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1 INTRODUCTION

Using logics for analysis of concurrent and reactive systems is a well-established
approach [1], but the standard qualitative techniques are arguably insufficient when
reasoning about quantitative aspects. Indeed, it can be argued that in a setting
where system models and properties include both discrete and continuous, i.e. quan-
titative, information, e.g. real-time or probabilistic systems, a quantitative approach



1312 U. Fahrenberg, K.G. Larsen, C. Thrane

is necessary. The focus of this paper is to provide insight as to how expressivity re-
sults may be obtained in a framework addressing this issue.

A number of extensions of temporal logics have been proposed with the purpose
of providing verification techniques for real-world systems where the properties one
is interested in go beyond behavioral quality, by addressing certain quantitative
aspects such as time, probabilities or cost related to realizing the behavior.

Most notably, both probabilistic and timed versions of LTL and CTL [4] have
been introduced, by allowing formulae to be interpreted over probabilistic or timed
models. In these, satisfaction of path formulae is subject to constraints on quan-
titative information encoded in the models, by weights typically drawn from the
set of real numbers. This allows specification and verification of properties such as
“the probability of reaching state A is .5.” or “P holds within 5.7 time units”. This
approach is utilized in verification tools such as PRISM [11, 16] and UPPAAL [12]
to provide simple and expressive ways to represent properties of models.

From a more general perspective, multi-valued interpretations of CTL* and the
µ-calculus have been proposed by interpreting formulae over models endowed with
weights drawn from structures such as a semirings [13] or quasi-Boolean lattices [9].
This of course allows broader interpretation of weights, but more importantly allows
truth values to be more descriptive, as formulae may take any value in the chosen
weight domain as opposed to their Boolean counterparts. To see the benefits of this
approach, we may simply consider devising a formula which evaluates to the number
of times a classical property is violated over a path. In light of this, a number of
recent papers [2, 3, 8] have been advocating the use of multi-valued interpretations
of temporal logics for games, general quantitative transition systems and real-time
systems.

A shared aim of most of the these extensions – e.g. [2, 8, 10, 13] – is to maintain
a certain level of expressive power so as to be able to characterize bisimulation,
generalizing the results from [5] for CTL. Hence one wants to show that the logic
is in fact adequate to distinguish any non-bisimilar models and that the logic is
expressive enough to build characteristic formulae of models.

In this paper we consider both properties, in the search of a generic approach to
discounted multi-valued extensions of CTL and corresponding bisimulations, which
likewise provide a measure on the relationship between states.

In addition to the multi-valued and annotative approach, both of which we
refer to as quantitative model checking, there are different ways of extending the
usual Kripke structures, and logics, with quantitative information. One can allow
either a quantitative interpretation of atomic propositions, or extend the model with
a weighted transition relation (in [9] referred to as an accessibility relation) [6, 7], or
both. In this paper we choose the latter as it seems to admit more elegant proofs.
Additionally, we retain the useful features from the syntax of timed and probabilistic
CTL which allow specification of expected values along a path.

In [2], multi-valued (or quantitative) LTL and µ-calculus are presented in which
propositions, instead, map states to weights in the interval [0, 1], using a point-
wise semantics similar to the one presented here. Because the syntax allows only
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the evaluation of an atomic proposition at states, and not specifying its expected
value, additional operators are required to gain expressiveness. On the other hand,
the discounted CTL presented in [8] considers atomic propositions to be Boolean
(⊥ = 0 and ⊤ = 1), and uses the time elapsed until a satisfying event occurs to
discount the value of the formula.

In [2, 8, 10, 13], only adequacy of the respective logics is considered. In [2] it is
shown that a restricted subset of the presented quantitative µ-calculus is adequate
to characterize the distance relating states, in a variant of point-wise bisimulation.
Similarly [8] shows that, for a given discounted CTL formula, maximum-lead bisim-
ulation (another quantitative relation which we will not be concerned with here)
provides an upper bound on the absolute difference of the formula evaluated at the
corresponding states.

In the more general setting of [10], the authors consider the relationship of multi-
valued CTL* and the notion of multi-valued bisimulation which (in the classical
Boolean sense) relates states that allow the same (qualitative) behavior, and where
the weights of atomic propositions at states are partitioned to be within some set of
designated truth values. Finally [13] shows that strong bisimilarity of states implies
that all formulae evaluate to the same element from the semiring considered for the
corresponding pair of states.

