804 research outputs found

    Design science research towards resilient cyber-physical eHealth systems

    Get PDF
    Most eHealth systems are cyber-physical systems (CPSs) making safety-critical decisions based on information from other systems not known during development. In this design science research, a conceptual resilience governance framework for eHealth CPSs is built utilizing 1) cybersecurity initiatives, standards and frameworks, 2) science of design for software-intensive systems and 3) empowering cyber trust and resilience. According to our study, a resilient CPS consists of two sub-systems: the proper resilient system and the situational awareness system. In a system of CPSs, three networks are composed: platform, software and social network. The resilient platform network is the basis on which information sharing between stakeholders could be created via software layers. However, the trust inside social networks quantifies the pieces of information that will be shared - and with whom. From citizens’ point of view, eHealth is wholeness in which requirements of information security hold true. Present procedures emphasize confidentiality at the expense of integrity and availability, and regulations/instructions are used as an excuse not to change even vital information. The mental-picture of cybersecurity should turn from “threat, crime, attack” to “trust” and “resilience”. Creating confidence in safe digital future is truly needed in the integration of the digital and physical world’s leading to a new digital revolution. The precondition for the exchange of information “trust” must be systematically built at every CPS’ level. In health sector, increasingly interconnected social, technical and economic networks create large complex CPSs, and risk assessment of many individual components becomes cost and time prohibitive. When no-one can control all aspects of CPSs, protection-based risk management is not enough to help prepare for and prevent consequences of foreseeable events, but resilience must be built into systems to help them quickly recover and adapt when adverse events do occur.Most eHealth systems are cyber-physical systems (CPSs) making safety-critical decisions based on information from other systems not known during development. In this design science research, a conceptual resilience governance framework for eHealth CPSs is built utilizing 1) cybersecurity initiatives, standards and frameworks, 2) science of design for software-intensive systems and 3) empowering cyber trust and resilience. According to our study, a resilient CPS consists of two sub-systems: the proper resilient system and the situational awareness system. In a system of CPSs, three networks are composed: platform, software and social network. The resilient platform network is the basis on which information sharing between stakeholders could be created via software layers. However, the trust inside social networks quantifies the pieces of information that will be shared - and with whom. From citizens’ point of view, eHealth is wholeness in which requirements of information security hold true. Present procedures emphasize confidentiality at the expense of integrity and availability, and regulations/instructions are used as an excuse not to change even vital information. The mental-picture of cybersecurity should turn from “threat, crime, attack” to “trust” and “resilience”. Creating confidence in safe digital future is truly needed in the integration of the digital and physical world’s leading to a new digital revolution. The precondition for the exchange of information “trust” must be systematically built at every CPS’ level. In health sector, increasingly interconnected social, technical and economic networks create large complex CPSs, and risk assessment of many individual components becomes cost and time prohibitive. When no-one can control all aspects of CPSs, protection-based risk management is not enough to help prepare for and prevent consequences of foreseeable events, but resilience must be built into systems to help them quickly recover and adapt when adverse events do occur

    5G Multi-access Edge Computing: Security, Dependability, and Performance

    Full text link
    The main innovation of the Fifth Generation (5G) of mobile networks is the ability to provide novel services with new and stricter requirements. One of the technologies that enable the new 5G services is the Multi-access Edge Computing (MEC). MEC is a system composed of multiple devices with computing and storage capabilities that are deployed at the edge of the network, i.e., close to the end users. MEC reduces latency and enables contextual information and real-time awareness of the local environment. MEC also allows cloud offloading and the reduction of traffic congestion. Performance is not the only requirement that the new 5G services have. New mission-critical applications also require high security and dependability. These three aspects (security, dependability, and performance) are rarely addressed together. This survey fills this gap and presents 5G MEC by addressing all these three aspects. First, we overview the background knowledge on MEC by referring to the current standardization efforts. Second, we individually present each aspect by introducing the related taxonomy (important for the not expert on the aspect), the state of the art, and the challenges on 5G MEC. Finally, we discuss the challenges of jointly addressing the three aspects.Comment: 33 pages, 11 figures, 15 tables. This paper is under review at IEEE Communications Surveys & Tutorials. Copyright IEEE 202

    Integrity and Privacy Protection for Cyber-physical Systems (CPS)

