

 University of Groningen

Automatic Identification of Assumptions from the Hibernate Developer Mailing List
Li, Ruiyin; Liang, Peng; Yang, Chen; Digkas, Georgios; Chatzigeorgiou, Alexander; Xiong,
Zhuang
Published in:
Proceedings - 2019 26th Asia-Pacific Software Engineering Conference, APSEC 2019

DOI:
10.1109/APSEC48747.2019.00060

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Li, R., Liang, P., Yang, C., Digkas, G., Chatzigeorgiou, A., & Xiong, Z. (2019). Automatic Identification of
Assumptions from the Hibernate Developer Mailing List. In Proceedings - 2019 26th Asia-Pacific Software
Engineering Conference, APSEC 2019 (pp. 394-401). Article 8945732 (Proceedings - Asia-Pacific Software
Engineering Conference, APSEC; Vol. 2019-December). IEEE Computer Society.
https://doi.org/10.1109/APSEC48747.2019.00060

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 31-10-2023

https://doi.org/10.1109/APSEC48747.2019.00060
https://research.rug.nl/en/publications/cc2d17df-634f-4b36-96e5-688339b059a5
https://doi.org/10.1109/APSEC48747.2019.00060

Automatic Identification of Assumptions from the
Hibernate Developer Mailing List

Ruiyin Li a,c, Peng Liang a*, Chen Yang b, Georgios Digkas c, Alexander Chatzigeorgiou d, Zhuang Xiong a

a School of Computer Science, Wuhan University, 430072 Wuhan, China
b IBO Technology (Shenzhen) Co., Ltd., 518057 Shenzhen, China

c Johann Bernoulli Institute for Mathematics and Computer Science, University of Groningen, 9747 AG Groningen, The Netherlands
d Department of Applied Informatics, University of Macedonia, Egnatia 156, 546 36, Thessaloniki, Greece

{ryli_cs, liangp, zxiong}@whu.edu.cn, c.yang@ibotech.com.cn, g.digkas@rug.nl, achat@uom.gr

Abstract—During the software development life cycle,
assumptions are an important type of software development
knowledge that can be extracted from textual artifacts. Analyzing
assumptions can help to, for example, comprehend software
design and further facilitate software maintenance. Manual
identification of assumptions by stakeholders is rather time-
consuming, especially when analyzing a large dataset of textual
artifacts. To address this problem, one promising way is to use
automatic techniques for assumption identification. In this study,
we conducted an experiment to evaluate the performance of
existing machine learning classification algorithms for automatic
assumption identification, through a dataset extracted from the
Hibernate developer mailing list. The dataset is composed of 400
“Assumption” sentences and 400 “Non-Assumption” sentences.
Seven classifiers using different machine learning algorithms
were selected and evaluated. The experiment results show that
the SVM algorithm achieved the best performance (with a
precision of 0.829, a recall of 0.812, and an F1-score of 0.819).
Additionally, according to the ROC curves and related AUC
values, the SVM-based classifier comparatively performed better
than other classifiers for the binary classification of assumptions.

Keywords—Assumption; Automatic Identification; Open
Source Software; Hibernate; Mailing List

I. INTRODUCTION

As defined in dictionaries1, an assumption is “a thing that is
accepted as true or as certain to happen, without proof” or “a
fact or statement taken for granted”. In this work, we adopted
the definition of software assumption from a recent industrial
case study and a systematic mapping study [1, 2] that
“assumptions are software development knowledge taken for
granted or accepted as true without evidence”. The essence of
assumptions is uncertainty, i.e., stakeholders believe but they
are not sure regarding, for example, the importance, impact, or
correctness of a piece of software knowledge (e.g.,
requirements, design decisions) [1]. For example, “I’m
guessing that what users really need is a command line or GUI
tool” is an assumption about a requirement discussed in the
developer mailing list of an open source project. More details
about assumptions in software development can be found in
Section II.

Assumption is not a new concept in software engineering.
Different types of studies on assumptions and their
management have been conducted in various fields, including

* Corresponding author
1 http://www.oxforddictionaries.com/definition/english/assumption

requirements engineering [3-5], software design [6, 7],
software construction [8], software maintenance [9], and
software evolution [10].

Assumptions and their management are recognized as
important in software development by both researchers and
practitioners [2], while not well-managed assumptions (e.g.,
implicit or invalid assumptions) can lead to critical issues in
projects (e.g., integration defects, architectural mismatches, and
vulnerable systems) [2]. As an example, Lehman et al. [9]
stated the impact of assumptions on software development:
“even an improvement of 10% in the identification, analysis
and correction of assumptions could have saved the economy
some £1.7bn, a truly staggering figure that does not take into
account loss of life and limb and the economic cost of software
failure”. As mentioned by Garlan et al. [11], incompatible
assumptions can cause architectural mismatches, which is an
important concern in software engineering community.
Moreover, Steingruebl et al. [12] claimed that undocumented
assumptions can raise serious problems such as software
failures. Therefore, it is beneficial to explicitly identify and
record assumptions in software development to improve
software maintenance [13], facilitate communication between
stakeholders, capture early information regarding design
decisions [13], and allow reuse of components [11].