As a final note on related subjects we note that, cf. also [3, 8], the present ap-
proach to quantitative analysis in terms of multi-valued or quantitative temporal
logic and bisimulation is closely related to the notion of robustness, i.e. the toler-
ance for estimation errors and imprecision, see also [15, 18], which provides more
realistic analysis for real-world applications than the idealized semantics otherwise
considered. Treatment of these robustness issues is not within the scope of this
paper.

1.1 Contribution

We present a general approach to quantitative analysis and approximate characteri-
zations of weighted Kripke structures (WKS) using formulae expressed in a weighted
extension of CTL (WCTL). The theory presented here is an extension of a general
framework for quantitative analysis of reactive systems presented in [17].

The goal of [17] was to set the scene for a generic approach to simulation-based
analysis, measuring the degree with which one system may simulate another. Deve-
loping this paradigm, the current objective is to extend the analysis to verification
of specifications in temporal logic. Thus we introduce here a matching quantitative
semantics for WCTL which lifts the usual Boolean satisfaction relation of the logic
to a function mapping formulae and states to R≥0 ∪ {∞}, with ⊤ = 0 and ⊥ = ∞.
We show that with this semantics, WCTL is both adequate and expressive with
respect to one of the quantitative bisimulation relations introduced in [17].
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2 PRELIMINARIES

As in [17], the generalizations presented in this paper are based on metrics on
sequences of real numbers. Let a = (ai) and b = (bi) be such sequence; we then
define for λ ∈ ]0, 1[ the following basic distances:

d+(a, b) =
∑

i

λi|ai − bi| (1)

d•(a, b) = sup
i

{λi|ai − bi|}. (2)

Throughout the paper we will refer to (1) and (2), as well as to other distances based
on these, as an accumulating distance and as a point-wise distance, respectively. For
the rest of this paper we fix a discounting factor λ ∈ ]0, 1[.

The model which we shall consider is that of weighted Kripke structures (WKS),
which represents a straight-forward extension of Kripke structures with a weighted
transition relation labeling each transition. A natural interpretation is to view the
labellings as the cost of taking transitions in the structure. This extension is similar
to that one presented in [17] for labeled transition systems; thus the results presented
in this paper are transferable to the current setting.

Definition 1. For a finite set AP of atomic propositions, a weighted Kripke struc-
ture is a quadruple M = (S, T,L, w) where

• S is a finite set of states

• T ⊆ S × S is a transition relation

• L : S → 2AP is the proposition labeling, and

• w : T → R≥0 assigns a positive real-valued weight to transitions.

We write s → s′ instead of (s, s′) ∈ R and s
w
−→ s′ to indicate w(s, s′) = w.

A (weighted) path in a WKS M = (S, T,L, w) is a (possibly infinite) sequence
σ = ((s0, w0), (s1, w1), (s2, w2), . . .) with (si, wi) ∈ S × R≥0 and such that si → si+1

and wi = w(si, si+1) for all i. We denote by P(s) the set of paths in M starting
at state s, and by P(M) the set of all paths in M . Given path σ, we write σ(i) =
(σ(i)s, σ(i)w) for its i-th state-weight pair, and σi for the suffix starting at σ(i).

Notice that we have restricted ourselves to finite weighted Kripke structures
here, i.e. structures with a finite set of states and finitely many atomic propositions.
Our characterization results in Section 5 only hold for such finite structures.

Example 1. Figure 1 gives a model of a simple printer as a WKS which we shall
come back to again later. Resource usage is modeled as atomic propositions, and
transition weights model the combined cost of the operations. Turning on the ma-
chine, it moves from the state Off to Ready, from where it can Suspend and wake
up at a much lower cost. Input is processed in the Receiving state, and the chosen
output form incurs different costs related to resource usage, clean-up and reset.
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Fig. 1. The behavior and cost and resource usage of a simple printer

3 WEIGHTED CTL

We now consider two interpretations of weighted CTL (WCTL), based on (1) and (2),
which will encompass quantitative information by two means. Firstly, as with TCTL
and PCTL, syntactic extension of path operators, by annotation of real numbers
(weights), modeling requirements on path weights (the exact meaning of these are
deferred to the choice of semantics). Secondly, satisfaction of a formula by a system
is no longer interpreted in the Boolean domain {⊤,⊥}, but rather assigns to a state
a truth value in the domain R≥0 ∪ {∞}. We will interpret 0 as an exact match,
whereas ∞ indicates an incompatibility between the system and the specified atomic
propositions of a formula. Any intermediate value is interpreted as real-valued
distance (from an exact match). That is, a smaller distance means a closer (better)
match of the specified weights in the formula. We denote by JϕK(s) ∈ R≥0 ∪ {∞}
the value obtained by evaluating formula ϕ at state s.

