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Abstract—During the software development life cycle,
assumptions are an important type of software development 
knowledge that can be extracted from textual artifacts. Analyzing 
assumptions can help to, for example, comprehend software 
design and further facilitate software maintenance. Manual 
identification of assumptions by stakeholders is rather time-
consuming, especially when analyzing a large dataset of textual 
artifacts. To address this problem, one promising way is to use 
automatic techniques for assumption identification. In this study, 
we conducted an experiment to evaluate the performance of 
existing machine learning classification algorithms for automatic 
assumption identification, through a dataset extracted from the 
Hibernate developer mailing list. The dataset is composed of 400 
“Assumption” sentences and 400 “Non-Assumption” sentences.
Seven classifiers using different machine learning algorithms
were selected and evaluated. The experiment results show that 
the SVM algorithm achieved the best performance (with a 
precision of 0.829, a recall of 0.812, and an F1-score of 0.819). 
Additionally, according to the ROC curves and related AUC 
values, the SVM-based classifier comparatively performed better 
than other classifiers for the binary classification of assumptions.

Keywords—Assumption; Automatic Identification; Open 
Source Software; Hibernate; Mailing List

I. INTRODUCTION

As defined in dictionaries1, an assumption is “a thing that is 
accepted as true or as certain to happen, without proof” or “a
fact or statement taken for granted”. In this work, we adopted 
the definition of software assumption from a recent industrial 
case study and a systematic mapping study [1, 2] that 
“assumptions are software development knowledge taken for 
granted or accepted as true without evidence”. The essence of 
assumptions is uncertainty, i.e., stakeholders believe but they 
are not sure regarding, for example, the importance, impact, or 
correctness of a piece of software knowledge (e.g., 
requirements, design decisions) [1]. For example, “I’m
guessing that what users really need is a command line or GUI 
tool” is an assumption about a requirement discussed in the
developer mailing list of an open source project. More details 
about assumptions in software development can be found in 
Section II.

Assumption is not a new concept in software engineering. 
Different types of studies on assumptions and their 
management have been conducted in various fields, including 

* Corresponding author
1 http://www.oxforddictionaries.com/definition/english/assumption

requirements engineering [3-5], software design [6, 7],
software construction [8], software maintenance [9], and 
software evolution [10].

Assumptions and their management are recognized as 
important in software development by both researchers and 
practitioners [2], while not well-managed assumptions (e.g., 
implicit or invalid assumptions) can lead to critical issues in 
projects (e.g., integration defects, architectural mismatches, and 
vulnerable systems) [2]. As an example, Lehman et al. [9]
stated the impact of assumptions on software development:
“even an improvement of 10% in the identification, analysis 
and correction of assumptions could have saved the economy 
some £1.7bn, a truly staggering figure that does not take into 
account loss of life and limb and the economic cost of software 
failure”. As mentioned by Garlan et al. [11], incompatible 
assumptions can cause architectural mismatches, which is an 
important concern in software engineering community.
Moreover, Steingruebl et al. [12] claimed that undocumented 
assumptions can raise serious problems such as software 
failures. Therefore, it is beneficial to explicitly identify and 
record assumptions in software development to improve 
software maintenance [13], facilitate communication between 
stakeholders, capture early information regarding design 
decisions [13], and allow reuse of components [11].

However, during software development, many uncertain 
descriptions and assumptions are recorded in natural language,
such as discussions in developer mailing lists. Manually 
capturing and identifying assumptions is rather time-
consuming and labor intensive, especially when analyzing a
large dataset of textual artifacts. Due to the time and cost 
constraints, using automatic approaches in identifying
assumptions is important. In Open Source Software (OSS)
community, developers are usually in geographically 
distributed locations and various time zones. As a result, they 
communicate knowledge electronically via developer mailing 
lists (e.g., GroupServer2, Apache Mailing Archives3), which 
provide a major channel for OSS developers to communicate 
and discuss various types of development information [14].
Automatically and accurately identifying assumptions from, for 
example, developer mailing lists is significant for OSS 
developers to understand the assumptions made during the 
development, and consequently facilitate the maintenance and 
evolution of OSS projects. To the best of our knowledge, there 