However, during software development, many uncertain
descriptions and assumptions are recorded in natural language,
such as discussions in developer mailing lists. Manually
capturing and identifying assumptions is rather time-
consuming and labor intensive, especially when analyzing a
large dataset of textual artifacts. Due to the time and cost
constraints, using automatic approaches in identifying
assumptions is important. In Open Source Software (OSS)
community, developers are usually in geographically
distributed locations and various time zones. As a result, they
communicate knowledge electronically via developer mailing
lists (e.g., GroupServer2, Apache Mailing Archives3), which
provide a major channel for OSS developers to communicate
and discuss various types of development information [14].
Automatically and accurately identifying assumptions from, for
example, developer mailing lists is significant for OSS
developers to understand the assumptions made during the
development, and consequently facilitate the maintenance and
evolution of OSS projects. To the best of our knowledge, there

2 http://groupserver.org/groupserver/features/details
3 https://lists.apache.org/

394

2019 26th Asia-Pacific Software Engineering Conference (APSEC)

2640-0715/19/$31.00 ©2019 IEEE
DOI 10.1109/APSEC48747.2019.00060

Authorized licensed use limited to: University of Groningen. Downloaded on August 20,2023 at 08:36:18 UTC from IEEE Xplore. Restrictions apply.

is no such approaches on automatic identification of
assumptions from textual artifacts. To this end, we conducted
an experiment to evaluate the performance of existing machine
learning classification algorithms for automatic assumption
identification, using a dataset extracted from the developer
mailing list of Hibernate, which is widely used for database-
related communication in Java (especially J2EE) applications.

The contribution of this work is the following: (1) This is
the first study focusing on automatic identification of
assumptions from developer mailing lists in OSS. (2) We
employed Natural Language Processing (NLP) techniques to
analyze and extract textual information from the Hibernate
developer mailing list. (3) We used seven Machine Learning
(ML) algorithms to construct ML-based classifiers and
evaluated the performance of the seven ML algorithms through
experiments about the binary classification of assumptions. The
results show that the Support Vector Machines (SVM)
classification algorithm performs better (with a precision of
0.829, a recall of 0.812, and an F1-score of 0.819) than other
classifiers.

The rest of this paper is structured as follows. Section II
introduces the background and related work on assumptions in
software development and automatic techniques for mining
textual information. Section III describes the research method
used in this study, while Section IV presents details of the
experiment. In Section V, we present and discuss the results.
Section VI discusses the implications. Section VII discusses the
threats to validity. Finally, Section VIII concludes this work
and discusses the future research directions.

II. BACKGROUND AND RELATED WORK

Many studies have been conducted on exploring the impact
of assumptions in software development. One important
conclusion of those studies is that assumptions play a critical
role in the software development life cycle [2]. In this section,
we discuss related work on assumptions in software
development and automatic techniques for mining textual
information.

A. Assumptions in Software Development
Assumptions exist in the entire life cycle of software

development, in which many stakeholders are involved in
assumption management and various types of software artifacts
are related to assumptions as shown in TABLE I according to
our recent mapping study on assumptions and their
management in software development [2]. In our previous
study [1], we conducted a survey about architectural
assumptions and found that architects frequently make
assumptions in their work. Meanwhile, architectural
assumptions may change (i.e., exhibit dynamic characteristic)
over time and they can become invalid or be transformed into
other types of artifacts. Moreover, in the process of software
development, many problems can be traced to not well-
managed assumptions. In the report by Lewis et al. [15], the
authors stated that “the potential benefit resulting from this
practice may be tremendous in the earlier identification and
elimination of design- and requirement-level defects, and in
improved change analysis for more predictable and cost-
effective software evolution”. Specific examples regarding

negative influences of invalid assumptions on software
development can also be found in [12].

Tang et al. [16] mentioned that assumptions (especially
design assumptions) and constraints should be explicitly
represented and be used as a context for previous and current
architecture decisions. Mamun et al. [17] argued that
automated checking of invalid assumptions is a big advantage
for large-scale and complex system development. Shahin et al.
[18] also found that assumptions are a major element in a core
architecture decision model. Shumaiev et al. [19] proposed the
feasibility of using NLP techniques to automatically identify
various types of uncertain information in software architecture
documents, thereby it supports communications of software
architecture. As discussed in our previous study [2], uncertainty
is a fundamental element in assumptions and we need to treat
assumptions and uncertainty as two different but relevant
concepts.

Overall, assumptions are commonly found in software
development and have close relationships to other types of
software artifacts. Yang et al. [2] listed the challenges of
assumption management and one of them is about
distinguishing assumptions from other types of artifacts. This
work is motivated by such challenge.

TABLE I. STAKEHOLDERS INVOLVED IN ASSUMPTION MANAGEMENT
AND ARTIFACTS RELATED TO ASSUMPTIONS IN DEVELOPMENT ACTIVITIES

Software
Development

Activity
Stakeholder Software Artifact

Requirements
engineering

Requirements engineer,
Client, Customer, User,

etc.

Goal, Use case specification,
Feature model, etc.

Software
design

Architect, Designer,
Component designer, etc.

Component, Module,
Package, Architecture, etc.

Software
construction

Developer, Programmer,
Component developer,

etc.

Source code, Program
specification, Class, etc.