From here on, we fix a set AP of atomic propositions and a WKS (S, T,L, w).
All definitions and results below will be given for the states of one single WKS, but
we note that to relate states of different WKS, one can simply form the disjoint
union.

Definition 2. For p ∈ AP , Φ generates the set of state formulae, and Ψ the set of
path formulae, annotated by weights c ∈ R≥0, according to the following abstract
syntax:

Φ ::= p | ¬p | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | EΨ | AΨ

Ψ ::= XcΦ | GcΦ | FcΦ | [Φ1UcΦ2].

The WCTL logic is the set of state formulae, written Lw(AP) or simply Lw.

Before presenting the formal semantics, let us consider the usual meaning of the
CTL modalities, as well as how these may be generalized to ensure adherence to
bisimulation variants considered in the following section:
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Given CTL propositions on the form M, s |= Eψ and M, s |= Aψ, we may
interpret these as infinite existential, or universal, quantifications over paths in M

from s satisfying ψ. Similarly, M, σ |= Fϕ and M, σ |= Gϕ may be interpreted as
an infinite disjunction, or conjunction, over propositions on the form M, si |= ϕ for
i ≥ 0, where si is a state on σ.

This observation is in line with some arguments given in [10], and we expect
that a generic approach to defining quantitative (or multi-valued) semantics for
WCTL over the truth domain R≥0 ∪ {∞} is obtainable. To this end, the standard
sup and inf operators are reasonable generalization of E,A,F and G (interpreted as
disjunction and conjunction over the standard Boolean domain) to the (complete)
lattice R≥0 ∪ {∞}.

Furthermore, this approach requires only modification to the evaluation (i.e.
semantics) of path formulae. Our semantics specializes to the usual one in two
different ways: either by mapping to the designated set of truth values (i.e. to ⊤),
all ε <∞ and ∞ to ⊥, or by mapping only 0 to ⊤ and all ε > 0 to ⊥.

3.1 Semantics

In the following we present two discounted semantics, derived from the distances d+
from (1), and d• from (2) where weights of transition are accumulated or considered
point-wise. Formally, the semantics of ϕ ∈ Lw defines a map from the set of states
S to the set R≥0 ∪ {∞}. The first definition gives a general weighted semantics to
state formulae:

Definition 3 (State semantics). The semantics of state formulae is defined induc-
tively as follows:

JpK(s) =

{

0 if p ∈ L(s)

∞ otherwise
J¬pK(s) =

{

0 if p ∈ AP \ L(s)

∞ otherwise

Jϕ1 ∨ ϕ2K(s) = inf
{

Jϕ1K(s), Jϕ2K(s)
}

Jϕ1 ∧ ϕ2K(s) = sup
{

Jϕ1K(s), Jϕ2K(s)
}

JEψK(s) = inf
{

JψK(σ) | σ ∈ P(s)
}

JAψK(s) = sup
{

JψK(σ) | σ ∈ P(s)
}

.

In the last two formulae, JψK(σ) is the accumulating or point-wise semantics of σ
with respect to ψ as appropriate, see below.

In the next definition, we give the two different weighted semantics to path
formulae; an accumulated and a point-wise one. Note that the only difference be-
tween the two is an interchange of maximum and sum, which supports the findings
in [10, 13] which advocates abstracting away from concrete operators and interpret-
ing the semantics over general algebraic structures.



