (A7 ) 

By a simi la r argument to that for the sum of squares, asl(m+l) 

can be shown to converge to the true ASL,that is: 

00 ' 

asL(m+1) = 1 + Y o..sL(m) = L y 
1 

(AB). 

To compute ~ and R~ 
l=o 

recursively all that is now required is 

to use equat ions (A2),(AS) and (AB) as indicated in equation (B) 

in the main text. 



,' 

Table 1 Comparison of the parameter estimates tor the batch 

and the UD algorithm. The estimates toe the UD algorithm are 

~he values at the end of the iterations. 

A " " 1\ 
Model 9' et 9~ 9~ 

30 • 0.091 - 0.178 -0.108 
Batch 47\ -0.218 0.312 -0.169 -0.053 

40 0.035 0.000 -0 .169 -0.090 

30 • 0.091 -0.177 -0.108 
OD 47\ -0.216 0.310 -0.169 -0.053 

40 0.035 0.00 -0 .160 -0.090 

• not applicable 

1~1 



~able 2 Pina1 values of the estimates of the parameters (~). 

, 
' 

the sample variance (SL), an~ the multiple correlation coefficient 

(R~) after 1,2 and 3 cycles. 

Parameter estimates 
A al ,. A 

sl. l. No of cycles Model a. 9~ a., R 

30 * 0.091 - 0 . 117 -0.108 49.22 0.42 
1 41\ -0 . 216 0.310 - 0 .169 -0.053 47 . 75 0.41 

40 0.035 0.000 -0.160 -0 .090 49.87 0.43 

30 * 0 . 090 -0.176 -0.106 49.88 0.43 
2 41\ -0.217 o. 3ll -0.169 -0. 053 48.20 0.42 

40 0 . 035 0.000 -0.11;0 -0.090 50.36 0.43 

30 * 0.090 -0.176 -0.107 49 .95 0.43 
3 41\ -0.218 0.311 -0.169 -0.053 48.37 0.42 

40 0.035 0.000 -0.160 -0.090 50.53 0.44 

Batch method 30 * 0.091 -0.178 -0.108 50.34 0.56 
41\ -.218 0.312 -0 .169 -0.053 49.02 0.58 
40 0.035 o.ooo -0.160 -0.090 51.22 0 . 56 

* not applicable 



FIGURE I..EG!';NO 

Figure l. Mea s ured EOG and EEG signals for a ho rizontal 

eye movement. (AJS36). (i), (lL) vertical and 

horizontal EOGs of the left eye (VL and HL). (iLL) the 

vertex EEG. (iv) 1 (v) vertical and horizontal EOGs of the 

right eye (VR and H~). 

Figure 2. Estimates of the ocular artefacts and the bac~ground EEG 
,,, " 

by the conventional batch method • ( l) 1 !J,-L) and ...( il i) Ocular 

artefact estimates using models 3D 1 4A and 40 res~ectively; . .: 11 ' V 
{j»)-, (v) and ()rt) the corresponding estimates of the 

background EEGs. 

Figure 3. Estimates of the ocular artefacts and the background EEG 

by the uo recursive algorithm. (ClC= o.osli:L0 1 ~ = 0.1). 

Other details are the same as for figure 2 . 

Figure 4 . The evolution of the parameter estimates. 

(i), (ii), and (lii) estimates for models 30, 4A and 

40, respectively, for the first cycle. (iv), (v) and 

(vi) the corresponding estimates for the second cycle. 

Figure 5. The evolution of the sample variance and the multiple 

correlation coefficient. (i) and (ii) estimates of 

the sample variance and multiple correlation coeficient , 

respectively, for the first cycle . (iil) and (iv) the 

corresponding estimates for the second cycle. 
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SOFTNARB FLOATING POINT ARITHMETIC ROUTINES FOR THB 

·MOTOROLA 68000 MICROPROCBSSOR. 

1.0 Introduction 

' . 

Plxed point and floating point are the two moat common 

types of arlthmetlc In a dlgltal eyatem (Plorea 196liRablner and 

Gold 1975) • Fixed point representation has the advantage of being 

fast, but limits the range of numbers that can be represented. 