2 http://groupserver.org/groupserver/features/details
3 https://lists.apache.org/

394

2019 26th Asia-Pacific Software Engineering Conference (APSEC)

2640-0715/19/$31.00 ©2019 IEEE
DOI 10.1109/APSEC48747.2019.00060

Authorized licensed use limited to: University of Groningen. Downloaded on August 20,2023 at 08:36:18 UTC from IEEE Xplore.  Restrictions apply. 



is no such approaches on automatic identification of 
assumptions from textual artifacts. To this end, we conducted 
an experiment to evaluate the performance of existing machine 
learning classification algorithms for automatic assumption 
identification, using a dataset extracted from the developer 
mailing list of Hibernate, which is widely used for database-
related communication in Java (especially J2EE) applications.

The contribution of this work is the following: (1) This is 
the first study focusing on automatic identification of 
assumptions from developer mailing lists in OSS. (2) We 
employed Natural Language Processing (NLP) techniques to 
analyze and extract textual information from the Hibernate 
developer mailing list. (3) We used seven Machine Learning 
(ML) algorithms to construct ML-based classifiers and 
evaluated the performance of the seven ML algorithms through
experiments about the binary classification of assumptions. The 
results show that the Support Vector Machines (SVM)
classification algorithm performs better (with a precision of 
0.829, a recall of 0.812, and an F1-score of 0.819) than other 
classifiers.

The rest of this paper is structured as follows. Section II
introduces the background and related work on assumptions in 
software development and automatic techniques for mining 
textual information. Section III describes the research method
used in this study, while Section IV presents details of the 
experiment. In Section V, we present and discuss the results.
Section VI discusses the implications. Section VII discusses the 
threats to validity. Finally, Section VIII concludes this work 
and discusses the future research directions.

II. BACKGROUND AND RELATED WORK

Many studies have been conducted on exploring the impact 
of assumptions in software development. One important 
conclusion of those studies is that assumptions play a critical 
role in the software development life cycle [2]. In this section, 
we discuss related work on assumptions in software 
development and automatic techniques for mining textual 
information.

A. Assumptions in Software Development
Assumptions exist in the entire life cycle of software 

development, in which many stakeholders are involved in
assumption management and various types of software artifacts 
are related to assumptions as shown in TABLE I according to
our recent mapping study on assumptions and their 
management in software development [2]. In our previous
study [1], we conducted a survey about architectural 
assumptions and found that architects frequently make 
assumptions in their work. Meanwhile, architectural 
assumptions may change (i.e., exhibit dynamic characteristic) 
over time and they can become invalid or be transformed into 
other types of artifacts. Moreover, in the process of software 
development, many problems can be traced to not well-
managed assumptions. In the report by Lewis et al. [15], the 
authors stated that “the potential benefit resulting from this 
practice may be tremendous in the earlier identification and 
elimination of design- and requirement-level defects, and in 
improved change analysis for more predictable and cost-
effective software evolution”. Specific examples regarding 

negative influences of invalid assumptions on software 
development can also be found in [12].

Tang et al. [16] mentioned that assumptions (especially 
design assumptions) and constraints should be explicitly 
represented and be used as a context for previous and current 
architecture decisions. Mamun et al. [17] argued that 
automated checking of invalid assumptions is a big advantage 
for large-scale and complex system development. Shahin et al.
[18] also found that assumptions are a major element in a core 
architecture decision model. Shumaiev et al. [19] proposed the 
feasibility of using NLP techniques to automatically identify 
various types of uncertain information in software architecture 
documents, thereby it supports communications of software 
architecture. As discussed in our previous study [2], uncertainty 
is a fundamental element in assumptions and we need to treat 
assumptions and uncertainty as two different but relevant 
concepts.

