762 research outputs found

    Closed queueing networks under congestion: non-bottleneck independence and bottleneck convergence

    Get PDF
    We analyze the behavior of closed product-form queueing networks when the number of customers grows to infinity and remains proportionate on each route (or class). First, we focus on the stationary behavior and prove the conjecture that the stationary distribution at non-bottleneck queues converges weakly to the stationary distribution of an ergodic, open product-form queueing network. This open network is obtained by replacing bottleneck queues with per-route Poissonian sources whose rates are determined by the solution of a strictly concave optimization problem. Then, we focus on the transient behavior of the network and use fluid limits to prove that the amount of fluid, or customers, on each route eventually concentrates on the bottleneck queues only, and that the long-term proportions of fluid in each route and in each queue solve the dual of the concave optimization problem that determines the throughputs of the previous open network.Comment: 22 page

    Nonlinear Diffusion Through Large Complex Networks Containing Regular Subgraphs

    Full text link
    Transport through generalized trees is considered. Trees contain the simple nodes and supernodes, either well-structured regular subgraphs or those with many triangles. We observe a superdiffusion for the highly connected nodes while it is Brownian for the rest of the nodes. Transport within a supernode is affected by the finite size effects vanishing as N→∞.N\to\infty. For the even dimensions of space, d=2,4,6,...d=2,4,6,..., the finite size effects break down the perturbation theory at small scales and can be regularized by using the heat-kernel expansion.Comment: 21 pages, 2 figures include

    Two-choice regulation in heterogeneous closed networks

    Full text link
    A heterogeneous closed network with one-server queues with finite capacity and one infinite-server queue is studied. A target application is bike-sharing systems. Heterogeneity is taken into account through clusters whose queues have the same parameters. Incentives to the customer to go to the least loaded one-server queue among two chosen within a cluster are investigated. By mean-field arguments, the limiting queue length stationary distribution as the number of queues gets large is analytically tractable. Moreover, when all customers follow incentives, the probability that a queue is empty or full is approximated. Sizing the system to improve performance is reachable under this policy.Comment: 19 pages, 4 figure

    Asymptotic Expansions for Stationary Distributions of Perturbed Semi-Markov Processes

    Full text link
    New algorithms for computing of asymptotic expansions for stationary distributions of nonlinearly perturbed semi-Markov processes are presented. The algorithms are based on special techniques of sequential phase space reduction, which can be applied to processes with asymptotically coupled and uncoupled finite phase spaces.Comment: 83 page
    • …
    corecore