Software
testing Tester, User, etc. Bug report, Testing plan,

etc.
Software

maintenance
and evolution

Maintainer, etc. Change requests, Version
control information, etc.

B. Automatic Techniques for Mining Textual Information
Shumaiev et al. [19] analyzed the impact of assumptions on

architecture decisions and argued the possibility of
automatically retrieving assumptions from textual artifacts and
they mention the following: “using the created corpus, the
various machine learning training algorithms proposed by
NLP community have to be tested to identify the most accurate
one”. Velasco-Elizondo et al. [20] proposed a method based on
knowledge representation and information extraction to
automatically identify suitable patterns from a corpus of
architectural pattern descriptions. The results show that the
method can help inexperienced software architects to determine
whether specific quality attributes are promoted or inhibited,
which is useful for pattern selection during architectural design.
Furthermore, the method can also be potentially used to extract
related information of assumptions.

Textual information classification has also been applied in
other types of artifacts. For instance, Pascarella et al. [21]

395

Authorized licensed use limited to: University of Groningen. Downloaded on August 20,2023 at 08:36:18 UTC from IEEE Xplore. Restrictions apply.

focused on the classification of code comments in Java OSS
projects. They investigated how to categorize code comments
and proposed an approach to automatically classify the
comments. The results show that the classifier could be used as
an input for tools that analyze code comments of software
systems. Maalej et al. [22] applied NLP and ML techniques to
automatic classification of apps’ user reviews into bug reports,
feature requests, user experiences, and ratings. Their findings
inspire the design of review analytics tools for helping app
vendors and developers to address considerable user reviews,
filter reviews, and provide useful information to related
stakeholders. The above mentioned methods, techniques, and
challenge of distinguishing assumptions from other types of
artifacts motivate us to conduct an experiment on automatic
identification of assumptions.

III. RESEARCH METHOD

In this section, we present details of the study design. The
goal of this study is formulated through the Goal Question
Metric approach [23] as the following: To analyze textual
information in developer mailing lists for the purpose of
identification with respect to assumptions in software
development from the point of view of OSS developers in the
context of OSS application (i.e., Hibernate). The study follows
the guidelines proposed by Shall et al. [24].

A. Research Questions
The study comprises two Research Questions (RQs). For

each RQ, we briefly explain their rationale.

RQ1: How accurately can we automatically identify
assumptions from textual information?

Generally, in OSS development, developers could be from
all over the world. Developer mailing lists act as a major mean
of communication in order to discuss development issues, and
consequently may contain assumptions and other pieces of
knowledge about OSS development. Answering this RQ can
provide support for further understanding of assumptions and
design decisions in OSS development, and alleviate the
problems caused by implicit assumptions. However, there is
considerable useless textual information and quotes in the
developer mailing lists. This RQ guides us to filter out “noise”
and obtain useful text representing assumption-related
information. Even after filtering out the repeated and useless
text, we still face a vast amount of textual information, which
can be time-consuming and labor-intensive for identifying
assumptions manually. An accurate classifier that could
automatically identify assumptions would help to avoid this
tedious and monotonous step.

RQ2: Which classification algorithm has the best
performance with respect to the automatic identification of
assumptions?

Different ML classification algorithms usually have varying
performance in automatic classification problems. For example,
perceptron is an algorithm for supervised learning of binary
classifiers, which is a type of linear classifier. Naive Bayes
classifiers are a cluster of probabilistic classifiers, which are
also popular in text categorization since 1960. Moreover,
Support Vector Machines (SVM) are widely-used supervised

ML algorithms that are utilized to analyze data for
classification and regression analysis. By answering this
question, we seek to understand which kind of classification
algorithm is the most appropriate one to facilitate automatic
identification of assumptions.

B. Study Design
We designed an experiment to answer the RQs, which can

be divided into two steps: (1) Data Processing and (2)
Classifier Training, which are shown in Figure 1.

Step 1: Data Processing

1.1 Data Preprocessing. There are quite a number of
useless textual characters in the developer mailing list posts
that need to be removed, such as “-------”, “***”, and “&&”. In
addition, some redundant characters (e.g., redundant space, line
break) and extra quotes (e.g., replies) need to be removed to
ensure that the experiment dataset does not have any repeated
textual information. We consider textual information without
any repeated segments and useless characters as valid. After
data preprocessing, valid textual information can be extracted
from the developer mailing list posts.

1.2 Manually Labeling Posts. To avoid personal bias, the
first (a PhD student) and sixth (a master student) authors
manually identified and labeled assumptions from the
preprocessed textual information in the posts independently
and the second author (a senior researcher) reviewed the
results. To mitigate unconscious bias, the three authors
discussed together to address the conflicts. In this way, we can
make sure that the labeled samples are reliable. The output of
this step is labeled posts that contain assumptions (i.e.,
“Assumption” posts).

TABLE II. EXAMPLES OF ASSUMPTIONS AND NON-ASSUMPTIONS

Type Example

Assumption

“Dynamic mapping could be a requirement for some
developer and programmatic change the mapping
could be useful for them.”
“It might turn out to be a large enough subset for
some people’s requirements.”
“Our goal might be available to use the code
generator to generate the javabean classes defined in
the mapping file, as well as many of the other
classes, webpages, etc.”
“it might be wiser to create a Connection object that
switches based on the DAO implementation.”
“it would be nice to be able to store database indexes
in the mapping files so the SchemaExport (and
update) tool can generate those as well.”