Overall, assumptions are commonly found in software 
development and have close relationships to other types of 
software artifacts. Yang et al. [2] listed the challenges of 
assumption management and one of them is about 
distinguishing assumptions from other types of artifacts. This 
work is motivated by such challenge.

TABLE I. STAKEHOLDERS INVOLVED IN ASSUMPTION MANAGEMENT 
AND ARTIFACTS RELATED TO ASSUMPTIONS IN DEVELOPMENT ACTIVITIES 

Software 
Development 

Activity
Stakeholder Software Artifact

Requirements
engineering

Requirements engineer, 
Client, Customer, User,

etc.

Goal, Use case specification, 
Feature model, etc.

Software 
design

Architect,  Designer,
Component designer, etc.

Component, Module, 
Package, Architecture, etc.

Software 
construction

Developer, Programmer,
Component developer,

etc.

Source code, Program 
specification, Class, etc.

Software 
testing Tester, User, etc. Bug report, Testing plan, 

etc.
Software 

maintenance
and evolution

Maintainer, etc. Change requests, Version 
control information, etc.

B. Automatic Techniques for Mining Textual Information
Shumaiev et al. [19] analyzed the impact of assumptions on 

architecture decisions and argued the possibility of 
automatically retrieving assumptions from textual artifacts and 
they mention the following: “using the created corpus, the 
various machine learning training algorithms proposed by 
NLP community have to be tested to identify the most accurate 
one”. Velasco-Elizondo et al. [20] proposed a method based on 
knowledge representation and information extraction to 
automatically identify suitable patterns from a corpus of 
architectural pattern descriptions. The results show that the 
method can help inexperienced software architects to determine 
whether specific quality attributes are promoted or inhibited, 
which is useful for pattern selection during architectural design.
Furthermore, the method can also be potentially used to extract 
related information of assumptions.

Textual information classification has also been applied in 
other types of artifacts. For instance, Pascarella et al. [21]
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focused on the classification of code comments in Java OSS 
projects. They investigated how to categorize code comments 
and proposed an approach to automatically classify the
comments. The results show that the classifier could be used as 
an input for tools that analyze code comments of software 
systems. Maalej et al. [22] applied NLP and ML techniques to 
automatic classification of apps’ user reviews into bug reports, 
feature requests, user experiences, and ratings. Their findings 
inspire the design of review analytics tools for helping app 
vendors and developers to address considerable user reviews, 
filter reviews, and provide useful information to related 
stakeholders. The above mentioned methods, techniques, and 
challenge of distinguishing assumptions from other types of 
artifacts motivate us to conduct an experiment on automatic
identification of assumptions.

III. RESEARCH METHOD

In this section, we present details of the study design. The 
goal of this study is formulated through the Goal Question 
Metric approach [23] as the following: To analyze textual 
information in developer mailing lists for the purpose of
identification with respect to assumptions in software 
development from the point of view of OSS developers in the 
context of OSS application (i.e., Hibernate). The study follows 
the guidelines proposed by Shall et al. [24].

A. Research Questions
The study comprises two Research Questions (RQs). For 

each RQ, we briefly explain their rationale.

RQ1: How accurately can we automatically identify 
assumptions from textual information?

Generally, in OSS development, developers could be from 
all over the world. Developer mailing lists act as a major mean 
of communication in order to discuss development issues, and
consequently may contain assumptions and other pieces of 
knowledge about OSS development. Answering this RQ can 
provide support for further understanding of assumptions and 
design decisions in OSS development, and alleviate the 
problems caused by implicit assumptions. However, there is 
considerable useless textual information and quotes in the 
developer mailing lists. This RQ guides us to filter out “noise”
and obtain useful text representing assumption-related 
information. Even after filtering out the repeated and useless 
text, we still face a vast amount of textual information, which 
can be time-consuming and labor-intensive for identifying 
assumptions manually. An accurate classifier that could
automatically identify assumptions would help to avoid this 
tedious and monotonous step.

RQ2: Which classification algorithm has the best 
performance with respect to the automatic identification of 
assumptions?

