10,831 research outputs found

    Contour-map encoding of shape for early vision

    Get PDF
    Contour maps provide a general method for recognizing 2-D shapes. All but blank images give rise to such maps, and people are good at recognizing objects and shapes from them. The maps are encoded easily in long feature vectors that are suitable for recognition by an associative memory. These properties of contour maps suggest a role for them in early visual perception. The prevalence of direction sensitive neurons in the visual cortex of mammals supports this view

    Memory-based parallel data output controller

    Get PDF
    A memory-based parallel data output controller employs associative memories and memory mapping to decommutate multiple channels of telemetry data. The output controller contains a random access memory (RAM) which has at least as many address locations as there are channels. A word counter addresses the RAM which provides as it outputs an encoded peripheral device number and a MSB/LSB-first flag. The encoded device number and a bit counter address a second RAM which contains START and STOP flags to pick out the required bits from the specified word number. The LSB/MSB, START and STOP flags, along with the serial input digital data go to a control block which selectively fills a shift register used to drive the parallel data output bus

    Associating object names with descriptions of shape that distinguish possible from impossible objects.

    Get PDF
    Five experiments examine the proposal that object names are closely linked torepresentations of global, 3D shape by comparing memory for simple line drawings of structurally possible and impossible novel objects.Objects were rendered impossible through local edge violations to global coherence (cf. Schacter, Cooper, & Delaney, 1990) and supplementary observations confirmed that the sets of possible and impossible objects were matched for their distinctiveness. Employing a test of explicit recognition memory, Experiment 1 confirmed that the possible and impossible objects were equally memorable. Experiments 2–4 demonstrated that adults learn names (single-syllable non-words presented as count nouns, e.g., “This is a dax”) for possible objectsmore easily than for impossible objects, and an item-based analysis showed that this effect was unrelated to either the memorability or the distinctiveness of the individual objects. Experiment 3 indicated that the effects of object possibility on name learning were long term (spanning at least 2months), implying that the cognitive processes being revealed can support the learning of object names in everyday life. Experiment 5 demonstrated that hearing someone else name an object at presentation improves recognition memory for possible objects, but not for impossible objects. Taken together, the results indicate that object names are closely linked to the descriptions of global, 3D shape that can be derived for structurally possible objects but not for structurally impossible objects. In addition, the results challenge the view that object decision and explicit recognition necessarily draw on separate memory systems,with only the former being supported by these descriptions of global object shape. It seems that recognition also can be supported by these descriptions, provided the original encoding conditions encourage their derivation. Hearing an object named at encoding appears to be just such a condition. These observations are discussed in relation to the effects of naming in other visual tasks, and to the role of visual attention in object identification

    CAD/CAM, CNC TECHNOLOGY APPLIED IN THE FIELD OF ENGINEERING, SECURITY TECHNOLOGY AND MECHANICAL ENGINEER TRAINING I.

    Get PDF
    In the last decades the spectacular results of each developmental stages of computer-aided design, were considered as great magic of computer use. Professionals were shocked by the impressive building of engineer works and their more and more realistic appearance. It was hard to believe and for many people it still is that this technology becomes indispensable in everyday engineering work. By now, in front-rank product development, it is impossible to do a competitive designer work without applying the most up-to- date design technology. This all leads to the fact that an engineer student of our days, in his design practice, is definitely going to work with the momentarily most up-to-date technology, which will be out-of-date in a couple of years. | A szĂĄmĂ­tĂłgĂ©pek alkalmazĂĄsĂĄnak nagy varĂĄzslatai közĂ© szĂĄmĂ­tott az elmĂșlt Ă©vtizedekben a szĂĄmĂ­tĂłgĂ©pen vĂ©gzett tervezĂ©s egy-egy fejlıdĂ©si szakaszĂĄnak lĂĄtvĂĄnyos eredmĂ©nye. Szakembereket is meghökkentett a mĂ©rnöki alkotĂĄsok lĂĄtvĂĄnyos Ă©pĂ­tĂ©se Ă©s mind valĂłsĂĄghƑbb megjelenĂ­tĂ©se. Nehezen hittĂ©k, sıt sokan ma is nehezen hiszik azt, hogy a mĂ©rnöki munka mindennapjaiban is nĂ©lkĂŒlözhetetlennĂ© vĂĄlik ez a technika. MĂĄra az Ă©lvonalbeli termĂ©kfejlesztĂ©sben a mindenkori legjobb tervezĂ©si technika igĂ©nybevĂ©tele nĂ©lkĂŒl kĂ©ptelensĂ©g versenykĂ©pes tervezımunkĂĄt vĂ©gezni. Ennek következtĂ©ben napjaink mĂ©rnökhallgatĂłja tervezıi gyakorlatĂĄban minden bizonnyal a ma legkorszerƑbbnek szĂĄmĂ­tĂł, de nĂ©hĂĄny Ă©v alatt elavulĂł mĂłdszert levĂĄltĂł technikĂĄval fog dolgozni. Keywords/kulcsszavak: computer aided design, CAD1/CAM2, CNC3 ~ szĂĄmĂ­tĂłgĂ©pes tervezĂ©s, CAD/CAM, CN