    Get PDF
    The present-day interoperable and interconnected cyber-physical systems (CPS) provides significant value in our daily lives with the incorporation of advanced technologies. Still, it also increases the exposure to many security privacy risks like (1) maliciously manipulating the CPS data and sensors to compromise the integrity of the system (2) launching internal/external cyber-physical attacks on the central controller dependent CPS systems to cause a single point of failure issues (3) running malicious data and query analytics on the CPS data to identify internal insights and use it for achieving financial incentive. Moreover, (CPS) data privacy protection during sharing, aggregating, and publishing has also become challenging nowadays because most of the existing CPS security and privacy solutions have drawbacks, like (a) lack of a proper vulnerability characterization model to accurately identify where privacy is needed, (b) ignoring data providers privacy preference, (c) using uniform privacy protection which may create inadequate privacy for some provider while overprotecting others.Therefore, to address these issues, the primary purpose of this thesis is to orchestrate the development of a decentralized, p2p connected data privacy preservation model to improve the CPS system's integrity against malicious attacks. In that regard, we adopt blockchain to facilitate a decentralized and highly secured system model for CPS with self-defensive capabilities. This proposed model will mitigate data manipulation attacks from malicious entities by introducing bloom filter-based fast CPS device identity validation and Merkle tree-based fast data verification. Finally, the blockchain consensus will help to keep consistency and eliminate malicious entities from the protection framework. Furthermore, to address the data privacy issues in CPS, we propose a personalized data privacy model by introducing a standard vulnerability profiling library (SVPL) to characterize and quantify the CPS vulnerabilities and identify the necessary privacy requirements. Based on this model, we present our personalized privacy framework (PDP) in which Laplace noise is added based on the individual node's selected privacy preferences. Finally, combining these two proposed methods, we demonstrate that the blockchain-based system model is scalable and fast enough for CPS data's integrity verification. Also, the proposed PDP model can attain better data privacy by eliminating the trade-off between privacy, utility, and risk of losing information

    The relevance of psychological capital on individual's perceptions of performance, motivation, work-engagement and job-satisfaction

    Get PDF
    The concept of psychological capital (PsyCap) has been a great focus of interest and curiosity from academics and practitioners. The principal purpose of the present research is to study the relevance of PsyCap and its influence in employees’ attitudes, behaviors and performance. This investigation also aims to understand the importance of an authentic leader (leaders with power to influence their followers and to develop their capabilities) and the impact that the leader’s PsyCap may have on their followers’ dimensions (performance, motivation, work-engagement and job-satisfaction). Data was collected from both Linkedin and from a small company operating in the transportation sector, through a customized survey. The results support the literature showing that: (a) the individual psychological capital has an influence on individuals’ perceptions of performance, motivation, work-engagement and job-satisfaction; (b) the leaders’ PsyCap and the goodwill between the leader and followers may cause some positive impacts on followers’ perceptions of performance, motivation, work-engagement and job-satisfaction; and (c) the leaders’ psychological capital may affect the followers’ level of PsyCap.O conceito de capital psicológico (PsyCap) tem sido alvo de grande atenção e interesse por parte de diversos investigadores. O presente estudo tem como principal objetivo analisar a relevância do PsyCap e a sua respectiva influência nas atitudes, comportamentos e performance dos trabalhadores. Esta investigação tem também interesse em compreender a importância de um líder autêntico (líder com poder para influenciar os seus colaboradores e desenvolvendo as suas capacidades), bem como o impacto que o capital psicológico do líder poderá ter nas principais componentes dos seus colaboradores (performance, motivação, work-engagement e satisfação com o trabalho). Os dados foram recolhidos numa pequena empresa que opera no setor dos transportes e no site Linkedin através de um questionário comum a ambas as amostras. Os resultados encontrados no presente estudo académico coincidem com o que tem sido apresentado na literatura, concluindo assim que: (a) o capital psicológico individual influencia as perceções dos indivíduos relativas à sua performance, motivação, work-engagement e satisfação com o trabalho; (b) o capital psicológico dos líderes e a boa relação estabelecida com os seus colaboradores poderá causar impactes positivos nas perceções dos colaboradores relativas à sua performance, motivação, work-engagement e satisfação com o trabalho; e (c) o capital psicológico dos líderes poderá afetar o nível de PsyCap apresentado pelos seus colaboradores

    Space Station Engineering Design Issues

    Get PDF
    Space Station Freedom topics addressed include: general design issues; issues related to utilization and operations; issues related to systems requirements and design; and management issues relevant to design

    Towards Deterministic Communications in 6G Networks: State of the Art, Open Challenges and the Way Forward

    Full text link
    Over the last decade, society and industries are undergoing rapid digitization that is expected to lead to the evolution of the cyber-physical continuum. End-to-end deterministic communications infrastructure is the essential glue that will bridge the digital and physical worlds of the continuum. We describe the state of the art and open challenges with respect to contemporary deterministic communications and compute technologies: 3GPP 5G, IEEE Time-Sensitive Networking, IETF DetNet, OPC UA as well as edge computing. While these technologies represent significant technological advancements towards networking Cyber-Physical Systems (CPS), we argue in this paper that they rather represent a first generation of systems which are still limited in different dimensions. In contrast, realizing future deterministic communication systems requires, firstly, seamless convergence between these technologies and, secondly, scalability to support heterogeneous (time-varying requirements) arising from diverse CPS applications. In addition, future deterministic communication networks will have to provide such characteristics end-to-end, which for CPS refers to the entire communication and computation loop, from sensors to actuators. In this paper, we discuss the state of the art regarding the main challenges towards these goals: predictability, end-to-end technology integration, end-to-end security, and scalable vertical application interfacing. We then present our vision regarding viable approaches and technological enablers to overcome these four central challenges. Key approaches to leverage in that regard are 6G system evolutions, wireless friendly integration of 6G into TSN and DetNet, novel end-to-end security approaches, efficient edge-cloud integrations, data-driven approaches for stochastic characterization and prediction, as well as leveraging digital twins towards system awareness.Comment: 22 pages, 8 figure
    • …
    corecore