Different ML classification algorithms usually have varying 
performance in automatic classification problems. For example, 
perceptron is an algorithm for supervised learning of binary 
classifiers, which is a type of linear classifier. Naive Bayes 
classifiers are a cluster of probabilistic classifiers, which are 
also popular in text categorization since 1960. Moreover, 
Support Vector Machines (SVM) are widely-used supervised 

ML algorithms that are utilized to analyze data for 
classification and regression analysis. By answering this 
question, we seek to understand which kind of classification 
algorithm is the most appropriate one to facilitate automatic 
identification of assumptions.

B. Study Design
We designed an experiment to answer the RQs, which can 

be divided into two steps: (1) Data Processing and (2)
Classifier Training, which are shown in Figure 1.

Step 1: Data Processing

1.1 Data Preprocessing. There are quite a number of 
useless textual characters in the developer mailing list posts
that need to be removed, such as “-------”, “***”, and “&&”. In 
addition, some redundant characters (e.g., redundant space, line 
break) and extra quotes (e.g., replies) need to be removed to
ensure that the experiment dataset does not have any repeated 
textual information. We consider textual information without 
any repeated segments and useless characters as valid. After 
data preprocessing, valid textual information can be extracted 
from the developer mailing list posts.

1.2 Manually Labeling Posts. To avoid personal bias, the
first (a PhD student) and sixth (a master student) authors 
manually identified and labeled assumptions from the 
preprocessed textual information in the posts independently 
and the second author (a senior researcher) reviewed the 
results. To mitigate unconscious bias, the three authors
discussed together to address the conflicts. In this way, we can 
make sure that the labeled samples are reliable. The output of 
this step is labeled posts that contain assumptions (i.e., 
“Assumption” posts).

TABLE II. EXAMPLES OF ASSUMPTIONS AND NON-ASSUMPTIONS

Type Example

Assumption

“Dynamic mapping could be a requirement for some 
developer and programmatic change the mapping 
could be useful for them.”
“It might turn out to be a large enough subset for 
some people’s requirements.”
“Our goal might be available to use the code 
generator to generate the javabean classes defined in 
the mapping file, as well as many of the other 
classes, webpages, etc.”
“it might be wiser to create a Connection object that 
switches based on the DAO implementation.”
“it would be nice to be able to store database indexes 
in the mapping files so the SchemaExport (and 
update) tool can generate those as well.”

Non-Assumption

“The original reason for its existence was that it 
actually declared two methods.”
“It was a simple mistake that would have been picked 
up if that code had been covered by the tests.”
“At deployment time have a tool to generate proxy 
classes that inherit the business classes and override 
every public, package and protected method with a 
method that calls the initialization code when needed 
and then invokes super.”
“But it is common practice that all libs that are 
needed to build are included in cvs, which makes a 
lot of sense, because sometimes code changes need a 
new version of a lib too.”
“This approach has the single advantage that it 
permits caching in the persistence layer.”
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Fig. 1 The overall process of our experiment

1.3 Splitting into Sentences and Manually Labeling 
Sentences. Since the goal of the study is to identify 
assumptions at the sentence level (see Section IV.A), we 
employed the sent_tokenize tool (from the NLTK toolkit [25]
in Python) to split labeled assumption textual segments into 
individual sentences, and further labeled these sentences as 
“Assumption” or “Non-Assumption” respectively as the input of 
Step 2. We provide a few examples of “Assumption” and “Non-
Assumption” sentences in TABLE II. The criteria for labeling 
assumptions are detailed in Section IV.

Step 2: Classifier Training

Valid textual information is processed to generate structural 
data for further analysis. For each sentence with the
“Assumption” label, we extracted features (see Step 2.1) for
textual classification. These features are used to train classifiers 
in order to automatically identify assumptions.

