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Vojtěch Forejt1, Marta Kwiatkowska1,
Gethin Norman2, David Parker1, and Hongyang Qu1

1 Oxford University Computing Laboratory, Parks Road, Oxford, OX1 3QD, UK
2 School of Computing Science, University of Glasgow, Glasgow, G12 8RZ, UK

Abstract. We present a verification framework for analysing multiple
quantitative objectives of systems that exhibit both nondeterministic
and stochastic behaviour. These systems are modelled as probabilistic
automata, enriched with cost or reward structures that capture, for ex-
ample, energy usage or performance metrics. Quantitative properties of
these models are expressed in a specification language that incorporates
probabilistic safety and liveness properties, expected total cost or re-
ward, and supports multiple objectives of these types. We propose and
implement an efficient verification framework for such properties and
then present two distinct applications of it: firstly, controller synthesis
subject to multiple quantitative objectives; and, secondly, quantitative
compositional verification. The practical applicability of both approaches
is illustrated with experimental results from several large case studies.

1 Introduction

Automated formal verification techniques such as model checking have proved
to be an effective way of establishing rigorous guarantees about the correctness
of real-life systems. In many instances, though, it is important to also take
stochastic behaviour of these systems into account. This might be because of
the presence of components that are prone to failure, because of unpredictable
behaviour, e.g. of lossy communication media, or due to the use of randomisation,
e.g. in distributed communication protocols such as Bluetooth.

Probabilistic verification offers techniques to automatically check quantita-
tive properties of such systems. Models, typically labelled transition systems
augmented with probabilistic information, are verified against properties speci-
fied in probabilistic extensions of temporal logics. Examples of such properties
include “the probability of both devices failing within 24 hours is less than 0.001”
or “with probability at least 0.99, all message packets are sent successfully”.

In this paper, we focus on verification techniques for probabilistic automata
(PAs) [23], which model both nondeterministic and probabilistic behaviour. We
augment these models with one or more reward structures that assign real values
to certain transitions of the model. In fact, these can associate a notion of either
cost or reward with the executions of the model and capture a wide range of
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quantitive measures of system behaviour, for example “number of time steps”,
“energy usage” or “number of messages successfully sent”.

Properties of PAs can be specified using well-known temporal logics such as
PCTL, LTL or PCTL* [6] and extensions for reward-based properties [1]. The
corresponding verification problems can be executed reasonably efficiently and
are implemented in tools such as PRISM, LiQuor and RAPTURE.

A natural extension of these techniques is to consider multiple objectives. For
example, rather than verifying two separate properties such as “message loss oc-
curs with probability at most 0.001” and “the expected total energy consumption
is below 50 units”, we might ask whether it is possible to satisfy both proper-
ties simultaneously, or to investigate the trade-off between the two objectives as
some parameters of the system are varied.

In this paper, we consider verification problems for probabilistic automata
on properties with multiple, quantitative objectives. We define a language that
expresses Boolean combinations of probabilistic ω-regular properties (which sub-
sumes e.g. LTL) and expected total reward measures. We then present, for prop-
erties expressed in this language, techniques both to verify that a property holds
for all adversaries (strategies) of a PA and to synthesise an adversary of a PA
under which a property holds. We also consider numerical queries, which yield
an optimal value for one objective, subject to constraints imposed on one or more
other objectives. This is done via reduction to a linear programming problem,
which can be solved efficiently. It takes time polynomial in the size of the model
and doubly exponential in the size of the property (for LTL objectives), i.e. the
same as for the single-objective case [14].

Multi-criteria optimisation for PAs or, equivalently, Markov decision pro-
cesses (MDPs) is well studied in operations research [13]. More recently, the
topic has also been considered from a probabilistic verification point of view
[12,16,9]. In [16], ω-regular properties are considered, but not rewards which, as
illustrated by the examples above, offer an additional range of useful properties.
In, [12] discounted reward properties are used. In practice, though, a large class
of properties, such as “expected total time for algorithm completion” are not ac-
curately captured when using discounting. Finally, [9] handles a complementary
class of long-run average reward properties. All of [12,16,9] present algorithms
and complexity results for verifying properties and approximating Pareto curves;
however, unlike this paper, they do not consider implementations.

We implement our multi-objective verification techniques and present two
distinct applications. Firstly, we illustrate the feasibility of performing con-
troller synthesis. Secondly, we develop compositional verification methods based
on assume-guarantee reasoning and quantitative multi-objective properties.

Controller synthesis. Synthesis, which aims to build correct-by-construction
systems from formal specifications of their intended behaviour, represents a long-
standing and challenging goal in the field of formal methods. One area where
progress has been made is controller synthesis, a classic problem in control en-
gineering which devises a strategy to control a system such that it meets its
specification. We demonstrate the application of our techniques to synthesising
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controllers under multiple quantitative objectives, illustrating this with experi-
mental results from a realistic model of a disk driver controller.

Compositional verification. Perhaps the biggest challenge to the practical ap-
plicability of formal verification is scalability. Compositional verification offers
a powerful means to address this challenge. It works by breaking a verification
problem down into manageable sub-tasks, based on the structure of the system
being analysed. One particularly successful approach is the assume-guarantee
paradigm, in which properties (guarantees) of individual system components are
verified under assumptions about their environment. Desired properties of the
combined system, which is typically too large to verify, are then obtained by
combining separate verification results using proof rules. Compositional anal-
ysis techniques are of particular importance for probabilistic systems because
verification is often more expensive than for non-probabilistic models.