Non-Assumption

“The original reason for its existence was that it
actually declared two methods.”
“It was a simple mistake that would have been picked
up if that code had been covered by the tests.”
“At deployment time have a tool to generate proxy
classes that inherit the business classes and override
every public, package and protected method with a
method that calls the initialization code when needed
and then invokes super.”
“But it is common practice that all libs that are
needed to build are included in cvs, which makes a
lot of sense, because sometimes code changes need a
new version of a lib too.”
“This approach has the single advantage that it
permits caching in the persistence layer.”

396

Authorized licensed use limited to: University of Groningen. Downloaded on August 20,2023 at 08:36:18 UTC from IEEE Xplore. Restrictions apply.

Fig. 1 The overall process of our experiment

1.3 Splitting into Sentences and Manually Labeling
Sentences. Since the goal of the study is to identify
assumptions at the sentence level (see Section IV.A), we
employed the sent_tokenize tool (from the NLTK toolkit [25]
in Python) to split labeled assumption textual segments into
individual sentences, and further labeled these sentences as
“Assumption” or “Non-Assumption” respectively as the input of
Step 2. We provide a few examples of “Assumption” and “Non-
Assumption” sentences in TABLE II. The criteria for labeling
assumptions are detailed in Section IV.

Step 2: Classifier Training

Valid textual information is processed to generate structural
data for further analysis. For each sentence with the
“Assumption” label, we extracted features (see Step 2.1) for
textual classification. These features are used to train classifiers
in order to automatically identify assumptions.

2.1 Tokenization and Filtering. All the preprocessed
sentences were transformed into bunches of constituent words
(i.e., splitting each individual sentence into a string of words).
To remove English stop words from each string of words, we
used the stop words list provided by the scikit-learn tool [26].
To extract stems of words in each sentence, we conducted a
stemming process, which reduced inflected forms of words to
their basic or root stems that can be extracted or analyzed as a
single item. The tool used for stemming is SnowballStemmer
from the NLTK toolkit, because it could provide better
stemming results compared to other tools, such as Porter and
Lancater [27]. From the results of our contrast experiment,
SnowballStemmer gives considerably more reliable results.

Subsequently, we set a threshold to filter out the word
strings that contain less than four words. The reason is that
such word strings have limited information and they can be
considered as invalid features. We also filtered out those non-
ASCII and non-English characters, which were also regarded

as meaningless features. The rest of the valid word strings were
selected as the features of each sentence.

2.2 Vectorization. After tokenization and filtering, we
conducted a vectorization process for the selected word strings
and transformed them into word vectors through using the
Word2Vec tool4. Word2Vec is a widely used tool in the NLP
community, which can generate word embeddings with rich
syntactic information [28]. After the vectorization process, the
features of sentences can be used for training classifiers.

2.3 Classifier Learning. Based on the processed dataset
from the previous steps, we trained seven binary classifiers that
can be used to automatically identify assumptions from textual
information. The seven binary classifiers treated the
“Assumption” sentences as positive instances and the “Non-
Assumption” sentences as negative instances. Since imbalanced
problems of training dataset are often present in binary
classification, we oversampled the instances and balanced the
experiment dataset by selecting the same amount of positive
and negative instances. Seven popular supervised ML
classification algorithms were employed for the classifiers.

2.4 Evaluation. Finally, we evaluated the performance of
the seven classifiers. The results and analysis of the evaluation
are provided in Section V.

IV. EXPERIMENT

A. Data Selection
Due to the dynamic nature of assumptions [29] (e.g., a valid

assumption can turn out to be invalid, or transform to other
types of artifacts), it is hard to verify whether a statement is an
assumption only according to the content of each post.
Therefore, we decided to first identify assumptions at the
sentence level. In our previous work [30], we identified and

4 https://code.google.com/archive/p/word2vec/

397

Authorized licensed use limited to: University of Groningen. Downloaded on August 20,2023 at 08:36:18 UTC from IEEE Xplore. Restrictions apply.

collected 843 posts that contain assumptions from 9006 posts
in the Hibernate5 developer mailing list between Jan 2002 and
Jun 2015. The following criteria were used to label
assumptions:

(1) An assumption sentence is supposed to be uncertain,
which means if there is a strong evidence to support its
certainty and validity, it is not an assumption. However,
we should note that assumptions are not equal to
uncertainties, but rather derived from uncertainties [2].

(2) Consider the context but not just the content. In our
previous systematic mapping study [2], we identified many
examples of assumptions from the selected studies (e.g.,
“If thread i holds the lock in read mode, then x cannot be
changed by another thread” [31]). It is difficult to treat
such example as an assumption by only reading such
statements [2]. However, if we dig deeper, paying
attention to the context of those examples, it becomes clear
why the examples should be considered as assumptions,
instead of other types of artifacts, such as requirements.

(3) Uncertainty may also be a characteristic of other types of
software artifacts, but such characteristic is not the focus.
For example, when discussing a design decision,
stakeholders usually pay attention to the problems behind,
instead of whether the decision is uncertain. On the
contrary, assumptions are made to address uncertainties [2].