2.1 Tokenization and Filtering. All the preprocessed 
sentences were transformed into bunches of constituent words 
(i.e., splitting each individual sentence into a string of words).
To remove English stop words from each string of words, we 
used the stop words list provided by the scikit-learn tool [26].
To extract stems of words in each sentence, we conducted a 
stemming process, which reduced inflected forms of words to 
their basic or root stems that can be extracted or analyzed as a 
single item. The tool used for stemming is SnowballStemmer
from the NLTK toolkit, because it could provide better 
stemming results compared to other tools, such as Porter and 
Lancater [27]. From the results of our contrast experiment, 
SnowballStemmer gives considerably more reliable results.

Subsequently, we set a threshold to filter out the word 
strings that contain less than four words. The reason is that 
such word strings have limited information and they can be 
considered as invalid features. We also filtered out those non-
ASCII and non-English characters, which were also regarded 

as meaningless features. The rest of the valid word strings were 
selected as the features of each sentence.

2.2 Vectorization. After tokenization and filtering, we 
conducted a vectorization process for the selected word strings 
and transformed them into word vectors through using the 
Word2Vec tool4. Word2Vec is a widely used tool in the NLP 
community, which can generate word embeddings with rich 
syntactic information [28]. After the vectorization process, the 
features of sentences can be used for training classifiers.

2.3 Classifier Learning. Based on the processed dataset 
from the previous steps, we trained seven binary classifiers that 
can be used to automatically identify assumptions from textual 
information. The seven binary classifiers treated the 
“Assumption” sentences as positive instances and the “Non-
Assumption” sentences as negative instances. Since imbalanced 
problems of training dataset are often present in binary 
classification, we oversampled the instances and balanced the 
experiment dataset by selecting the same amount of positive 
and negative instances. Seven popular supervised ML 
classification algorithms were employed for the classifiers.

2.4 Evaluation. Finally, we evaluated the performance of 
the seven classifiers. The results and analysis of the evaluation 
are provided in Section V.

IV. EXPERIMENT

A. Data Selection
Due to the dynamic nature of assumptions [29] (e.g., a valid 

assumption can turn out to be invalid, or transform to other 
types of artifacts), it is hard to verify whether a statement is an
assumption only according to the content of each post. 
Therefore, we decided to first identify assumptions at the
sentence level. In our previous work [30], we identified and 

4 https://code.google.com/archive/p/word2vec/

397

Authorized licensed use limited to: University of Groningen. Downloaded on August 20,2023 at 08:36:18 UTC from IEEE Xplore.  Restrictions apply. 



collected 843 posts that contain assumptions from 9006 posts
in the Hibernate5 developer mailing list between Jan 2002 and 
Jun 2015. The following criteria were used to label
assumptions:

(1) An assumption sentence is supposed to be uncertain, 
which means if there is a strong evidence to support its 
certainty and validity, it is not an assumption. However, 
we should note that assumptions are not equal to 
uncertainties, but rather derived from uncertainties [2].

(2) Consider the context but not just the content. In our 
previous systematic mapping study [2], we identified many 
examples of assumptions from the selected studies (e.g., 
“If thread i holds the lock in read mode, then x cannot be 
changed by another thread” [31]). It is difficult to treat 
such example as an assumption by only reading such 
statements [2]. However, if we dig deeper, paying 
attention to the context of those examples, it becomes clear 
why the examples should be considered as assumptions, 
instead of other types of artifacts, such as requirements.

(3) Uncertainty may also be a characteristic of other types of
software artifacts, but such characteristic is not the focus.
For example, when discussing a design decision, 
stakeholders usually pay attention to the problems behind,
instead of whether the decision is uncertain. On the 
contrary, assumptions are made to address uncertainties [2].

(4) Note the difference between the content of an assumption 
and other types of artifacts. As an example, the content of 
a decision focuses on giving a solution to a problem, while 
the content of an assumption deals with whether something 
is correct, suitable, valuable, etc. [2].

