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Abstract

We analyze the behavior of closed product-form queueing networks when the number of customers grows
to infinity and remains proportionate on each route (or class). First, we focus on the stationary behavior
and prove the conjecture that the stationary distribution at non-bottleneck queues converges weakly to the
stationary distribution of an ergodic, open product-form queueing network. This open network is obtained
by replacing bottleneck queues with per-route Poissonian sources whose rates are determined by the solution
of a strictly concave optimization problem. Then, we focus on the transient behavior of the network and use
fluid limits to prove that the amount of fluid, or customers, on each route eventually concentrates on the
bottleneck queues only, and that the long-term proportions of fluid in each route and in each queue solve the
dual of the concave optimization problem that determines the throughputs of the previous open network.

1 Introduction

Complex systems such as communication and computer networks are composed of a number of interacting
particles (or customers) that exhibit important congestion phenomena as their level of interaction grows.
The dynamics of such systems are affected by the randomness of their underlying events, e.g., arrivals of
units of work, and can be described stochastically in terms of queueing network models. Provided that these
are tractable, they allow one to make predictions on the performance achievable by the system, to optimize
the network configuration and to perform capacity-planning studies. These objectives are usually difficult
to achieve without a mathematical model because real systems are huge in size; e.g., Urgaonkar et al. [34].

The focus of this paper is on the well-known class of closed queueing network models introduced in Kelly
[18] and Baskett et al. [3]. Specifically, a fixed number of customers circulate in a network following given
routes. A route is a sequence of queues (or stations) that forms a cycle in the network. In terms of the amount
of service required on each queue, users belonging to the same route are statistically equivalent. In contrast,
users belonging to different routes can be statistically different. The stationary probability distribution of
the numbers of customers in each queue of this class of queueing networks has the product-form property,
which formally means that it can be written as the product of simple terms associated to each queue up to
a normalizing constant. This surprising property represents a big step forward for the understanding of the
stationary behavior of these queueing networks. However, due to the quick growth of the state space and
despite the attention devoted to this problem during the last decades, the computation of the normalizing
constant remains a notoriously-difficult task especially when the number of customers is large. This limits
the application of these models to optimization and dimensioning studies of real systems.

During the last decades, several approaches have been investigated to assess the stationary behavior of
closed product-form queueing networks with a large number of customers. A large body of the literature
aims at developing exact algorithms for the efficient computation of the normalizing constant or stationary
performance indices such as throughputs and queue lenghts; see, e.g., Reiser and Kobayashi [26], Reiser and
Lavenberg [27], Harrison and Coury [14], Casale [6] and the references therein. To the best of our knowledge,
no exact algorithm has a running time that is polynomial with respect to the numbers of routes, customers
and queues. Motivated by this difficulty, a number of alternative analyses emerged in the literature for the
stationary behavior. These mainly consist in:

• Using the mean value analysis (MVA) by Reiser and Lavenberg [27] to develop iterative or fixed-point
algorithms; e.g., Schweitzer [29], Chandy and Neuse [8], Pattipati et al. [24], Wang et al. [36]. While
these techniques improve the running time of MVA, there is no guarantee that they converge to the
exact solution except for particular cases.

• Developing efficient bottleneck identification techniques; e.g., Schweitzer [30], Schweitzer et al. [31],
Casale and Serazzi [7], Anselmi and Cremonesi [1]. This approach aims at reducing the network size
by ignoring the impact of the stations that have a minor influence on the overall performance.
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• Studying the network behavior in some limiting regime, e.g. for the instance of Jackson networks see
Goodman and Massey [12]. Our closed queueing context, one can assume the existence of a M/M/∞
queue within the network and allow the total number of jobs, say n, grow in proportion to its service
times; McKenna and Mitra [23], McKenna [22], Berger et al. [4]. Another possibility is to let n grow
to infinity in proportion to the number of stations; Knessl and Tier [19, 20]. Finally, one can also
study the network behavior when n grows to infinity keeping fixed the proportions of customers in
each route; Pittel [25], Schweitzer [30], Balbo and Serazzi [2], Walton [35], Walton et al. [16], Anselmi
and Cremonesi [1], George et al. [11].

The focus of this paper is on the last approach where n→∞ keeping fixed the proportions of customers
in each route. In this limiting regime, it is known that some queues, called bottlenecks in the following,
increase their backlog proportionally to n, see Pittel [25] and Walton et al. [16], and uniquely determine
the throughput of customers along each route by means of a concave optimization problem; Schweitzer [30],
Walton [35]. Interestingly, this optimization problem coincides with the utility optimization problem that
determines the fractions of bandwidth (or rates) allocated to multiple classes of concurrent Internet flows
(or end-to-end Internet connections); see Kelly et al. [17], Srikant [33]. On the other hand, the amount
of backlog in each non-bottleneck is strictly bounded by O(n) but in general its limiting behavior is not
known. There is numerical evidence to support the conjecture that the limiting stationary distribution of
each non-bottleneck queue is geometric; Balbo and Serazzi [2]. Such convergence was proved by Pittel [25]
under the assumption that the mode of the stationary distribution is unique; see also Gordon and Newell
[13], Lipsky et al. [21], Anselmi and Cremonesi [1]. This assumption, for instance, is not satisfied when the
number of bottlenecks is less than the number of routes but greater than one, which is a natural scenario in
real networks. As we shall explain, one of the principle contributions of this paper is to prove this conjecture
by removing the unimodal assumption.

The above conjecture provides an accurate and efficient approximation to the per-route mean delay (or
cycle time) of a network with n customers that takes into account the contribution of non-bottlenecks (a
number of techniques only consider the mean delays at the bottlenecks; see, e.g., Schweitzer et al. [31]
for an overview). The impact on mean delay of non-bottlenecks becomes non-negligible if their number
prevails significantly, and this is often the case; see Casale and Serazzi [7], Anselmi and Cremonesi [1]. This
approximation allows for the direct development of efficient optimization frameworks able to address, for
instance, data-center consolidation problems, where the objective is to reduce the cost and the size of a
data-center while guaranteeing a given performance level. Furthermore, it provides a good initial guess for
the iterative or fixed-point algorithms mentioned above.

1.1 Our contribution.

Following the approach considered by a large body of the literature, we are interested in the behavior of closed
product-form queueing networks when the number of customers in each route grows to infinity proportionally.
This is mainly motivated because real networks are populated by a large number of customers; e.g., Urgaonkar
et al. [34]. Our objective is two-fold and consists in analyzing the problem from two contrasting standpoints.

The first part of this paper focuses on the stationary behavior of these networks. We prove the conjecture
that the stationary distribution of non-bottlenecks converges weakly to the stationary distribution of an
ergodic, open product-form queueing network. This open network is obtained by replacing bottlenecks with
per-route Poissonian sources whose rates are determined by the solution of a strictly concave optimization
problem.

In contrast to the first part, the second part of this paper focuses on the transient behavior. Starting
from any arbitrary distribution of customers on queues and using justified fluid-limit equations, in our second
contribution we prove that the amount of fluid, or customers, on each route eventually concentrates, as time
increases, on the bottleneck queues only and that the (long-term) proportions of fluid in each route and in
each bottleneck solve the dual of the concave optimization problem that determines the throughputs of the
open network described above. Our proof for closed queueing networks uses an entropy Lyapunov function
similar to the one used by Bramson [5] to establish convergence properties of the fluid-limit equations of
open queueing networks.

The technical difference behind the two contributions above is the order in which the limit in the number
of customers and the limit in time are taken. In the second part, the limit in the number of customers is
taken before the limit in time, and vice versa. In stochastic systems, these two limits do not commute in
general, but for the class of queueing networks investigated in this paper we prove that they do. Taking the
limit in the number of customers first provides a natural way to look at the evolution of a network populated
by a large number of customers and, by subsequently taking a limit in time, we justify fluid model arguments
within the queueing literature. The second result proven in this paper, thus, increases the robustness of
the approach taken in the first part, which has been followed by several researchers as reference above,
and furthermore, it can be also seen as a queueing theoretic analysis of the utility optimization found in
congestion control protocols; e.g., Kelly et al. [17] and Srikant [33].
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1.2 Organization.

In Section 2, we introduce the models considered in this paper. In particular, these include two Markov
descriptions of a closed queueing network, relevant quantities such as bottleneck and non-bottleneck queues
are defined, and an expression for a fluid model of a closed queueing network is given. In Section 3, we present
the three main results of this paper: Section 3.1 shows the asymptotic independence of non-bottleneck queues
in the large-population limit; Section 3.2 shows the convergence of the Markov closed queueing network to
a fluid solution; and Section 3.3 states that a fluid solution converges to the set of bottlenecks in a way that
minimizes a certain entropy Lyapunov function. In Section 4, we prove the main results stated in Section 3.
We respectively prove the results of Sections 3.1, 3.2 and 3.3 in Sections 4.1, 4.2 and 4.3.