To prevent resul'ts of arlthmetlc operations going outside the 

number range, the operands have· to be scaled before and/or after 

each arithmetic operation. TO overcome the problem of scaling 

associated vlth fixed point approach floating point reprentatlon 

la often used. Floating point scheme greatly increases the dynamic 

range of the numbers and lt .la preferred In applications where 

the magnltudea of numbers vary widely (Flares 1963) • 

In some control and signal processing applications, it is 

often desl'red to implement on small computer systems algorithms 

which have been developed on large. systems, such as a main frame 

computer. On the large systems floating point representation la 

Invariably used. In these cases the designers of the algorithms 

have to face the problem of number representation a~d make the 

difficult decision of whether to use floating point or fixed point 

representation. Such was the case in an ongoing research project 

ln·whlch lt was desired to Implement a.real-tlme algorithm on a 

single card proces~or. In this case, the decision vas in favour of 

floating point representation. As speed was vital In our 

application, hardware floating point was considered the best 

approach, but we found that hardware floating point devices 

available at the time were'both expensive and too slow. 

Therefore, the system for Which the algorithm vas intended 

1t" 
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was scaled down so that sofwa[e floating point could be :used 

until fast floating point devices became available. 

We describe In this paper binary floating point routines 

which were used to perform the basic arithmetic operations of 

add/subtract,multlply and divide In 68000 microprocessor assembly 

language. The floating point number representation and the 

data format we have adopted vUl be described In section 2 

and ln section 3 we describe the floating point arithmetic 

routines. In a companion paper, we shall describe routines 

for converting from floating point (In Hexadecimal) to fixed 

point (in decimal) which we found useful. 

2.0 Binary floating point representation 

A floating point number X Is represented as the product of 

two signed numbers,the mantlssa M and the exponent, E: 

X = M • 2E ( 1) 

where 2 is the base of the binary system. 

The exponent primarily determines the range of the numbers 

that can be represented, whereas the mantis_sa determines the accuracy 

of the numbers. In our system, the exponent and the mantlssa are 

represented respectively, by B and 16 bits. This choice la a suitable 

compromise between speed and accuracy. Similar choice of exponent ·and 

mantisa lengths have been used by Clarke et al ( 1975) In a control 

application and were found to be adequate. The range of the floating 

point numbers Ls the difference between the largest and the smallest 

numbers that can be representediwhich in our case ls~ 

-Cot ... t3 
(0.5 X 2 ) to (1-l ) X 2 ,or 2.7105 X 10-l! to 0.922] X 1019 . 

Of the 16 bits used to represent the mantlssa, 1 bit is the sign bit 

and the least significant bit may be of a doubtful accuracy due to 

rounding effects. Thus the accuracy of the floating point numbers is 

14-1 
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l In 2 (0.61 x 10 ) ,that la about 4 decimal dlglta. 

2.1 Floating point data· format. 

The format for the floating point number (or word) la given 

In figure 1. The mantiaaa la expressed aa a 16 bit fractional tvo'a 

complement value with the bln8[y point assumed to the dght of the 

algn bit .• The exponent la 8 bits long ·in excess 64 form. The 

exponent normally has· a. nnge of -64 '-B i>6J,but by adding a ·fixed 

constant to th~ exponent (In this case 64) such that lt la always 

poaltlve the range becomea1 OhBbl27. This ensures that when the 

mantissa is zero the. exponent is also zero,givlng an all zer-o 

floating point number. Additionally, this form of representation 

has the advantage of making the detection of over- and under-flow 

simple (e.g Cope 1975). However,when performing adthmetlc 

operations the exponent has to be restored to its unbiased form. 

AH numbers going Into or out of the floating point routines 

must be normalized. A normalized floating point number Is one in which 

the sign bit and the bl't to the dght of the binary point (bits 8 ...,d 

MT4) of the mantissa are different. In our system, a no~mal1 ized 

mantlssa satisfies the condition 1 ·0.5f. I MIL.. l. If the result of an 

arithmetic operation produces a mantissa that Is outside this range, 

lt is said to have. overflowed (mantissa overflow) if the result is 

equal to or greater than unity, and underflowed (mantissa underflov) 

if lt Is leas than 0.5. 

