8 research outputs found

    Asymptotic Analysis and Design of LDPC Codes for Laurent-based Optimal and Suboptimal CPM Receivers

    Get PDF
    International audienceIn this paper, we derive an asymptotic analysis for a capacity approaching design of serially concatenated turbo schemes with low density parity check (LDPC) codes and continuous phase modulation (CPM) based on Laurent decomposition. The proposed design is based on extrinsic mutual information evolution and Gaussian approximation. By inserting partial interleavers between LDPC and CPM and allowing degree-1 variable nodes under a certain constraint we show that designed rates are very close to the maximum achievable rates. Furthermore, we discuss the selection of low complexity receivers that works with the same optimized profiles

    Binary Continuous Phase Modulations Robust to a Modulation Index Mismatch

    No full text
    International audienceWe consider binary continuous phase modulation (CPM) signals used in some recent low-cost and low-power consumption telecommunications standard. When these signals are generated through a low-cost transmitter, the real modulation index can end up being quite different from the nominal value employed at the receiver and a significant performance degradation is observed, unless proper techniques for the estimation and compensation are employed. For this reason, we design new binary schemes with a much higher robustness. They are based on the concatenation of a suitable precoder with binary input and a ternary CPM format. The result is a family of CPM formats whose phase state is constrained to follow a specific evolution. Two of these precoders are considered. We will discuss many aspects related to these schemes, such as the power spectral density, the spectral efficiency, simplified detection, the minimum distance, and the uncoded performance. The adopted precoders do not change the recursive nature of CPM schemes. So these schemes are still suited for serial concatenation, through a pseudo-random interleaver, with an outer channel encoder

    Sparse graph-based coding schemes for continuous phase modulations

    Get PDF
    The use of the continuous phase modulation (CPM) is interesting when the channel represents a strong non-linearity and in the case of limited spectral support; particularly for the uplink, where the satellite holds an amplifier per carrier, and for downlinks where the terminal equipment works very close to the saturation region. Numerous studies have been conducted on this issue but the proposed solutions use iterative CPM demodulation/decoding concatenated with convolutional or block error correcting codes. The use of LDPC codes has not yet been introduced. Particularly, no works, to our knowledge, have been done on the optimization of sparse graph-based codes adapted for the context described here. In this study, we propose to perform the asymptotic analysis and the design of turbo-CPM systems based on the optimization of sparse graph-based codes. Moreover, an analysis on the corresponding receiver will be done

    Advanced low-complexity multiuser receivers

    Get PDF
    It tema centrale di questa tesi è la rivelazione multi-utente per sistemi di comunicazione wireless ad elevata efficienza spettrale. Lo scopo del lavoro è quello di proporre nuovi ricevitori multi-utente a bassa complessità con elevate prestazioni. Sono considerati sistemi satellitari basati su FDM (Frequency Division Multiplexing), in cui ogni utente adotta una modulazione CPM (Continuous Phase Modulation) concatenata serialmente con un codificatore tramite un interlacciatore e decodifica iterativa. Si considerano, inoltre, canali lineari in presenza di AWGN (additive white Gaussian noise). In particolare, si studiano sistemi FDM, in cui i canali adiacenti possono sovrapporsi in frequenza per aumentere l'efficienza spettrale, e sistemi CDMA (code division multiple access). Per gli scenari presi in esame, proponiamo schemi di rivelazione con un eccellente compromesso tra prestazioni e complessità computazionale, che permettono di implementare schemi di trasmissione con straordinaria efficienza spettrale, al prezzo di un limitato aumento di complessità rispetto ad un classico ricevitore singolo-utente che ignora l'interferenza.This thesis deals with multiuser detection (MUD) for spectrally-efficient wireless communication systems. The aim of this work is to propose new advanced low-complexity multiuser receivers with near-optimal detection performance. We consider frequency division multiplexing (FDM) satellite systems where each user employs a continuous phase modulation (CPM), serially concatenated with an outer code through an interleaver, and iterative detection/decoding. We also consider linear channels impaired by additive white Gaussian noise (AWGN), focusing on FDM systems where adjacent channels are allowed to overlap in frequency, and on code division multiple access systems (CDMA). For the considered scenarios, we propose detection schemes with an excel- lent performance/complexity tradeoff which allow us to implement transmission schemes with unprecedented spectral efficiency at a price of a limited complexity increase with respect to a classical single-user receiver which neglects the interference