Recent work in [21] presents an assume-guarantee framework for probabilis-
tic automata, based on a reduction to the multi-objective techniques of [16].
However, the assumptions and guarantees in this framework are restricted to
probabilistic safety properties. This limits the range of properties that can be
verified and, more importantly, can be too restrictive to express assumptions of
the environment. We use our techniques to introduce an alternative framework
where assumptions and guarantees are the quantitative multi-objective properties
defined in this paper. This adds the ability to reason compositionally about, for
example, probabilistic liveness or expected rewards. To facilitate this, we also
incorporate a notion of fairness into the framework. We have implemented the
techniques and present results from compositional verification of several large
case studies, including instances where it is infeasible non-compositionally.

Related work. Existing research on multi-objective analysis of MDPs and its
relationship with this work has been discussed above. On the topic of controller
synthesis, the problem of synthesising MDP adversaries to satisfy a temporal
logic specification has been addressed several times, e.g. [3,7]. Also relevant is
[11], which synthesises non-probabilistic automata based on quantitative mea-
sures. In terms of compositional verification, the results in this paper significantly
extend the recent work in [21]. Other related approaches include: [8,15], which
present specification theories for compositional reasoning about probabilistic sys-
tems; and [10], which presents a theoretical framework for compositional verifica-
tion of quantitative (but not probabilistic) properties. None of [8,15,10], however,
consider practical implementations of their techniques.

Contributions. In summary, the contributions of this paper are as follows:

– novel multi-objective verification techniques for probabilistic automata (and
MDPs) that include both ω-regular and expected total reward properties;

– a corresponding method to generate optimal adversaries, with direct appli-
cability to the problem of controller synthesis for these models;

– new compositional verification techniques for probabilistic automata using
expressive quantitative properties for assumptions and guarantees.

An extended version of this paper, with proofs, is available as [18].
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2 Background

We use Dist(S) for the set of all discrete probability distributions over a set S,
ηs for the point distribution on s ∈ S, and µ1×µ2 for the product distribution of
µ1 ∈ Dist(S1) and µ2 ∈ Dist(S2), defined by µ1×µ2((s1, s2)) = µ1(s1) · µ2(s2).

2.1 Probabilistic automata (PAs)

Probabilistic automata [23] are a commonly used model for systems that ex-
hibit both probabilistic and nondeterministic behaviour. PAs are very similar to
Markov decision processes (MDPs).1 For the purposes of verification (as in Sec-
tion 3), they can often be treated identically; however, for compositional analysis
(as in Section 4), the distinction becomes important.

Definition 1 (Probabilistic automata). A probabilistic automaton (PA) is
a tupleM=(S, s, αM, δM) where S is a set of states, s ∈ S is an initial state, αM
is an alphabet and δM ⊆ S×αM×Dist(S) is a probabilistic transition relation.

In a state s of a PA M, a transition s
a−→ µ, where a is an action and µ is a

distribution over states, is available if (s, a, µ) ∈ δ. The selection of an available
transition is nondeterministic and the subsequent choice of successor state is
probabilistic, according to the distribution of the chosen transition.

A path is a sequence ω = s0
a0,µ0−−−→s1

a1,µ1−−−→· · · where s0=s, si
ai−→ µi is an

available transition and µi(si+1)>0 for all i ∈ N. We denote by IPaths (FPaths)
the set of all infinite (finite) paths. If ω is finite, |ω| denotes its length and last(ω)
its last state. The trace, tr(ω), of ω is the sequence of actions a0a1 . . . and we
use tr(ω)�α to indicate the projection of such a trace onto an alphabet α ⊆ αM.

A reward structure for M is a mapping ρ : αρ → R>0 from some alphabet
αρ ⊆ αM to the positive reals. We sometimes write ρ(a) = 0 to indicate that

a 6∈ αρ. For an infinite path ω = s0
a0,µ0−−−→ s1

a1,µ1−−−→ · · · , the total reward for ω
over ρ is ρ(ω) =

∑
i∈N,ai∈αρ ρ(ai).

An adversary ofM is a function σ : FPaths→Dist(αM×Dist(S)) such that,
for a finite path ω, σ(ω) only assigns non-zero probabilities to action-distribution
pairs (a, µ) for which (last(ω), a, µ) ∈ δ. Employing standard techniques [20], an
adversary σ induces a probability measure PrσM over IPaths. An adversary σ
is deterministic if σ(ω) is a point distribution for all ω, memoryless if σ(ω) de-
pends only on last(ω), and finite-memory if there are a finite number of memory
configurations such that σ(ω) depends only on last(ω) and the current mem-
ory configuration, which is updated (possibly stochastically) when an action is
performed. We let AdvM denote the set of all adversaries for M.

IfMi = (Si, si, αMi , δMi) for i=1, 2, then their parallel composition, denoted
M1‖M2, is given by the PA (S1×S2, (s1, s2), αM1∪αM2 , δM1‖M2

) where δM1‖M2

is defined such that (s1, s2)
a−→ µ1×µ2 if and only if one of the following holds: (i)

s1
a−→ µ1, s2

a−→ µ2 and a ∈ αM1
∩αM2

; (ii) s1
a−→ µ1, µ2 = ηs2 and a ∈ αM1

\αM2
;

or (iii) s2
a−→ µ2, µ1 = ηs1 and a ∈ αM2\αM1 .