The floating point numbers in memory are alloCated four 

consecutive bytes of memory (2 words) i aHhough only the first three 

are used aa shown In figure 1. This is to simplify reading and 

writing to the·memory of the 68000.pp' It also allows the number of 

bits in a floating point word (mantissa + exponent) to be increased 

easily, if desired. 



J.O Floatln9 point arithmetic routines. 

The floatin9 point arithmetic routines consist of three 

routines for the basic arithmetic operations 1 add/subtract;multlply 

and divide. Bxit from these routines ls made via a common routine, EXIT. 

On entry into any of the arithmetic routines, registers DJ and 

02 contaln,respectlvely, t:he first and second operands. In ·the case of 

division, ol and 02 contain respectively,the dividend and the divisor. 

On exit, 03 contains the result. Apart ·from ol,none .of the registers 

are modified on exit by the floatin9 point routines. 

The 68000 pP has an abundance of re9isters and these have been 

used freely to Improve th~ execution speed. For the same reason, the 

use of some otherwise efficient instructions have been avoided. 

Arithmetic operations can be chained with the result of the previous 

operation left in 03 to be used as the first operand of the next 

operation. 

J.l EXIT routine. 

This routine fs used to handle "exceptions" such as overflow, 

to recover the sign of the result ,to put the resUlt "tn the correct 

floating point format and to return control to the calling routine. 

Three exceptions are handled: 

(a) Result la zero or too small. 

If the result of an operation is zero or the number is too small to 

be represented (under flow) this routine sets the result to zero. 

lbJ Result overflowed. 

If there is overflow in the arithmetic operation, the result is 

set to the maximum floating point number possible. T~at ls, 

11-2~5 1 x 2L~. In practice lt ls set to $007F7FF, then the mantlssa 

ls given the appropriate slqn. 

(c) Over/under flow detection. 
_i 1·_:, 
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In excess 64 representation, the exponent of a valld floatln9 point 

number la positive. Over-/under~flov causes lt to be ne9atlve. Thus 

the al9n of. the exponent la used to detect over/under flow. Addition-

ally, underflow generates a carry bit whereas over flow does not. 

The BXIT routine determines which of the two has occured and sets 

the result to either FPMAX or to zero, which ever la appropriate, 

Fl9ure ~· 9lvea a llatln9 of the BXIT routine, In 68000 up 

assembly lan9ua9e. 

1.2 Floatln9 point Addition routine (FADD). 

Thla routine Is used to perform addition or subtraction. 

In the case of subtractlon the ·sacQRd operand la ne9ated In the 

caU'lng routlne with a single Instruction (eg NBG.II D2) before 

enterln9 the addition routine. Before adding two floatln9 point 

numbers, their exponents must be made equal. This is called 

alignment, and involves shifting right the mantlssa of the smaller 

operand and lncrementin9 Its exponent untll lt equals that of the 

larger operand. The aligned number~ are then added. Thus lf 

Xl and X2 are two floating polnt numbers to be added,where 

•• (I 
Xl a Hl X 2 and X2 a H2 X 2 ,then ·their sum X,is given by 

u;...E;t "'' X 2fi X a (Ml + M2 X 2 X 2 a M 
E\-&..'1.. 

where M ~~:~ (Ml+H2 X 2 , , B a (Bl - B2) and Xl X2. 

That is, the exponent of the result is the exponent of the 

larger operand and ·its mantlssa· is the sum of the malitlssas 

of the two operands properly ali9ned. 

The sura of the aligned mantissas .,M, may not_ be properly 

normalized. It may be too large (m8.ntlssa overflow) or it may be 

too small (mantlssa underflow). The 'former results. when the 

mantlssas of the orl9lnal operands to be added (Ml,H2) have the 

same signs, and the later when they have opposite siqna. M8ntia9a 

overflow and underflow are corrected by renormalizing. the sum and 
1<\4-



adjusting the result exponent,B,but this may lead to exponent 

overflow or underflow of the exponent. Exponent overflow means 

that ·the result la too large to be repreaented and underflow 

that lt Is too small. 