2 Closed queueing networks models.

We consider closed, multi-class queueing networks in the sense of Kelly [18] and Baskett et al. [3]. The
set J ⊂ N denotes the set of queues (or stations) and we let J = |J |. The set I ⊂ 2J denotes the set
of routes (or classes) and we let I = |I|. A route is a sequence of queues visited by a customer during
one cycle of the network. We assume, for simplicity, that each customer visits each queue at most once
within a cycle of the network. Within each route i = {ji1, ..., jiki}, we associate a route order (ji1, ..., j

i
ki

).
For k = 1, ..., ki − 1, a customer departing queue jik will next join queue jik+1 and a customer departing
queue jiki will join queue queue ji1. Unless otherwise specified, i will be used to index routes and j will be
used to index queues. We assume that a constant number of customers circulate along each route of the
network. We denote by n = (ni : i ∈ I) ∈ NI the population vector, i.e., the total number of customers on
each route. When joining queue j, we assume that route-i customers require amounts of service that are
independent and exponentially distributed with mean µ−1

ji . At each queue, we assume that customers are
served at rate 1 according to a processor sharing discipline and customers joining a queue take a position
uniformly at random in the queue. Thus, if a route-i customer does not join a queue j, i.e. j /∈ i, we may
assume µ−1

ji = 0.

2.1 Two Markov models of closed queueing networks.

Firstly, we could describe the exact location of each customer in the queue according to its route type. Here
the explicit state of a queue j would be a vector sj = (ij(k) : k = 1, ...,mj), where mj is the number of
customers in the queue and ij(k) is the route type of the customer in the k-th position. The explicit state
of the network would then be the vector of each queue’s state, s = (sj : j ∈ J ). We then let X (n) be the
set of of the explicit states where the number of customers of each route type i is ni.

Secondly, we could ignore positional information about customers within a queue, and instead, just
consider the number of each route type at a queue. Here we let m = (mji : j ∈ J , i ∈ I, j ∈ i) be a network
state, where mji represents the number of route i customers in queue j. Thus, S(n) = {m :

∑
jmji = ni, i ∈

I} is the state space of this Markov chain. It may be verified in a straightforward manner that this state
space is finite and irreducible.

Under the above assumptions, it is known (Kelly [18] and Baskett et al. [3]) that the stationary dis-
tribution of being in state c, which we denote by π(s|n), or being in state m, which we denote π(m|n), is
respectively

π(s|n) =
1

B(n)

∏
j∈J

mj∏
k=1

µ−1
jij(k) =

1

B(n)

∏
j∈J

∏
i:j∈i

µ
−mji
ji , s ∈ X (n), (2.1)

π(m|n) =
1

B(n)

∏
j∈J

((
mj

mji : i 3 j

) ∏
i:j∈i

µ
−mji
ji

)
, m ∈ S(n), (2.2)

where B(n) is the normalizing constant

B(n)
def
=

∑
m∈S(n)

∏
j∈J

((
mj

mji : i 3 j

) ∏
i:j∈i

µ
−mji
ji

)
. (2.3)

To count the possible orderings of customers inside a queue, we use the multinomial coefficient(
mj

mji : i 3 j

)
def
=

mj !∏
i:j∈i(mji!)

.

In the following, we mainly consider the stationary distribution (2.2), while the expression (2.1) will be
used in proofs. We remark that there are a large number of generalizations of our queueing network where
(2.2) still gives the stationary number of customers of each route at each queue. Thus, our results generalize
to such cases. For instance, we could generalize our processor-sharing discipline to the class of symmetric
queueing disciplines with unit service capacity, see Kelly [18, Section 3.3]. We could also generalize service
requirements to be independent with mean µ−1

ji and having a rational Laplace transform. If we keep the
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assumption that service requirements are exponential and we assume that the state space of our Markov
description is irreducible, then we could generalize to allow any service discipline that allocates service
amongst customers in a way that does not discriminate between the route types of customers at the queue.
Such service disciplines are described by Kelly [18, Section 3.1]. Finally, in all cases, we may elaborate the
routing structure of our network; we may allow a route i customer to be routed through the network as a
Markov chain (with finite expected exit time) whose states are determined by the set of queues so far visited.
Although generalizations leading to stationary distribution (2.2) are abundant, for simplicity of exposition,
we do not explore these in further detail.

2.2 Throughputs and bottlenecks.

A key quantity of interest is the rate at which customers complete service on each route with respect to a
reference queue (say ji1 for route i). Let

Λi(n)
def
=

∑
m∈S(n):
m
ji1
>0

µji1i
mji1i

mji1

π(m|n) (2.4)

be the throughput of customers on route i observed at queue ji1. In addition, let

Λj(n)
def
=
∑
i:j∈i

µ−1
ji Λi(n) (2.5)

be the load (or utilization) at queue j, i.e., the mean amount of work arriving at queue j per unit of time.

Remark 1 The expression (2.4) gives the service completion rate of route i customers at queue ji1, i.e.,
µji1i

, times the service rate devoted to these customers at that queue, i.e., mji1i
/mji1

, times the stationary

probability that there are m customers in the network, i.e., π(m|n). Thus, this expression gives the mean
rate (or throughput) for which route i customers leave queue ji1. Note the route i throughputs at each queue
j ∈ i must be equal, without loss of generality we consider ji1.

A more concise expression for the per-route throughput, which is verified in Appendix A, is given in the
following lemma.

Lemma 1

Λi(n) =
B(n− ei)
B(n)

, i ∈ I

where B(n) is the normalizing constant (2.3) and ei is the ith unit vector in RI+.

In agreement with other works (e.g., Anselmi and Cremonesi [1], Balbo and Serazzi [2]), we define a
bottleneck queue as a queue whose service is saturated.

Definition 1 Queue j ∈ J is called bottleneck if and only if

lim
c→∞

Λj(cn) = 1. (2.6)

We define the set J̄ ⊆ J to be the set of bottlenecks and let J̄ = |J̄ |. Similarly, we define J ◦ = J \J̄ to be
the set of non-bottleneck queues and let J◦ = |J ◦|.
In other words, a bottleneck is a queue whose load approaches the queue’s unit service rate as c→∞. We
will think of J ◦ as the open part of the network and of J̄ as the closed part of the network.

2.3 Non-bottleneck queues and open queueing networks.

We are interested in the probability distribution of non-bottleneck queues. For this reason, we consider
queue-size vectors m◦ = (m◦ji : j ∈ J ◦, i ∈ I, j ∈ i) ∈ ZJ

◦×I
+ and

π◦(m◦|n)
def
=

∑
m̄∈ZJ̄+ :

(m̄,m◦)∈S(n)

π((m̄,m◦)|n), j ∈ J ◦, i ∈ I, (2.7)

which defines the stationary probability that non-bottleneck queues are in state m◦.
We also define

π◦Λ(m◦)
def
=

∏
j∈J ◦

π◦j,Λ(m◦), (2.8a)

m◦ ∈ ZJ
◦×I

+ , Λ ∈ RI+, where

π◦j,Λ(m◦)
def
=

(
1−

∑
i:j∈i

Λi
µji

)(
mj

mji : i 3 j

) ∏
i:j∈i

(
Λi
µji

)mji
. (2.8b)

The distribution π, given by (2.2), refers to the stationary distribution of a closed queueing network. In
contrast, the distribution π◦Λ can be shown to be the stationary distribution of an open queueing network
constructed on queues J ◦. Here customers arrive on each route as a Poisson process of rate Λ = (Λi : i ∈ I)
and depart the network after receiving service at each queue on their route i∩J ◦, see Kelly [18] and Baskett
et al. [3].
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2.4 Fluid Model.

In order to study the transient behavior of our closed queueing network, we will analyze the following fluid
model.

Definition 2 (Closed queueing network fluid model) The processes m(t) = (mji(t) : j ∈ J , i ∈
I, j ∈ i) and Λ(t) = (Λji(t) : j ∈ J , i ∈ I, j ∈ i) form a fluid solution (or fluid limit) of our closed
queueing network if they satisfy the following conditions:

mji
k
i(t) = Λji

k−1
i(t)− Λji

k
i(t), (2.9a)∑

i:j∈i

1

µji
(Λji(t)− Λji(s)) ≤ t− s, (2.9b)

Λji(t) is increasing, (2.9c)

if mj(t) > 0 then
dΛji(t)

dt
=
mji

mj
µji, (2.9d)∑

j:j∈i

mji(t) = ni. (2.9e)

Here, j ∈ J , i ∈ J , j ∈ i, t ≥ s ≥ 0. Also, jik is the kth queue on route i and jik−1 is the queue before the
kth queue (we use the convention that the queue before ji1 is jiki).

The conditions (2.9), thus, are the defining properties of a fluid solution and we observe that they
are analogous to the ones used by Bramson [5, Formulas (2.3)-(2.6)], which hold for the open versions
of the considered closed queueing networks1. In particular, conditions (2.9a), (2.9c), (2.9e) are basic and
relate queue lenghts in an obvious manner, condition (2.9d) is the property that defines a processor-sharing
discipline, and condition (2.9b) takes into account the maximal processing rate of the system.

We note that the condition (2.9b) implies that Λji is Lipschitz continuous. By (2.9a), this is also
true for mji. Lipschitz continuity implies absolute continuity, and therefore the processes Λji and mji are
differentiable almost everywhere with respect to the Lebesgue measure. Throughout this document, the term
for almost every will refer a set of real numbers whose complement has Lebesgue measure zero. Shortly, we
will prove that the limit of the closed queueing network described previously satisfies the fluid model (2.9).