On the Manually Labeling Posts step, we randomly selected 
904 sentences from the 843 posts that contain assumptions. To 
mitigate any bias in getting the truth set, we first conducted a 
pilot labeling with 200 sentences from the 904 sentences by the 
first and sixth authors independently. Conflicts were discussed 
and resolved with the second author, in order to make sure that 
they had a consistent understanding about the criteria of data 
labeling. The formal data labeling was then conducted in two 
steps: (1) The first and sixth authors labeled the remaining 704
sentences independently and we measured the inter-rater 
reliability and calculated Cohen’s Kappa coefficient [32] for 
labeling sentences between the two authors and obtained an 
agreement of 0.821. Similar to the pilot labeling, disagreements
on the labeled sentences were discussed and resolved with the 
second author. (2) Finally, we got 468 “Assumption” sentences 
and 436 “Non-Assumption” sentences from the 904 sentences. 
All the data of this study has been provided online6.

We randomly selected 400 “Assumption” sentences and 400 
“Non-Assumption” sentences from the 904 sentences to form 
the dataset. The dataset was then split into two parts: (a) 75% 
of the sentences as the training set, and (b) 25% of the 
sentences as the testing set.

5 https://sourceforge.net/projects/hibernate/
6 https://tinyurl.com/y4tr7v78

B. Classifiers Selection
We selected seven popular supervised learning methods in 

the field of machine learning, including Perceptron (Pct), 
Logistic Regression (LR), Linear Discriminant Analysis (LDA), 
K-Nearest Neighbors (KNN), Classification And Regression 
Tree (CART), Naive Bayes (NB), and Support Vector 
Machines (SVM). These algorithms are also used in similar 
studies, e.g., the classification of non-functional requirements 
[33] and rationale [34]. We utilized the seven classification 
algorithms to train seven classifiers for automatically 
identifying assumptions.

C. Evaluation Metrics
We evaluate the classifiers through precision and recall,

both of which are two widely used metrics in measuring the 
relevance. Precision is usually used to calculate the correctly 
classified assumptions related sentences in respect to the total 
number of sentences retrieved, while recall is usually used to
calculate the proportion of relevant sentences that are 
successfully retrieved. Formula (1) and (2) define the 
calculation of precision and recall respectively. To balance 
precision and recall as a harmonic mean, we measure the 
classification performance through F1-score based on the 
precision and recall results (using ten-fold cross-validation). F1-
score is widely used for information retrieval tasks and 
corresponds to the trade-off value of precision and recall [35],
as shown in Formula (3).

| _ _ |
| _ |

relevant Sentences retrived Sentencesprecision
retrived Sentences

(1)

| _ _ |
| _ |

relevant Sentences retrived Sentencesrecall
relevant Sentences

(2)

1
2 precision recallF score

precision recall
(3)

Furthermore, to eliminate the potential and undesired bias 
from F1-score [36], we compared the holistic performance of 
the seven classifiers by plotting the ROC curves and 
calculating the AUC values. The results of the ROC curves and 
the AUC values can be found in Section V.

V. RESULTS AND DISCUSSION

In this section, we present and analyze the experiment 
results, and discuss the performance of the seven classification 
algorithms for automatic assumption identification through a
labeled dataset. 

A. Results and Discussion of RQ1
TABLE III presents the classification results of the seven 

classifiers. Overall, the precision, recall, and F1-score values 
(via ten-fold cross-validation) of the seven supervised ML 
methods show a satisfactory result. To be more specific, we can 
accurately identify assumptions from textual information 
through training classifiers, as the F1-scores of six out of the 
seven classifiers exceed 0.7.

Moreover, the results show that (1) the standard deviation 
(SD) of each classifier’s precision, recall, and F1-score is less 
than 0.1, which means that the seven trained classifiers are 
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appropriate to identify assumptions; (2) the precision, recall, 
and F1-score of the classifiers based on Pct, LR, LDA, NB, and 
SVM-based algorithms are comparatively stable than the KNN-
based and CART-based classifier. Thus those five classifiers 
can get more reliable F1-score. Overall, these results show that 
the trained classifiers can be applied to automatically identify 
assumptions with acceptable performance.