(4) Note the difference between the content of an assumption
and other types of artifacts. As an example, the content of
a decision focuses on giving a solution to a problem, while
the content of an assumption deals with whether something
is correct, suitable, valuable, etc. [2].

On the Manually Labeling Posts step, we randomly selected
904 sentences from the 843 posts that contain assumptions. To
mitigate any bias in getting the truth set, we first conducted a
pilot labeling with 200 sentences from the 904 sentences by the
first and sixth authors independently. Conflicts were discussed
and resolved with the second author, in order to make sure that
they had a consistent understanding about the criteria of data
labeling. The formal data labeling was then conducted in two
steps: (1) The first and sixth authors labeled the remaining 704
sentences independently and we measured the inter-rater
reliability and calculated Cohen’s Kappa coefficient [32] for
labeling sentences between the two authors and obtained an
agreement of 0.821. Similar to the pilot labeling, disagreements
on the labeled sentences were discussed and resolved with the
second author. (2) Finally, we got 468 “Assumption” sentences
and 436 “Non-Assumption” sentences from the 904 sentences.
All the data of this study has been provided online6.

We randomly selected 400 “Assumption” sentences and 400
“Non-Assumption” sentences from the 904 sentences to form
the dataset. The dataset was then split into two parts: (a) 75%
of the sentences as the training set, and (b) 25% of the
sentences as the testing set.

5 https://sourceforge.net/projects/hibernate/
6 https://tinyurl.com/y4tr7v78

B. Classifiers Selection
We selected seven popular supervised learning methods in

the field of machine learning, including Perceptron (Pct),
Logistic Regression (LR), Linear Discriminant Analysis (LDA),
K-Nearest Neighbors (KNN), Classification And Regression
Tree (CART), Naive Bayes (NB), and Support Vector
Machines (SVM). These algorithms are also used in similar
studies, e.g., the classification of non-functional requirements
[33] and rationale [34]. We utilized the seven classification
algorithms to train seven classifiers for automatically
identifying assumptions.

C. Evaluation Metrics
We evaluate the classifiers through precision and recall,

both of which are two widely used metrics in measuring the
relevance. Precision is usually used to calculate the correctly
classified assumptions related sentences in respect to the total
number of sentences retrieved, while recall is usually used to
calculate the proportion of relevant sentences that are
successfully retrieved. Formula (1) and (2) define the
calculation of precision and recall respectively. To balance
precision and recall as a harmonic mean, we measure the
classification performance through F1-score based on the
precision and recall results (using ten-fold cross-validation). F1-
score is widely used for information retrieval tasks and
corresponds to the trade-off value of precision and recall [35],
as shown in Formula (3).

| _ _ |
| _ |

relevant Sentences retrived Sentencesprecision
retrived Sentences

(1)

| _ _ |
| _ |

relevant Sentences retrived Sentencesrecall
relevant Sentences

(2)

1
2 precision recallF score

precision recall
(3)

Furthermore, to eliminate the potential and undesired bias
from F1-score [36], we compared the holistic performance of
the seven classifiers by plotting the ROC curves and
calculating the AUC values. The results of the ROC curves and
the AUC values can be found in Section V.

V. RESULTS AND DISCUSSION

In this section, we present and analyze the experiment
results, and discuss the performance of the seven classification
algorithms for automatic assumption identification through a
labeled dataset.

A. Results and Discussion of RQ1
TABLE III presents the classification results of the seven

classifiers. Overall, the precision, recall, and F1-score values
(via ten-fold cross-validation) of the seven supervised ML
methods show a satisfactory result. To be more specific, we can
accurately identify assumptions from textual information
through training classifiers, as the F1-scores of six out of the
seven classifiers exceed 0.7.

Moreover, the results show that (1) the standard deviation
(SD) of each classifier’s precision, recall, and F1-score is less
than 0.1, which means that the seven trained classifiers are

398

Authorized licensed use limited to: University of Groningen. Downloaded on August 20,2023 at 08:36:18 UTC from IEEE Xplore. Restrictions apply.

appropriate to identify assumptions; (2) the precision, recall,
and F1-score of the classifiers based on Pct, LR, LDA, NB, and
SVM-based algorithms are comparatively stable than the KNN-
based and CART-based classifier. Thus those five classifiers
can get more reliable F1-score. Overall, these results show that
the trained classifiers can be applied to automatically identify
assumptions with acceptable performance.

TABLE III. RESULTS OF THE SEVEN CLASSIFICATION ALGORITHMS

Precision Recall F1-score
Mean SD Mean SD Mean SD

Pct 0.767 0.075 0.768 0.051 0.765 0.049
LR 0.788 0.071 0.783 0.050 0.783 0.046

LDA 0.785 0.062 0.798 0.045 0.789 0.035
KNN 0.847 0.059 0.662 0.064 0.740 0.042
CART 0.691 0.072 0.636 0.090 0.664 0.076

NB 0.783 0.050 0.773 0.069 0.776 0.052
SVM 0.829 0.059 0.812 0.071 0.819 0.055

B. Results and Discussion of RQ2
We compared the results to evaluate the performance of the

seven classifiers, in order to find out the best classifier for
automatic identification of assumptions. Figure 2 shows
distinctions of the seven classifiers, i.e., the mean values
calculated via ten-fold cross-validation. The SVM-based
classifier gets the highest precision (0.829), recall (0.812), and
F1-score (0.819), followed by the LDA-based classifier, with
precision (0.785), recall (0.798), and F1-score (0.789).