3 Results on closed queueing networks.

In this section, we present the three main results of this article. These are: Theorem 1, which states the
independence of non-bottlenecks under a large-population limit; Theorem 2, which states that the stochastic
process limit of a closed queueing network is a solution to the fluid equations (2.9); Theorem 3, which shows
the convergence of the fluid solutions (2.9) to the set of bottleneck queues via a Lyapunov function argument.

3.1 Independence of non-bottleneck queues.

We now consider the limiting behavior of our queueing network with cn customers when c→∞. Given the
constraints on the number of customers on each route, the distribution of customers at queues are certainly
dependent variables; however, in classical open queueing systems, where all customers arrive and depart the
network, the stationary distribution of queues can be shown to be independent; see Kelly [18] and Baskett
et al. [3]. We wish to demonstrate that non-bottleneck queues become independent as our closed queueing
network congests. This fact has been conjectured and used in Balbo and Serazzi [2], and in this paper we
present a proof.

In our closed queueing network context and given (2.7) and (2.8), in informal terms we wish to prove

that for each n ∈ RI+,m ∈ ZJ
◦×I

+

π◦(m◦|cn) −−−→
c→∞

π◦Λ(m◦), (3.1)

for some throughput vector Λ ∈ RI+ which we must identify and for J ◦ the set of non-bottleneck queues
which must also be identified. Since the vector cn needs not to belong to ZI+, we consider cn + kc where
{kc}c∈N is any uniformly bounded sequence such that cn + kc ∈ ZI+. Our theorem can then be written as
follows.

Theorem 1 For n ∈ RI+,m ∈ ZJ
◦×I

+

π◦(m◦|cn+ kc) −−−→
c→∞

π◦Λ∗(n)(m
◦) (3.2)

1Actually, the open queueing networks defined in Bramson [5], called head-of-the-line processor sharing networks, appear different
from ours. In fact, upon completion of service at one queue, a class-i1 customer becomes of class i2 with probability pi1i2 . However,
one can easily build a mapping from one representation to the other.
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where (Λ∗1(n), . . . ,Λ∗I(n)) is the unique minimizer of the strictly-concave optimization problem

maximize
∑
i∈I

ni log Λi (3.3a)

subject to
∑
i:j∈i

Λi/µji ≤ 1, j ∈ J (3.3b)

over Λi ≥ 0, i ∈ I, (3.3c)

and where J ◦, the set of non-bottlenecks, is given by the set of queues j such that∑
i:j∈i

Λ∗i (n)

µji
< 1.

The solution of optimization problem (3.3), Λ∗(n), is known in the literature as the proportionally-fair
allocation (see Kelly [15]) and, interestingly, emerged independently as a model for the sharing of bandwidth
among Internet connections (e.g., Srikant [33]). For a detailed treatment of the relationship between closed
queueing networks and the proportionally-fair allocation, see Walton [35].

3.2 Existence of fluid limits for closed queueing networks.

In Section 3.1, we analyzed the stationary probability distribution (2.2) of the closed queueing networks
under investigation in the large-population limit. Now, we focus on the transient probability distribution
in the large-population limit and then study the evolution in time of the system. In other words, the limit
in time is now taken before the limit in the number of customers. In stochastic systems it is known that
both limits are not interchangeable in general. The fluid limit, see Definition 2, is a natural framework that
allows for the analysis of such scenario.

We consider a sequence of the closed queueing networks described in Section 2. In this sequence, the
only variables that change are the number of customers on each route (the number of queues, routes, service
distributions are kept fixed). We let the vector n ∈ RI+ be the proportion of customers on each route of the
network. In the cth network of this sequence of closed queueing networks, there are cn + kc customers on
each route, where {kc}c∈N is a bounded sequence of variables in RI+ such that cn+ kc ∈ ZI+.

We let Mc
ji(t) be the number of route-i customers in queue j at time t of the cth closed queueing network.

We let Λcji(t) give the total number of route-i customers served by queue j by time t in the cth closed queueing
network. From this, we define the rescaled processes

M̄c
ji(t)

def
=

Mc
ji(ct)

c
, Λ̄cji(t)

def
=

Λcji(ct)

c
, j ∈ J , i ∈ I, j ∈ i.

We wish to show that the vector processes M̄c and Λ̄c converge to a fluid solution.

Theorem 2 The sequence of stochastic processes {(M̄c, Λ̄c}c∈N converges in probability on uniforms on
compact time intervals to a process (m̄, Λ̄) that satisfies the fluid solution equations (2.9).

3.3 Convergence of the fluid solution.

Having established the existence of a fluid solution, say (m,Λ), of our closed queueing networks, now our

goal is to study its evolution in the long-term, i.e., ṁij
def
= dmij(t)/dt when t → ∞. In our main result,

we show that the amount of fluid m eventually concentrates on the bottleneck queues only and that the
long-term proportions of fluid in each route and in each queue solve the dual of optimization problem (3.3).

From the stationary distribution π(m|n), given by (2.2), and under the same premise of Theorem 1, we
can show that

lim
c→∞

1

c
log π(cm|cn) = −β(m)

where

β(m) =
∑
j∈J

∑
i:j∈i

mji log
mjiµji
mj

(3.4)

=
∑
j∈J

mj

∑
i:j∈i

pji log
pji

µ−1
ij

. (3.5)

Here, we have used the notation pji
def
=

mji
mj

.

Remark 2 (Relative Entropy) A key quantity that will be useful in our proofs is the unnormalized relative
entropy2

D(p||q) def
=
∑
i

pi log
pi
qi
, p, q ∈ RI+.

2This entropy is unnormalized because we do not enforce the condition that its arguments are probability distributions.
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We notice that the function β, given by (3.5), is a linear combination of these unnormalized relative entropies
for each queue. Furthermore, we note that if

∑
i pi =

∑
i qi, then we can renormalize and treat p and q

as probability distributions. One can show that D(p||q) ≥ 0, using Jensen’s inequality, and that D(p||q) is
minimized if p = q.

Remark 3 It is an interesting observation that the rate of decrease of β(m), the entropy of states, will be
determined by the relative entropy between the rates of service; see Proposition 7 below. Although distinct,
this argument is similar to those argued for Markov processes by Spitzer [32] and more recently by Dupuis
and Fischer [10]. A further important reference is Bramson [5], which shows, for the open versions of the
closed queueing networks considered in this paper, that the amount of fluid in non-bottlenecks converges to
zero.

In Bramson [5], the main argument behind the fluid convergence to zero for non-bottleneck stations
relies on closing the open network with an additional (artificial) queue whose service rate equals the overall
throughput of the network. All customer routes enter this additional queue and it is assumed that this queue
never empties. This plays a significant role in regulating traffic to match that of the open network. So
although a closed queueing network appears in that analysis, this additional queue introduces an important
loss of generality.

The function β(m) forms a natural candidate for a Lyapunov function. We need to show that, for n ∈ RI+
fixed, β(m(t)) decreases to its minimal value

β∗
def
= minimize β(m) subject to

∑
j∈i

mji = ni, i ∈ I. (3.6)

We will consider the set of points attaining this minimal value

M def
= argmin β(m) subject to

∑
j∈i

mji = ni, i ∈ I. (3.7)

The following theorem shows how the amount of fluid eventually distributes among network stations.

Theorem 3 For m(t),Λ(t) a fluid solution (2.9),

β(m(t))↘ β∗, as t→∞

and, moreover,
min
m∗∈M

|m(t)−m∗| → 0, as t→∞.

In the above theorem, for the norm |m| is the euclidean norm in bRI×J .

4 Proofs of main results.

We now focus on proving the main results of this paper, namely, Theorem 1, Theorem 2 and Theorem 3.
These are respectively proven in Sections 4.1, 4.2 and 4.3.

4.1 Analysis of non-bottleneck queues.

We develop a proof of Theorem 1. Recalling the informal statement (3.1), we need to verify that for each

n ∈ RI+,m ∈ ZJ
◦×I

+

π◦(m◦|cn) −−−→
c→∞

π◦Λ(m◦), (4.1)

for some Λ ∈ RI+ which we must identify and for J ◦ the set of non-bottleneck queues which we must identify.
Before verifying such a statement, we must identify the relevant throughput vector Λ and non-bottleneck
queues J◦. Fortunately, the following result, which was proven by Walton [35], characterizes Λ and J ◦.
Proposition 1 ([35])

Λ∗i (n) = lim
c→∞

Λi(cn+ kc), i ∈ I

where Λ∗i (n) is the unique minimizer of the concave optimization problem (3.3) and so that Λi(cn + kc) is
defined on a point in its domain, {kc}c∈N is any bounded sequence in RI+ such that cn+ kc ∈ ZI+.

Consequently, j ∈ J ◦ iff ∑
i:j∈i

Λ∗i (n)

µji
< 1.