TABLE III. RESULTS OF THE SEVEN CLASSIFICATION ALGORITHMS

# Precision Recall F1-score
Mean SD Mean SD Mean SD

Pct 0.767 0.075 0.768 0.051 0.765 0.049
LR 0.788 0.071 0.783 0.050 0.783 0.046

LDA 0.785 0.062 0.798 0.045 0.789 0.035
KNN 0.847 0.059 0.662 0.064 0.740 0.042
CART 0.691 0.072 0.636 0.090 0.664 0.076

NB 0.783 0.050 0.773 0.069 0.776 0.052
SVM 0.829 0.059 0.812 0.071 0.819 0.055

B. Results and Discussion of RQ2
We compared the results to evaluate the performance of the 

seven classifiers, in order to find out the best classifier for 
automatic identification of assumptions. Figure 2 shows
distinctions of the seven classifiers, i.e., the mean values 
calculated via ten-fold cross-validation. The SVM-based 
classifier gets the highest precision (0.829), recall (0.812), and 
F1-score (0.819), followed by the LDA-based classifier, with 
precision (0.785), recall (0.798), and F1-score (0.789).

In addition, in order to provide a holistic and more cogent
result, as well as mitigate the bias potentially from F1-score [36]
(because F1-score may incline to positive class, especially for 
imbalanced dataset [36]), we made a further comparison for the 
performance of the seven classifiers by calculating the area 
under the Receiver Operating Characteristic (ROC) curve [37],
which is also known as Area Under the Curve (AUC). 

ROC curve can reflect how well a classification model 
performs and it is a comparatively straightforward way to judge 
the performance of a classifier. The AUC value is a 
measurement of the area under the ROC curve. The AUC value 
of a classifier with a 100% wrong prediction is 0.0; while the 
AUC value of a classifier with a 100% correct prediction is 1.0
[38]. Figure 3 shows the ROC curves of the seven classifiers, 
and the corresponding AUC values were calculated and shown 
in the legend. True Positive Rate (TPR) and False Positive Rate 
(FPR) are two opposite metrics in Figure 3, which are also 
called Sensitivity and 1-Specificity (calculated by Formula (4) 
and (5) respectively). True Positive (TP) represents the number 
of correctly classified assumptions, False Positive (FP) 
represents the number of incorrectly classified assumptions, 
True Negative (TN) represents the number of assumptions 
correctly not classified, and False Negative (FN) is the number 
of assumptions incorrectly not classified.

Sensitivity TPTPR
TP FN

(4)

1 FPFPR Specificity
FP TN

(5)

Fig. 2 Comparison of the seven ML algorithms for assumption classification

Fig. 3 ROC curves and AUC values of the seven classifiers

An AUC value of 0.5 (see the blue dashed line in Figure 3)
is similar to a random selection, and we selected 0.5 as the
threshold to compare the performance of classifiers (i.e., the 
more margin over threshold, the better performance). 
According the results in Figure 3, the SVM-based classifier 
achieves the highest AUC value of 0.875, rendering it the best
classifier in the experiment. The LR-based and LDA-based 
classifiers are ranked in the second position with a similar
performance, which is consistent to the results of RQ1. In 
conclusion, compared to the other six classifiers, the SVM-
based classifier has the best performance for automatic 
identification of assumptions.
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VI. IMPLICATIONS

A. Designing Tools for Automatic Identification of 
Assumptions
Considering that the SVM-based classifier has the best

performance on the automatic identification of assumptions, it 
is important to integrate it into relevant tools for practical use 
by developers. In addition, we advocate that both researchers 
and practitioners should participate in the design of automatic 
tools for identifying assumptions in software development, 
which can alleviate early deficiencies at the design level of 
those supporting tools.