Weighted Kripke Structures in Temporal Logic 1317

Definition 4 (Path semantics). The accumulating semantics of path formulae is
defined inductively as follows:

JϕK+(σ) = JϕK(σ(0)s)

JXcϕK+(σ) = |σ(0)w − c|+ λJϕK+(σ
1)

JFcϕK+(σ) = inf
k

( k−1
∑

j=0

λj
∣

∣

∣
σ(j)w − c

∣

∣

∣
+ λkJϕK+(σ

k)

)

JGcϕK+(σ) = sup
k

( k−1
∑

j=0

λj
∣

∣

∣
σ(j)w − c

∣

∣

∣
+ λkJϕK+(σ

k)

)

Jϕ1Ucϕ2K+(σ) = inf
k

( k−1
∑

j=0

λj
∣

∣

∣
Jϕ1K+(σ

j)− c
∣

∣

∣
+ λkJϕ2K+(σ

k)

)

The point-wise semantics of path formulae is defined inductively as follows:

JϕK•(σ) = JϕK(σ(0)s)

JXcϕK•(σ) = max
{

|σ(0)w − c|, λJϕK•(σ
1)
}

JFcϕK•(σ) = inf
k

(

max
{

max
0≤j<k

{

λj |σ(j)w − c|
}

, λkJϕK•(σ
k)
}

)

JGcϕK•(σ) = sup
k

(

max
{

max
0≤j<k

{

λj |σ(j)w − c|
}

, λkJϕK•(σ
k)
}

)

Jϕ1Ucϕ2K•(σ) = inf
k

(

max
{

max
0≤j<k

{

λj
∣

∣Jϕ1K•(σ
j)− c

∣

∣

}

, λkJϕ2K•(σ
k)
}

)

Note that as usual, Fc can also be derived from Uc by Fcϕ , ttUcϕ (where tt is
a tautology).

Compared to e.g. TCTL, the annotated operators specify an expected value,
hence Xcϕ evaluated on σ means that c is expected of the first transition in σ. The
difference is then added to (or the maximum is taken of it and) the value of ϕ over
the remaining path σ1.

Example 2. In the context of the example from Figure 1 we consider a useful prop-
erty of printers, that of having received a job, the printer cannot suspend before com-
pleting the job. The formula ϕ = A(¬Suspended U10 Ready) formalizes this quali-
tative property and also states that we expect to reach the Ready state using transi-
tions with cost 10. With λ = .9, the point-wise interpretation JϕK•(Receiving) = 40
is the cost (minus 10) of the transition in the computation tree which is furthest
from 10. In the accumulating interpretation, JϕK+(Receiving) = 48.37 yields the
sum of all such differences.
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4 BISIMULATION

We now consider extensions of strong bisimulation [14] over WKS, based on (1)
and (2). These are filling the gap between unweighted and weighted strong bisimu-
lation as defined below:

Definition 5. Let (S, T,L, w) be a WKS on a set AP of atomic propositions. A re-
lation B ⊆ S × S is

• an unweighted bisimulation provided that for all (s, t) ∈ B, L(s) = L(t) and

if s→ s′, then also t → t′ and (s′, t′) ∈ B for some t′ ∈ S ′,

if t→ t′, then also s → s′ and (s′, t′) ∈ B for some s′ ∈ S;

• a (weighted) bisimulation provided that for all (s, t) ∈ B, L(s) = L(t) and

if s
c
−→ s′, then also t

c
−→ t′ and (s′, t′) ∈ B for some t′ ∈ S ′,

if t
c
−→ t′, then also s

c
−→ s′ and (s′, t′) ∈ B for some s′ ∈ S.

We write s
u
∼ t if (s, t) ∈ B for some unweighted bisimulation B, and s ∼ t if

(s, t) ∈ B for some weighted bisimulation B.

The motivation for the variants defined below is that, in order to relate struc-
tures, we do not always need perfect matching of transition weights; rather we would
like to know how accurately weights are matched. As with the simulation distances
of [17], we call a bisimulation distance any pseudometric on the states of a WKS
which mediates between unweighted and weighted bisimilarity:

Definition 6. A bisimulation distance on a WKS (S, T,L, w) is a function d : S ×
S → R≥0 ∪ {∞} which satisfies the following for all s1, s2, s3 ∈ S:

• d(s1, s1) = 0,

• d(s1, s2) + d(s2, s3) ≥ d(s1, s3),

• d(s1, s2) = d(s2, s1),

• s1 ∼ s2 implies d(s1, s2) = 0 and

• d(s1, s2) 6= ∞ implies s1
u
∼ s2

Our distances are based on distances of (infinite) sequences of real numbers,

which is appropriate as for (s, t) in
u
∼ (or ∼ ), any path (s, a, s1, a1s2, . . . ) ∈ P(s)

must be matched by an equal-length path (t, b, t1, b1, t2, . . . ) ∈ P(t) with (si, ti) in
u
∼ (or ∼ ).