Now, we show that (3.2) holds. Before proceeding with this proof, we introduce a specific closed queueing
network, which will helps us in the proof. Recall the closed queueing network defined on set J introduced
in Section 2. Consider a queueing network defined exactly as in Section 2, except that queues J ◦ are
removed. The resulting queueing network has states m̄ = (m̄ji : j ∈ J̄ , i ∈ I, j ∈ i) ∈ ZJ̄×I+ ; if there are
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n ∈ ZI+ customers on each route, this network has state space S̄(n) = {m̄ :
∑
j m̄ji = ni, i ∈ I}, stationary

distribution

π̄(m̄|n) =
1

B̄(n)

∏
j∈J̄

((
m̄j

m̄ji : j ∈ i

) ∏
i:j∈i

µ
−m̄ji
ji

)
, m̄ ∈ S̄(n), (4.2)

where

B̄(n) =
∑

m̄∈S̄(n)

∏
j∈J̄

((
m̄j

m̄ji : j ∈ i

) ∏
i:j∈i

µ
−m̄ji
ji

)
,

and stationary throughput

Λ̄(n) =
B̄(n− ei)
B̄(n)

.

Proposition 1 holds for this network and, here, we would consider Λ̄∗(n), the solution to the optimization

maximize
∑
i∈I

ni log Λi subject to
∑
i:j∈i

Λi/µji ≤ 1, j ∈ J̄ over Λi ≥ 0, i ∈ I.

In this optimization, all constraints that are not relevant to our solution Λ∗(n) are removed. Thus, it is not
surprising that the following lemma holds.

Lemma 2 Λ̄∗(n) = Λ∗(n).

We prove Lemma 2 in Appendix A. A direct consequence of Lemma 2 and Proposition 1 is the following.

Lemma 3

Λ̄i(n) =
B̄(n− ei)
B̄(n)

−−−→
c→∞

Λ∗i (n), i ∈ I.

We can now proceed to demonstrate that (3.2) holds. Let us consider the equilibrium distribution
π◦(m◦|n). We have

π◦(m◦|n) =
∑

m̄∈ZJ̄+ :

(m̄,m◦)∈S(n)

π((m̄,m◦)|n)

=
1

B(n)
×
∏
j∈J ◦

((
m◦j

m◦ji : j ∈ i

) ∏
i:j∈i

µ
−m◦ji
ji

)
×

∑
m̄∈ZJ̄+ :

(m̄,m◦)∈S(n)

∏
j∈J

((
m̄j

m̄ji : j ∈ i

) ∏
i:j∈i

µ
−m̄ji
ji

)

=
1

B(n)
×
∏
j∈J ◦

((
m◦j

m◦ji : j ∈ i

) ∏
i:j∈i

µ
−m◦ji
ji

)
×

∑
m̄∈S̄(n−n◦)

∏
j∈J

((
m̄j

m̄ji : j ∈ i

) ∏
i:j∈i

µ
−m̄ji
ji

)

=
B̄(n)

B(n)︸ ︷︷ ︸
(c)

× B̄(n− n◦)
B̄(n)︸ ︷︷ ︸

(b)

×
∏
j∈J ◦

((
m◦j

m◦ji : j ∈ i

) ∏
i:j∈i

µ
−m◦ji
ji

)
︸ ︷︷ ︸

(a)

. (4.3)

Here, n◦ = (n◦i : i ∈ I) is the number of route-i customers in non-bottleneck queues, i.e. n◦i =
∑
j∈i∩J ◦ m

◦
ji.

The third equality above follows by observing that the summation is over all the states where the number
of non-bottleneck customers is n− n◦.

We now consider how the terms (a), (b) and (c), converge as we keep m◦ fixed and let n increase.
Term (a) is easily dealt with as it does not depend on n. Term (b) will be shown to converge in the next
proposition. Subsequently, term (c) will take a more in depth analysis.

Term (a) represents the correct expression for the unnormalized stationary distribution of our open
queueing network (see (2.8)), except that we do not include the multiplicative term∏

j∈J ◦

∏
i:j∈i

Λ∗i (n)m
◦
ji =

∏
i∈I

Λ∗i (n)n
◦
i .

As the following proposition shows, this is the limit of the term (b).

Proposition 2 For n◦ ∈ ZI+, n ∈ RI+ and {kc}c∈N some bounded sequence such that cn+ kc ∈ ZI+

B(cn+ kc − n◦)
B(cn+ kc)

−−−→
c→∞

∏
i∈I

Λ∗i (n)n
◦
i .

8



Proof: From Proposition 1, we have that

B(cn+ k′c − ei)
B(cn+ k′c)

−−−→
c→∞

Λ∗i (n), (4.4)

for any n ∈ RI+ and any bounded sequence {k′c}c∈N such that cn+k′c ∈ ZI+. Let K =
∑
i n
◦
i , Let ei(1), ..., ei(K)

be a finite sequence of unit vectors and n(0), ..., n(K) be a sequence of vectors in ZI+ such that

n(0) = 0, n(K) = n◦

n(k) = n(k − 1) + ei(k), k = 1, ...,K.

Applying (4.4), we have that

B(cn+ kc − n◦)
B(cn+ kc)

=

K−1∏
k=0

B(cn+ kc − n(k)− ei(k+1))

B(cn+ kc − n(k))
−−−→
c→∞

K∏
k=1

Λ∗i(k)(n) =
∏
i∈I

Λ∗i (n)n
◦
i ,

as required.
As the above proposition holds for any closed queueing network and because Lemma 3 holds, we can say
that

B̄(cn+ kc − n◦)
B̄(cn+ kc)

−−−→
c→∞

∏
i∈I

Λ∗i (n)n
◦
i =

∏
j∈J ◦

∏
i:j∈i

Λ∗i (n)m
◦
ji . (4.5)

We now study term (c) in expression (4.3). We can note that this term is exactly the probability that
all non-bottleneck queues are empty.

Lemma 4

π({mj = 0, ∀j ∈ J ◦}|n) =
B̄(n)

B(n)
.

Proof: We have the following equations:

π({mj = 0,∀j ∈ J ◦}|n) =
∑

m∈S(n):
mj=0,j∈J ◦

1

B(n)

∏
j∈J

((
mj

mji : j ∈ i

) ∏
i:j∈i

µ
−mji
ji

)

=
∑

(0,m̄)∈S(n)

1

B(n)

∏
j∈J̄

((
m̄j

m̄ji : j ∈ i

) ∏
i:j∈i

µ
−m̄ji
ji

)

=
∑

m̄∈S̄(n)

1

B(n)

∏
j∈J̄

((
m̄j

m̄ji : j ∈ i

) ∏
i:j∈i

µ
−m̄ji
ji

)
=
B̄(n)

B(n)
.

Although it is difficult to directly deal with events of the form {mj = 0,∀j ∈ J ◦}, we can deal with
events of the form {mj > 0, ∀j ∈ J ′} where J ′ ⊂ J ◦.
Lemma 5 For J ′ ⊂ J ◦,

π({mj > 0,∀j ∈ J ′}|cn+ kc) −−−→
c→∞

∏
j∈J ′

Λ∗j (n)

where we define

Λ∗j (n)
def
=
∑
i:j∈i

Λ∗i (n)

µji
.

Proof: To prove this lemma, we consider the explicit stationary distribution of a closed multi-class queue-
ing network (2.1).

Recall s = (sj : j ∈ J ) where sj = (ij(k) : k = 1, ...,mj) ∈ Imj keeps track of the exact position
and route type of each customer within a queue. Within this state representation, we can calculate the
probability that the customer at the head of each queue j ∈ J ′ is from a specific route type r(j) ∈ I. In
particular, if we let r(j) be the route type of the customer at the head of queue j ∈ J ′ and we let the vector
n′ give the number of customers of each route type at the heads of these queues then we can see that

π({ij(1) = r(j), j ∈ J ′}|n) =
∑

c∈X (n):

ij(1)=r(j),j∈J ′

1

B(n)

∏
j∈J

∏
i:j∈i

µ
−mji
ji

=

[ ∏
j∈J ′

1

µjr(j)

]
×

∑
c′∈X (n−n′)

1

B(n)

∏
j∈J

∏
i:j∈i

µ
−m′ji
ji

=

[ ∏
j∈J ′

1

µjr(j)

]
× B(n− n′)

B(n)
.
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In the second inequality above, we factor out the multiplicative terms corresponding to the heads of each
queue in J ′. We then notice the remaining states that must be summed over are all the states where there
are n− n′ customers on each route. The resulting sum then gives the normalizing constant when there are
n− n′ customers on each route.

Next, by Proposition 2, we have that

π({ij(1) = r(j), j ∈ J ′}|n) =

[ ∏
j∈J ′

1

µjr(j)

]
× B(n− n′)

B(n)
−−−→
c→∞

∏
j∈J ′

Λ∗r(j)(n)

µjr(j)
. (4.6)

The events {ij(1) = r(j), j ∈ J ′} are disjoint for different choices of r′ = (r(j) : j ∈ J ′). For a queue to be
nonempty, there must be some customer at its head. Thus,⋃

r′∈IJ′
{ij(1) = r(j), j ∈ J ′} = {mj > 0, j ∈ J },

and consequently using (4.6), we have

π({mj > 0, j ∈ J }|n) =
∑

r′∈IJ′
π({ij(1) = r(j), j ∈ J ′}|n)

=
∑

r′∈IJ′

[ ∏
j∈J ′

1

µjr(j)

]
× B(n− n′)

B(n)

−−−→
c→∞

∑
r′∈IJ′

∏
j∈J ′

(
Λ∗r(j)(n)

µjr(j)

)
=
∏
j∈J ′

(∑
r∈I

Λ∗r(n)

µjr

)
=
∏
j∈J ′

Λ∗j (n)

as required.
Now we are in the position to prove the convergence of term (c) in expression (4.3).