1 For MDPs, δM in Definition 1 becomes a partial function S × αM → Dist(S).
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When verifying systems of PAs composed in parallel, it is often essential to
consider fairness. In this paper, we use a simple but effective notion of fairness
called unconditional fairness, in which it is required that each process makes
a transition infinitely often. For probabilistic automata, a natural approach to
incorporating fairness (as taken in, e.g., [4,2]) is to restrict analysis of the system
to a class of adversaries in which fair behaviour occurs with probability 1.

If M =M1‖ . . . ‖Mn is a PA comprising n components, then an (uncondi-
tionally) fair path of M is an infinite path ω ∈ IPaths in which, for each com-
ponent Mi, there exists an action a ∈ αMi that appears infinitely often. A fair
adversary σ of M is an adversary for which PrσM{ω ∈ IPaths | ω is fair} = 1.
We let Adv fair

M denote the set of fair adversaries of M.

2.2 Verification of PAs

Throughout this section, let M = (S, s, αM, δM) be a PA.

Definition 2 (Probabilistic predicates). A probabilistic predicate [φ]∼p com-
prises an ω-regular property φ ⊆ (αφ)ω over some alphabet αφ ⊆ αM, a rela-
tional operator ∼∈{<,6, >,>} and a rational probability bound p. Satisfaction
of [φ]∼p by M, under adversary σ, denoted M, σ |= [φ]∼p, is defined as follows:

M, σ |= [φ]∼p ⇔ PrσM(φ)∼p where PrσM(φ)
def
=PrσM({ω∈IPaths | tr(ω)�αφ∈φ}).

Definition 3 (Reward predicates). A reward predicate [ρ]∼r comprises a
reward structure ρ : αρ → R>0 over some alphabet αρ ⊆ αM, a relational
operator ∼∈ {<,6, >,>} and a rational reward bound r. Satisfaction of [ρ]∼r
by M, under adversary σ, denoted M, σ |= [ρ]∼r, is defined as follows:

M, σ |= [ρ]∼r ⇔ ExpTotσM(ρ) ∼ r where ExpTotσM(ρ)
def
=
∫
ω
ρ(ω) dPrσM.

Verification of PAs is based on quantifying over all adversaries. For example, we
define satisfaction of probabilistic predicate [φ]∼p byM, denotedM|= [φ]∼p, as:

M|= [φ]∼p ⇔ ∀σ ∈ AdvM .M, σ |= [φ]∼p .

In similar fashion, we can verify a multi-component PA M1‖ . . . ‖Mn under
fairness by quantifying only over fair adversaries:

M1‖ . . . ‖Mn |=fair [φ]∼p ⇔ ∀σ ∈ Adv fair
M1‖...‖Mn

.M1‖ . . . ‖Mn, σ |= [φ]∼p .

Verifying whetherM satisfies a probabilistic predicate [φ]∼p or reward predicate
[ρ]∼r can be done with, for example, the techniques in [14,1]. In the remainder
of this section, we give further details of the case for ω-regular properties, since
we need these later in the paper. We follow the approach of [1], which is based
on the use of deterministic Rabin automata and end components.

An end component (EC) ofM is a pair (S′, δ′) comprising a subset S′⊆S of
states and a probabilistic transition relation δ′⊆δ that is strongly connected when
restricted to S′ and closed under probabilistic branching, i.e., {s ∈ S | ∃(s, a, µ) ∈
δ′} ⊆ S′ and {s′ ∈ S |µ(s′)>0 for some (s, a, µ) ∈ δ} ⊆ S′. An EC (S′, δ′) is
maximal if there is no EC (S′′, δ′′) such that δ′(δ′′.
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A deterministic Rabin automaton (DRA) is a tuple A = (Q, q, α, δ, Acc) of
states Q, initial state q, alphabet α, transition function δ : Q×α → Q, and
acceptance condition Acc = {(Li,Ki)}ki=1 with Li,Ki ⊆ Q. Any infinite word
w ∈ (α)ω has a unique corresponding run q q1q2 . . . through A and we say that A
accepts w if the run contains, for some 16i6k, finitely many states from Li and
infinitely many from Ki. For any ω-regular property φ ⊆ (αφ)ω we can construct
a DRA, say Aφ, over αφ that accepts precisely φ.

Verification of [φ]∼p onM is done by constructing the product ofM and Aφ,
and then identifying accepting end components. The product M⊗Aφ of M and
DRA Aφ = (Q, q, αM, δ, {(Li,Ki)}ki=1) is the PA (S ×Q, (s, q), αM, δ′M) where
for all (s, a, µ) ∈ δM there is ((s, q), a, µ′) ∈ δ′M such that µ′(s′, q′) = µ(s′) for
q′ = δ(q, a) and all s′ ∈ S. An accepting EC for φ inM⊗Aφ is an EC (S′, δ′) for
which there exists an 16i6k such that the set of states S′, when projected onto
Q, contains some state from Ki, but no states from Li. Verifying, for example,
that M|= [φ]∼p, when ∼∈ {<,6}, reduces to checking that M⊗Aφ |= [♦T ]∼p,
where T is the union of states of accepting ECs for φ in M⊗Aφ.

