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Abstract

Computational processing is a critical element of modern-day life, enabling and
enhancing research, industry, medical and military efforts. The continued
improvements seen in processing speed and power are largely driven by the iterative
scaling of transistors and other integrated circuit components. As predicted by
Moore’s law, this trend has resulted in processing solutions approximately doubling in
computational power every two years. This trend cannot continue indefinitely, and it is
widely agreed that new designs are rapidly approaching the physical limits of
transistor scaling. It is therefore necessary that novel processing technologies are
developed to allow the continued advancement of processing potential. One promising
research effort is that of neuromorphic computing, a field that takes inspiration for the
design of new and efficient processing technologies from biological nervous systems.
Neuromorphic systems excel at cognitive computational tasks that standard processing
solutions typically find challenging. These systems therefore represent a crucial tool in
the future of computational technologies. Despite significant advancements,
neuromorphic solutions fall short of the efficiencies seen in nature and further research
into such designs is therefore critical in ensuring their continued success and wider
application.

This thesis is concerned with the impact of low-level element design on a neuromorphic
system’s efficiency and computational power. Significant improvements in both speed
and efficiency are demonstrated, achieved by careful redefinition of the fundamental
building blocks and structures common to neuromorphic solutions. The proposed
systems developed in this work achieve this improved performance without reduction
in computational function by redesigning the underpinning operations and
implementations from the ground up with engineering constraints and principles in
mind. The gains demonstrated with this approach are shown to benefit both
biophysically accurate and computationally efficient neural models, offering further
acceleration on existing neuromorphic architectures. Alongside the fundamental
building blocks, the connection infrastructure common to modern neuromorphic
solutions is also considered, showing that there is a considerable difference between
hardware implementations and biological systems. This difference in structure and
applied connectivity appears largely due to a fundamental difference in the
dimensionality available in each case, with hardware systems commonly constrained to
a low number of two-dimensional layers, while biological systems form dense
three-dimensional structures. The results of this work show the critical role that
function and system definition plays in the efficiency and computational power of
neuromorphic systems. Through the application of these findings, future neuromorphic
systems can achieve greater performance-per-watt with reduced computational
delays.
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Chapter 1

Introduction

The computer is one of the most disruptive innovations of the last two centuries
and its adoption in commerce, industry and leisure has completely transformed the
lives and livelihoods of people around the world. As computing systems have grown
in both speed and power they have driven advancement in almost every aspect of
life. Modern mobile phones can easily outperform the cutting-edge computers of the
1970’s, and tasks that took months or even years of compute time, now take mere
minutes on today’s supercomputers. At the heart of these systems is the processor,
responsible for the calculation and manipulation of data. These processors are now
found in a wide variety of applications, from large scale data processing to low power
mobile computing. Considering the common use of mobile phones, tablets, computers,
digital car technologies and other appliances, it is reasonable to predict that processors
now largely outnumber people in developed countries. With the adoption of ‘Smart’
technology and the ‘Internet of Things’, the integration of processors into every day
tasks and operations will likely continue its accelerated trajectory for many years to
come.

Since the first electronic processor there have been continued improvements in processor
speeds and scales. In 1965, Gordon Moore observed that the number of components
used in Integrated Circuits (ICs) approximately doubled each year [1], predicting that
this rate of growth would continue. In 1975, Moore revised this prediction in recognition
that the rate of expansion had slowed to doubling every two years [2]. This prediction,
known as Moore’s law, has proven relatively accurate and has therefore guided the
semiconductor industry when setting long term plans or targets. The increase seen
in component count is largely driven by the continued improvements in fabrication
technologies, enabling smaller features such as transistors to be implemented on the
ICs.

The benefit of this component scaling becomes clearer when taken in conjunction with
Dennard scaling, which approximately states that the power density of transistors
remains constant as their size is reduced [3]. As a result of these two laws, processors
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have become approximately twice as computationally powerful for the same input power
every two years. Alongside better power performance, smaller transistors also switch
faster allowing each generation of processors to use faster clocks than the last.

The continued and reliable scaling of transistors has played a critical role in the
advancement of processor technologies. Physical limits are rapidly approaching, however,
and experts agree that Moore’s law will soon reach its inevitable end. Transistor scales
cannot be reduced beyond a few atoms without loss of function and Dennard scaling was
observed to break down after 2006. As transistors have grown smaller the static power
loss of ICs as a proportion of the overall power loss has increased. This is caused by
increased leakage currents, quantum effects and changes to the chemical composition of
modern ICs, each a direct result of implementing smaller transistor scales. These static
power losses now play a key role in determining the performance of an IC meaning that
the predictions made by Dennard’s scaling no longer hold true [4]. Novel technologies
are therefore required to continue the trend of increasing computational power as these
laws breakdown.

There are many approaches that could yield improved processing capabilities over
the conventional von Neumann architectures commonly found in a computers Central
Processing Unit (CPU). Task specific processors, such as Graphical Processing Units
(GPUs), offer an efficient and rapid computation solution for a reduced and well
constrained problem set. GPUs, for example, are composed of hundreds of simplistic
computational cores and can handle thousands of threads simultaneously. They are
well suited for performing matrix oriented floating point operations and commonly
find application in computer graphics, finance and machine learning. Performing
general computing tasks that sit outside the scope of such processors becomes expensive
in both time and energy. For this reason it is common for CPUs and GPUs to be
used in conjunction with one another, with specific tasks handed off to the GPU to
leverage its accelerated computation. It is possible to produce more efficient and rapid
processing solutions as the problem set is further constrained. With each development,
however, these task specific processors become more limited in their application making
it necessary to complement them with other processing solutions. Additionally, the
incremental improvements seen in these task specific processors are, in part, driven by
the same component scaling as conventional processors and the end of Moore’s law will
therefore also impact the development of new task specific processors.

Cloud computing helps shift the computational load from lower-power or mobile devices
to large-scale computing setups such as supercomputers or data centres. This enables
mobile solutions to perform expensive and computationally challenging tasks but
requires the device to be connected to the system via some network. Such off-site
processing leads to security concerns when performing certain tasks making cloud
computing unacceptable for military, government and certain high-value industrial
applications. Even when acceptable, these large-scale data centres will have to grow
significantly in scale to supply the increasing computational demand as the benefits
from underlying processor scaling comes to a halt. At this point power consumption
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rapidly becomes the dominant factor in deciding the upper limit on computational
potential.

Research into novel materials, such as graphene, and new processing paradigms, such
as quantum computing may help address the issues caused by the fundamental limits
of silicon transistor scaling. Graphene has shown promising electrical characteristics,
however application of these findings in the design of new and reliable components has
proven a considerable challenge. Quantum computers could excel at a specific class of
problems where a superposition of many possible solutions collapses into one discrete
answer. The progress in this exciting field of computation is largely limited by the
challenges associated with scaling quantum systems to support larger data-widths. As
these quantum system are developed, researchers must also find novel ways to adapt
and redefine their problems making them suitable for such systems.

In pursuit of greater power efficiency, ‘neuromorphic computing’ takes inspiration
from nature, designing new processing paradigms and accelerating machine learning
and Artificial Neural Network (ANN) applications. Neural networks have become
ubiquitous as tools for data analysis and information processing, and their acceleration
plays a key role in the future processing of large datasets. These networks have found
widespread application in many research fields, alongside major integration into new
commercial products where they typically excel at classification, speech generation and
image recognition tasks [5]. State of the art results have been demonstrated that rival
custom made and hand tuned algorithms and as these systems grow in scale they offer
new solutions to previously challenging problems. With machine learning and neural
networks becoming a core fundamental in computational applications, it is increasingly
important to ensure that efficient and effective processors are developed that excel at
these tasks.

To address this critically important global computing problem this thesis introduces
new biologically inspired neuromorphic architectures that enable efficient computation,
and neural models that support direct and effective hardware implementation.

1.1 Neuromorphic Computing

The term neuromorphic was originally introduced by Carver Mead in 1990 to describe
circuits inspired by biological neural systems [6]. Mead drew parallels between the
function and efficiency of neurons and transistors, arguing that the greater power
efficiency seen in biological systems must therefore arise from differences in the
application and utilisation of these fundamental building blocks. Mead went on to
demonstrate a circuit that used the transistors fundamental non-linearities to perform
computation in a manner similar to that of a biological neural network.

As the field has grown, the term neuromorphic computing has come to include any
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system designed to accelerate or efficiently implement neuron models and neural
networks in hardware. There has been considerable advancement in the application
of GPUs for machine learning applications, however significant power savings and
computational speed improvements may still be realised through the development and
implementation of effective and specialised neuromorphic systems.

1.1.1 Motivation

The motivation for biologically inspired processors and hardware systems is largely
based on observable differences between information processing seen in nature and that
of data processing in electronic systems. While there are many benefits to be gained
by learning from natural biological system, three core motivators may be identified as
follows:

Power Consumption. Biological systems achieve considerable power efficiency, with
the human brain estimated to use just 20 watts of power whilst modern processors
use around 100W, and GPUs can use anywhere between 100W to 300W. With
both mobile computing and large-scale computing becoming more pervasive, power
savings in computation are financially and environmentally driven. Replicating
the function of biological systems may allow new computational solutions to
realise the high efficiencies seen in nature.