Proposition 3
B̄(cn+ kc)

B(cn+ kc)
−−−→
c→∞

∏
j∈J ◦

(
1− Λ∗j (n)

)
Proof: In the following expression, we use Lemma 4; we apply the Inclusion-Exclusion Principle (4.8);
we apply Lemma 5 (4.9); and then we notice the resulting summation is

∏
j∈J ◦

(
1− Λ∗j (n)

)
expanded.

Formally, we obtain

B̄(cn+ kc)

B(cn+ kc)
=π({mj = 0,∀j ∈ J ◦}|cn+ kc) (4.7)

=1− π
( ⋃
j∈J

{mj > 0}
∣∣∣cn+ kc

)

=

J◦∑
k=0

∑
j1,...,jk∈J ◦:
j1<...<jk

(−1)kπ({mj > 0, j = j1, ..., jk}|cn+ kc) (4.8)

−−−→
c→∞

J◦∑
k=0

∑
j1,...,jk∈J ◦:
j1<...<jk

(−1)k
∏

j=j1,...,jk

Λ∗j (n) =
∏
j∈J ◦

(
1− Λ∗j (n)

)
. (4.9)

In expression (4.8), the k = 0 summand is understood to equal 1.

We have now discovered the limiting behavior of terms (a), (b), and (c), and we can prove Theorem 1.

Proof of Theorem 1: The result holds by applying Proposition 2 and equality (4.5), which we derived
from Proposition 3, to our derived equality (4.3):

π◦(m◦|cn+ kc) =
B̄(cn+ kc)

B(cn+ kc)
× B̄(cn+ kc − n◦)

B̄(cn+ kc)
×
∏
j∈J ◦

( m◦j
m◦ji : j ∈ i

) ∏
i:j∈i

1

µ
m◦ji
ji


−−−→
c→∞

∏
j∈J ◦

(
1− Λ∗j (n)

)
×
∏
j∈J ◦

∏
i:j∈i

Λ∗i (n)m
◦
ji ×

∏
j∈J ◦

((
m◦j

m◦ji : j ∈ i

) ∏
i:j∈i

(
Λi(n)

µji

)m◦ji)

=
∏
j∈J ◦

(
1− Λ∗j (n)

)
×
∏
j∈J ◦

((
m◦j

m◦ji : j ∈ i

) ∏
i:j∈i

(
Λi(n)

µji

)m◦ji)
=π◦Λ∗(n)(m

◦).

This proves that our network’s non-bottleneck queues become independent.
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4.2 Proof of fluid limit.

Let I(j)
def
= {i ∈ I : j ∈ i} and I(j)

def
= |I(j)|. Assuming that set I(j) is ordered, we also denote by ij(l),

with l = 1, . . . , I(j), the function that enumerates its elements. We define for each j ∈ J , an independent
Poisson marked point process Nj with intensity µj dt⊗ du on R× [0, 1], where µj = max{i ∈ I(j) : µji}

and the function χj(mj , u) on NI(j) × (0, 1) in the following way:

χj(mj , u) =


0 if mj = 0

ij(l) if
∑l−1
h=0 mjh µjh ≤ mj µj × u ≤

∑l
h=0 mjh µjh

0 if
∑I(j)
h=0 mjh µjh ≤ mj µj × u ≤ mj µj .

Therefore, the network process can be written as

dMji(t) = 1{χj′(M ′j(t−), UNj′ (t)) = i} dNj′(t)− 1{χj(Mj(t−), UNj(t)) = i} dNj(t)

where j′ denotes the queue just before j on route i. In the following we will use also the notations ĵ and
ĵ′ to denote the first queue on route i before and including the queues j and j′ respectively that are non
empty. In integral form, we have

Mji(t) = Mji(0) + Lj′i(t)− Lji(t) + Λj′i(t)− Λji(t)

where L1
ji(t) is the martingale

Lji(t) =

∫ t

0

∫ 1

0

1{χj(Mj(s−), u) = i}[dNj(s, u)− µj du ds],

and the process Λij(t) is given by

Λji(t) =

∫ t

0

∫ 1

0

µj 1{χj(Mj(s−), u) = i} du ds.

From the equation above, noticing that
∫ 1

0
1{χj(Mj(s, u) = i} du = (µjiMji(s))/(µjMj(s)) and with the

assumption that 0/0 = 0, we get that

1

µji
Λji(t) =

∫ t

0

µj
µji

∫ 1

0

1{χj(Mj(s−), u) = i} du ds =

∫ t

0

Mjh(s−)

Mj(s−)
ds.

Summing over i : j ∈ i we have that for t′ ≤ t′′

∑
i:j∈i

1

µji

(
Λji(t

′′)− Λji(t
′)
)

=

∫ t′′

t′

∑
i:j∈i

Mjh(s−)

Mj(s−)
ds =

∫ t′′

t′

∑
i:j∈i

1{Mj(s−) 6= 0} ds ≤ t′′ − t′, (4.10)

which gives the Lipschitz condition for the process Λji(t).
We define the scaled process M̄(n c, t) = c−1 M(n c, c t), such that, having Mji(0) = c nji, it has the

ji-component given by

M̄ji(n c, t) = nji +
Lj′i(ct)− Lji(ct)

c
+
Lj′i(ct)− Lji(ct)

c
.

Using the same steps as before, we can rewrite the process c−1Λji(ct) in the following way

Λji(ct)

c
=

1

c

∫ c t

0

∫ 1

0

µj 1{χj(Mj(s), u) = i} du ds

=

∫ t

0

∫ 1

0

µj 1{χj(Mj(c s), u) = i} du ds =

∫ t

0

Mji(c s)

Mj(c s)
µji ds .

Proposition 4 Given n ∈ NJ×I , the processes {(M̄(n c, t), t > 0)}c>0, with M(n c, 0) = n c, are tight.

Proof: By the triangular inequalities for metrics, to prove tightness of the multidimensional process
{(M̄(n c, t), t > 0)}c>0, it is enough to show that any of its coordinate processes are tight. By Theorem C.9
in Robert [28], this can be done by showing that given ij, for any fixed T, η > 0, there exists δ > 0 such
that

Pr{ωM̄ji(n c, ·)(δ) > η} < ε (4.11)

where, for a given function f , the modulus of continuity on [0, T ] is defined as

ωf (δ) = sup{s, t ≤ T, |t− s| < δ : |f(t)− f(s)|}.
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Since M̄ji(n c, t) = n+c−1 ∆Lji(c t)+c−1 ∆Λji(c t)−(Lji(c t)) with ∆Lji(t) = Lj′i(t)−Lji(t) and ∆Λji(t) =
Λj′i(t) − Λji(t), it is enough to prove that relation (4.11) is valid separately for the processes c−1∆Lji(c t)
and c−1∆Λji(c t). We have

Pr
{

sup
s,t≤T ;|t−s|<δ

∣∣∣∆Λij(c t)

c
− ∆Λij(c s)

c

∣∣∣ > η
}

(4.12)

= Pr
{

sup
s,t≤T ;|t−s|<δ

∣∣∣ ∫ t

s

(
Mj′i(c u)

Mj′(c u)
µj′i −

Mji(c u)

Mj(c u)
µji

)
du
∣∣∣ > η

}
≤ Pr

{
sup

s,t≤T ;|t−s|<δ

∫ t

s

∣∣∣∣Mj′i(c u)

Mj′(c u)
µj′i −

Mji(c u)

Mj(c u)
µji

∣∣∣∣ du > η
}

≤ Pr
{

sup
s,t≤T ;|t−s|<δ

2|t− s|µ > η
}

= 0 (4.13)

with δ < η/(2µ) and where µ = max{i, j : µji}.
For the martingale c−1 ∆Lji(c t), we have that

Pr
{

sup
s,t≤T ;|t−s|<δ

∣∣∣∆Lji(c t)
c

− ∆Lji(c s)
c

∣∣∣ > η
}

= Pr
{

sup
t≤T

∆Lji(c t)
c

>
η

2

}
≤ 4

c2η2
E
[
(∆Lji(c t))2]

where the last inequality follows by applying the Doob’s inequality. Having that E
[
(∆Lji(c T ))2

]
≤ 2µcT

we have that for c > 8µT/(εη2) the probability is bounded above by ε, as required.

The tightness property ensures the relative compactness, therefore from every sequence {(M̄(n c, t), t >
0)}c>0, with M(n c, 0) = n c and n fixed, it is possible to extract a convergent subsequence. The following
proposition ensures that any limit process will be given by a fluid solution.