Verification of such properties under fairness, e.g. checking M|=fair [φ]∼p,
can be done by further restricting the set of accepting ECs. For details, see [2],
which describes verification of PAs under strong and weak fairness conditions,
of which unconditional fairness is a special case.

3 Quantitative Multi-Objective Verification

In this section, we define a language for expressing multiple quantitative objec-
tives of a probabilistic automaton. We then describe, for properties expressed in
this language, techniques both to verify that the property holds for all adver-
saries of a PA and to synthesise an adversary of a PA under which the property
holds. We also consider numerical queries, which yield an optimal value for one
objective, subject to constraints imposed on one or more other objectives.

Definition 4 (Quantitative multi-objective properties). A quantitative
multi-objective property (qmo-property) for a PAM is a Boolean combination of
probabilistic and reward predicates, i.e. an expression produced by the grammar:

Ψ ::= true | Ψ ∧ Ψ | Ψ ∨ Ψ | ¬Ψ | [φ]∼p | [ρ]∼r

where [φ]∼p and [ρ]∼r are probabilistic and reward predicates forM, respectively.
A simple qmo-property comprises a single conjunction of predicates, i.e. is of the
form (∧ni=1[φi]∼ipi) ∧

(
∧mj=1[ρj ]∼jrj

)
. We refer to the predicates occurring in a

formula as objectives. For property ΨP , we use αP to denote the set of actions
used in ΨP , i.e. the union of αφ and αρ over [φ]∼p and [ρ]∼r occurring in ΨP .

A quantitative multi-objective property Ψ is evaluated over a PA M and an
adversary σ of M. We say that M satisfies Ψ under σ, denoted M, σ |=Ψ ,
if Ψ evaluates to true when substituting each predicate x with the result of
M, σ |= x. Verification of Ψ over a PA M is defined as follows.
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Fig. 1. PAs for a machineMm (left) and two controllers,Mc1 (centre) andMc2(right)

Definition 5 (Verification queries). For a PA M and a qmo-property Ψ , a
verification query asks whether Ψ is satisfied under all adversaries of M:

M|=Ψ ⇔ ∀σ ∈ AdvM .M, σ |=Ψ.

For a simple qmo-property Ψ , we can verify whetherM|=Ψ using standard tech-
niques [14,1] (since each conjunct can be verified separately). To treat the general
case, we will use multi-objective model checking, proceeding via a reduction to
the dual notion of achievability queries.

Definition 6 (Achievability queries). For a PA M and qmo-property Ψ , an
achievability query asks if there exists a satisfying adversary of M, i.e. whether
there exists σ ∈ AdvM such that M, σ |=Ψ .

Remark. Since qmo-properties are closed under negation, we can convert any
verification query into an equivalent (negated) achievability query. Furthermore,
any qmo-property can be translated to an equivalent disjunction of simple qmo-
properties (obtained by converting to disjunctive normal form and pushing nega-
tion into predicates, e.g. ¬([φ]>p) ≡ [φ]6p).

In practice, it is also often useful to obtain the minimum/maximum value of an
objective, subject to constraints on others. For this, we use numerical queries.

Definition 7 (Numerical queries). For a PA M, qmo-property Ψ and ω-
regular property φ or reward structure ρ, a (maximising) numerical query is:

Prmax
M (φ |Ψ)

def
= sup{PrσM(φ) | σ ∈ AdvM ∧M, σ |=Ψ},

or ExpTotmax
M (ρ |Ψ)

def
= sup{ExpTotσM(ρ) | σ ∈ AdvM ∧M, σ |=Ψ}.

If the property Ψ is not satisfied by any adversary of M, these queries return ⊥.
A minimising numerical query is defined similarly.

Example 1. Figure 1 shows the PAs we use as a running example. A machine,
Mm, executes 2 consecutive jobs, each in 1 of 2 ways: fast , which requires 1
time unit and 20 units of energy, but fails with probability 0.1; or slow , which
requires 3 time units and 10 units of energy, and never fails. The reward struc-
tures ρtime={fast 7→1, slow 7→3} and ρpow={fast 7→20, slow 7→10} capture the time
elapse and power consumption of the system. The controllers,Mc1 andMc2 , can
(each) control the machine, when composed in parallel with Mm. Using qmo-
property Ψ = [♦done]≥1 ∧ [ρpow ]≤20, we can write a verification queryMm |= Ψ
(which is false) or a numerical query ExpTotmin

Mm
(ρtime |Ψ) (which yields 6).
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Before describing our techniques to check verification, achievability and nu-
merical queries, we first need to discuss some assumptions made about PAs.
One of the main complications when introducing rewards into multi-objective
queries is the possibility of infinite expected total rewards. For the classical,
single-objective case (see e.g. [1]), it is usual to impose assumptions so that such
behaviour does not occur. For the multi-objective case, the situation is more
subtle, and requires careful treatment. We now outline what assumptions should
be imposed; later we describe how they can be checked algorithmically.