Figure 3 gives the flow chart for the FADD routine and the 

corresponding assembly program is given In figure~- .The first 

operation la to align the operands so that their exponents are 

equal (boRes 1 to 51. Thla la done by shifting the mantlsaa of the 

operands with the smaller exponent right an amount equal to the 

difference In the eKponenta (the shift countl. If the tvo eKponents 

were equal or their difference exceeds 15 (operand too small),no 

alignment la carried out. In the later case the operation is 

terminated as the smaller operand is effectively zero and the result 

la simply the larger operand. Next the aligned numbers are added 

(box 6) and the exponent of the result set equal to the exponent 

of the larger operand. 

If the sum is not zero, it is then tested for mantlssa 

overflow or underflow. The two cases are treated separately and 

as mentio~ed earlier depend on the signs of the operands. Bo~es 

10 to 15 deal vlth msntissa overflow, vhllst boxes 16 to 19 deal 

with mantlssa underflow. 

Mantissa overflow la detected by successively performing 

exclusive-OR operation on the sign bits of the two original operan~s, 

the sum ,M, and the carry bit. The result of this operation is a (1) 

If there vas overflow and (01 otherwise (Cope 19751. Overflow Is 

corrected by shifting the sum,H, right with carry and incrementtng 

the result exponent,£· by one (box 14). If ·the exponent overflows 

the resUlt is set to FPMAX vith the appropriate sign, otherwise 

the resulting number la now properly normalised. A special form 

of overflow may occur when the sum,M, is exactlY -1 ($9000 in 

:~·, 



hexadecimal) or NBGHAX, end this la separately detected. NBGHAX la the 

maximum negative mantlssa and has no positive equivalent. Thus when 

ne9ated it still remains ne9atlve (boxes 10 and 11). When this 

condition is detected the sum;M, is normalised as in the ordinary 

mantlssa overflow. 

Mantlsaa underflow La corrected by successively shifting 

left the sum ,M,and decrementlng the exponent,B, until the sum 

la properly normalloed (box 18). The exponent la tested for underflow 

at each shift, If exponent underflov occurs at any stage the operation 

ls terminated and the result set to zero. The sum la made positive 

(box 17) before normallxln9 to simplify the operation. The al9n 

la recovered ln the BliT routine where the result exponent,£ and 

the normalized sUm,M are put into the proper floating point format. 

l.l Floatln9 point Multiply routine (FMUL) 

If Xl and X2 ere two PP numbers to be multlplled,where 

Xl .. Ml11.2e.' 

El. 
X2 a M2o2 

EI+E'l.. E 
then their product X, la 9lven by : X a (Ml x M2) 2 =M·~ 

where M a (Ml x M2), E • El + B2. Thus the mantlaaaa are multiplied 

and their exponents added, Since Ml and M2 are both normalized 

then their product,M, will be in the ran9e1 0.25 t!: M...._ 1. Thus the 

product,M cannot overflow but may not be properly normalized 

(mantiaaa under flow). 

The flowchart for the floatln9 point multiply routine la 9lve~ 

in fl9ure5· and f19ure' 9lvea the assembly language pr09ram. The 

mantissas of the operands are multiplied and the product tested 

to see if it la •ero (boxes 1 and 2). If it la zero the operation 

is terminated and the result set to Eero. The product,M, is double 

1en9th (multiplication of two n-bl t numberi gives a 2n bit result) 

and is thus rounded and reduced to single length. The exponents 

14& 



are then added and corrected for excess 64 (box 4). If the product 

M, ·lB not ·normal feed lt ls then normalized by a single left shift and 

the exponent decremented by 1. The sign of the exponent la tested. 

If it la negat'lv_e,, then there was exponent overflow or underflow 

when the eKponents were added. ·The EXIT routine then determines 

whether lt was underfiov·or overflow that occurred and takes 

appropriate actlo·n. It ls to be noted that exponent overflow or 

underflow vas not tested for when the exponents were added as 

sUbsequent exponent adjustment could correct lt. The normalized 

product,M and the adjusted exponent give ·the result for the 

floating point multlpllcatlon, except when the exponent overflows 

or underflows. 

