29 research outputs found

    Assume-guarantee verification for probabilistic systems

    Get PDF
    We present a compositional verification technique for systems that exhibit both probabilistic and nondeterministic behaviour. We adopt an assume- guarantee approach to verification, where both the assumptions made about system components and the guarantees that they provide are regular safety properties, represented by finite automata. Unlike previous proposals for assume-guarantee reasoning about probabilistic systems, our approach does not require that components interact in a fully synchronous fashion. In addition, the compositional verification method is efficient and fully automated, based on a reduction to the problem of multi-objective probabilistic model checking. We present asymmetric and circular assume-guarantee rules, and show how they can be adapted to form quantitative queries, yielding lower and upper bounds on the actual probabilities that a property is satisfied. Our techniques have been implemented and applied to several large case studies, including instances where conventional probabilistic verification is infeasible

    When is Containment Decidable for Probabilistic Automata?

    Get PDF
    The containment problem for quantitative automata is the natural quantitative generalisation of the classical language inclusion problem for Boolean automata. We study it for probabilistic automata, where it is known to be undecidable in general. We restrict our study to the class of probabilistic automata with bounded ambiguity. There, we show decidability (subject to Schanuel's conjecture) when one of the automata is assumed to be unambiguous while the other one is allowed to be finitely ambiguous. Furthermore, we show that this is close to the most general decidable fragment of this problem by proving that it is already undecidable if one of the automata is allowed to be linearly ambiguous

    Quantitative multi-objective verification for probabilistic systems

    Get PDF
    We present a verification framework for analysing multiple quantitative objectives of systems that exhibit both nondeterministic and stochastic behaviour. These systems are modelled as probabilistic automata, enriched with cost or reward structures that capture, for example, energy usage or performance metrics. Quantitative properties of these models are expressed in a specification language that incorporates probabilistic safety and liveness properties, expected total cost or reward, and supports multiple objectives of these types. We propose and implement an efficient verification framework for such properties and then present two distinct applications of it: firstly, controller synthesis subject to multiple quantitative objectives; and, secondly, quantitative compositional verification. The practical applicability of both approaches is illustrated with experimental results from several large case studies

    A Quantitative Characterization of Weighted Kripke Structures in Temporal Logic

    Get PDF
    We extend the usual notion of Kripke structures with a weighted transition relation and generalize the classical Boolean interpretation of CTL to a map which assigns to states and temporal formulae a real-valued distance describing the degree of satisfaction. We describe a general approach to obtaining quantitative interpretations for a generic extension of the CTL syntax and show that, for one such interpretation, the logic is both adequate and expressive with respect to quantitative bisimulation

    Automatic Identification of Assumptions from the Hibernate Developer Mailing List

    Get PDF
    During the software development life cycle, assumptions are an important type of software development knowledge that can be extracted from textual artifacts. Analyzing assumptions can help to, for example, comprehend software design and further facilitate software maintenance. Manual identification of assumptions by stakeholders is rather time-consuming, especially when analyzing a large dataset of textual artifacts. To address this problem, one promising way is to use automatic techniques for assumption identification. In this study, we conducted an experiment to evaluate the performance of existing machine learning classification algorithms for automatic assumption identification, through a dataset extracted from the Hibernate developer mailing list. The dataset is composed of 400 'Assumption' sentences and 400 'Non-Assumption' sentences. Seven classifiers using different machine learning algorithms were selected and evaluated. The experiment results show that the SVM algorithm achieved the best performance (with a precision of 0.829, a recall of 0.812, and an F1-score of 0.819). Additionally, according to the ROC curves and related AUC values, the SVM-based classifier comparatively performed better than other classifiers for the binary classification of assumptions.</p

    Assume-Guarantee Reinforcement Learning

    Full text link
    We present a modular approach to \emph{reinforcement learning} (RL) in environments consisting of simpler components evolving in parallel. A monolithic view of such modular environments may be prohibitively large to learn, or may require unrealizable communication between the components in the form of a centralized controller. Our proposed approach is based on the assume-guarantee paradigm where the optimal control for the individual components is synthesized in isolation by making \emph{assumptions} about the behaviors of neighboring components, and providing \emph{guarantees} about their own behavior. We express these \emph{assume-guarantee contracts} as regular languages and provide automatic translations to scalar rewards to be used in RL. By combining local probabilities of satisfaction for each component, we provide a lower bound on the probability of satisfaction of the complete system. By solving a Markov game for each component, RL can produce a controller for each component that maximizes this lower bound. The controller utilizes the information it receives through communication, observations, and any knowledge of a coarse model of other agents. We experimentally demonstrate the efficiency of the proposed approach on a variety of case studies.Comment: This is the extended version of the paper accepted in the SRRAI Special Track at the Conference on Artificial Intelligence (AAAI-24
    corecore