Proposition 5 Assume that a sequence of processes {(M̄(n c, t), t > 0)}c>0 converges to a limit process
m(t) as c → ∞. Then, m(t) is almost surely continuous and it is a fluid solution, i.e., it satisfies the
following conditions

mji(t) = Λ∗j′i(t)− Λ∗ji(t), (4.14a)∑
i:j∈i

1

µji

(
Λ∗j′i(t)− Λ∗ji(s)

)
≤ t− s, (4.14b)

Λ∗ji(t) is increasing, (4.14c)

if mj > 0 then
dΛ∗ji(t)

dt
=
mji

mj
µji, (4.14d)∑

j:j∈i

mji(t) = ni. (4.14e)

Proof: Using the Skorohod’s Representation theorem, see Robert [28, Theorem C.8], we can assume that
all the elements of the sequence are random processes defined on the same probability space with probability
P and the convergence is P-a.s.

Since we have that for any c

M̄ji(n c, t) = nji +
∆Lji(c t)

c
+

Λj′i(c t)

c
− Λji(c t)

c
,

passing to the limit and using bounded convergence for the integral we get

m̄ji(t) = nji + Λ∗j′i(t)− Λ∗ji(t)

where

Λ∗ji(t) = lim
c→∞

∫ t

0

Mji(c u)

Mj(c u)
µji du,

which exists by (4.12). In particular, if mj(t) > 0 for some t, it will be positive in a neighborhood B(t) of t
by continuity. It follows that for t′ < t′′ and t′, t′′ ∈ B(t),

Λ∗ji(t
′′)− Λ∗ji(t

′) = lim
c→∞

∫ t′′

t′

Mji(c u)

Mj(c u)
µji du =

∫ t′′

t′
lim
c→∞

Mji(c u)

Mj(c u)
µji du =

∫ t′′

t′

mji(u)

mj(u)
µji du,

where in the second equality we have used the bounded convergence theorem, which implies

∂tΛ
∗
ji(t) = µji

mji(t)

mj(t)
as mj(t) > 0.

The additional conditions satisfied by Λ∗ji(t) easily follow by the property of the approximation processes
{c−1 Λji(c t), c > 0}, in particular the Lipschitz condition follows by (4.10).
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4.3 Proof of convergence of bottleneck queues.

We now focus on proving Theorem 3. Our proof is quite involved and requires a number of lemmas.
For a fluid solution m(t),Λ(t), let Λ′ji(t) be the derivative of Λji(t), when it exists. Let also lji be the

queue before queue j on route i and xji be the next queue after queue j on route i.
The following proposition and lemma helps us differentiate our Lyapunov function.

Proposition 6 For any time interval [t0, t] with t > t0 > 0, there exists a constant D > 0 such that for any
t1, t2 ∈ [t0, t]

|β(t2)− β(t1)| ≤ D|t2 − t1| . (4.15)

Lemma 6 For a function x : R+ → R+, if t > 0 is such that the derivative of x exists at t, the derivative
of x log x exists at t and x(t) = 0 then

dx

dt
= 0 and

dx log x

dt
= 0.

Proposition 6 is based on Proposition 4.2 of Bramson [5]. Both Proposition 6 and Lemma 6 are proven
in Appendix B. Recalling that xji is the next queue on route i after j and that lji is the queue before queue
j on route i, we can now prove the following proposition.

Proposition 7 For almost every t,

dβ

dt
= −

∑
i∈I

∑
j∈i

Λ′ji(t) log
Λ′ji(t)

Λ′xjii(t)
. (4.16)

Proof: Proof Our processes in Proposition 6 are absolutely continuous and thus almost everywhere dif-
ferentiable. So for almost every t, we can differentiate the terms Λji(t), mij(t), mj(t), mij(t) logmji(t),
mj(t) logmj(t) and β(m(t)). We now differentiate the function

β(m(t)) =
∑
j∈J

∑
i:j∈i

(
mji(t) logmji(t)−mji logµji

)
−
∑
j∈J

mj(t) logmj(t).

We obtain

dβ(m(t))

dt
=
∑
j∈J

∑
i:j∈i

(dmji logmji

dt
− dmji

dt
logµji

)
−
∑
j∈J

dmj logmj

dt
(4.17a)

=
∑
j∈J

∑
i:j∈i

mji(t)>0

(dmji logmji

dt
− dmji

dt
logµji

)
−

∑
j∈J :

mj(t)>0

dmj logmj

dt
(4.17b)

=
∑
j∈J

∑
i:j∈i

mji(t)>0

(dmji

dt
logmji +

dmji

dt
− dmji

dt
logµji

)
−

∑
j∈J :

mj(t)>0

(
dmj

dt
logmj +

dmj

dt

)
(4.17c)

=
∑
j∈J

∑
i:j∈i

mji(t)>0

dmji

dt
log

mji(t)µji
mj(t)

(4.17d)

=
∑
i∈I

∑
j∈i

(
Λ′ljii(t)− Λ′ji(t)

)
log Λ′ji(t) (4.17e)

=
∑
i∈I

∑
j∈i

Λ′ji(t)
(

log Λ′xjii(t)− log Λ′ji(t)
)

(4.17f)

= −
∑
i∈I

∑
j∈i

Λ′ji(t) log
Λ′ji(t)

Λ′xjii(t)
. (4.17g)

In the above sequence of equalities, equality (4.17b) holds by Lemma 6. Equality (4.17d) holds by ob-
serving that

∑
i:j∈imji = mj and canceling terms. For equality (4.17e), we know by our fluid model

assumption (2.9a) that m′ji(t) = Λ′ljii(t) − Λ′ji(t). In addition, we note that if mji > 0 then, using (2.9d),

log
mjiµji
mj

= log Λ′ji(t) and if mji(t) = 0 then 0 = m′ji(t) = Λ′ljii(t) − Λ′ji(t) and Λ′ji(t) > 0. Thus, we may

reintroduce the mji = 0 terms in our summation. In equality (4.17e), for each route, we re-interpolate the
first term in our summation.

The next lemma, found in Cover and Thomas [9], will be of key importance in bounding our Lyapunov
function.

Lemma 7 (Pinsker’s Inequality) For the relative entropy between two discrete probability distributions
p = (pj)j and q = (qj)j with the same support:

D(p||q) =
∑
j

pj log
pj
qj
,
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the following inequality holds √
D(p||q) ≥

∑
j

|pj − qj |.

Applying Pinsker’s inequality to Proposition 7 gives

Lemma 8 For almost every t,

dβ(m(t))

dt
≤ −

∑
i∈I

1

µmax|J |
∑
j∈i

(
Λ′ji(t)− Λ′xjii(t)

)2

, (4.18)

where |J | is the size of set J and we recall that µmax = max{µji : i ∈ I, j ∈ i}.

Proof: Proof Let t be a time for which Proposition 7 holds and let ΛΣ
i (t) =

∑
j∈i Λ′ji(t), for i ∈ I. For

each i, let pj = Λ′ji(t)/Λ
Σ
i (t) and qj = Λ′xjii(t)/Λ

Σ
i (t). By Lemma 11, p and q both have the same support.

For each i, we applying Pinsker’s Lemma∑
j∈i

Λ′ji(t)

ΛΣ
i (t)

log
Λ′ji(t)

Λ′xjii(t)
=
∑
j∈i

pi log
pi
qi
≥
(∑
j∈i

|pi− qi|
)2

≥
∑
j∈i

|pi− qi|2 =
1

(ΛΣ
i (t))2

∑
j∈i

(
Λ′ji(t)−Λ′xjii(t)

)2

Multiplying the left and right of this inequality by −ΛΣ
i (t), summing over i ∈ I gives

dβ(m(t))

dt
= −

∑
i∈I

∑
j∈i

Λ′ji(t) log
Λ′ji(t)

Λ′xjii(t)
≤ −

∑
i∈I

1

ΛΣ
i (t)

∑
j∈i

(
Λ′ji(t)− Λ′xjii(t)

)2

.

Recall that from Lemma (11) that Λ′ji(t) ≤ µmax thus ΛΣ
i (t) ≤ |J |µmax. Applying this bound to ΛΣ

i (t) the
above equation gives the required result (4.18).

We define m∗ to be a solution to the optimization problem

minimize β(m) subject to
∑
j∈i

mij = ni, i ∈ I over mji ≥ 0, i ∈ I, j ∈ i. (4.19)

As we discussed we expect the path of the m(t) to converge to the optimal value of the optimization. To
conduct further analysis, we characterize the dual of this problem.

Lemma 9 The dual of the optimization (4.19) is

maximize
∑
i∈I

ni log Λi subject to
∑
i:j∈i

Λi
µji
≤ 1 over Λi ≥ 0, i ∈ I.

Proof: Proof Taking Lagrange multipliers λ ∈ RI , its Lagrangian is,

L(m,λ) =
∑

j∈J :mj>0

∑
i∈I

mji log
mjiµji
mj

+
∑
i∈I

λi

(
ni −

∑
j:j∈i

mji

)

=
∑

j∈J :mj>0

∑
i∈I

mji log
mjiµji
mjeλi

+
∑
i∈I

λini

=
∑

j∈J :mj>0

mjD(pj ||qj) +
∑

j∈J :mj>0

mj log
(∑
i:j∈i

eλiµ−1
ji

)
+
∑
i∈I

λini.