3.4 Floating Point Divide Routine (FDIV). 

In floating point division the mantissas are divided and the 

exponent subtacted .Thus, division of Xl by X2 where 

Xl = Ml X 2EJ 

gives, 

X2 = M2 X 2 
El. 

X = !:11. • "( E.I-E.l =M" 1.:=· 
Mt 

where M ::11 ,E = El-1!:2. 
1<11. 

To ensure that the quotient la within permissible range Ml must be 

less than M2.This is readily achieved by shifting Ml one place to 

the right. After division, the quOtient,M may not be properly 

normalized. If lt is not, it is shifted left one place and the exponent 

E, decremented by one and checked for underflow as before. 

Figure 7 gives the flowchart for the floating point divide 

routine. The exponent,E is obtained from the exponents of t~e operands 

and the bias ls added (boK 1):. The two mantissas are then tested. If 

either is a zero, the oPeration la ter~inated and the result set to 

zero (boK 2 to 4 ). ~ The exponent of the reaul t, B i a then t~sted for 

under- and over flow and treated ln the same way as in the multiply. 



For easy comparison of the mant_lssas and normalization of' the product 

the mantlaaaa of the operands are always made positive (boxes 3 and 51. 

The sign, .la restored in the. BXIT routine. Dlvlalon la performed with 

the inherent divide instruction of the 68000 up processor (box 101. 

I· Figure b gives a listing of the assembly ianguage p•ogram for the 

floating floating point divide routine. 

3.5 Bxecutlon times of the floating point routines. 

Estimates of the execution ·times of the floating point routines 

are g_lven below. These times are only approximate as the execution 

tlmes depend ·on the data• 

Routine 

Addition 

Hultlpi !cat ion 

Division 

RFERENCES 

Execution time lpSI 

70 

70 

85 

PLORBS, I. The logic of computer arithmetic. Prentice HaH·,l963. 

COPE,S.N. Floating-point arlthmE!tlc routines and macros for_ an 

Intel 8080 microprocessor. o.u.B.L. report 1123/75. ,1975. 

CLARKB,D.W., COPB,S.N. and GAWTHROP,P.J. Feasibility study 

of the application of microprocessors to self-tuning controllers 

o.u.B.L. Report H37/75,1975. 

RABINER,L.R, and GOLD,B. Theory and application of digital 

signal processing. Prentlce-Rall,l975. 

MC68000 16-Bit Hicr_oproceasor Us~r:'s Manual. Austln,TX., 

Motorola SemiconduCtor ,_In·c. , 1980. 



exponent (Bbits) manti ssa (16bits) 

(a) 

--
Address XX 

Add rass+l Exponent 

Address+2 lligh byte of mantis sa-

Address+) LOw byte of ma ntissa 

(b) 

Figure 1 (a) Floating point data format 

(b) Floating point memory a llocation. 
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• IJCIY JOU1'JNB 
• THIS IIOUTIMI IWIOL£8 IXCIPTIOMS PIIOM FLOATING POift UITIIHftiC 
• OPERATIONS AIID aHUitliS COMTJOL TO Tll CALLING IIOOTIM&. 

DFOIIKAT SIIAP . 11 Dl 1 Pm USOLT Ill COI.UCT rP FOIIHAT 
MOV'&. W Q),Dl 
MOVS .L Dl,Dl 

SJGNS1 sua.a fl,o5 1ucovn s1aw or IIAftUU ... IXITP 
wea.w D) 

BIITF t IIOVIM . L (Ali+,D0-D2/D4-D7 
&1'8 , . .,,, eta.L D) 1usot.T 11 sno ..... IIITr 

OOPUI'I ITST 115 , 06 1 USDL"I' IIIIDU 01 OY'UJ'I.Oif7 

••• naor 1IIIIDIULOII . liT UIUL"I' TO 11110 
OPlMt MOVS.L PPMAX ,Dl rOYUPLOif . ll"l' USGL"I' TO PPMAX 

IRA IIGIIS 

rtaure 2. The EXIT r outine 
Control ls uturned t o the c.allin& proar•• vla thh routine. 

ne routine •llo h•ndles under/overflov, reco ·vert the ai&n 

r :.G puts t he re•ult in the c.orl'eC.t for•at. 
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• 

.. ... 