By extending bisimulation with the d+ and d• distances, we collect a family of
relations {Rε ⊆ S × S} (i.e. a map R≥0 → 2S×S) since, due to discounting, for each
step the distance between each successor pair may grow:
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Definition 7. A family of relations R = {Rε ⊆ S × S | ε > 0} is

• an accumulating bisimulation family provided that for all (s, t) ∈ Rε ∈ R,
L(s) = L(t) and

– if s
c
−→ s′, then also t

d
−→ t′ with |c − d| ≤ ε for some d ∈ R≥0 and (s′, t′) ∈

Rε′ ∈ R with ε′λ ≤ ε− |c− d|, and

– if t
c
−→ t′, then also s

d
−→ s′ with |c − d| ≤ ε for some d ∈ R≥0 and (s′, t′) ∈

Rε′ ∈ R with ε′λ ≤ ε− |c− d|;

• a point-wise bisimulation family provided that for all (s, t) ∈ Rε ∈ R, L(s) =
L(t) and

– if s
c
−→ s′, then also t

d
−→ t′ with |c − d| ≤ ε for some d ∈ R≥0 and (s′, t′) ∈

Rε′ ∈ R with ε′λ ≤ ε, and

– if t
c
−→ t′, then also s

d
−→ s′ with |c − d| ≤ ε for some d ∈ R≥0 and (s′, t′) ∈

Rε′ ∈ R with ε′λ ≤ ε .

We write s
+
∼ε t and s

�
∼ε t, if (s, t) ∈ Rε ∈ R for an accumulating, or point-wise,

bisimulation family R.

Both variants of bisimulation families give rise to a bisimulation distance in the

sense of Definition 6 by d+(s, t) = inf{ε | s
+
∼ε t} and d•(s, t) = inf{ε | s

�
∼ε t}.

Observe the following easy facts:

Lemma 8. 1. For ε ≤ ε′ and members Rε,Rε′ ∈ R of an accumulating or point-
wise bisimulation family, Rε ⊆ Rε′ .

2. Given s
+
∼ε t, then every path σ = (s0, w0, s1, w1s2, . . . ) ∈ P(s) has a corre-

sponding path σ′ = (t0, w
′
0, t1, w

′
1t2, . . . ) ∈ P(t) such that ε = ε0 and si

+
∼εi ti for

all i, where εi+1λ = εi − |wi − w′
i|.

3. Given s
�
∼ε t, then every path σ = (s0, w0, s1, w1s2, . . . ) ∈ P(s) has a corre-

sponding path σ′ = (t0, w
′
0, t1, w

′
1t2, . . . ) ∈ P(t) such that ε = ε0 and si

�
∼εi ti for

all i, where εi+1λ = εi.

Note that as we only consider finite WKS, all Rε relations are finite. Also, we shall
speak of corresponding paths when referring to the second and third properties of
the above lemma.

5 CHARACTERIZATION

In this section we show that the presented WCTL interpretations are adequate and
expressive with respect to the appropriate bisimilarity variant.
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5.1 Adequacy

The link between accumulating bisimilarity and our accumulating semantics for
WCTL is as follows:

Theorem 9. For s, t ∈ S, s
+
∼ε t if and only if ∀ϕ ∈ Lw :

∣

∣JϕK+(s)− JϕK+(t)
∣

∣ ≤ ε.

The proof follows from Lemmas 12 and 13 below. Observe that this provides us
with the following corollary:

Corollary 10. For s, t ∈ S, s
+
∼0 t if and only if JϕK+(s) = JϕK+(t) for all ϕ ∈ Lw.

We obtain an equivalent result for the point-wise semantics:

Theorem 11. For s, t ∈ S, s
�
∼ε t if and only if ∀ϕ ∈ Lw :

∣

∣JϕK•(s)− JϕK•(t)
∣

∣ ≤ ε.

Example 3. We consider again the printer from Figure 1. When ignoring Color

and Printing as atomic propositions, we have Color
+
∼.2 Printing, as the two initial

transition are the only difference. As a formula which realizes this bisimulation
distance one can take ϕ = power/on ∧ A4 ∧ AX0.5Ready; then JϕK+(Printing) = 0
and JϕK+(Color) = .2.

