45 research outputs found

    Network simulation for professional audio networks

    Get PDF
    Audio Engineers are required to design and deploy large multi-channel sound systems which meet a set of requirements and use networking technologies such as Firewire and Ethernet AVB. Bandwidth utilisation and parameter groupings are among the factors which need to be considered in these designs. An implementation of an extensible, generic simulation framework would allow audio engineers to easily compare protocols and networking technologies and get near real time responses with regards to bandwidth utilisation. Our hypothesis is that an application-level capability can be developed which uses a network simulation framework to enable this process and enhances the audio engineer’s experience of designing and configuring a network. This thesis presents a new, extensible simulation framework which can be utilised to simulate professional audio networks. This framework is utilised to develop an application - AudioNetSim - based on the requirements of an audio engineer. The thesis describes the AudioNetSim models and implementations for Ethernet AVB, Firewire and the AES- 64 control protocol. AudioNetSim enables bandwidth usage determination for any network configuration and connection scenario and is used to compare Firewire and Ethernet AVB bandwidth utilisation. It also applies graph theory to the circular join problem and provides a solution to detect circular joins

    Development of a graphical approach to software requirements analysis

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Nuclear Engineering, 1998.Includes bibliographical references (p. 205-226).by Xinhui Chen.Ph.D

    A framework for automated concurrency verification

    Get PDF
    Reasoning systems based on Concurrent Separation Logic make verifying complex concurrent algorithms readily possible. Such algorithms contain subtle protocols of permission and resource transfer between threads; to cope with these intricacies, modern concurrent separation logics contain many moving parts and integrate many bespoke logical components. Verifying concurrent algorithms by hand consumes much time, effort, and expertise. As a result, computer-assisted verification is a fertile research topic, and fully automated verification is a popular research goal. Unfortunately, the complexity of modern concurrent separation logics makes them hard to automate, and the proliferation and fast turnover of such logics causes a downward pressure against building tools for new logics. As a result, many such logics lack tooling. This dissertation proposes Starling: a scheme for creating concurrent program logics that are automatable by construction. Starling adapts the existing Concurrent Views Framework for sound concurrent reasoning systems, overlaying a framework for reducing concurrent proof outlines to verification conditions in existing theories (such as those accepted by off-the-shelf sequential solvers). This dissertation describes Starling in a bottom-up, modular manner. First, it shows the derivation of a series of general concurrency proof rules from the Views framework. Next, it shows how one such rule leads to the Starling framework itself. From there, it outlines a series of increasingly elaborate frontends: ways of decomposing individual Hoare triples over atomic actions into verification conditions suitable for encoding into backend theories. Each frontend leads to a concurrent program logic. Finally, the dissertation presents a tool for verifying C-style concurrent proof outlines, based on one of the above frontends. It gives examples of such outlines, covering a variety of algorithms, backend solvers, and proof techniques

    UGURU: a natural language UNIX consultant

    Get PDF
    UGURU is a natural language conversation program, implemented in Prolog, which can manage a wide knowledge base of facts about Unix. The range and wording of questions that it understands are based on surveys taken of students, mostly Unix beginners. UGURU is also designed to accept statements in English that can be added as facts to the knowledge base. Each fact is represented as a binding set: a verb-oriented semantic net with the characteristics of directed acyclic graphs. The main actions taken by UGURU are divided between two primary modules, a parser and a retriever. To produce a binding set from an input, the parser incorporates a new kind of object-oriented grammar of several levels, parallel tracing of distinct parse trees by independent units called recognizers, the concurrent use of both syntactic and semantic knowledge, and a pragmatic criterion that requires the system to mimic the sequence of human parsing. The retriever, invoked to answer input questions, seeks to match the binding set representing the question to a fact in the knowledge base by performing semantic transformations on the two sets

    Neural processes underpinning episodic memory

    Get PDF
    Episodic memory is the memory for our personal past experiences. Although numerous functional magnetic resonance imaging (fMRI) studies investigating its neural basis have revealed a consistent and distributed network of associated brain regions, surprisingly little is known about the contributions individual brain areas make to the recollective experience. In this thesis I address this fundamental issue by employing a range of different experimental techniques including neuropsychological testing, virtual reality environments, whole brain and high spatial resolution fMRI, and multivariate pattern analysis. Episodic memory recall is widely agreed to be a reconstructive process, one that is known to be critically reliant on the hippocampus. I therefore hypothesised that the same neural machinery responsible for reconstruction might also support ‘constructive’ cognitive functions such as imagination. To test this proposal, patients with focal damage to the hippocampus bilaterally were asked to imagine new experiences and were found to be impaired relative to matched control participants. Moreover, driving this deficit was a lack of spatial coherence in their imagined experiences, pointing to a role for the hippocampus in binding together the disparate elements of a scene. A subsequent fMRI study involving healthy participants compared the recall of real memories with the construction of imaginary memories. This revealed a fronto-temporo-parietal network in common to both tasks that included the hippocampus, ventromedial prefrontal, retrosplenial and parietal cortices. Based on these results I advanced the notion that this network might support the process of ‘scene construction’, defined as the generation and maintenance of a complex and coherent spatial context. Furthermore, I argued that this scene construction network might underpin other important cognitive functions besides episodic memory and imagination, such as navigation and thinking about the future. It is has been proposed that spatial context may act as the scaffold around which episodic memories are built. Given the hippocampus appears to play a critical role in imagination by supporting the creation of a rich coherent spatial scene, I sought to explore the nature of this hippocampal spatial code in a novel way. By combining high spatial resolution fMRI with multivariate pattern analysis techniques it proved possible to accurately determine where a subject was located in a virtual reality environment based solely on the pattern of activity across hippocampal voxels. For this to have been possible, the hippocampal population code must be large and non-uniform. I then extended these techniques to the domain of episodic memory by showing that individual memories could be accurately decoded from the pattern of activity across hippocampal voxels, thus identifying individual memory traces. I consider these findings together with other recent advances in the episodic memory field, and present a new perspective on the role of the hippocampus in episodic recollection. I discuss how this new (and preliminary) framework compares with current prevailing theories of hippocampal function, and suggest how it might account for some previously contradictory data

    Knowledge based approach to process engineering design

    Get PDF

    Algebraic approach to hardware description and verification

    Get PDF
    corecore