A key observation is that, if we allow arbitrary reward structures, situations
may occur where extremely improbable (but non-zero probability) behaviour still
yields infinite expected reward. Consider e.g. the PA ({s0, s1, s2}, s0, {a, b}, δ)
with δ = {(s0, b, ηs1), (s0, b, ηs2), (s1, a, ηs1), (s2, b, ηs2)}, reward structure ρ =
{a7→1}, and the qmo-property Ψ = [�b]≥p ∧ [ρ]≥r. For any p, including values
arbitrarily close to 1, there is an adversary satisfying Ψ for any r ∈ R>0, because
it suffices to take action a with non-zero probability. This rather unnatural be-
haviour would lead to misleading verification results, masking possible errors in
the model design.

Motivated by such problems, we enforce the restriction below on multi-
objective queries. To match the contents of the next section, we state this for a
maximising numerical query on rewards. We describe how to check the restric-
tion holds in the next section.

Assumption 1 Let ExpTotmax
M (ρ |Ψ) be a numerical query for a PA M and

qmo-property Ψ which is a disjunction2 of simple qmo-properties Ψ1, . . . , Ψl. For
each Ψk = (∧ni=1[φi]∼ipi) ∧

(
∧mj=1[ρj ]∼jrj

)
, we require that:

sup{ExpTotσM(ζ) | M, σ |=
∧n
i=1 [φi]∼ipi} <∞

for all ζ ∈ {ρ} ∪ {ρj | 16j6m ∧ ∼j ∈ {>,≥}}.

3.1 Checking Multi-Objective Queries

We now describe techniques for checking the multi-objective queries described
previously. For presentational purposes, we focus on numerical queries. It is
straightforward to adapt this to achievability queries by introducing, and then
ignoring, a dummy property to maximise (with no loss in complexity). As men-
tioned earlier, verification queries are directly reducible to achievability queries.

Let M be a PA and ExpTotmax
M (ρ |Ψ) be a maximising numerical query for

reward structure ρ (the cases for minimising queries and ω-regular properties
are analogous). As discussed earlier, we can convert Ψ to a disjunction of simple
qmo-properties. Clearly, we can treat each element of the disjunction separately
and then take the maximum. So, without loss of generality, we assume that Ψ
is simple, i.e. Ψ = (∧ni=1[φi]∼ipi)∧

(
∧mj=1[ρj ]∼jrj

)
. Furthermore, we assume that

each ∼i is > or > (which we can do by changing e.g. [φ]<p to [¬φ]>1−p).

2 This assumption extends to arbitrary properties Ψ by, as described earlier, first
reducing to disjunctive normal form.
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Our technique to compute ExpTotmax
M (ρ |Ψ) proceeds via a sequence of mod-

ifications to M, producing a PA M̂. From this, we construct a linear program
L(M̂), whose solution yields both the desired numerical result and a correspond-
ing adversary σ̂ of M̂. Crucially, σ̂ is memoryless and can thus be mapped to a
matching finite-memory adversary ofM. The structure of L(M̂) is very similar
to the one used in [16], but many of the steps to construct M̂ and the techniques
to establish a memoryless adversary are substantially different. We also remark
that, although not discussed here, L(M̂) can be adapted to a multi-objective
linear program, or used to approximate the Pareto curve between objectives.

In the remainder of this section, we describe the process in detail, which
comprises 4 steps: 1. checking Assumption 1; 2. building a PA M̄ in which
unneccessary actions are removed; 3. converting M̄ to a PA M̂; 4. building and
solving the linear program L(M̂). The correctness of the procedure is formalised
with a corresponding sequence of propositions (see [18] for proofs).

Step 1. We start by constructing a PA Mφ =M⊗Aφ1
⊗ · · ·⊗Aφn which is the

product ofM and a DRA Aφi for each ω-regular property φi appearing in Ψ . We
check Assumption 1 by analysing Mφ: for each maximising reward structure ζ
(i.e. letting ζ=ρ or ζ=ρj when ∼j ∈ {>,≥}) we use the proposition below. This
requires a simpler multi-objective achievability query on probabilistic predicates
only. In fact, this can be done with the techniques of [16].

Proposition 1. We have sup{ExpTotσM(ζ) | M, σ |=
∧n
i=1 [φi]∼ipi} = ∞ for a

reward structure ζ of M iff there is an adversary σ of Mφ such that Mφ, σ |=
[♦pos]>0 ∧

∧n
i=1 [φi]∼ipi where “pos” labels any transition (s, a, µ) that satisfies

ζ(a)>0 and is contained in an EC.

Step 2. Next, we build the PA M̄ fromMφ by removing actions that, thanks to
Assumption 1, will not be used by any adversary which satisfies Ψ and maximises
the expected value for the reward ρ. Let Mφ = (Sφ, s, αM, δ

φ
M). Then M̄ =

(S̄, s, αM, δ̄M) is the PA obtained fromMφ as follows. First, we remove (s, a, µ)

from δφM if it is contained in an EC and ζ(a)>0 for some maximising reward
structure ζ. Second, we repeatedly remove states with no outgoing transitions
and transitions that lead to non-existent states, until a fixpoint is reached. The
following proposition holds whenever Assumption 1 is satisfied.

Proposition 2. There is an adversary σ of Mφ where ExpTotσMφ(ρ)=x and
Mφ, σ |=Ψ iff there is an adversary σ̄ of M̄ where ExpTot σ̄M̄(ρ)=x and M̄, σ̄ |=Ψ .