    Spin-Mediated Consciousness Theory: An Approach Based On Pan-Protopsychism

    Get PDF
    As an alternative to our original dualistic approach, we present here our spin-mediated consciousness theory based on pan-protopsychism. We postulate that consciousness is intrinsically connected to quantum mechanical spin since said spin is embedded in the microscopic structure of spacetime and may be more fundamental than spacetime itself. Thus, we theorize that consciousness emerges quantum mechanically from the collective dynamics of "protopsychic" spins under the influence of spacetime dynamics. That is, spin is the "pixel" of mind. The unity of mind is achieved by quantum entanglement of the mind-pixels. Applying these ideas to the particular structures and dynamics of the brain, we postulate that the human mind works as follows: The nuclear spin ensembles ("NSE") in both neural membranes and proteins quantum mechanically process consciousness-related information such that conscious experience emerges from the collapses of entangled quantum states of NSE under the influence of the underlying spacetime dynamics. Said information is communicated to NSE through strong spin-spin couplings by biologically available unpaired electronic spins such as those carried by rapidly diffusing oxygen molecules and neural transmitter nitric oxides that extract information from their diffusing pathways in the brain. In turn, the dynamics of NSE has effects through spin chemistry on the classical neural activities such as action potentials and receptor functions thus influencing the classical neural networks of said brain. We also present supporting evidence and make important predictions. We stress that our theory is experimentally verifiable with present technologies

    A survey of visual preprocessing and shape representation techniques

    Get PDF
    Many recent theories and methods proposed for visual preprocessing and shape representation are summarized. The survey brings together research from the fields of biology, psychology, computer science, electrical engineering, and most recently, neural networks. It was motivated by the need to preprocess images for a sparse distributed memory (SDM), but the techniques presented may also prove useful for applying other associative memories to visual pattern recognition. The material of this survey is divided into three sections: an overview of biological visual processing; methods of preprocessing (extracting parts of shape, texture, motion, and depth); and shape representation and recognition (form invariance, primitives and structural descriptions, and theories of attention)

    Complementary Sensory and Associative Microcircuitry in Primary Olfactory Cortex

    Get PDF
    The three-layered primary olfactory (piriform) cortex is the largest component of the olfactory cortex. Sensory and intracortical inputs converge on principal cells in the anterior piriform cortex (aPC).Wecharacterize organization principles of the sensory and intracortical microcircuitry of layer II and III principal cells in acute slices of rat aPC using laser-scanning photostimulation and fast two-photon population CaÂČâș imaging. Layer II and III principal cells are set up on a superficial-to-deep vertical axis. We found that the position on this axis correlates with input resistance and bursting behavior. These parameters scale with distinct patterns of incorporation into sensory and associative microcircuits, resulting in a converse gradient of sensory and intracortical inputs. In layer II, sensory circuits dominate superficial cells, whereas incorporation in intracortical circuits increases with depth. Layer III pyramidal cells receive more intracortical inputs than layer II pyramidal cells, but with an asymmetric dorsal offset. This microcircuit organization results in a diverse hybrid feedforward/recurrent network of neurons integrating varying ratios of intracortical and sensory input depending on a cell’s position on the superficial-to-deep vertical axis. Since burstiness of spiking correlates with both the cell’s location on this axis and its incorporation in intracortical microcircuitry, the neuronal output mode may encode a given cell’s involvement in sensory versus associative processing
    • 

    corecore