The proofs of adequacy, and also of expressivity below, for the accumulating and
point-wise cases are similar, hence we concentrate on the accumulating case below.
In the proof we will repeatedly make use of the lesser-known little brother of the
triangle inequality

∣

∣|x− y| − |x− z|
∣

∣ ≤
∣

∣y − z
∣

∣

Lemma 12. Let s, t ∈ S with s
+
∼ε t, and let σ = (s, u, s1, u1, . . .) ∈ P(s), τ =

(t, v, t1, v1, . . .) ∈ P(t) be corresponding paths. Then
∣

∣JϕK+(s)− JϕK+(t)
∣

∣ ≤ ε for all

state formulae ϕ, and
∣

∣JϕK+(σ)− JϕK+(τ)
∣

∣ ≤ ε for all path formulae ϕ.

Proof. We prove the lemma by structural induction in ϕ. The induction base is

clear, as s
+
∼ε t implies that p ∈ L(s) if and only if p ∈ L(t), hence JϕK+(s) = JϕK+(t)

for ϕ = p or ϕ = ¬p. For the inductive step, we examine each syntactic construction
in turn:

1. ϕ = ϕ1 ∨ ϕ2

There are four cases to consider, corresponding to whether Jϕ1K+(s) ≤ Jϕ2K+(s)
or Jϕ1K+(s) > Jϕ2K+(s) and similarly for Jϕ1K+(t) and Jϕ2K+(t). We show the
proof for one of the “mixed” cases; the other three ones are similar or easier:

Assume Jϕ1K+(s) ≤ Jϕ2K+(s) and Jϕ1K+(t) > Jϕ2K+(t). Then Jϕ1 ∨ ϕ2K+(s) −
Jϕ1 ∨ ϕ2K+(t) = Jϕ1K+(s) − Jϕ2K+(t), and Jϕ1K+(s) − Jϕ1K+(t) ≤ Jϕ1K+(s) −
Jϕ2K+(t) ≤ Jϕ2K+(s)− Jϕ2K+(t), and by induction hypothesis, −ε ≤ Jϕ1K+(s)−
Jϕ1K+(t) and Jϕ2K+(s)− Jϕ2K+(t) ≤ ε.

2. ϕ = ϕ1 ∧ ϕ2. This is similar to the previous case.
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3. ϕ = Eϕ1

By definition of JEϕ1K+ there is a path σ ∈ P(s) for which Jϕ1K+(σ) = JϕK+(s).
By Lemma 8 there is a corresponding path τ ∈ P(t), and from the induction
hypothesis we know that |Jϕ1K+(σ)− Jϕ1K+(τ)| ≤ ε. Thus |JϕK+(s)− JϕK+(t)| ≤
ε.

4. ϕ = Aϕ1. This is similar to the previous case.

5. ϕ = Xcϕ1

By definition, JϕK+(σ) = λJϕ1K+(σ
1)+|c−u| and JϕK+(τ) = λJϕ1K+(τ

1)+|c−v|,

where σ = s
u
−→ σ1 and τ = t

v
−→ τ1. Since s

+
∼ε t and σ and τ correspond,

we have σ(1)
+
∼ε′ τ(1) with ε′λ ≤ ε − |u − v|, and by induction hypothesis

|Jϕ1K+(σ
1)− Jϕ1K+(τ

1)| ≤ ε′. Hence
∣

∣JϕK+(σ)− JϕK+(τ)
∣

∣ ≤
∣

∣|c− u| − |c− v|
∣

∣+

λ
∣

∣Jϕ1K+(σ
1)− Jϕ2K+(τ

1)
∣

∣ ≤ |u− v| + ε− |u− v| = ε.