Step 3. Then, we construct PA M̂ from M̄, by converting the n probabilistic
predicates [φi]∼ipi into n reward predicates [λi]∼ipi . For each R ⊆ {1, . . . , n},
we let SR denote the set of states that are contained in an EC (S′, δ′) that: (i)
is accepting for all {φi | i ∈ R}; (ii) satisfies ρj(a) = 0 for all 1 ≤ j ≤ m and
(s, a, µ) ∈ δ′. Thus, in each SR, no reward is gained and almost all paths satisfy
the ω-regular properties φi for i ∈ R. Note that identifying the sets SR can be
done in time polynomial in the size of M̄ (see [18] for clarification).

We then construct M̂ by adding a new terminal state sdead and adding tran-
sitions from states in each SR to sdead , labelled with a new action aR. Intuitively,
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Maximise
∑

(s,a,µ)∈δ̂M,s6=sdead
ρ(a) · y(s,a,µ) subject to:∑

(s,aR,µ)∈δ̂M,s6=sdead
y(s,aR,µ) = 1∑

(s,a,µ)∈δ̂M,s6=sdead
λi(a) · y(s,a,µ) ∼i pi for all 1≤i≤n∑

(s,a,µ)∈δ̂M,s6=sdead
ρj(a) · y(s,a,µ) ∼j rj for all 1≤j≤m∑

(s,a,µ)∈δ̂M
y(s,a,µ) −

∑
(ŝ,â,µ̂)∈δ̂M

µ′(s) · y(ŝ,â,µ̂) = init(s) for all s∈Ŝ\{sdead}
y(s,a,µ) ≥ 0 for all (s, a, µ)∈δ̂M

where init(s) is 1 if s = s and 0 otherwise.

Fig. 2. The linear program L(M̂)

taking an action aR in M̂ corresponds to electing to remain forever in the cor-
responding EC of M̄. Formally, M̂ = (Ŝ, s, α̂M, δ̂M) where Ŝ = S̄ ∪ {sdead},
α̂M = αM∪{aR | R ⊆ {1, . . . , n}}, and δ̂M = δ̄M∪{(s, aR, ηsdead ) | s ∈ SR}. Fi-
nally, we create, for each 1 ≤ i ≤ n, a reward structure λi : {aR | i ∈ R} → R>0

with λi(a
R) = 1 whenever λi is defined.

Proposition 3. There is an adversary σ̄ of M̄ such that ExpTot σ̄M̄(ρ)=x and

M̄, σ̄ |=Ψ iff there is a memoryless adversary σ̂ of M̂ such that ExpTot σ̂M̂(ρ)=x

and M̂, σ̂ |= (∧ni=1[λi]∼ipi) ∧
(
∧mj=1[ρj ]∼jrj

)
∧ ([♦sdead ]>1).

Step 4. Finally, we create a linear program L(M̂), given in Figure 2, which
encodes the structure of M̂ as well as the objectives from Ψ . Intuitively, in a
solution of L(M̂), the variables y(s,a,µ) express the expected number of times

that state s is visited and transition s
a−→ µ is taken subsequently. The expected

total reward w.r.t. ρi is then captured by
∑

(s,a,µ)∈δ̂M,s6=sdead ρi(a) · y(s,a,µ). The

result of L(M̂) yields the desired value for our numerical query.

Proposition 4. For x ∈ R>0, there is a memoryless adversary σ̂ of M̂ where

ExpTot σ̂M̂(ρ)=x and M̂, σ̂ |= (∧ni=1[λi]∼ipi) ∧
(
∧mj=1[ρj ]∼jrj

)
∧ ([♦sdead ]≥1) iff

there is a feasible solution (y?(s,a,µ))(s,a,µ)∈δ̂M of the linear program L(M̂) such

that
∑

(s,a,µ)∈δ̂M,s6=sdead ρi(a) · y?(s,a,µ) = x.

In addition, a solution to L(M̂) gives a memoryless adversary σprod defined
by σprod(s)(a, µ) =

y(s,a,µ)∑
a′,µ′ y(s,a′,µ′)

if the denominator is nonzero (and defined

arbitrarily otherwise). This can be converted into a finite memory adversary σ′

for Mφ by combining decisions of σ on actions in αM and, instead of taking
actions aR, mimicking adversaries witnessing that the state which precedes aR

in the history is in SR. Adversary σ′ can be translated into an adversary σ ofM
in standard fashion using the fact that every finite path inMφ has a counterpart
in M given by projecting states of Mφ to their first components.
The following is then a direct consequence of Propositions 2, 3 and 4.

Theorem 1. Given a PA M and numerical query ExpTotmax
M (ρ |Ψ) satisfying

Assumption 1, the result of the query is equal to the solution of the linear program
L(M̂) (see Figure 2). Furthermore, this requires time polynomial in the size of
M and doubly exponential in the size of the property (for LTL objectives).
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q0

q1

done

done

(s0,t0,q0)

(s1,t0,q0)

(s0,t1,q0)

(s1,t1,q0)

(s0,t2,q0)

(s0,t2,q1)

sdead

fast 0.9

slow

0.1

fast 0.9

slow

0.1

off
on

off

off
on

off

done

donea∅

a∅ a{1}

Fig. 3. A DRA Aφ for the property φ = ♦done and the PA M̂ for M =Mm‖Mc1

An analogous result holds for numerical queries of the form ExpTotmin
M (ρ |Ψ),

Prmax
M (φ |Ψ) or Prmin

M (φ |Ψ). As discussed previously, this also yields a technique
to solve both achievability and verification queries in the same manner.