In addition, in order to provide a holistic and more cogent
result, as well as mitigate the bias potentially from F1-score [36]
(because F1-score may incline to positive class, especially for
imbalanced dataset [36]), we made a further comparison for the
performance of the seven classifiers by calculating the area
under the Receiver Operating Characteristic (ROC) curve [37],
which is also known as Area Under the Curve (AUC).

ROC curve can reflect how well a classification model
performs and it is a comparatively straightforward way to judge
the performance of a classifier. The AUC value is a
measurement of the area under the ROC curve. The AUC value
of a classifier with a 100% wrong prediction is 0.0; while the
AUC value of a classifier with a 100% correct prediction is 1.0
[38]. Figure 3 shows the ROC curves of the seven classifiers,
and the corresponding AUC values were calculated and shown
in the legend. True Positive Rate (TPR) and False Positive Rate
(FPR) are two opposite metrics in Figure 3, which are also
called Sensitivity and 1-Specificity (calculated by Formula (4)
and (5) respectively). True Positive (TP) represents the number
of correctly classified assumptions, False Positive (FP)
represents the number of incorrectly classified assumptions,
True Negative (TN) represents the number of assumptions
correctly not classified, and False Negative (FN) is the number
of assumptions incorrectly not classified.

Sensitivity TPTPR
TP FN

(4)

1 FPFPR Specificity
FP TN

(5)

Fig. 2 Comparison of the seven ML algorithms for assumption classification

Fig. 3 ROC curves and AUC values of the seven classifiers

An AUC value of 0.5 (see the blue dashed line in Figure 3)
is similar to a random selection, and we selected 0.5 as the
threshold to compare the performance of classifiers (i.e., the
more margin over threshold, the better performance).
According the results in Figure 3, the SVM-based classifier
achieves the highest AUC value of 0.875, rendering it the best
classifier in the experiment. The LR-based and LDA-based
classifiers are ranked in the second position with a similar
performance, which is consistent to the results of RQ1. In
conclusion, compared to the other six classifiers, the SVM-
based classifier has the best performance for automatic
identification of assumptions.

399

Authorized licensed use limited to: University of Groningen. Downloaded on August 20,2023 at 08:36:18 UTC from IEEE Xplore. Restrictions apply.

VI. IMPLICATIONS

A. Designing Tools for Automatic Identification of
Assumptions
Considering that the SVM-based classifier has the best

performance on the automatic identification of assumptions, it
is important to integrate it into relevant tools for practical use
by developers. In addition, we advocate that both researchers
and practitioners should participate in the design of automatic
tools for identifying assumptions in software development,
which can alleviate early deficiencies at the design level of
those supporting tools.

B. Establishing Shared Dataset related to Assumptions
Assumptions, as a type of inherent artifact in software

development, should get more attention from especially
practitioners. Moreover, the lack of widely adopted labeled
datasets of assumptions is one of the main obstacles for the
application of automated techniques (e.g., training ML-based
classifiers needs large data). Therefore, collaborations between
the software engineering and the machine learning community
would be valuable in order to establish a labeled common
dataset of assumptions. Such dataset can facilitate further
research as well as practice on assumptions and their
management. We also believe that a widely accepted corpus
and dataset can pave the way towards extensive applications of
automated techniques.

VII. THREATS TO VALIDITY

There are several threats to the validity of this study. We
discuss the threats according to the guidelines in [39]. Internal
validity was not considered, since we did not address causal
relationships between variable and results.

A. Construct Validity
Construct validity focuses on whether the theoretical or

conceptual constructs are interpreted and measured correctly. A
potential threat is if the dataset is accurate with respect to the
labeled data used in this study. For instance, different
researchers may have different understandings regarding the
textual information. To mitigate this threat, we reviewed and
labeled the textual information by two researchers
independently and another researcher revised the results when
there were disagreements. In addition, we conducted a pilot
study through selecting 200 sentences and labeled by two
researchers independently. Any conflicting classifications were
further discussed and resolved to eliminate personal bias.

B. External Validity
External validity concerns the extent to which our findings

from this study can be generalized in other settings. As
discussed in [30], we consider Hibernate as a representative
OSS project to a large extent in OSS development. Therefore,
the method and results of our work can be generalized to other
classification problems in a similar context. Meanwhile, we
believe that our method (see Section III) can be adapted and
employed for automatic identification of other types of textual
artifacts (e.g., design decisions).

C. Reliability
Reliability refers to the consistency of a measurement. In

other words, it is related to whether the experiment is
conducted and present in such a way so that when other
researchers replicate it will reach the same results. To reduce
this threat, the research protocol was discussed and confirmed
by all the researchers iteratively, and all the details of the study
are provided in Section III with the data of this study available
online (see Section IV.A). We believe that this threat has been
partially mitigated.