Cognitive Solutions. Since the early part of the 21st century, machine learning and
artificial intelligence have seen considerable uptake in both commercial and
industrial applications. These implementations depend heavily upon cognitive
computing principles, where learned patterns and relationships guide the result
generation. This cognitive processing differs significantly from conventional
processing techniques, with cognitive systems capable of producing reasoned
outputs rather than performing well-defined mathematical instructions. While
conventional processors excel at tasks where sequential instructions and
mathematical operations are required, cognitive systems excel in pattern
recognition, classification and inference tasks. The results are often generated
with a measure of uncertainty making the systems better at rapidly estimating a
result, but less suitable for precise mathematical calculations where the
input/output relationship or function has been fully defined.

Cognitive computing closely matches the way that humans process and interpret
information and this similarity promises new and exciting opportunities in
computing technologies. Future cognitive systems stand to revolutionise the way
that individuals interact with computational devices, potentially resulting in
systems capable of interpreting human intention and independently producing
persuasive and compellingly reasoned results. These systems complement
traditional processors, increasing the range of tasks that may be performed using
artificial systems.
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Learning and Adaption. Biological systems also demonstrate a unique ability to
learn and adapt. As a result these systems are robust, demonstrating a high
tolerance to noise, changing task parameters or localised damage. Reorganisation
has been observed in animals, where the nervous system attempts to recover and
preserve function after a stroke [7]. Brain plasticity has been associated with both
recovery and learning, allowing new pathways to form in the brain to establish
new or previously lost function [8]. In contrast, ICs usually represent constrained
and heavily defined solutions that must rely on redundancy to achieve defect
tolerance. Unlike biological neurons, these redundant elements are often designed
for a specific task or role making them useless in the event of failure elsewhere on
the IC.

Each of these features and properties collectively motivate the development of new
neuromorphic systems. As machine learning and neural networks expand in both scale
and application, neuromorphic systems will become critical elements in their delivery
and success. With the correct setup and design, a neuromorphic system may one day
achieve comparable performances to that of biological systems helping ‘bridge the gap’
left in the wake of Moore’s law.

1.1.2 Challenges

There are many challenges and open questions that must be addressed to develop the
next generation of neuromorphic systems. The major challenges may be classified under
four points as follows:

Model Complexity. A critical juncture is the trade-off between the biophysical
accuracy and computational efficiency of the neuron models. The biological neuron
is a complex system that may by described using multiple non-linear Ordinary
Differential Equations (ODEs). To accurately represent this system, models must
contain complex non-linear behaviours with a large range of time constants. This
makes such biophysically accurate models computationally expensive in both IC
resource and time. Biophysical models are therefore impractical for large scale
network implementations. On the other hand, computationally efficient models
must balance model simplicity against their cognitive capability. If the model
is too simple, the network may fail to fit the problem space in a useful manner.
The design and selection of a suitable model complexity is therefore an important
area in neuromorphic computation.

Physical Implementation. Models that perform well in a simulation may map
poorly to hardware implementations. Equally, hardware implementations can
offer accelerated and efficient operation while performing functions that are
traditionally challenging on a standard processor. Software relies heavily on
memory and abstraction allowing densely connected networks to be modelled
and manipulated with relative ease. Hardware can accelerate the operation of
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these networks and models but often loses the abstraction in doing so.
Communications infrastructure and model synchronisation rapidly becomes a
critical design consideration. Accelerated functions and operations must be
selected carefully to reduce redundant elements within the hardware solution.
These design decisions start to constrain the final models that are optimally
supported by the hardware. The large difference in operation means that moving
a neural system from simulation to physical implementation requires
considerable time and engineering investment. It is therefore not possible to fully
leverage the gains of a hardware system without first fully understanding the
underlying infrastructure and support offered by the hardware. If a hardware
implementation is intended, it is important to consider the final hardware
implementation when defining the original neural models. This can ensure that
any potential gain in power efficiency or speed is not compromised during the
transfer from software to hardware.

Biophysical Interfacing. As neuromorphic systems have developed, new models of
neurons have been made that closely represent the function and operation of their
biological counterparts. Building systems that interface between hardware and
biological neurons is now a feasible but challenging aim. Such systems stand to
improve existing medical technologies, such as pace makers. The development of
these systems requires considerable investigation to ensure that the final product
is safe and reliable.

Increasing Scale. Neural networks have seen a resurgence in the early part of the
21st century, finding new applications in neurological, engineering and computing
research and products. The networks used in these applications have seen
continuous growth in scale or complexity. These networks are now reaching scales
of several million neurons and billions of synapses and neuromorphic hardware
must provide the means to efficiently and rapidly implement these networks for
such trends to continue. The communications used to connect neurons together
and the computation required by each neuron represent bottlenecks in this scaling
trend and future systems must address these areas to support networks of greater
scale.

Addressing one or many of these challenges is a key focus in modern neuromorphic
research. As the system grow in scale the complexity and physical implementations
become increasingly important as small changes to individual neurons can have
compound effects on the whole system.
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1.2 Contributions of this Thesis

The following are the major contributions of this thesis towards neuromorphic systems
design:

1. Chapter 5 presents experimental results from tests of a biophysically accurate sub-
threshold neural model implemented on 0.35µm fabrication technology, showing
that, while a functional analogue neuron model is possible in this technology, it
is highly susceptible to process variation. This custom IC was validated against
SPICE Monte-Carlo simulations, demonstrating the relative value of sub-threshold
simulations using SPICE. Results from tests in high magnetic fields of 3 Tesla
are also provided, representing the first of many tests to validate the model for
insertion into a next generation pace maker.

2. In Chapter 6 optimised approximation models for digital Hodgkin-Huxley based
neurons were developed and tested. Good model representation is demonstrated
using a two-stage hybrid model for an exponential operation that provides high
levels of detail for small signal inputs while maintaining a constant maximum error
for the full input range. This model is shown capable of producing biophysically
plausible phasic spiking and tonic spiking Action Potentials (APs).

3. A new base-two sigmoidal activation function is introduced in Chapter 7 and
shown to produce equivalent classification results to that of the common logistic
sigmoid function. A conversion for networks to move between the original logistic
sigmoid and base-two activation functions is provided allowing pre-trained systems
to move between implementations without the requirement of further training. A
hardware accelerator for this base-two activation function is described and shown
to outperform modern processors in both speed and energy consumption.

4. A novel locally-connected architecture is introduced in Chapter 8 that ‘closes
the gap’ in differences between the connectivity seen in nature and that of
artificial systems. This architecture is demonstrated using an event-based C.
Elegans locomotive model, yielding correct locomotive behaviour while offering
a clock-speed improvement of between 3.5× and 17.5× that of a comparable
but globally connected system. Building on this work, fundamental limitations
in our current technology are demonstrated as a core constraining factor when
attempting to replicate the connectivity (and therefore function) of biological
neural systems in hardware. In particular, the dimensionally seen in traditional
IC technologies falls short of that seen in nature. This is shown to require greater
levels of communication infrastructure resulting in reduced power efficiency and
considerable network scaling challenges.

A list of publications inspired by the work of this thesis is given below:

• J. E. Graham-Harper-Cater, B. W. Metcalfe and P. R. Wilson, “An analytical
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comparison of locally-connected reconfigurable neural network architectures using
a C.Elegans Locomotive Model.” Computers, vol. 7, no. 3, 2018.

• J. E. Graham-Harper-Cater, C. T. Clarke, B. W. Metcalfe and P. R. Wilson, “A
Reconfigurable Architecture for Implementing Locally Connected Neural Arrays”
Proceedings of the 2018 SAI Computing Conference, 2018.

• P. R. Wilson, B. W. Metcalfe, J. E. Graham-Harper-Cater and J.A. Bailey, “A
Reconfigurable Architecture for Real-Time Digital Simulation of Neurons” 2017
Intelligent Systems Conference (IntelliSys), 2017.

J. E. G-H-Cater 27 University of Bath



Chapter 2

Neurons In Nature

The fields of neural networks and neuromorphic engineering draw considerable
inspiration from the natural world. Many neuromorphic systems are used to simulate
and explore the function of biological neural networks in order to understand more
about their functionality. It is essential therefore to have a good understanding of
biological neural networks and their underlying principles when considering the design
of neuromorphic systems and neural architectures. This understanding allows
designers to develop new systems that emulate the amazing efficiency and cognitive
power demonstrated by biological neural networks. Additionally, systems that
accurately emulate biology may be used to expand the understanding of biological
network dynamics, furthering fundamental neuroscience research.

This chapter provides an overview of the structure and operation of biological neural
networks, taking the Human Nervous System (HNS) as an example. The underlying
properties and functions of the individual neurons is then explored in greater detail in
Section 2.2. The considerations when modelling neurons are identified in Section 2.3
before two key neuron models are described in Sections 2.4 and 2.5. Finally Section
2.6 reviews the simulation tools available for neuroscience research when utilising
biophysically accurate neuron models.

The intention of this chapter is to introduce the underlying concepts pertinent to
the remainder of this thesis. It should not, therefore, be considered an exhaustive
description of the current scientific understanding of the HNS. For wider detail on the
structure and function of the nervous system as a whole, the reader is advised to see
Gray’s Anatomy, chapter 8 [9].
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2.1 The Human Nervous System

The HNS is a highly complex system, containing over 86 billion interconnected neurons
[10]. These neurons play a critical role in the support of life and are directly responsible
for the complex decision making processes and other higher functions that make the
HNS an enviable processing system.