3.2 Controller Synthesis

The achievability and numerical queries presented in the previous section are
directly applicable to the problem of controller synthesis. We first illustrate these
ideas on our simple example, and then apply them to a large case study.

Example 2. Consider the composition M = Mc1‖Mm of PAs from Figure 1;
Mc1 can be seen as a template for a controller of Mm. We synthesise an
adversary for M that minimises the expected execution time under the con-
straints that the machine completes both jobs and the expected power con-
sumption is below some bound r. Thus, we use the minimising numerical query
ExpTotmin

M (ρtime | [ρpow ]6r ∧ [♦done]>1). Figure 3 shows the corresponding PA

M̂, dashed lines indicating additions to construct M̂ from M̄. Solving the LP
problem L(M̂) yields the minimum expected time under these constraints. If
r=30, for example, the result is 49

11 . Examining the choices made in the corre-
sponding (memoryless) adversary, we find that, to obtain this time, a controller
could schedule the first job fast with probability 5

6 and slow with 1
6 , and the

second job slow. Figure 4(a) shows how the result changes as we vary the bound
r and use different values for the failure probability of fast (0.1 in Figure 1).

Case study. We have implemented the techniques of Section 3 as an extension
of PRISM [19] and using the ECLiPSe LP solver. We applied them to perform
controller synthesis on a realistic case study: we build a power manager for
an IBM TravelStar VP disk-drive [5]. Specific (randomised) power management
policies can already be analysed in PRISM [22]; here, we synthesise such policies,
subject to constraints specified as qmo-properties. More precisely, we minimise
the expected power consumption under restrictions on, for example, the expected
job-queue size, expected number of lost jobs, probability that a request waits
more than K steps, or probability that N requests are lost. Further details
are available from [24]. As an illustration, Figure 4(b) plots the minimal power
consumption under restrictions on both the expected queue size and number
of lost customers. This shows the familiar power-versus-performance trade-off:
policies can offer improved performance, but at the expense of using more power.
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Fig. 4. Experimental results illustrating controller synthesis

4 Quantitative Assume-Guarantee Verification

We now present novel compositional verification techniques for probabilistic au-
tomata, based on the quantitative multi-objective properties defined in Section 3.
The key ingredient of this approach is the assume-guarantee triple, whose defi-
nition, like in [21], is based on quantification over adversaries. However, whereas
[21] uses a single probabilistic safety property as an assumption or guarantee, we
permit quantitative multi-objective properties. Another key factor is the incor-
poration of fairness.

Definition 8 (Assume-guarantee triples). If M = (S, s, αM, δM) is a PA
and ΨA, ΨG are qmo-properties such that αG ⊆ αA ∪ αM , then 〈ΨA〉M〈ΨG〉 is
an assume-guarantee triple with the following semantics:

〈ΨA〉M〈ΨG〉 ⇔ ∀σ∈AdvM[αA] . (M, σ |=ΨA →M, σ |=ΨG) .

where M[αA] denotes the alphabet extension [21] of M, which adds a-labelled
self-loops to all states of M for each a ∈ αA\αM.

Informally, an assume-guarantee triple 〈ΨA〉M〈ΨG〉, means “if M is a compo-
nent of a system such that the environment ofM satisfies ΨA, then the combined
system (under fairness) satisfies ΨG”.

Verification of an assume guarantee triple, i.e. checking whether 〈ΨA〉M〈ΨG〉
holds, reduces directly to the verification of a qmo-property since:

(M, σ |=ΨA →M, σ |=ΨG) ⇔ M, σ |= (¬ΨA ∨ ΨG) .

Thus, using the techniques of Section 3, we can reduce this to an achievability
query, solvable via linear programming. Using these assume-guarantee triples
as a basis, we can now formulate several proof rules that permit compositional
verification of probabilistic automata. We first state two such rules, then explain
their usage, illustrating with an example.
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Theorem 2. If M1 and M2 are PAs, and ΨA1
, ΨA2

and ΨG are quantitative
multi-objective properties, then the following proof rules hold:

M1 |=fair ΨA1

〈ΨA1
〉M2 〈ΨG〉

M1‖M2 |=fair ΨG

(ASym)

M2 |=fair ΨA2

〈ΨA2〉M1 〈ΨA1〉
〈ΨA1〉M2 〈ΨG〉

M1 ‖M2 |=fair ΨG

(Circ)

where, for well-formedness, we assume that, if a rule contains an occurrence
of the triple 〈ΨA〉M〈ΨG〉 in a premise, then αG ⊆ αA ∪ αM; similarly, for a
premise that checks ΨA against M, we assume that αA ⊆ αM

Theorem 2 presents two assume-guarantee rules. The simpler, (Asym), uses a
single assumption ΨA1

about M1 to prove a property ΨG on M1‖M2. This is
done compositionally, in two steps. First, we verify M1 |=fair ΨA1

. If M1 com-
prises just a single PA, the stronger (but easier) check M1 |=ΨA1

suffices; the
use of fairness in the first premise is to permit recursive application of the rule.
Second, we check that 〈ΨA1〉M2 〈ΨG〉 holds. Again, optionally, we can consider
fairness here.3 In total, these two steps have the potential to be significantly
cheaper than verifyingM1‖M2. The other rule, (Circ), operates similarly, but
using assumptions about both M1 and M2.