14 
SlllFT SUM 
RIGHT WITfl 
CARRY AND 
INCR. RESULT 

NORMALIZE 
SUM AND ADJUS 

RESULT EXPO-

NO 

EXIT 
(ZEROFl 

EXIT 

(DFORMATl 

YES (EXIT FPMA Xl 

Figure J Floating point addition of two operands with exponents El and E2 

mantissaa Ml and M2, res pectively. 
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·--------------------------·---·----·---·--------.. ----------------·------
• SOiaouTtMI PADD 
• ftll IUIItOOTUII ADDS TWO IIOMALIIID rt.OA1'lt«i POINT KUMBBAS n• 
• Dl AND Dl. 'fill lli!SUL~ 18 M~IUIBD IN Dl . 
FIIDDI MOVDI.L 00•01/ 04• 07,- (All 

MCN'I.L 01,01 
MOV'a.L 01,00 
SWA.P.II Dl 
SWAP.II 00 
HOVI.I 01,04 
• .,.. , oo ,of 
II!IQ seuo 
IPL 8CPCl8 
IIIG . I Of 
IXQ oO,Ol 
IXG 011 0] 

8CPOS1 CMP. a 11S,04 
IPt Ultt 
Asa.• ot,o2 

SCII01 MOVa.W 01,0, 
ADO.• o2,ol 
aoxa.w 11,os 
~n.w ol 
II!IQ I!IOr 
1oa.w o2 ,o, 
11141 DrSlGN 
MOYB.W 05,04 
sua.w o5,o5 
UT.W Dl 
IPL OPRPOS 
M!IQ . W Dl 
u~.• ol 
IIHI NIGKX 
~~m .w ol 

OPR..POS t aoa.w ot,o' 
soa.w Ol,o6 
IPL DroMA~ 
JlOXL.W t1,04 

llr:GHll l IOU. W II,D] 
ADOQ . I II,DI 
IIHI OPLII 
IU DFORMAT 

DPS IGN 1 SUI.I 05,05 
u~.w ol 
IPL PNOIMA 
MOYBQ.L 11 ,05 
NIG.W DJ 

PNOIUU 1 *"'ZQ.L 115, 00 
MOYa.L 00 , 02 

SHP'TLA ADO . W Dl,O) 
DIIHl OO,SRt'TLA 
SOII . I 00,02 
LSil . W ll ,O) 
sue.a o1,o1 
BHl IIIOP 
BllA OPORMAT 

Flaur• + 

oMAII COPIIS OP OURAMDS 

' 1 UTUIV& PPOIIUTS (I I or OPIIWIOS 

oll-II•Sitt'T COOin'(SCI 
,se u aaao 
oSC IS PDSITIV8 
ose 11 MIIGoiiAU P08l'UV8 
1 SWAP OP&IU.IIDS 

1 .llf't OPUAlfD '100 llltA1.L 1 
1111. U:SQL1' • LAIIIOIIa OP•I.AJID 
oiiO . I&It'T IIIIALLU 11 lliGll'r se PLACU 
1 UV8 SIGil Or 2WD OP ,oe.,.u• smt-M2+Ml 
1IAVI CAI.Ja' PUG 
111 SOM•O? 
1IP US , T&:n UIT 
110. AM ftl TWO OPIUDS SAil& 81GM7 
oOPEaMDS AU OPPOSIU llGII 
oOPBUDS AU BAIII IIGII 

, 11 SUM +n oa - n7 
rSOM tS I tVZ . 
rSDM IS -n. KU:B SOit +V& 
1 IS SDII niLL •1111 
1Y~S. SOH MUST 18 KIIGMU 
1 MO . lli!COIIU SIGN or SUM 
1DID 0\I&IU'LOII OCCDil OOUIIO ADOI~l0117 

' 1 NO. TII'E.M POIIMAT Usot.T AWD a•tT 

oSBit'T - RIGIIT Wlft CARilY A1ID 
J I NCa BXP1 £•!:+1 
1 CBICI TIIAT I DID 110'1' OVB:It.LOI 
11 IS Olt. roaou.T lliSOL~ A1ID UU. 