While the nervous system is essentially continuous, it may be conceptually divided
into two key parts according to function as shown in Figure 2.1. The Central Nervous
System (CNS) is largely responsible for the collection and cognitive processing of
information, while the Peripheral Nervous System (PNS) acts as the interface between
the CNS and principle receptor and effector organs. This section is therefore divided
into two distinct parts, considering the CNS and PNS as two separate elements, each
with their own unique structure and function.

Figure 2.1: Example structure of the HNS, showing the high-level division of the CNS
and PNS within the body.

It is important to note that there are many different ways to classify regions of the
HNS. One alternative method uses a functional division, splitting the HNS into the
Somatic Nervous System, that is associated with the control of body movement through
skeletal muscles and involuntary reflex arcs; and the Autonomic Nervous System, that
controls visceral functions that occur below the level of consciousness. In each case,
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any division or classification used is defined to aid the communication of ideas and
concepts within the research and medical community and does not actually represent
physically distinct subsystems within the HNS.

2.1.1 The Central Nervous System

The CNS is primarily formed of the encephalon or brain and medulla spinalis or spinal
cord and forms the primary component in processing and memory. The encephalon
is further split into six lobes, each of which is responsible for a specific type or class
of task. These lobes are: the frontal lobe, strongly tied to consciousness and largely
responsible for thought, memory and behaviour; the parietal lobe, responsible for
movement, language and touch; the temporal lobe, responsible for hearing, learning
and emotions; the occipital lobe, responsible for visual processing; the cerebellum,
responsible for balance and coordination; and the brain stem, responsible for breathing,
heart rate and temperature management. The brain stem also plays the vital role of
relaying information between the body and these other higher regions of the brain.

The cerebral cortex comprises of the outermost layers of the brain. Containing the
frontal, parietal, temporal and occipital lobes, it is largely responsible for the processing
of sensory information. The human cerebral cortex is formed as a highly folded sheet
of neurons that has a thickness of about 1− 4.5mm yet yields a high surface area [11].
About half of its thickness consists of white matter, providing the dense connections
between neurons contained within its structure [6]. It is the flat folded structure of the
cerebral cortex that leads to the promising conclusion that somewhat 2-dimensional
systems, such as that of modern Integrated Circuit (IC) fabrication processes, may
produce systems capable of replicating functional elements of the CNS. Such replication
of CNS structure and function on IC technology would have significant impact on the
types of tasks that processors can perform, closing the gap between computational
processing and human intuition.

2.1.2 The Peripheral Nervous System

The PNS is also formed of two key divisions, defined according to the direction of
information propagation. The sensory, or afferent division, carries signals that ‘enter’ the
brain and is responsible for receiving the stimuli generated by sensory nerve receptors.
These receptors operate as specialised sensors or inputs, with each type responding to
a specific stimuli, as shown in Table 2.1.

The motor, or efferent division, carries signals that ‘exit’ the brain, sending instructions
to muscles and glands within the body. This division contains both the somatic, or
voluntary nervous system, that rules skeletal muscle movement; and the autonomic,
or involuntary nervous system, that controls internal organ function. While the CNS
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Table 2.1: Common sensory nerve receptor types and their associated stimuli.

Nerve Receptor Type Associated Stimulus

Thermoreceptors Temperature
Photoreceptors Visible light
Chemoreceptors Chemical

Mechanoreceptors Mechanical stress or strain
Nociceptors Tissue damage

performs the bulk information processing, there are regions of the PNS, such as the
sacral plexus, where processing of sensory inputs occurs somewhat independently
to the CNS. These regions perform localised processing of information and control
encapsulated bodily functions, such as digestion or bladder control. In other areas,
some pre-processing of the sensory inputs occurs within the PNS prior to transmission
through the remainder of the nervous system.

2.1.3 Summary

It is helpful to think of the HNS as two distinct sub-systems due to both its size and
complexity. In this way the CNS provides bulk information processing and higher level
functions associated with consciousness, while the PNS provides the interconnectivity
within the body, and includes the sensory neurons used to detect a range of stimuli.

There are many parallels between that of the HNS and other engineered solutions. The
localised specialisation seen within the CNS is not unlike standard computing systems,
where a Central Processing Unit (CPU), volatile Random Access Memory (RAM) and
a Graphical Processing Unit (GPU) all operate alongside one another to provide an
effective and efficient system capable of general purpose computation. In engineering
terms the PNS may also be thought of as the input and output interface for the nervous
system. The brain stem and spinal cord is responsible for carrying signals to other
parts of the body, and similarities may be drawn between this function and that of
buses or other communications infrastructures seen in artificial systems.

While there is considerable published work exploring the HNS, it is widely recognised
that further research is required to produce a comprehensive understanding of its finer
structure and function. Such results may be found by starting with a high-level view of
the HNS, iteratively refining the models and theories as the regions under consideration
are further divided into sub-regions. Equally, one may begin with the smallest element
within the system and attempt to reproduce its function and properties. These small
elements may then be used as building blocks to form simulations of larger regions.
These two approaches are very different in their methodology, however each stands to
provide valuable insight into the others progress and findings of both must therefore be
treated as important context for any neuroscience research efforts.
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2.2 The Neuron

As identified in Section 2.1.3, the pursuit of improved computational power and
performance has led to considerable interest in understanding the building blocks of
the nervous system. Located throughout the entire HNS, the neuron is a fundamental
component of the nervous system, playing a critical role in both the processing and
communication of information. Neuronal morphology varies significantly throughout
the different regions of the HNS, however all posses a set of common features and
functions [12]. Figure 2.2 shows a myelinated neuron, highlighting the key features
common to many neurons with the nervous system. The axons of myelinated neurons
are additionally surrounded by Schwann cells that generate an insulating myelin sheath.
All neurons contain a cell nucleus that is surrounded by cytoplasmic mass. This nucleus
is located within the soma, a relatively large section of the the nerve from which fine
filaments termed neurites extend. These neurites may be classified into one of two
groups, the dendrites and the axon.

Figure 2.2: Structure of a generalised myelinated neuron.

The dendrites act as input channels for the neuron, propagating the incoming signals
towards the soma. Equally, the axon begins at the axon hillock and operates as the
output channel for the neuron, carrying an electrochemical pulse to the telodendria.
Ranging from about 0.1− 20µm in diameter, neurons typically have a singular axon.
Information is transmitted along the axon as small all-or-nothing electrical impulses
that propagate from the soma to the telodendria, called Action Potentials (APs).

While not common to all neurons, the axons of myelinated neurons are surrounded
by a myelin sheath. The myelin sheath acts as an insulating layer, accelerating AP
transmission while also helping to protect the axon filaments. Due to salutatory
conduction, the propagating signals leap from one gap between a pair of myelin sheaths,
termed the nodes of Ranvier, to the next. This greatly reduces the transmission time of
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APs down the full length of long axons, with large peripheral nerves in humans capable
of conducting APs at speeds up to 120 m/s.

Finally, the telodendria, located at the end of the axon, form synapses though
electrochemical contact with the dendrites of other neurons. These synapses are not
shown in Figure 2.2 but are located on the end of the telodendria. The synapses
conduct the APs as electrochemical signals, producing input stimuli for the connected
neurons. This input is then used within the next neuron to determine whether or not
to produce the all-or-nothing AP. The relatively simple decision making process
behind the generation of individual APs allows the nervous system to perform internal
processing and data manipulation and in some ways may be compared to the
application of binary logic gates within standard CPUs.

2.2.1 The Membrane Potential

These all-or-nothing APs are critical in the nervous systems ability to process
information in an efficient and effective manner. To understand how neurons generate
such APs, it is first important to consider the neurons membrane potential. All cells
have a membrane potential as a result of differences in the cells internal and external
charge, or ionic concentrations. The membrane provides a capacitive insulation layer
between internal and external charges; neurons can therefore manipulate the
membrane potential by controlling the flow of ions across the cell membrane itself.
This concentration gradient forms a potential difference in the cell body relative to the
surrounding medium.

Figure 2.3: A cell maintains its concentration gradient through both active transport
and passive redistribution.

These concentration gradients are formed and maintained by two main mechanisms,
active transport and passive redistribution, as shown in Figure 2.3. With passive
redistribution, negatively charged anions locked within the body of the neuron attract
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the positively charged K+ (potassium) ions from the surrounding medium into the cells
body. At the same time, negatively charged Cl− (chlorine) ions are repelled from the
cell. As such, the ions diffuse across the cell membrane, increasing the cells potential
relative to the surrounding medium. Active transport, on the other hand, makes use
of ion pumps to drive ions against the concentration gradient. This process requires
energy and allows the neuron to reach potentials outside of its resting equilibrium. By
these two mechanisms, the neurons are brought to a relatively steady resting membrane
potential of −70mV [12].

Ions travel across the cell membrane though ionic channels. Some of these channels
include gating particles that open and close the channel based on some pre-defined
external properties. Typical channel sensitivities include the membrane potential
(termed voltage-gated channels), intracellular agents and extracellular agents (such as
neurotransmitters and neuromodulators) [13].

These gates may be separated into two different groups: the activation gates and
the inactivation gates. Activation gates open the channel when stimulated, while
inactivation gates close the channel under stimulus. These two processes are totally
independent of one another, allowing a channel to be both activated and inactivated at
the same time.