VIII. CONCLUSIONS AND FUTURE WORK

Since developers from all over the world can contribute to
an OSS project, the communication with the other developers
is not easy due to the geographical distance. One of the most
common ways that the developers use to communicate is
through mailing lists. Therefore, those mailing lists usually
have useful knowledge about the project context as well as
decisions and assumptions made during the development.
Automatic identification of assumptions from developer
mailing lists can help to automatically extract that knowledge
which is normally implicit in OSS development, and this can
be useful for existing developers to better understand the
project, and especially for the developers that are new to the
project.

In the software development life cycle, assumptions are an
important type of software development information that can
be extracted from textual artifacts. In software design,
analyzing assumptions can help to comprehend the underlying
design decisions during the development phase and further
facilitate maintenance of software systems. Manual
identification of assumptions by stakeholders is rather time-
consuming, especially when analyzing a large amount of
textual artifacts. To address this problem, one promising way is
to use automatic techniques for assumption identification,
which can significantly alleviate the effort of stakeholders.

In this paper, we established a dataset extracted from the
Hibernate developer mailing list, and this dataset is composed
of 400 “Assumption” sentences and 400 “Non-Assumption”
sentences. We then used the dataset in the experiments for
training and evaluating seven classifiers based on seven ML
classification algorithms. The results show that the SVM
algorithm achieved the best performance (with a precision of
0.829, a recall of 0.812, and an F1-score of 0.819). According
to the ROC curves and related AUC values, the SVM-based
classifier comparatively performs better than the other
classifiers in the binary classification of assumptions.

Given the importance of assumptions in software
development, our future work is to provide a multiple classifier
model to realize automatic identification of various types of
assumptions using different textual artifacts, which would be
more effective in managing various types of assumptions in the
software development life cycle. Furthermore, we also plan to
employ the classifiers with more OSS and industrial projects
for evaluating the performance of the classifiers in a real-world
setting.

400

Authorized licensed use limited to: University of Groningen. Downloaded on August 20,2023 at 08:36:18 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENTS

This work is partially sponsored by the National Key R&D
Program of China with Grant No. 2018YFB1402800. The
authors gratefully acknowledge the financial support from the
China Scholarship Council.

REFERENCES

[1] C. Yang, P. Liang, P. Avgeriou, U. Eliasson, R. Heldal, and P.
Pelliccione, "Architectural assumptions and their management in
industry–An exploratory study," in Proceedings of the 11th European
Conference on Software Architecture (ECSA), 2017, pp. 191-207:
Springer.

[2] C. Yang, P. Liang, and P. Avgeriou, "Assumptions and their
management in software development: A systematic mapping study,"
Information and Software Technology, vol. 94, pp. 82-110, 2018.

[3] Ö. Albayrak, H. Kurtoglu, and M. Biçakçi, "Incomplete software
requirements and assumptions made by software engineers," in
Proceedings of the 16th Asia-Pacific Software Engineering Conference
(APSEC), 2009, pp. 333-339: IEEE.

[4] R. Ali, F. Dalpiaz, P. Giorgini, and V. E. S. Souza, "Requirements
evolution: from assumptions to reality," in Enterprise, Business-Process
and Information Systems Modeling: Springer, 2011, pp. 372-382.

[5] T. Arts, M. Dorigatti, and S. Tonetta, "Making implicit safety
requirements explicit," in Proceedings of the 33th International
Conference on Computer Safety, Reliability, and Security
(SAFECOMP), 2014, pp. 81-92: Springer.

[6] A. Cimatti and S. Tonetta, "A property-based proof system for contract-
based design," in Proceedings of the 38th Euromicro Conference on
Software Engineering and Advanced Applications (SEAA), 2012, pp.
21-28: IEEE.

[7] S. Faily and I. Fléchais, "The secret lives of assumptions: Developing
and refining assumption personas for secure system design," in
Proceedings of the 3rd International Conference on Human-Centred
Software Engineering (HCSE), 2010, pp. 111-118: Springer.

[8] M. Kwiatkowska, G. Norman, D. Parker, and H. Qu, "Assume-
guarantee verification for probabilistic systems," in Proceedings of the
16th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), 2010, pp. 23-37:
Springer.

[9] M. M. Lehman, "The role and impact of assumptions in software
development, maintenance and evolution," in Proceedings of the 1st
IEEE International Workshop on Software Evolvability (IWSE), 2005,
pp. 3-14: IEEE.

[10] N. H. Pham, V.-H. Nguyen, T. Aoki, and T. Katayama, "An
improvement of minimized assumption generation method for
component-based software verification," in Proceedings of the
International Conference on Computing & Communication
Technologies, Research, Innovation, and Vision for the Future (RIVF),
2012, pp. 1-6: IEEE.

[11] D. Garlan, R. Allen, and J. Ockerbloom, "Architectural mismatch: Why
reuse is still so hard," IEEE Software, vol. 26, no. 4, pp. 66-69, 2009.

[12] A. Steingruebl and G. Peterson, "Software assumptions lead to
preventable errors," IEEE Security & Privacy, vol. 7, no. 4, pp. 84-87,
2009.

[13] M. M. Lehman and J. F. Ramil, "Rules and tools for software evolution
planning and management," Annals of software engineering, vol. 11, no.
1, pp. 15-44, 2001.