1 t S SON POS I TtVZ? 
1TI.S. MOII:MALIII USULT 
rMO. 8ft rLAG AIID MAil PDSI~IV8 

1Sft UP UGS POA MOIIKALtlftf 

t NOIIMALUB SUM A1fD 

I 
1 ADJUS1' UPOWDIT 
rl UMOiftPLOW7 
1MO.POMAT USUL~ All1l BII~ 

The Atae•b1y 1anauaae proar•• Cor the floatin& poin t Addltlon . 

iSl 
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Figure 5 

RESULT EXPO
IIENT 
= E1+E2-64 

SHIFT PROOUC 
LEFT AND DECR 
RESULT EXP. 

YES 
(UOFLW) 

fl oating point multiplication of two operands with 

exponents El and E2, mantissas HI and H2 , respectively. 
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•----------------------------- -----·---- ------·~--·----------·-------- ---

• SUIItOO'I'IMa PKUL 
• '1'118 SOIROtniNI MULTIPLIII '1'tfO ltORMALII&O Pt.0.\1'INO POIN'I' NUKI&IlS 
' 11 D1 lUID Dl AJID RHUIIII TRI USOLT 11 Dl • . 
PMUL o MOYIM. L DO-D1/DC-D7, -I All 

MOY'a.L Ol,Dl 
MOYW.L 02,00 
SWAP.II Dl 
SIIAP.II DO 
Stra . l 05,05 
HULl Ol,Ol 
ADO.L Dl,Ol 
li.DO.L nnu,Dl 
Slll'.P.II Dl 
TS'l".ll Dl 
UQ IIIOP 
IPL I'O!OOJL 
AOOO .a u,o5 
M!Q.II Dl 

POSHUL t ADO . 8 00, Ol 
SUI.I tU ,Dl 
aoza .v tl,o6 
BTST tU , Dl 
ut nsn 
AOb. W Ol,Ol 
SDIQ . I tl,Dl 

THTB1 'fS'r.l Ol 
IIMI UOPLII 
Ill.\ llrOJIHioT 

fl&ure I. 

rKU& CotlU or OPIU.AIIDI!I 

1UTRI..,_ TU Ufl. 

oCLEAR PI.AO 
10.TAII PROOUCT Ml•IU 
1SBI" DLIINGTII PaoDOCT J.~ 
1 IIOUIID QSULT 
1ClOOIVItt QIULT ~ IIIIGLI LEIOGTB 
J USOL'f•O, +V. 01 -nl 
1a&IULT IS •0 . UIT 
1a&SUL'f IS +VI.COMPVU llf. 
J aaSUL'f IS -VI . liT fi.Ail 
1MAJ:I POIJ'fiVI 
Jl2+11•1 
JltDIOVI lS u 
1SAV& CAUY PLAG 
118 fiiOOOC'f IIOIOMALIIID7 
, ru. ftiT u: .. . 
1 10 . 110111.\L 11 I PaoDOCT AJID 
oADOJOI'f UfOifUT 
1 EXP OMD&a/ OVIR PLOifE07 
oUI . IAACB ~ OMDIR/OVIRrloOII US'f 
1110. POIMA'f OA'fA AND UJ'r. 

The Aaseebly len&ua&e ptoan• for the floatln& point •ult l ply 
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Figure showing the EOGs and EEG data for 

a ver tical EM record (see page 83) . 

(i), (iii) vertical and hori zonta l EOGs 

of the left eye . (ii), ( i v) the corresponding 

EOGs of the right eye. (v) the EEG 
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Fi gur e showing the P.OC.s and EEG data for 

a blink r ecor d (see oaee 103). 

(i) , (iii) vert ical and hori zontal EOGs 
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of the left eye . (ii) , (iv) the correspond i np, 

EOGs of the right eye . (v) the EEr. 