Ionic currents may therefore be formed across the cell membrane by the opening and
closing of different ionic channels. This process gives neurons their ability to generate
APs in response to external stimuli, as described in the following Section.

2.2.2 The Action Potential

The generation and transmission of APs plays a critical role in a neurons function
within the nervous system. The typical components that constitute both a Graded
Potential (GP) and an AP signal are shown in Figure 2.4. GPs are characterised by their
sub-threshold depolarization, leading to a brief repolarization period as the capacitive
cell membrane potential restores to its resting potential. During this repolarization
period, any additional sub-threshold input stimuli received may compound to move
the membrane potential over the threshold, resulting in a full AP. In this manner,
neurons operate as if they were leaky integrators, where incoming signals additively
depolarise the cell membrane before slowly restoring to the resting potential. When,
and only when, the cell membrane is depolarised beyond an internal threshold value
the all-or-nothing AP is generated resulting in a pulse that travels down the cells
axon.

The AP, as shown on the right of Figure 2.4, is characterised by its supra-threshold
depolarisation followed by a relatively sizeable upstroke or ‘spike’. The cell membrane
then undergoes repolarization and shoots past the resting potential for a brief refractory
period in what is known as hyperpolarization. During this refractory period excitatory
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Figure 2.4: A cell membrane potential when undergoing a graded potential and action
potential as defined by the traditional Hodgkin-Huxley neuron model described in Section
2.4. Figure adapted from Dynamical Systems in Neuroscience, by E. Izhikevich [13].

input stimuli must first overcome the hyperpolarization of the cell membrane before
they may trigger another AP.

These two potentials begin at the soma, which receives a range of inputs from various
sources via the dendrites. The received stimuli lead to a disturbance or depolarisation
of the membrane potential at the axon hillock. The threshold of the neuron dictates
the point at which the neuron undergoes a state change at the axon hillock, resulting
in an inrush of Na+ (sodium) ions. This inverts the cell membrane potential, leading to
the large upstroke seen in APs. Following a short delay, the K+ gated channels are also
opened, allowing K+ ions to flow out of the cell, resulting in repolarization. This is a
local effect, however the localised positive charge generated during the upstroke triggers
adjacent Na+ and K+ gated channels to open. In this way, the AP is propagated down
the full length of the axon, with the charged ions moving perpendicularly to that of
the AP itself, as demonstrated in Figure 2.5.

The stimulus required to trigger rapidly successive APs must first overcome the
hyperpolarization generated by the AP during its refractory period. This
hyperpolarization is important in ensuring that an AP does not trigger a continuously
reflected potential back along the axon.

2.2.3 The Synapse

Once an AP is generated it travels down the axon to the Telodendria where it arrives
at the pre-synaptic terminals. These pre-synaptic terminals connect and communicate
with other neurons by means of a structure known as a Synapse. Synapses allow
neurons to pass signals to connected cells and can operate as electrical or chemical
connections. For chemical synapses, neurotransmitters released by the pre-synaptic
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Figure 2.5: Nerve cut-through showing an AP travelling along an axon left-to-right.
Ionic conduction is perpendicular to the APs direction of motion, resulting in rapid
transportation of charge.

terminal bind to receptors in the post-synaptic terminal. These neurotransmitters may
trigger an electrical response or a secondary messenger pathway that excites or inhibits
the post-synaptic neuron. In electrical synapses a current is conducted by special
channels termed gap junctions, exciting the post-synaptic neuron. These electrical
synapses are typically faster than their chemical counterparts.

Synapses allow neurons to trigger or inhibit the production of APs in other neurons
within the neural network. The degree to which a pre-synaptic neuron affects a post-
synaptic neuron is determined by the synapse strength or weighting. This weighting is
a tunable parameter and plays a critical role in the formation of memory and learning.
The combination of synapse weighting and internal thresholds allows neural networks
to perform complex data processing, in ways that can be compared to the application
of simple logic gates in ICs. It is the decision making process behind the generation of
APs that provides the computational power of neural networks, just as it is the decision
making process behind simple logic gates that allows processors to process data.

Any one neuron can have thousands of synaptic connections resulting in densely
connected networks with complex internal relationships. The degree of connectivity is
largely dependent on the role of the neuron in question, with CNS neurons typically
utilising more connections than their PNS counterparts.
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2.3 Modelling Neurons

The actual mechanics behind the generation and transmission of APs involves complex
dynamics. As a result, modelling these systems requires certain concessions or
approximations. The level of approximation used in any neural model will directly
affect its utility in neural and computational research, and must be decided with
reference to the intended target application.

Biophysically accurate models are required when studying the underlying function of
the biological nervous system. This leads to significant computational overhead and
is largely due to the inherently complex relationships between the many biophysical
mechanics of an individual neuron. As the relevance of each feature of a neurons
function is currently under investigation, it is not possible to disregard the many small
facets of neuron dynamics without compromising the integrity of the experimental
results. These models, known as kinetic models, will often reflect the biological function
of the neuron at an ionic level, simulating the kinematics of multiple different ion
populations within the neuron. There are a large number of these conductance based
models implemented in hardware [14]. Each uses electric current to simulate some
combination of ion channels, as deemed significant by the models designers.

At the other extreme, computationally efficient models are required when simulating
massive networks of neurons. These higher-level investigations are often more interested
in the compound performance of the network as a system itself, and the large number
of neurons used in these investigations makes biophysical accuracy impracticable. Such
models will often focus on the AP itself and are therefore less concerned with the
underlying cells kinematics. In these models the generation, timing, transmission
and/or morphology of an AP is more critical, leading to a large number of simplified
computational models.

Between these two extremes of modelling accuracy and efficiency exists a varied
assortment of neuron models. Each provides some level of abstraction and biophysical
accuracy as deemed necessary for a given application or research effort. This trade-off
between computational efficiency and biophysical accuracy is visualised in Figure 2.6,
showing a set of model classes and popular examples where appropriate. There are a
small number of models that exist outside of this scale, such as the Izhekevich model,
discussed later in Section 2.5.

Even in the design of computationally efficient models, a good understanding of neuron
function is required to inform the selection of appropriate approximative models. As
the field progresses, the requirement to produce more accurate and yet large scale
simulations continues to drive the development of new neural models and systems.

The remainder of this chapter will provide an example of two different biophysically
accurate models. Starting with the famous Hodgkin-Huxley model, Section 2.4 will
introduce many key neural modelling concepts. The Izhekevich model will then be
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Figure 2.6: The trade-off between biophysical accuracy and computational efficiency
for a number of classes of neuron models. Where appropriate, popular examples of each
class are provided for reference. Figure adapted from Towards the neurocomputer: An
investigation of VHDL Neuron Models, by J. Bailey [15].

introduced in Section 2.5, showing its ability to provide somewhat accurate
representations of APs efficiently, at the cost of approximation elsewhere within the
model. Following this focus on the biophysically accurate models, Chapter 3 then
reviews computationally efficient models in greater depth.

2.4 The Hodgkin-Huxley Model

The Hodgkin-Huxley model is arguably one of the most influential conductance based
models in computational neuroscience [16]. This model was developed by Alan L.
Hodgkin and Andrew F. Huxley using experimental recordings of the current-voltage
relationships seen in a squid (Loligo forbesi) giant axon [17]. Using these readings,
Hodgkin and Huxley calculated the form of the recorded APs in a separately published
analysis [18]. Both Alan Hodgkin and Andrew Huxley were awarded the Nobel Prize
alongside Sir John Carew Eccles in 1963 for “their discoveries concerning the ionic
mechanisms involved in excitation and inhibition in the peripheral and central portions
of the nerve cell membrane.”
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Through these experiments, it was shown that the majority of the recorded membrane
current was due to K+ and Na+ ion conductance. For this reason, the Hodgkin-Huxley
model focuses on these two ionic channels. While other ionic currents exist within
neurons, it is commonly assumed that these currents are negligible and may be safely
approximated using an additional leakage current within the model. The membrane
capacity was found to posses similarities to that of a perfect condenser, and it was
therefore modelled using a capacitor. Building upon these findings, Hodgkin and Huxley
defined the total current density, I, which represents the net current flowing across the
cell membrane due to all ionic conductance, as follows:

I = CM
dV

dt
+ INa + IK + Il (2.1)

where INa is the Na+ current density, IK is the K+ current density, Il is the leakage
current, CM is the membrane capacity per unit area and V is the membrane
potential.

The Equivalent Circuit Model

An equivalent electrical circuit, shown in Figure 2.7, was developed by modelling the
gated ion channels as variable resistors [18]. Since the ionic currents are independent
to one another, the ion channels (labelled ‘Active’ in Figure 2.7) are each treated as
isolated current paths. The capacitance and diffusive leakage of the membrane were also
included as two additional current paths. Extra ionic currents may be included in this
model through the addition of more active channels, however the leakage conductance,
gl, must be recalculated to account for such modification.

The different levels of charged ions on either side of the membrane generates a potential
across the membrane, termed the Nernst potential. In the equivalent circuit, the
potential generated by each ion population is shown as a unique voltage source for the
related conductance channel. The Nernst equilibrium potentials for the Na+, K+ and
leakage ions used in the original model are listed in Figure 2.7.