B. Establishing Shared Dataset related to Assumptions
Assumptions, as a type of inherent artifact in software 

development, should get more attention from especially 
practitioners. Moreover, the lack of widely adopted labeled 
datasets of assumptions is one of the main obstacles for the 
application of automated techniques (e.g., training ML-based 
classifiers needs large data). Therefore, collaborations between 
the software engineering and the machine learning community 
would be valuable in order to establish a labeled common
dataset of assumptions. Such dataset can facilitate further 
research as well as practice on assumptions and their 
management. We also believe that a widely accepted corpus 
and dataset can pave the way towards extensive applications of 
automated techniques.

VII. THREATS TO VALIDITY

There are several threats to the validity of this study. We 
discuss the threats according to the guidelines in [39]. Internal 
validity was not considered, since we did not address causal 
relationships between variable and results.

A. Construct Validity
Construct validity focuses on whether the theoretical or 

conceptual constructs are interpreted and measured correctly. A 
potential threat is if the dataset is accurate with respect to the
labeled data used in this study. For instance, different 
researchers may have different understandings regarding the 
textual information. To mitigate this threat, we reviewed and 
labeled the textual information by two researchers 
independently and another researcher revised the results when
there were disagreements. In addition, we conducted a pilot 
study through selecting 200 sentences and labeled by two 
researchers independently. Any conflicting classifications were 
further discussed and resolved to eliminate personal bias.

B. External Validity
External validity concerns the extent to which our findings 

from this study can be generalized in other settings. As 
discussed in [30], we consider Hibernate as a representative
OSS project to a large extent in OSS development. Therefore, 
the method and results of our work can be generalized to other 
classification problems in a similar context. Meanwhile, we 
believe that our method (see Section III) can be adapted and 
employed for automatic identification of other types of textual 
artifacts (e.g., design decisions).

C. Reliability
Reliability refers to the consistency of a measurement. In 

other words, it is related to whether the experiment is 
conducted and present in such a way so that when other 
researchers replicate it will reach the same results. To reduce 
this threat, the research protocol was discussed and confirmed 
by all the researchers iteratively, and all the details of the study 
are provided in Section III with the data of this study available
online (see Section IV.A). We believe that this threat has been 
partially mitigated.

VIII. CONCLUSIONS AND FUTURE WORK

Since developers from all over the world can contribute to 
an OSS project, the communication with the other developers 
is not easy due to the geographical distance. One of the most 
common ways that the developers use to communicate is 
through mailing lists. Therefore, those mailing lists usually 
have useful knowledge about the project context as well as 
decisions and assumptions made during the development. 
Automatic identification of assumptions from developer 
mailing lists can help to automatically extract that knowledge
which is normally implicit in OSS development, and this can 
be useful for existing developers to better understand the 
project, and especially for the developers that are new to the 
project.

In the software development life cycle, assumptions are an 
important type of software development information that can 
be extracted from textual artifacts. In software design, 
analyzing assumptions can help to comprehend the underlying
design decisions during the development phase and further 
facilitate maintenance of software systems. Manual 
identification of assumptions by stakeholders is rather time-
consuming, especially when analyzing a large amount of 
textual artifacts. To address this problem, one promising way is 
to use automatic techniques for assumption identification,
which can significantly alleviate the effort of stakeholders.

In this paper, we established a dataset extracted from the 
Hibernate developer mailing list, and this dataset is composed 
of 400 “Assumption” sentences and 400 “Non-Assumption”
sentences. We then used the dataset in the experiments for 
training and evaluating seven classifiers based on seven ML 
classification algorithms. The results show that the SVM 
algorithm achieved the best performance (with a precision of 
0.829, a recall of 0.812, and an F1-score of 0.819). According
to the ROC curves and related AUC values, the SVM-based 
classifier comparatively performs better than the other 
classifiers in the binary classification of assumptions.

Given the importance of assumptions in software 
development, our future work is to provide a multiple classifier 
model to realize automatic identification of various types of 
assumptions using different textual artifacts, which would be 
more effective in managing various types of assumptions in the 
software development life cycle. Furthermore, we also plan to 
employ the classifiers with more OSS and industrial projects 
for evaluating the performance of the classifiers in a real-world 
setting.
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