    Synchronization Techniques for Burst-Mode Continuous Phase Modulation

    Get PDF
    Synchronization is a critical operation in digital communication systems, which establishes and maintains an operational link between transmitter and the receiver. As the advancement of digital modulation and coding schemes continues, the synchronization task becomes more and more challenging since the new standards require high-throughput functionality at low signal-to-noise ratios (SNRs). In this work, we address feedforward synchronization of continuous phase modulations (CPMs) using data-aided (DA) methods, which are best suited for burst-mode communications. In our transmission model, a known training sequence is appended to the beginning of each burst, which is then affected by additive white Gaussian noise (AWGN), and unknown frequency, phase, and timing offsets. Based on our transmission model, we derive the Cramer-Rao bound (CRB) for DA joint estimation of synchronization parameters. Using the CRB expressions, the optimum training sequence for CPM signals is proposed. It is shown that the proposed sequence minimizes the CRB for all three synchronization parameters asymptotically, and can be applied to the entire CPM family. We take advantage of the simple structure of the optimized training sequence in order to design a practical synchronization algorithm based on the maximum likelihood (ML) principles. The proposed DA algorithm jointly estimates frequency offset, carrier phase and symbol timing in a feedforward manner. The frequency offset estimate is first found by means of maximizing a one dimensional function. It is then followed by symbol timing and carrier phase estimation, which are carried out using simple closed-form expressions. We show that the proposed algorithm attains the theoretical CRBs for all synchronization parameters for moderate training sequence lengths and all SNR regions. Moreover, a frame synchronization algorithm is developed, which detects the training sequence boundaries in burst-mode CPM signals. The proposed training sequence and synchronization algorithm are extended to shaped-offset quadrature phase-shift keying (SOQPSK) modulation, which is considered for next generation aeronautical telemetry systems. Here, it is shown that the optimized training sequence outperforms the one that is defined in the draft telemetry standard as long as estimation error variances are considered. The overall bit error rate (BER) plots suggest that the optimized preamble with a shorter length can be utilized such that the performance loss is less than 0.5 dB of an ideal synchronization scenario

    Méthodes de codage et d'estimation adaptative appliquées aux communications sans fil

    Get PDF
    Les recherches et les contributions présentées portent sur des techniques de traitement du signal appliquées aux communications sans fil. Elles s’articulent autour des points suivants : (1) l’estimation adaptative de canaux de communication dans différents contextes applicatifs, (2) la correction de bruit impulsionnel et la réduction du niveau de PAPR (Peak to Average Power Ratio) dans un système multi-porteuse, (3) l’optimisation de schémas de transmission pour la diffusion sur des canaux gaussiens avec/sans contrainte de sécurité, (4) l’analyse, l’interprétation et l’amélioration des algorithmes de décodage itératif par le biais de l’optimisation, de la théorie des jeux et des outils statistiques. L’accent est plus particulièrement mis sur le dernier thème