Channel Gating Probabilities

The rate at which Na+ and K+ ions flow through the cell membrane (that is, INa
and IK) is controlled by the Na+ and K+ channel conductances, gNa and gk. Both
of these channels are dynamic, resulting in conductances that change with respect to
the proportions of opened ion gates within the membrane. The probability of a K+

activation gate being in the open state, n, may be defined according to the activation
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Figure 2.7: Equivalent circuit for the Hodgkin-Huxley model of an excitable cell
membrane showing the active ion channels, leakage current and membrane capacitance,
with the physical parameters used in Equation 2.10 also identified. Figure adapted from
Hodgkin and Huxley’s original paper [19].

rate, αn, and deactivation rate, βn, as follows:

1− n
Deactivated

αn−−⇀↽−−
βn

n
Activated

(2.2)

While K+ is controlled by activation gates, Na+ is controlled by both activation and
inactivation gates. Na+ ions are therefore unable to pass through the channel when
it is inactivated, even if the activation gate is open. The probabilities that a Na+

activation gate is open, m, may be defined using the activation and deactivation rates
as before.

1−m
Deactivated

αm−−⇀↽−−
βm

m
Activated

(2.3)

The probability that a Na+ inactivation gate is open, h, is defined in the same fashion.
It is common practice to say that open inactivation gates are deinactivated.

1− h
Inactivated

αh−−⇀↽−−
βh

h
Deinactivated

(2.4)

As with any rate controlled population distribution, these activation and inactivation
probabilities may be redefined as a differential with respect to time. The method for
this conversion is the same for all three channel probabilities and may found under
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Appendix A. Applying this conversion to Equations 2.2, 2.3 and 2.4 yields the following
results:

dn

dt
= αn(1− n)− βnn (2.5)

dm

dt
= αm(1−m)− βmm (2.6)

dh

dt
= αh(1− h)− βhh (2.7)

Modelling the Activation Rates

Thus far, the activation and inactivation rates have been treated as steady state values.
This is actually not the case for a neuron, where they may be shown to be dependant
upon the cell membrane potential. The relationships between activation rates and the
membrane potential were found and modelled by Hodgkin and Huxley, resulting in the
equations shown in Table 2.2.

Table 2.2: Activation and inactivation rates for the K+ (potassium) and Na+ (sodium)
channels of a squid giant axon.

K+ Activation Na+ Activation Na+ Inactivation

αn(V ) = 0.01 10−V
exp ( 10−V

10 )−1
αm(V ) = 0.1 25−V

exp ( 25−V
10 )−1

αh(V ) = 0.07 exp
(−V

20

)
βn(V ) = 0.125 exp

(−V
80

)
βm(V ) = 4 exp

(−V
18

)
βh(V ) = 1

exp ( 30−V
10 )+1

Calculating the Channel Conductances

With the activation rates defined, the number of open activation and inactivation gates
may be calculated using equations 2.5, 2.6 and 2.7. Once the gating probabilities are
known, the channel conductances may be found using the following equations.

gK = ḡK n(V, t)4 (2.8)

gNa = ḡNa m(V, t)3h(V, t) (2.9)
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In these equations, ḡ represents the maximal conductance of the respective ion channels,
defined as ḡK = 36 mS/cm2, ḡNa = 120 mS/cm2 and ḡL = 0.3 mS/cm2. The powers
used in these equations represent the ratios of activation and inactivation gates and
their values were selected by Hodgkin and Huxley to provide the best fit for the recorded
data from the squid giant axon.

Complete Model

By combining Equations 2.1, 2.8 and 2.9, along with general the relationship I = gV ,
the full Hodgkin-Huxley equations may be realised as follows:

CM
dV

dt
= I −

Ik︷ ︸︸ ︷
ḡK n4(V − EK)−

INa︷ ︸︸ ︷
ḡNa m

3h(V − ENa)−
IL︷ ︸︸ ︷

ḡL(V − EL) (2.10)

dn

dt
= αn(V ) · (1− n)− βn(V ) · n

dm

dt
= αm(V ) · (1−m)− βm(V ) ·m

dh

dt
= αh(V ) · (1− h)− βh(V ) · h

(2.11)

where I is the injected current.

These equations are often converted into a steady-state/time-constant form that then
allows the system to be modelled using Euler’s method of approximation. This
conversion is demonstrated in Appendix B. The temporal membrane potential response
to any stimulus may then be calculated using this model. This models response to a
0.2mA pulse is shown in Figure 2.8 alongside the internal gating probabilities.

2.4.1 Summary

Since the original publication, this model has been modified in many different ways to
include extra dynamics or ionic channels. Despite these modifications, the original model
continues to be regarded as the “golden model” of neuron dynamics. It is commonly
used as reference when designing new biophysically accurate or approximative models.
The popularity of this model is largely due to the rigorous biological recordings used in
its generation. While this offers a good reference for model design it should therefore
be noted that the model is based on measurements of a squid giant axon and may
require further tuning for applications involving other biological nervous systems. With
differences in operational temperature and physical scale, an accurate model of a human
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Figure 2.8: Hodgkin-Huxley model membrane potential response to an injected pulse
input of 0.2mA, showing the probabilities of ionic gates being in the open position. This
figure shows the characteristic AP shape previously discussed in this chapter. These
waveforms were generated using a discrete-time MATLAB simulation.
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neuron may require a significant change in the underlying model parameters to that of
a squid giant axon.

Partly due to its biophysical complexity, the Hodgkin-Huxley model is very
computationally expensive, requiring the solution of an Ordinary Differential Equation
(ODE) for each of the ionic gating probabilities shown in Equation Set 2.11. An
additional ODE, shown in Equation 2.10, must then also be computed using these new
values, resulting in a time consuming calculation that must be performed for each and
every simulated time step. As a result of this high computational cost, it is very
uncommon to see the Hodgkin-Huxley model used in simulations of more than a few
hundred neurons.

2.5 The Izhikevich Model

The Izhikevich model was first developed by Eugene Izhikevich in an effort to provide
an efficient and yet biophysically accurate model for neuroscience and neuromorphic
research [20]. Unlike the Hodgkin-Huxley model, which started by considering the
underlying mechanics of a neuron, Izhikevich began by instead focusing on the APs
properties and raw shape. When considering other spiking models, it was found that
many of them could be reduced to two-dimensional systems consisting of a fast voltage
variable and a slower recovery variable, used to describe some combination of activation
of the K+ current or inactivation of the Na+ current [13]. The Izhikevich model was
therefore designed to reflect this pattern, building upon the assumption that the AP
morphology itself is less important than the sub-threshold dynamics leading to the
AP in question. As such, this model retains the detailed dynamics about the resting
potential and threshold range, using a simplified vector field model once operating
outside the threshold neighbourhood.

Building upon these assumptions and observations, the Izhikevich model achieves a close
representation of neural function while maintaining a deceptively simple mathematical
format. This model may be represented as follows:

C
dv

dt
= k (v − vr) (v − vt)− u+ I (2.12)

du

dt
= a {b (v − vr)− u} (2.13)

if v ≥ p then v ← c, u← u+ d (2.14)

In this form, v is the membrane potential, u is the recovery current, C is the membrane
capacitance, I is the input current, vr is the membrane resting potential and vt is the
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threshold potential. Both a and b are scalar parameters used to control the steady-state
sub-threshold behaviour. Through careful tuning, these parameters may represent
either an integrator or resonator model. Parameters c and d may also be used to modify
the post-spike transient behaviours of the model.

The parameter a may be associated with the recovery time constant. The sign of the
parameter b determines whether the recovery current is an amplifying (b < 0) or resonant
(b > 0) variable. If b ≤ 0 the model may be considered a quadratic integrate-and-fire
neuron, with non-zero values providing an additional passive dendritic compartment
resulting in the attenuation of the signal in accordance with passive dendrite models.
When operating in resonant mode, the model represents a new class of spiking neural
models as defined by Izhikevich [13]. Finally, the reset parameter, c, determines
the magnitude of the membranes reset voltage, while the peak voltage threshold, p,
determines the reset condition.

2.5.1 Summary

Despite the simple form of this model, it has been found capable of representing all 20
of the fundamental spiking patterns identified by Izhikevich [21]. With an estimated
compute requirement of around 13 FLOPS/ms, this model provides a highly flexible
yet efficient implementation of spiking neural function. The potential performance
gains found using this model are made clearer when compared against the Hodgkin-
Huxley models estimated compute requirements of 1200 FLOPS/ms. Despite the 92×
improvement in efficiency, it is important to note that Izhikevich identifies the model
as unsuitable for generating biophysically accurate results. The Izhikevich model is
better suited to computational neuroscience simulations and Artificial Neural Network
(ANN) implementations. Providing a practical solution so long as the approximated
non-threshold-neighbourhood AP dynamics of the model are acceptable for the intended
application.

2.6 Simulating Neuron Models

Sections 2.4 and 2.5 have introduced two different neural models, both are used
commonly in research today. While the Izhikevich model offers greater computational
efficiency than that of the Hodgkin-Huxley model, its loss of biophysical accuracy
makes it unsuitable for some research. In practice, there are a large number of neuron
models, each designed for its own specific qualities and features. Developing robust
simulations of each of these models represents a significant time investment. As a result,
pre-made software simulators have become a core staple of neural research - reducing
the development time while also providing a verified and widely tested simulation
engine upon which meaningful results may be produced. The wide availability of these
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implemented models also makes the validation and comparison of findings a practical
task, improving the scientific rigour with which neural research may be performed.