In the final, inequality above we let pj = (mji/mj : i 3 j) and qj = (eλiµ−1
ji /

∑
r e

λrµ−1
jr : i 3 j). Recalling

our Remark 2 on relative entropies, this Lagrangian is minimized by taking pj = qj for each j ∈ J and then
by minimizing over mj . In particular, we get

min
m∈RK+

L(m,λ) =

{∑
i:ni>0 niλi if

∑
i:j∈i

eλi

µji
≤ 1, ∀j ∈ J ,

−∞ otherwise,

thus we find dual,

maximize
∑
i:ni>0

niλi subject to
∑
i:j∈i

eλi

µji
≤ 1 over λ ∈ RI .

Substituting Λi = eλi gives the required result

maximize
∑
i:ni>0

ni log Λi subject to
∑
i:j∈i

Λi
µji
≤ 1, ∀j ∈ J over Λ ∈ RI+.

Lemma 10 If, for some ε > 0, β(m(t)) ≥ β(m∗) + ε then there exists δ > 0, i ∈ I and j ∈ i such that

|Λ′ji(t)− Λ′xjii(t)| ≥ δ.
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Proof: Proof We develop a proof by contradiction. If this result was not true, as the set of queue sizes
is compact, we could construct a sequence of times tk, k = 1, 2, 3, ... such that β(m(tk)) ≥ β(m∗) + ε and
m(tk)→ m̃, as k →∞ and ∑

i∈I

∑
j∈i

∣∣∣Λ′ji(tk)− Λ′ji(t
k)
∣∣∣ −−−−→
k→∞

0.

For each queue j ∈ I with m̃j > 0, let j+
i be the next non-empty queue on route i i.e. m

j+i i
> 0. We can

say

Λ′ji(t
k) −−−−→

k→∞

m̃jiµji
m̃j

and Λ′
j+i i

(tk) −−−−→
k→∞

m̃
j+i i

µ
j+i i

m̃j+
.

We letting J+ be the set of queues on route i between j and j+
i that includes j but does not include j+

i .
Applying a triangle inequality across these queues, we can say that∣∣∣∣∣m̃jiµji
m̃j

−
m̃
j+i i

µ
j+i i

m̃j+

∣∣∣∣∣ ≤ lim
k→∞

∣∣∣∣m̃jiµji
m̃j

− Λ′ji(t
k)

∣∣∣∣+

∣∣∣∣∣m̃j+i i
µ
j+i i

m̃
j+i

− Λ′
j+i i

(tk)

∣∣∣∣∣+
∑
l∈J+

∣∣∣Λ′li(tk)− Λ′xlii(t
k)
∣∣∣
 = 0.

Applying this triangle inequality once more, for any queue l on route i that is between j and j+
i , we see that

lim
k→∞

∣∣∣∣m̃jiµji
m̃j

− Λ′li(t
k)

∣∣∣∣ = 0.

In other words, for each route i for all queues j ∈ i, Λ′ji(t
k) converges to some value Λ̃i > 0 where if m̃j > 0

we have that

Λ̃i =
m̃jiµji
m̃j

for some constant Λ̃i > 0. Observe that, by (2.9b), for each queue j ∈ J∑
i:j∈i

Λ̃i
µji

= lim
k→∞

∑
i:j∈i

Λ′ji(t
k)

µji
≤ 1

also
β(m̃) =

∑
i∈I

∑
j:j∈i

m̃ji log Λ̃i =
∑
i∈I

ni log Λ̃i. (4.20)

Thus, the vector Λ̃ = (Λ̃i : i ∈ I) is feasible for the dual problem and the vector m̃ is feasible for the primal
problem. We know by Weak Duality (for a minimization) that the any primal feasible solution is bigger
than that of the dual. Thus, we know by (4.20) that the primal equals dual solution and so m̃ must be
optimal for the primal problem i.e. β(m̃) = β(m∗). This must be a contradiction because by assumption
β(m(tk)) ≥ β(m∗) + ε and thus by continuity of β, β(m̃) ≥ β(m∗) + ε.

We are now in a position to prove Theorem 3.

Proof: Proof of Theorem 3 We found β(m(t)) was absolutely continuous in t. In Lemma 8, we found the
derivative of β(m(t)) was almost everywhere negative and thus β(m(t)) must be a decreasing function.

Suppose for s ∈ [0, t], β(m(s)) ≥ β(m∗) + ε for some ε > 0 then by Lemma 10 there exists an i ∈ I and
a j ∈ i ∣∣Λ′ji(s)− Λ′ji(s)

∣∣ ≥ δε,
for some δε > 0. Thus applying this to our bound in Lemma for intervals of time [0, t] such that β(m(s)) ≥
β(m∗) + ε, we have that

β(m(t)) ≤ β(m(0))− t δ2
ε

|J |µmax
.

As β(m(t)) is bounded below by β(m∗), the above inequality cannot be sustained for all times t. In other
words, eventually β(m(t)) ≤ β(m∗) + ε. Thus β(m(t))↘ β(m∗). This proves the first assertion in Theorem
3.

Now, it remains to show that m(t) approaches M, the set of solutions to (4.19). Take some ε1 > 0. Let
m = (mji : i ∈ I, j ∈ i) be any vector with

∑
j:j∈imji = ni for i ∈ I and such that

min
m∗∈M

|m−m∗| ≥ ε1.

Such an m belongs to a compact set and thus, as β is continuous, it must be that β(m) ≥ β(m∗) + ε for
some ε > 0. Or stated differently if β(m) < β(m∗) + ε then it must be that

min
m∗∈M

|m−m∗| < ε1.

As we have just shown β(m(t)) < β(m∗) + ε holds eventually for all fluid paths. Thus,

lim
t→∞

min
m∗∈M

|m(t)−m∗| = 0.
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A Proof of Lemmas 1 and 2.

Proof of Lemma 1: Taking j = ji1, we have

Λi(n) =
∑

m∈S(n):
mj>0

µji
mji

mj
π(m|n)

=
∑

m∈S(n):
mj>0

µji
mji

mj

1

B(n)

∏
l∈J

((
ml

mlr : r 3 l

) ∏
r:l∈r

(
1

µlr

)mlr)

=
∑

m′∈S(n−ei)

1

B(n)

∏
l∈J

((
m′l

m′lr : r 3 l

) ∏
r:l∈r

(
1

µli

)m′lr)
=
B(n− ei)
B(n)

.

In the third inequality, we canceled terms and substituted m′lr = mlr − 1 if (l, r) = (j, i) and m′lr = mlr

otherwise.

Proof of Lemma 2: We consider both optimal solutions Λ̄∗(n) and Λ∗(n). Let

Gn(Λ) =
∑
i∈I

ni log Λi

Since Λ̄∗(n) is the solution of an optimization with a larger feasible set Gn(Λ̄∗(n)) ≥ Gn(Λ∗(n).
Take v = Λ̄∗(n)− Λ∗(n). Note Λ∗(n) + δv belongs to feasible set{

Λ ≥ 0 :
∑
i:j∈i

Λi
µji
≤ 1

}
for all δ suitably small. If this was not so then their would have been some constraint/queue which we did
not correctly include in the set of bottleneck links J̄ . Taking the partial derivative of Gn from Λ∗(n) in the
direction of v, we can then say that ∑

i∈I

vi
∂Gn(Λ∗(n))

∂Λi
≤ 0.

This holds because Λ∗(n) is optimal. Now, also, by the concavity of Gn(·)

Gn(Λ̄∗(n))−Gn(Λ∗(n)) ≤
∑
i∈I

vi
∂Gn(Λ∗(n))

∂Λi
.

So Gn(Λ̄∗(n)) ≤ Gn(Λ∗(n)). So Gn(Λ∗(n)) = Gn(Λ̄∗(n)). By strict concavity of Gn(·), Λ̄∗(n) is the unique
feasible solution it’s optimization problem. Thus as Λ̄∗(n) is also feasible it must be that Λ̄∗(n) = Λ∗(n).

B Lipschitz Continuity of β(m(t)).

Before proceeding to prove the Lipschitz continiuty of β(m(t)), We shall quickly give a proof of Lemma 6.

Proof of Lemma 6: We use the fact that we know that the derivative exists. Firstly, it is clear dx
dt

= 0
because,

dx

dt
= lim
h↘0

x(t+ h)− 0

h
≥ 0, and

dx

dt
= lim
h↗0

x(t+ h)− 0

h
≤ 0.

So dx
dt

= 0. Noting that x log(x) is negative for all x < 1. By essentially the same argument

dx log x

dt
= lim
h↘0

x(t+ h) log x(t+ h)− 0

h
≤ 0, and

dx log x

dt
= lim
h↗0

x(t+ h) log x(t+ h)− 0

h
≥ 0.

Thus dx log x
dt

= 0.

We now demonstrate that the function β(m(t)) is Lipschitz continuous on any compact time interval.
Here m(t) is any solution to the fluid equations (2.9) and β(m) is defined by (3.5). The following arguments
are adapted from Lemma 4.2 and Proposition 4.2 of Bramson [5]. All queues may empty in our network, so
we have to apply some degree of care in proving the Lipschitz continuity on compact time interval.