    Signal optimization for Galileo evolution

    Get PDF
    Global Navigation Satellite System (GNSS) are present in our daily lives. Moreover, new users areemerging with further operation needs involving a constant evolution of the current navigationsystems. In the current framework of Galileo (GNSS European system) and especially within theGalileo E1 Open Service (OS), adding a new acquisition aiding signal could contribute to providehigher resilience at the acquisition phase, as well as to reduce the time to first fix (TTFF).Designing a new GNSS signal is always a trade-off between several performance figures of merit.The most relevant are the position accuracy, the sensitivity and the TTFF. However, if oneconsiders that the signal acquisition phase is the goal to design, the sensitivity and the TTFF havea higher relevance. Considering that, in this thesis it is presented the joint design of a GNSS signaland the message structure to propose a new Galileo 2nd generation signal, which provides ahigher sensitivity in the receiver and reduce the TTFF. Several aspects have been addressed inorder to design a new signal component. Firstly, the spreading modulation definition must considerthe radio frequency compatibility in order to cause acceptable level of interference inside the band.Moreover, the spreading modulation should provide good correlation properties and goodresistance against the multipath in order to enhance the receiver sensitivity and to reduce theTTFF. Secondly, the choice of the new PRN code is also crucial in order to ease the acquisitionphase. A simple model criterion based on a weighted cost function is used to evaluate the PRNcodes performance. This weighted cost function takes into account different figures of merit suchas the autocorrelation, the cross-correlation and the power spectral density. Thirdly, the design ofthe channel coding scheme is always connected with the structure of the message. A joint designbetween the message structure and the channel coding scheme can provide both, reducing theTTFF and an enhancement of the resilience of the decoded data. In this this, a new method to codesign the message structure and the channel coding scheme for the new G2G signal isproposed. This method provides the guideline to design a message structure whose the channelcoding scheme is characterized by the full diversity, the Maximum Distance Separable (MDS) andthe rate compatible properties. The channel coding is essential in order to enhance the datademodulation performance, especially in harsh environments. However, this process can be verysensitive to the correct computation of the decoder input. Significant improvements were obtainedby considering soft inputs channel decoders, through the Log Likelihood Ratio LLRs computation.However, the complete knowledge of the channel state information (CSI) was usually considered,which it is infrequently in real scenarios. In this thesis, we provide new methods to compute LLRlinear approximations, under the jamming and the block fading channels, considering somestatistical CSI. Finally, to transmit a new signal in the same carrier frequency and using the sameHigh Power Amplifier (HPA) generates constraints in the multiplexing design, since a constant orquasi constant envelope is needed in order to decrease the non-linear distortions. Moreover, themultiplexing design should provide high power efficiency to not waste the transmitted satellitepower. Considering the precedent, in this thesis, we evaluate different multiplexing methods,which search to integrate a new binary signal in the Galileo E1 band while enhancing thetransmitted power efficiency. Besides that, even if the work is focused on the Galileo E1, many ofthe concepts and methodologies can be easily extended to any GNSS signa

    Anuário Científico – 2011 Resumos de Artigos, Comunicações, Livros e Monografias de Mestrado

    Get PDF
    Há mais de uma década que o ISEL vem firmando a sua aposta na busca e na divulgação do conhecimento científico na área da Engenharia, assentes na inovação e no desenvolvimento de novas tecnologias, procurando que os resultados alcançados nos projetos de investigação tenham impacto na indústria e na vida dos cidadãos como forma de responder às necessidades cada vez mais complexas e exigentes da sociedade no seu todo. Nesta relação, o ISEL tem contribuído para a evolução da produção e do conhecimento científicos, assumindo, por vezes numa posição de vanguarda, ora em iniciativa própria ora em parceria com diversas instituições, quer de ensino quer do tecido empresarial. Como forma de dar visibilidade ao trabalho desenvolvido pelos docentes (com afiliação ISEL) e alunos do ISEL, o Anuário Científico tornou-se num meio de divulgação privilegiado, estando disponível em acesso livre a toda a comunidade científica mas também a todos os cidadãos, podendo ser consultado em formato eletrónico no sítio institucional do ISEL, bem como no Repositório Científico do Instituto Polítécnico de Lisboa.1 Fazendo uma análise comparativa em relação às publicações referentes a 2009 e a 2010, constata-se que o número de publicações duplicou em 2011
    corecore