There are many neuro-simulation tools and resources available, providing a range of
theoretical and empirical data and encouraging the study of both system-wide and
small-scale neuronal behaviour [22]. Selection of the appropriate tool or resource often
depends on the application or mechanism under investigation. Each of the simulators
provides different levels of complexity and scale, with some focused on the accurate
modelling of a single neurons finer mechanics, while others provide larger systems of
neurons better suited to investigations involving the connectivity and structure of the
systems in question. This section provides a brief summary of three different simulation
efforts, considering their intended applications.

2.6.1 NEURON

NEURON, developed at Yale University, is a simulation environment designed to
support the investigation of both individual neuron models, as well as whole network
implementations. This highly flexible tool offers an application domain that extends
beyond the continuous simulation of complex anatomical and biophysical properties.
With the appropriate settings, this system may also be used to explore both discrete-
event models and hybrid simulations that combine biological and artificial neural models
[23].

Through careful support of parallel processing, NEURON can achieve at-least-linear
reductions in runtime requirements as the number of processors is increased [24]. The
gains achieved through the addition of new processors was found to last until each
processor is handling about 100 equations. NEURON supports Windows, Linux and
MacOS making it easy to include in established research pipelines. With an active
community of researchers, NEURON has been shown suitable for both teaching [25]
and research roles [26].

Neuron is best suited for detailed model implementations, such as biophysically accurate
neural models. In cases where large networks are required, however, there are a number
of alternative simulators which perform such tasks in a more effective manner [27].

2.6.2 NEST

The NEural Simulation Technology (NEST) initiative represents a collaborative effort
to develop a new neural software framework. The simulator is designed to simulate large
scale, structured neuronal systems, supporting heterogeneous biophysically accurate
elements at varying detail levels. In a manner similar to that of the Izhikevich model,
this biophysical accuracy is only maintained in regions deemed as ‘points of interest’,
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with the rest of the model abstracted to faster and more efficient approximative
implementations [28].

Designed to utilise parallel computation, NESTs underlying model implementations
have strict reproducibility requirements. This means that network performance is
deterministic, regardless of the number of processors used during computation.
Controlled using a high-level expressive language, neuron and synapse models must be
implemented as C++ classes, providing a common pre-defined set of arguments to
allow the end user to rapidly switch between different neural models within a given
experiment [26, 28].

Distributed computing systems, such as those supported by NEST, are capable of easily
simulating 105 neurons at speeds suitable for practical work [29]. This could easily
make NEST a viable option alongside custom hardware systems when considering the
acceleration of large neural simulations. Despite this promising result, the overheads
involved in CPU based simulators make such competition unlikely, with the model
flexibility offered by this simulator as the only real benefit over the custom hardware
solutions that are typically more efficient and faster.

2.6.3 PyNN

Unlike NEURON and NEST, PyNN is a simulator-independent network modelling API
developed to support and encourage collaborative work. Davison et. al. identify the
many different simulators used by research teams as a significant barrier to sharing
work and building upon the findings of others within the field of neural simulation
[30]. Each simulator and tool requires the user to specify the problem or model in
a unique way. With the rapid onset of changes and updates commonly associated
with collaborative development projects, this difference in specification between models
makes the verification and reproduction of findings a challenging and time consuming
task.

PyNN was developed to address this issue, providing an abstracted
simulation-independent front end. This means that users need only specify the
network structure once, running the defined network on multiple simulators without
changing the original system definition. This tool makes cross-validation of simulation
results possible, ensuring that features of interest are indeed a result of neuronal
function and not a simulation artefact.

2.6.4 Summary

Each of these simulators are readily available to the general public, with their
development ongoing under open-source licences. While the open availability of these
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systems should encourage further use and development, there is often a perceived
barrier to entry. This is largely due to the complex and custom APIs that must first
be studied prior to the implementation of any models. Such problems are not
uncommon with large and powerful software tools, however the small research
community makes the production of suitable guides and resources challenging. A
problem unfortunately emphasised by the continued modification and incremental
development cycles of open-source solutions.

PyNN represents a significant joint effort to address this issue, providing users with a
singular problem specification syntax that supports cross-simulator implementation
and verification. Such generalisation however comes at a cost, constraining new and
novel models to fit within the specifications afforded by PyNNs syntax. Models existing
outside of the scope of the PyNN API will therefore require additional features to be
added to the PyNN system, adding further development and testing requirements to
the new model under consideration.

Both of the simulators identified in this section support large and small scale parallel
implementations of neural systems. This makes them especially suited for
biophysically accurate models of networks of neurons. When considering applications
where biophysical accuracy is not required, however, there are many hardware and
software solutions that offer improved performance over these simulators. The
implementation of computationally efficient neural networks is covered in greater detail
in Chapters 3 and 4.

2.7 Conclusions

The understanding of biological nervous systems continues to drive developments within
the neural network community. While many questions regarding the mechanics of
thought remain unanswered, current research hopes to unlock the mysteries of the
human brain through careful and precise modelling of its fundamental building blocks
- such as the neuron. This chapter has outlined the operation of biological neurons,
identifying the membrane characteristics critical to the generation of APs. In particular,
the importance of gated ionic channels was shown, with the K+ and Na+ ion gradients
playing a critical role in the generation of an APs characteristic shape. The synapse
was considered and identified alongside the cells internal threshold as a key element in
a neurons capability to process information.

The Hodgkin-Huxley model, made famous for its biophysically accurate representation
of the neurons AP generation, identifies the membrane capacitance alongside the
K+ and Na+ conductance as the three primary components of neural function. All
other ions and electrical properties are combined into a singular ‘leakage’ conductance,
resulting in a model that closely resembles results observed in a squid giant axon.
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Widely recognised as the ‘golden model’ for neural AP generation, the Hodgkin-Huxley
model is somewhat constrained by its high computational cost, requiring an estimated
1200 FLOPS/ms. In contrast other, more computationally efficient models often forfeit
their biophysical accuracy in favour of improved scalability. Some solutions, such as the
Izhikevich model, appear to exist outside of this accuracy-efficiency trade-off. This is
achieved through careful selection of model regions that may be approximated without
resulting in considerable accuracy loss. The Izhikevich model, for example, emphasises
accuracy about the threshold and resting potential, yet yields a more approximative
and efficient representation outside of this region. Applying this approximation rule to
traditional neural modelling yields a model capable of fully representing spiking neuron
behaviour while only requiring 13 FLOPS/ms. Use of such models, however, demands
careful consideration regarding the effects of the approximations before results may be
claimed biophysically relevant.

The selection of a suitable model for a neuron depends largely upon the end application.
Biophysically accurate models are computationally expensive, making them unsuitable
for mobile applications or low power devices. Equally, the computationally efficient
solutions are often too approximative in their nature to yield meaningful results when
studying biological neurons and their operation. There are a range of software solutions
for implementing biologically accurate models of neurons, with both NEURON and
NEST capable of simulating from fine-detail single models to large networks of neurons.
The PyNN API offers researchers an abstracted simulator-independent implementation,
allowing one model definition to be tested against multiple simulators without any
requirement for re-definition. It is the general hope that these developments will lead to
a better understanding of the functions and mechanisms behind the biological nervous
system.

Biological neural networks will continue to drive innovation in a large number of
fields, making them a critical subject when investigating ANNs and novel processor
architecture design. As Moore’s law reaches its inevitable limits, the inspiration afforded
by our own nervous system may lead to critical developments in signal processing
solutions. Despite the lack of biophysical accuracy, many computational neuron models
have achieved state-of-the-art results in neural network research. Chapter 3 reviews the
development and implementation of such models, which can often provide useful insight
into the operation of the nervous system as a whole. Their relative simplicity allows
investigations into large-scale systems of several million neurons and synapses; a scale
that would be impractical when using models such as that of Hodgkin-Huxley.
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Chapter 3

Artificial Neural Networks

The field of neural networks has received significant media attention, with reports of
neural networks dreaming [31] and self-taught artificial Go champions [32] raising the
public profile of artificial intelligence. This recent growth in public attention reflects
the considerable growth seen in the academic field [33], the resurgence of which is likely
a result of both the huge datasets now available for training these systems; and also
the considerable growth in available and reasonably priced computing power.

Neural networks have continued to increase in both size and complexity as computers
have grown in computational power, with the larger networks reaching sizes of hundreds
of thousands of neurons and millions of synapses [34]. New structures have also been
defined, allowing networks to parse a problem space in novel ways. As a result, neural
networks have shown significant improvements in their abilities to process and classify
data.

Chapter 2 has reviewed a number of biophysical neuron models, identifying how
computational complexity and biophysical accuracy are weighed against one another,
often depending on the end application of the system in question. Biological neurons,
however, are not independent computational entities and instead form networks that
have a processing potential that goes far beyond that of its constituent parts. The
training and structure of these neural networks has a significant impact on the
performance of the overall system. In this chapter three computationally efficient
neuron models are described in Section 3.2. Commonly used activation functions are
then considered in further detail in Section 3.3, before some common network
structures are discussed in Section 3.4. Finally, the back-propagation algorithm is
reviewed alongside other training methods in Section 3.5.
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Figure 3.1: Gradient descent demonstration for the function f(x1, x2) = x1
2 + 2x2 .