[14] A. Guzzi, A. Bacchelli, M. Lanza, M. Pinzger, and A. v. Deursen,
"Communication in open source software development mailing lists," in
Proceedings of the 10th Working Conference on Mining Software
Repositories, 2013, pp. 277-286: IEEE Press.

[15] G. A. Lewis, T. Mahatham, and L. Wrage, "Assumptions management
in software development," Technical Report, Carnegie Mellon
University2004.

[16] A. Tang, Y. Jin, and J. Han, "A rationale-based architecture model for
design traceability and reasoning," Journal of Systems and Software,
vol. 80, no. 6, pp. 918-934, 2007.

[17] M. A. A. Mamun and J. Hansson, "Review and challenges of
assumptions in software development," in Proceedings of the 2nd

Analytic Virtual Integration of Cyber-Physical Systems Workshop
(AVICPS), 2011.

[18] M. Shahin, P. Liang, and M. R. Khayyambashi, "Architectural design
decision: Existing models and tools," in Proceedings of the Joint 8th
Working IEEE/IFIP Conference on Software Architecture and 3rd
European Conference on Software Architecture (WICSA/ECSA), 2009,
pp. 293-296: IEEE.

[19] K. Shumaiev and M. Bhat, "Automatic Uncertainty Detection in
Software Architecture Documentation," in Proceedings of the
International Conference on Software Architecture Workshops
(ICSAW), 2017, pp. 216-219: IEEE.

[20] P. Velasco-Elizondo, R. Marín-Piña, S. Vazquez-Reyes, A. Mora-Soto,
and J. Mejia, "Knowledge representation and information extraction for
analysing architectural patterns," Science of Computer Programming,
vol. 121, pp. 176-189, 2016.

[21] L. Pascarella and A. Bacchelli, "Classifying code comments in Java
open-source software systems," in Proceedings of the 14th International
Conference on Mining Software Repositories (MSR), 2017, pp. 227-
237: IEEE.

[22]
classification of app reviews," Requirements Engineering, vol. 21, no. 3,
pp. 311-331, 2016.

[23] V. R. Basili, G. Caldiera, and H. D. Rombach, "The Goal Question
Metric Approach," Encyclopedia of Software Engineering, pp. 528-532,
1994.

[24] F. Shull, J. Singer, and D. I. Sjøberg, Guide to advanced empirical
software engineering. Springer, 2007.

[25] S. Bird, E. Klein, and E. Loper, Natural language processing with
Python: analyzing text with the natural language toolkit. O'Reilly Media,
Inc., 2009.

[26] F. Pedregosa et al., "Scikit-learn: Machine learning in Python," Journal
of machine learning research, vol. 12, no. Oct, pp. 2825-2830, 2011.

[27] R. Visser and B. O. K. Intelligentie, "Tag cloud visualisation of verbal
discussions following speech-to-text," 2015.

[28] X. Rong, "word2vec parameter learning explained," arXiv preprint
arXiv:1411.2738, 2014.

[29] C. Yang, P. Liang, and P. Avgeriou, "Evaluation of a process for
architectural assumption management in software development,"
Science of Computer Programming, vol. 168, pp. 38-70, 2018.

[30] Z. Xiong, P. Liang, C. Yang, and T. Liu, "Assumptions in OSS
Development: An Exploratory Study through the Hibernate Developer
Mailing List," in Proceedings of the 25th Asia-Pacific Software
Engineering Conference (APSEC), 2018, pp. 455–464: IEEE.

[31] H. Ziv, D. Richardson, and R. Klösch, "The uncertainty principle in
software engineering," in Proceedings of the submitted to Proceedings
of the 19th International Conference on Software Engineering
(ICSE'97), 1997.

[32] J. R. Landis and G. G. Koch, "The measurement of observer agreement
for categorical data," biometrics, pp. 159-174, 1977.

[33] Z. S. H. Abad, O. Karras, P. Ghazi, M. Glinz, G. Ruhe, and K.
Schneider, "What works better? a study of classifying requirements," in
Proceedings of the 25th IEEE International Requirements Engineering
Conference (RE), 2017, pp. 496-501: IEEE.

[34] R. Alkadhi, M. Nonnenmacher, E. Guzman, and B. Bruegge, "How do
developers discuss rationale?," in Proceedings of the 25th International
Conference on Software Analysis, Evolution and Reengineering
(SANER), 2018, pp. 357-369: IEEE.

[35] -Frayling, "Feature
selection using linear classifier weights: interaction with classification
models," in Proceedings of the 27th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval
(SIGIR), 2004, pp. 234-241: ACM.

[36] G. Forman and M. Scholz, "Apples-to-apples in cross-validation studies:
pitfalls in classifier performance measurement," ACM SIGKDD
Explorations Newsletter, vol. 12, no. 1, pp. 49-57, 2010.

[37] T. Fawcett, "An introduction to ROC analysis," Pattern recognition
letters, vol. 27, no. 8, pp. 861-874, 2006.

[38] E. Alpaydin, Introduction to machine learning. MIT press, 2009.
[39] M. B. Brewer and W. D. Crano, "Research design and issues of

validity," Handbook of Research Methods in Social and Personality
Psychology, pp. 3-16, 2000.

401

Authorized licensed use limited to: University of Groningen. Downloaded on August 20,2023 at 08:36:18 UTC from IEEE Xplore. Restrictions apply.