Example 3. We illustrate assume-guarantee verification using the PAs Mm

and Mc2 from Figure 1. Our aim is to verify that Mc2‖Mm |=fair [ρtime ]6 19
6

,

which does indeed hold. We do so using the proof rule (ASym) of Theorem 2,
with M1=Mc2 and M2=Mm. We use the assumption A1=[ρslow ]6 1

2
where

ρslow={slow 7→1}, i.e. we assume the expected number of slow jobs requested is at
most 0.5. We verifyMc2 |= [ρslow ]6 1

2
and the triple 〈[ρslow ]6 1

2
〉Mm 〈[ρtime ]6 19

6
〉.

The triple is checked by verifyingMm |=¬[ρslow ]6 1
2
∨ [ρtime ]6 19

6
or, equivalently,

that no adversary of Mm satisfies [ρslow ]6 1
2
∧ [ρtime ]> 19

6
.

Experimental Results. Using our implementation of the techniques in Sec-
tion 3, we now demonstrate the application of our quantitative assume-guarantee
verification framework to two large case studies: Aspnes & Herlihy’s randomised
consensus algorithm and the Zeroconf network configuration protocol. For con-
sensus, we check the maximum expected number of steps required in the first
R rounds; for zeroconf, we verify that the protocol terminates with probability
1 and the minimum/maximum expected time to do so. In each case, we use the
(Circ) rule, with a combination of probabilistic safety and liveness properties
for assumptions. All models and properties are available from [24]. In fact, we
execute numerical queries to obtain lower/upper bounds for system properties,
rather than just verifying a specific bound.

Table 1 summarises the experiments on these case studies, which were run
on a 2.66GHz PC with 8GB of RAM, using a time-out of 1 hour. The table

3 Adding fairness to checks of both qmo-properties and assume-guarantee triples is
achieved by encoding the unconditional fairness constraint as additional objectives.
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Case study Non-compositional Compositional
[parameters] States Time (s) Result LP size Time (s) Result

consensus
(2 processes)
(max. steps)

[R K]

3 2 1,806 0.4 89.00 1,565 1.8 89.65
3 20 11,598 27.8 5,057 6,749 10.8 5,057
4 2 7,478 1.3 89.00 5,368 3.9 98.42
4 20 51,830 155.0 5,057 15,160 16.2 5,120
5 2 30,166 3.1 89.00 10,327 6.5 100.1
5 20 212,758 552.8 5,057 24,727 21.9 5,121

consensus
(3 processes)
(max. steps)

[R K]

3 2 114,559 20.5 212.0 43,712 12.1 214.3
3 12 507,919 1,361.6 4,352 92,672 284.9 4,352
3 20 822,607 time-out - 131,840 901.8 11,552
4 2 3,669,649 728.1 212.0 260,254 118.9 260.3
4 12 29,797,249 mem-out - 351,694 642.2 4,533
4 20 65,629,249 mem-out - 424,846 1,697.0 11,840

zeroconf
(termination)

[K]

4 57,960 8.7 1.0 155,458 23.8 1.0
6 125,697 16.6 1.0 156,690 24.5 1.0
8 163,229 19.4 1.0 157,922 25.5 1.0

zeroconf
(min. time)

[K]

4 57,960 6.7 13.49 155,600 23.0 16.90
6 125,697 15.7 17.49 154,632 23.1 12.90
8 163,229 22.2 21.49 156,568 23.9 20.90

zeroconf
(max. time)

[K]

4 57,960 5.8 14.28 154,632 23.7 17.33
6 125,697 13.3 18.28 155,600 24.2 22.67
8 163,229 18.9 22.28 156,568 25.1 28.00

Table 1. Experimental results for compositional verification

shows the (numerical) result obtained and the time taken for verification done
both compositionally and non-compositionally (with PRISM). As an indication
of problem size, we give the size of the (non-compositional) PA, and the number
of variables in the linear programs for multi-objective model checking.

Compositional verification performs very well. For the consensus models, it is
almost always faster than the non-compositional case, often significantly so, and
is able to scale up to larger models. For zeroconf, times are similar. Encourag-
ingly, though, times for compositional verification grow much more slowly with
model size. We therefore anticipate better scalability through improvements to
the underlying LP solver. Finally, we note that the numerical results obtained
compositionally are very close to the true results (where obtainable).

5 Conclusions
We have presented techniques for studying multi-objective properties of PAs,
using a language that combines ω-regular properties, expected total reward
and multiple objectives. We described how to verify a property over all adver-
saries of a PA, synthesise an adversary that satisfies and/or optimises objectives,
and compute the minimum or maximum value of an objective, subject to con-
straints. We demonstrated direct applicability to controller synthesis, illustrated
with a realistic disk-drive controller case study. Finally, we proposed an assume-
guarantee framework for PAs that significantly improves existing ones [21], and
demonstrated successful compositional verification on several large case studies.

Possible directions for future work include extending our compositional ver-
ification approach with learning-based assumption generation, as [17] does for
the simpler framework of [21], and investigation of continuous-time models.
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