The dashed line shows the path that the algorithm follows, while the circles show the
iterative values generated by each iteration of the algorithm. The algorithm starts at
position [4.5, 4.5] and moves down the surface toward the global minimum.

3.0.1 Gradient Descent Overview

Before discussing and comparing Artificial Neural Networks (ANNs) it is important
to first have a general understanding of how such systems may be trained. Gradient
descent is a first-order iterative optimisation algorithm used to find the minimum of a
function and forms a common tool used in neural network training. For this reason a
high-level summary of the algorithm is provided here. For further information on the
application of gradient descent algorithms in ANN training the reader is advised to
review Section 3.5.

Gradient descent algorithms minimise functions by iteratively following the gradient of
the function as shown in Figure 3.1. In many ways it is analogous to that of a ball rolling
down a surface. In the case of neural network training, a gradient descent algorithm
may be applied to the networks error function, resulting in iterative improvements
in network performance. In order to achieve this, the differentials of the underlying
network elements must be clearly defined (demonstrated in Equations 3.38 and 3.39 of
Section 3.5). The 1st-order derivatives, and sometimes even 2nd-order derivatives of
the neuron activation functions are therefore critical when applying a gradient descent
training algorithm to an ANN.

Figure 3.1 also shows how small gradients can cause stagnation in gradient descent
training procedures, with the amount that each iteration changes scaling proportionally
with the underlying gradient geometry. As a result of this property, the iterations
shown in Figure 3.1 are seen to slow as the optimisation progresses towards the flatter
region of the problem space. This demonstrates a problem knows as the vanishing
gradient problem, where a very-small gradient (such as those found on approach of
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asymptotes) can trap the system in a sub-optimal region.

3.1 Natural and Artificial Neural Networks

The biological neuron has been described in Chapter 2. These neurons do not process
data in isolation and are, instead, arranged into a large self-organising structure, termed
a neural network. These neural networks are highly-parallel, performing complex data
processing that far exceeds the capabilities of an individual neuron. The specific
arrangement and layout of these networks is largely dependant on the tasks or role
of the network in question. The Peripheral Nervous System (PNS), for example, is
relatively sparsely connected, while the Central Nervous Systems (CNS) contains regions
of densely connected neurons critical for the formation of higher consciousness.

Inspired by the nervous system, the term Artificial Neural Network (ANN) is used
to describe systems comprised of simplistic computational units connected together
through weighted connections. These systems typically utilise highly efficient but
approximate neuron models. The connection weights dictate how the neural network
operates as a whole and are usually chosen through some optimisation technique termed
training.

The field of ANNs encompasses a wide range of structures and network classes and a set
of the most common structures are discussed in Section 3.4 of this chapter. The neuron
models used in ANNs are typically computationally efficient or approximative models
to support large network implementations. These models are therefore described in
greater detail below.

3.2 Artificial Neuron Models

Even with the considerable improvements in computational technologies, the task of
simulating bio-physically accurate networks of more than several hundred neurons
is currently impractical. As such, computationally efficient neuron models are often
used in large to massive scale networks. These neurons models typically include some
non-linear element and it is this non-linearity that provides the computational potential
when these neurons are connected together in structured layers [35]. Without this
non-linearity, any layers added to the network will simply modify the linear function
already defined, adding no new degrees of freedom to the model.
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3.2.1 The Binary Model

The first, and arguably simplest computational model of the neuron was the Binary
or McCulloch and Pitts model, originally developed in 1943 by McCulloch and Pitts
[36]. In this model the neurons have a set of one or more excitatory and inhibitory
binary inputs and a singular binary output. These inputs are weighted with binary
weights that take the form wi ∈ {0, 1} (i.e. enabled or disabled). The weighted inputs
are summed together and this sum is compared against an internal threshold value to
determine whether the output should be logical high or logical low. The fundamental
binary nature of this model makes these basic neurons straightforward to implement in
digital systems.

The inputs may be grouped together to apply varied weights to the incoming signals.
For example, if a weight of 3 must be applied to an input signal ‘A’, one must simply
connect signal ‘A’ to three separate input points, each with its own weighting of
1. Figure 3.2 shows the construction of this neuron, with n excitatory inputs, one
inhibitory input and a step-threshold to condition the output.

Σ

X1

Y

X2

X3

Xn

ThresholdSum

Inhibitory 
Input

0

1

W1

W2

W3

Wn

Weights

Figure 3.2: The binary model, showing the characteristic weighted inputs, internal
threshold, absolute inhibitory input and multiplexed output. The binary nature of this
model makes it especially suited for direct hardware implementation.

The model uses absolute inhibitory inputs, meaning that any high inhibitory signal will
always produce a logic-low output regardless of any excitatory input values. Taking
these properties into account, the McCulloch and Pitts model may be mathematically
described as follows:

Y =


1, If

i=n∑
i=0

(WiXi) > T AND Inhibited

0, Otherwise

(3.1)

where Y is the output of a neuron, Wi and Xi are the i-th weight and input respectively,
n is the total number of excitatory inputs and T is the threshold.
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Using layers of neurons this model is capable of emulating any binary function, meaning
that networks constructed from this model may be translated into a binary equivalent
circuit of logic gates. Despite being pioneering work at its time, this model has seen
little use within recent research efforts. In 1949, The Organization of Behaviour by
Donald Hebb was published [37]. In this book, Hebb proposed a new rule for learning.
Known as Hebb’s rule, the assumption behind this rule is as follows:

“When an axon of cell A is near enough to excite a cell B and repeatedly or
persistently takes part in firing it, some growth process or metabolic change
takes place in one or both cells such that A’s efficiency, as one of the cells
firing B, is increased.” - The Organization of Behaviour, Pg. 62 [37]

This rule means that the weights of the neuron must be flexible, supporting modification
as a direct result of activation. The binary model does not support such modification
by virtue of locking its weights at 0 or 1.

3.2.2 The Perceptron

The lack of weight modification support in the binary model was addressed by the
‘Perceptron’ model, developed in 1958 by Rosenblatt [38]. In this model the weights
are real values, using positive values for excitatory synapses and negative values for
inhibitory synapses, such that Wi ∈ <. Unlike the binary model, this model uses relative
inhibition, meaning that the inhibitory signals may be overridden by any sufficiently
weighted excitation. The use of real value weights means that the Perceptron model
directly supports Hebbian learning as the weights may be adjusted incrementally
instead of representing all or nothing connections. As shown in Figure 3.3, the signed
weights mean that all inputs are treated equally - no longer requiring the isolation
of inhibitory inputs. This means that inputs can become inhibitory during training
without dependency on the pre-specification of input types.

Σ

X1

Y

X2

X3

Xn

Activation FunctionSum

B

F(x)

W1

W2

W2

Wn

Figure 3.3: The Perceptron neuron model developed by Rosenblatt [38]. Unlike
its binary model predecessor, this model uses real values and, typically, a non-linear
activation function. An additional offset bias, B, allows the operational region of the
activation function to be selected. These factors allow this model to represent arbitrary
non-linear functions when arranged in a network.
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The use of real values means that more complicated activation functions may also be
used to shape the output of each neuron. Represented as F (x) in Figure 3.3, these
activation functions can range from simple step functions to complex polynomials and
other non-linear equations. Commonly used activations functions are discussed in
greater depth in Section 3.3 of this chapter.

A bias was also added to the Perceptron model, as shown in Figure 3.3. This bias allows
the neuron to offset its default value, allowing the operational region of the activation
function to be selected. In some implementations of the Perceptron model, the bias is
replaced with a fixed input value of X1 = 1 and a weight of W1 = B. In this way the
bias may be implemented without the requirement for an additional and task specific
bias input. In either case, the underlying model may therefore be mathematically
represented as follows:

Y = F

(
i=n∑
i=0

(WiXi) +B

)
(3.2)

where Y is the output, Wi and Xi are the i-th weight and input respectively, n is the
total number of inputs (both excitatory and inhibitory), B is the bias and F (x) is the
activation function.

3.2.3 The Integrate and Fire Model

Both the binary and perception models represent highly simplified digital discrete
neuron models, well suited for implementation on digital systems such as processors.
While still highly approximative, the Integrate and Fire (IF) model instead reflects the
analogue and temporal nature of neurons, making it a practical model that has found
wide application in the design of artificial neurons. Originally developed in 1907 by
Lapicque, this model accurately encapsulates the capacitance and leakage resistance of
the cell membrane [39].

Figure 3.4 shows the original IF model, with the voltage, VM , across a capacitor, CM ,
representing the membrane potential; a resistor, RLeak, setting the membrane leakage
current; and a spike generation block. In this model it is assumed that the spike
generator will produce an Action Potential (AP) when some internal threshold voltage
is reached. This spike generation block also discharges the capacitor in the event of an
AP, resetting the membrane potential to the resting potential, VRest.