6. ϕ = Fcϕ1

Pick any δ > 0, then there is k ∈ N for which Sk =
∑k−1

j=0
λj |σ(j)w − c| +

λkJϕK+(σ
k) ≤ JϕK+(σ) + δ. As the paths σ and τ correspond, we also have

Tk =
∑k−1

j=0
λj |τ(j)w − c| + λkJϕK+(τ

k) ≤ JϕK+(τ) + δ. Repeated use of the

definition of
+
∼ε yields σ(k)

+
∼ε′ τ(k) with ε′λk ≤ ε −

∑k−1

j=0
λj
∣

∣σ(j)w − τ(j)w
∣

∣,

hence by induction hypothesis,
∣

∣JϕK+(σ
k) − JϕK+(τ

k)
∣

∣ ≤ ε′. Thus
∣

∣JϕK+(σ) −

JϕK+(τ)
∣

∣ ≤
∣

∣Sk − Tk

∣

∣+ δ ≤
∑k−1

j=0
λj
∣

∣|σ(j)w − c| − |τ(j)w − c|
∣

∣+ λk
∣

∣JϕK+(σ
k)−

JϕK+(τ
k)
∣

∣+ δ ≤ ε+ δ. As these considerations hold for any δ > 0, we must have
∣

∣JϕK+(σ)− JϕK+(τ)
∣

∣ ≤ ε.

7. ϕ = Gcϕ1; ϕ = ϕ1Ucϕ2. These are similar to the previous case. �

Lemma 13. Let s, t ∈ S and assume that
∣

∣JϕK+(s) − JϕK+(t)
∣

∣ ≤ ε for all state
formulae ϕ ∈ Lw. Then s

+
∼ε t.

Proof. This follows directly from Theorem 14 below, but one can also observe that
the accumulating family R = {Rε} defined by

Rε =
{

(s, t) | s, t ∈ S, ∀ϕ ∈ Lw :
∣

∣JϕK+(s)− JϕK+(t)
∣

∣ ≤ ε
}

is indeed an accumulating bisimulation in terms of Definition 7. �

5.2 Expressivity

We show that WCTL with accumulating semantics is expressive with respect to
accumulating bisimulation in the following sense:

Theorem 14. For each s ∈ S and every γ ∈ R+, there exists a state formula
ϕs
γ ∈ Lw, interpreted over the accumulating semantics, which characterizes s up to

accumulating bisimulation and up to γ, i.e. such that for all s′ ∈ S, s
+
∼ε s

′ if and
only if Jϕs

γK+(s
′) ∈ [ε− γ, ε+ γ] for all γ.
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Proof. We define characteristic formulae of unfoldings as follows: For each s ∈ S

and n ∈ N, denote L(s) = {p1, . . . , pk} and AP \L(s) = {q1, . . . , qℓ} and let ϕ(s, n)
be the WCTL formula defined inductively as follows:

ϕ(s, 0) = (p1 ∧ · · · ∧ pk) ∧ (¬q1 ∧ · · · ∧ ¬qℓ)

ϕ(s, n+ 1) =
∧

s
w

−→s′

EXwϕ(s
′, n) ∧

∧

w:s
w

−→s′

AXw

(

∨

s
w

−→s′

ϕ(s′, n)
)

∧ ϕ(s, 0)

It is easy to see that Jϕ(s, n)K+(s) = 0 for all n.
To complete the proof, one observes that for each γ > 0, there is n(γ) ∈ N

such that ϕ(s, n(γ)) can play the role of ϕs
γ in the theorem. Intuitively this is due

to discounting: The further the unfolding in ϕ(s, n), the higher are the weights
discounted, hence from some n(γ) on, maximum weight difference is below γ. �

Theorem 15. For each s ∈ S and every γ ∈ R+, there exists a state formula
ϕs
γ ∈ Lw interpreted over the point-wise semantics, which characterizes s up to

point-wise bisimulation and up to γ, i.e. such that for all s′ ∈ S, s
�
∼ε s

′ if and only
if Jϕs

γK•(s
′) ∈ [ε− γ, ε+ γ] for all γ.

6 CONCLUSION AND FINAL REMARKS

We have shown in this paper that weighted CTL with an accumulating semantics
is adequate and expressive for accumulating bisimulation for weighted Kripke struc-
tures. We have also seen that the same holds for the point-wise semantics for WCTL
with respect to point-wise bisimulation.

We believe that these results can be lifted to a common abstract framework,
but notice that this framework will be different from the one proposed in [10] as our
truth domain R≥0 ∪ {∞} is not a quasi-Boolean lattice. This generalization should
also encompass other weighted bisimulations such as the maximum-lead bisimulation
of [8, 17], and we expect to see some synergies between the weighted-automata and
quantitative-verification communities.
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