Lemma 11 For almost every t, 0 < Λ′ji(t) ≤ µmax, where µmax = max{µji : i ∈ I, j ∈ i}.
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Proof: Suppose that m(t) and Λ(t) are differentiable at t. We may assume Λ′ji(t) > 0 for some queue j
on route i. Such a queue must exist because there is always some queue with mji(t) > 0 as ni > 0 and thus
by (2.9d) Λ′ji(t) > 0. Now consider xji the next queue on route i, if mxjii(t) > 0 then by (2.9d) Λ′xjii > 0,

and if mxjii(t) = 0 then m′xjii(t) = 0, thus by (2.9a) Λ′xjii(t) = Λ′ji(t) > 0. Continuing inductively we see

that Λ′ji(t) > 0 for all queues.
From this argument we now see that the value of Λ′ji(t) on any route i is achieved by a queue j∗ with

mj∗i > 0. Thus applying (2.9d), Λ′ji(t) ≤ µji ≤ µmax.

Proposition 8 For almost every t > t0 > 0, there exists a constant T > 0 such that if t − t0 < κT for
κ ∈ N then

min
ji

Λ′ji(t) >
minji Λ′ji(t0)

(1 + maxji µji)κ

Here cm(t0) is a strictly positive constant which depends on m(t0), the fluid model state at time t0.

In order to prove this proposition we require the following lemma

Lemma 12 For almost every time t0 and t with t > t0, if a queue j on route i, has arrival process from the
queue before j, lji such that for almost every s ∈ [t0, t]

Λ′lijj(s) > c,

then, almost everywhere, the output of route i work from queue j satisfies

Λ′ji(t) ≥ c′ (B.1)

where

c′ = min

{
Λ′ji(t0),

c

1 + maxji µji

}
.

Proof: We note that Λij(t) is a Lipschitz function and thus is almost every where differentiable. We
assume that t and t′ are differentiable points where (B.1) is violated. Observe that if mji(t) = 0 then, by
(2.9a), 0 = m′ji(t) = Λ′ji(t) − Λ′ljii(t). Thus Λ′ji(t) = Λ′ljii(t) > c > c′. So it must be that mji(t) > 0.

Consequently by (2.9d), Λ′ji(s) = µjimji(s)/mj(s) must be continuous on an interval around t and there
must be an open interval arround t for which Λ′ji(s) < c′.

For a Λ′ji(s) to get small we need the total number of departures to be comparible relative to the arrivals.
So, we will next argue the contradiction that Λ′ji(t) cannot enter an interval of time for which Λ′ji(s) < c′

without the average departure rate (Λ′ji(t)− Λ′ji(s))/(t− s) being bigger that c′.
We let t̃ be the last time before t and after t0 for which Λji(t̃) ≥ c′. Note Λji(t0) ≥ c′, so t̃ is well defined.

We use the shorthand Λji(t̃, t) = Λji(t)− Λji(t̃) and ∆j(t̃, t) = mj(t)−mj(t̃). As mij(t) > 0, by (2.9d), we
have

c′ > Λ′ji(t) = µji
mji(t)

mj(t)
= µji

mji(t̃) + Λljii(t̃, t)− Λji(t̃, t)

mj(t̃) + ∆j(t̃, t)
.

Rearranging the above expression implies

Λji(t̃, t) > Λljii(t̃, t)− c
′∆j(t̃, t) + µjimji(t̃)− c′mj(t̃) ≥ Λljii(t)− c

′∆j(t̃, t).

The last inequality holds because, by (2.9d), Λ′ji(t̃) ≥ c′ implies µjimji(t̃)− c′mj(t̃) ≥ 0. Let’s now look at
the mean value of the terms in the above inequality:

Λji(t̃, t)

t− t̃
>

Λljii(t̃, t)

t− t̃
− c′∆j(t̃, t)

t− t̃
≥ c− c′max

ji
µji ≥ c′.

In the second inequality above, we use the assumption that Λ′lijj(s) > c, s ∈ [t0, t0 + T ] and the fact the

average change in mj(t), ∆j(t̃, t)/(t − t̃), is at most by the maximum service rate maxji µji. The final
inequality holds by our choice of c′. This then contradicts our assumption that Λ′ji(s) < c′ on the interval
(t̃, t].
The following lemma is a consequence achieved by iteratively applying the last result. We have to apply
some care because, in comparison to Bramson’s open network analysis [5], every queue can empty or have
low arrival and departure rate.

Lemma 13 For almost every t0, there exists an interval of fixed length [t0, t0 +T ] such that for almost every
t ∈ [t0, t0 + T ] and for all i ∈ I and j ∈ J

Λ′ji(t) > c̃(t0) > 0.

Here c̃(t0) is a function of the network’s state at time t0.
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Proof: On route i there is always one queue with greater than or equal to the average amount of work.
With out loss of generality, i.e. relabelling queues if necessary, we assume that this is the first queue on
route i. So, we have that for any route i

mj1i i
(t0) ≥ minr nr

I
.

The biggest rate that this queue could decrease by is maxji µji. So

mj1i i
(t) ≥ minr nr

2I
for t ∈ [t0, t0 + T ],

where we define T = minr nr
2Imaxji µji

.

Λji(t0) = µji
mji(t0)

mj(t0)
>

minji µji minr nr
2I
∑
r nr

= c1.

We can now repeatedly apply Lemma (12). Starting from c1 above for k = 1, ..., ki − 1 we define

ck+1 = min

{
Λ′ji(t0),

ck
1 + maxji µji

}
.

Each time we iterate we reduce ck by at least 1 + maxji µji. A simple lower bound, which is sufficient for
our purposes is that

ck ≥
minji Λ′ji(t0)

(1 + maxji µji)K
=: c̃(t0)

where K = maxi ki is the longest route within the queueing network. Thus given this, we have from Lemma
(12) that

Λ′ji(t) ≥ c̃(t0)

for almost every t ∈ [t0, t0 + T ].

Here in a similar manner to Proposition 4.2 of Bramson [5] we show that β(t) is Lipschitz on any compact
time interval.

Proof of Proposition 6: Note that without loss of generality, we may assume interval [t0, t] is of length
less than or equal to T = minr nr

2Imaxji µji
, where T was dervived in the last lemma, Lemma 13. If t − t0 > T

then we can split the interval [t0, t] in to overlapping sub-interval of size T and then use the largest Lipschitz
constant found in each sub-interval as a Lipschitz constant for [t0.t].

Note that

β(m(t)) =
∑
j∈J

∑
i:j∈i

mji(t) log
mji(t)µji(t)

mj(t)
=
∑
j∈J

∑
i:j∈i

mji(t) log Λ′ji(t).

It is enough to prove Lipschitz continuity of each term summed above:

|mij(t2) log(Λ′ji(t2))−mij(t1) log(Λ′ji(t1))| ≤ D1 |t2 − t1| .

By Lemma 13 for s ∈ [t0, t], log(Λ′ji(s)) is bounded below by c̃(t0) and also above by Cj , the capacity of
queue j. So

| log(Λ′ji(s))| ≤ D0 := max{| log(Cj)|, | log(c̃(t0))|.
If mij(t2) = mij(t1) = 0, the relation is trivial, so we assume that mij(t2) > 0. If mij(t1) = 0 we have

that
|mij(t2) log(Λ′ji(t2))| ≤ D0|mij(t2)| = D0|mij(t2)−mij(t1)| ≤ D2 D0 |t2 − t1|

where the constant D0 comes from Lemma 13 and constant D2 is the Lipschitz constant of mij(t).
Now assume mij(t2) and mij(t1) both positive, and without loss of generality that

Λ′ji(t1) ≤ Λ′ji(t2) .

It follows that ∣∣mij(t2) log Λ′ji(t2)−mij(t1) log Λ′ji(t1)
∣∣ ≤ |mij(t2)−mij(t1)|

∣∣log Λ′ji(t2)
∣∣

+mij(t1)
∣∣log Λ′ji(t2)− log Λ′ji(t1)

∣∣
Again the first term in this upperbound is less than or equal to D2 D0 |t2 − t1|. The second therm, since
the logarithm function is concave and has its derivative maximized at the left point, can be bounded in the
following way

mij(t1)
∣∣log Λ′ji(t2)− log Λ′ji(t1)

∣∣ ≤ mij(t1)

Λ′ji(t1)

∣∣Λ′ji(t2)− Λ′ji(t1)
∣∣

=

∣∣∣∣mj(t1)
mji(t2)

mj(t2)
−mij(t1)

∣∣∣∣
≤ mij(t2)

mj(t2)
|mj(t2)−mj(t1)|+ |mij(t2)−mij(t1)|

≤ |mj(t2)−mj(t1)|+ |mij(t2)−mij(t1)|
≤ D3 |t2 − t1|
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that follows from the fact that mij(t2) ≤ mj(t2) and the fact that both mij(t) and mj(t) are Lipschitz
continuous. The result follows by choosing D1 ≥ max{D3, D2 D0}.
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