Unlike the other approaches described in this chapter, the IF model is a conductance
model, meaning that it simulates the flow of charged ions within the cell membrane
directly using electrical currents within the circuit. Excitatory inputs are represented
by sourcing current while inhibitory inputs are represented by sinking current. These
currents drive charge onto the capacitor modifying the membrane potential. The
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I(t)
VM Spike 

Generator
Y

Figure 3.4: The integrate and fire model developed by Lapicque [40, 39]. In this
model the resistor represents the membrane leakage current and the capacitor reflects
the capacitive nature of the axon hillock in a biological neuron, resulting in a membrane
potential. The spike generator block may be as complicated as desired and often depends
on the intended purpose of the system itself.

leakage resistor allows the system to discharge over time, restoring the membrane to the
default resting potential, defined by VRest, in the absence of stimulus. The refractory
period may also be included in IF models by configuring the spike generator to return
the membrane potential to a value below that of the resting potential whenever it is
triggered. This hyper-polarization provides a short period of time where the neuron
requires greater stimulus before it can trigger a secondary AP.

Both the binary and Perceptron model perform discrete summation of the incoming
signals. In contrast the IF model uses integration to calculate the current stimulus
level, so does not require the stimulus to arrive concurrently and, instead, supports the
detection of any APs with suitably small temporal spacing.

3.3 Activation Functions

Activation functions form the final part of many neuron models. They shape the output
of the neuron, playing a critical role in the networks ability to represent a function or
map a problem space. These functions typically include the non-linearities required
for neural networks to perform an arbitrary mapping of input data to output signals.
Alongside non-linearity, a number of different criteria are used to compare and assess
different activation functions. These criteria are in no way requirements and instead
have an impact on how the activation function affects training methods and general
network operation.

Order of Continuity A function is said to be continuous if its gradient is defined
and non-infinite for all input values. The order of continuity is a measure of the
differential continuity of a function. Notated as Cn, where n is the order, this
measure yields the number of times that a function may be differentiated before
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it becomes discontinuous. Discontinuous functions, that is functions that contain
regions where the gradient is undefined, have an order of continuity of C−1. Such
functions do not support network training algorithms where the differential is
required to inform the training process, since the undefined gradient regions
(at the points of discontinuity) can cause the system to become trapped in, or
oscillate around, a non-optimal solution. Continuous functions with discontinuous
first-order derivatives (C0) can be used, however mitigation must be performed
for the lack of derivative continuity while training. The 1st- and 2nd-order
differentials are often used in advanced training algorithms. As a result, the order
of continuity is an important measure when considering new activation functions.

Range The range of a function impacts the amount by which weights will be modified
during training. In practice it only really matters whether a function is finite
or infinite since any finite function may be scaled to fit a desired range. Finite
functions are typically more stable during training, however at the limits of
such functions the gradients are often very small. In gradient descent training
algorithms this can result in the vanishing gradient problem, where these small
gradients cause the weights to become stuck regardless of input values.

Approximates the Identity Function Functions which approximate the identity
function for small input values can learn efficiently when initialised with small
random values.

Monotonic A monotonic function is one where the gradient is either all positive or all
negative, with gradients of zero allowed in either case. Such functions are popular
in gradient decent algorithms as they do not have local maxima or minima that
can otherwise impede the traversal of the problem space. Networks using such
functions can utilise simpler training algorithms, making them a popular choice
in neural network implementations.

Asymptotic Asymptotic functions have regions where the output tends towards a
fixed value as the input reaches some limit. Functions with asymptotic extremities,
such that their output approaches a steady state value as their input approaches
infinity, map an infinite input range onto a finite output range. The gradient of
these functions becomes infinitesimally small for very large input values, however
it crucially never reaches zero since the asymptote itself is never reached. This
means that gradient descent algorithms may still be applied without risk of the
system becoming trapped indefinitely at the functions extremities.

While the necessity for each of these criteria is somewhat subjective, they are useful
when considering the impact of applying new activation functions to a network. There
are a handful of functions that have seen popular use in neural networks. The most
common of these are now introduced in Sections 3.3.1 to 3.3.5.
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Figure 3.5: The binary step or threshold function, with an example threshold of T = 1.7.
While this function traditionally has an output H(x) ∈ [0, 1], some models use scaled or
shifted binary step functions.

3.3.1 Binary Step

The binary step function is arguably the simplest non-linear activation function. Used
in some of the earliest neural networks, this function acts as a basic thresholding
operation.

Shown in Figure 3.5, this function may be described mathematically with a threshold,
T, as follows:

H(x) =

{
0, x ≤ T

1, x > T
(3.3)

The threshold value may also be treated as an additional weighted input. In such
instances this extra input is added to the neuron with a fixed value of 1. A weight,
w0, is applied to this fixed input and scaled to ensure that w0 = −T . This restructure
ensures that the decision region is locked at zero, yielding the following form:

H(x) =

{
0, x+ w0 ≤ 0

1, x+ w0 > 0
(3.4)

This function is easy to implement in digital systems due to its binary nature and
formed one of the key components in the McCulloch and Pitts neuron models [36].
Such simplicity, however, comes at significant cost. Unlike many of the more complex
activation functions, the binary step function is both non-continuous and
non-differentiable in the threshold region. Alongside this issue, the gradient for this
function is also zero for all other values. These limitations combined make the binary
step function unsuitable for gradient descent training algorithms. The all-or-nothing
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Figure 3.6: The logistic sigmoid function (solid blue) and its derivative (dashed red).
The continuous and easily found differential makes this function a popular choice for
neural networks undergoing gradient descent training.

nature of this function also means that no measure of error or certainty may be
provided by the neurons, making it challenging to apply other training methods.

The binary step function is sometimes modified to produce outputs where H(x) ∈ [−1, 1].
This modified function is known as the Bipolar Step Function.

3.3.2 Logistic Sigmoid

Unlike the binary step function, logistic activation functions have an infinite order of
continuity (C∞) and a differential of one for small input values, making them well
suited for gradient descent training algorithms. Finding considerable use in neural
network implementations, these functions are monotonic, asymptotic and continuous.
They are also known as ‘squashing functions’ as they map the entire real axis into a
finite output range.

Logistic functions are often recognisable by the characteristic S-shaped curve seen in
Figure 3.6. These functions have the general form:

f(x) =
L

1 + e−k(x−x0)
(3.5)

Where L is the curve’s maximum value, x0 is the x-value of the curve’s midpoint and k
is the curve’s steepness.
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The logistic sigmoid function is by far the most popular logistic activation function
and is defined as follows:

f(x) =
1

1 + e−x
(3.6)

The justification for this common use may be found when considering a probabilistic
view of classification tasks [41]. Assuming that there are two classes C1 and C2, the
probability that some entry, x, falls into one of these classes may be found using Bayesian
statistics. Defining p(Ck) as the class priors and p(x|Ck) as the class-conditional
densities, Bayes’ theorem states that the posterior probability (that is, the probability
that the entry x belongs to class k given the value of x) may be defined as follows:

p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)
(3.7)

This probability may be rephrased by first defining an intermediate function, a, such
that:

a = ln

(
p(x|C1)p(C1)

p(x|C2)p(C2)

)
(3.8)

Substituting Equation 3.8 into Equation 3.7 yields the following simplified form:

p(C1|x) =
1

1 + e−a
(3.9)

The resulting posterior probability equation (Equation 3.9) is of the same form as that
of the logistic sigmoid function shown in Equation 3.6. This relationship may also be
seen graphically by plotting two overlapping class probabilities, with each represented
by a normal distribution. Figure 3.7 shows such an arrangement, with the two classes
located such that there is an overlap in the class regions at the origin. For any entry
where x = 0 it may be seen that there is an equal probability that the entry will belong
to either of the classes. At the extremities the probability that an entry belongs to a
given class approaches either zero or one asymptotically. Plotting the probability that
a given entry x belongs to class C2 yields the characteristic S-curve of logistic functions,
as shown in Figure 3.7.

Besides describing the underlying shape of a probabilistic classification surface, the
logistic sigmoid function also reflects the learning rate seen in success-based learning
trials. Leibowitz et. al. demonstrated that the skill improvement seen when monitoring
the effects of learning closely resembles that of a logistic function [42]. It therefore seems
likely that the logistic function plays a role in natural learning, just as gradient descent
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Figure 3.7: Graph showing how two classes with normal distributions (solid blue and
dashed red) result in a logistic probability, p(C2|x) (dot-dashed green). As a result,
the logistic sigmoid of Equation 3.6 makes a good probabilistic approximation of the
classification problem space.
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training uses the differential (or shape) of the activation functions to determine the
iterative step size. These two underlying principles make the logistic sigmoid function
a sensible choice when attempting to reflect the learning and classification abilities of
natural neural systems.

The derivative of the activation function is a critical component when using gradient
descent based training algorithms. The logistic sigmoid function has a continuous,
non-zero derivative, making it a suitable choice for such training methods as it avoids
trapping the system in local minima. Alongside these properties, the logistic sigmoid
function also has a simple differential form that may be expressed in terms of the
function itself:

f ′(x) = f(x) [1− f(x)] (3.10)

Where f(x) is the logistic sigmoid function and f ′(x) is its derivative. This makes
calculating the differential a trivial task, providing significant acceleration during the
training of large-scale networks.

Despite the advantages of the logistic sigmoid function, it is not without limitations.
Most prominent of these is the use of both exponential and divide operations, which
make the logistic sigmoid function complicated and resource heavy when implementing
it in hardware. Traditional methods for calculating these operations rely on repetitive
or iterative solutions that cause non-deterministic timing in hardware systems. Such
solutions are also of significant scale when compared against simpler operations, such
as add or negate. While this scale and timing difference may seem insignificant when
performing a single operation, neural networks require the calculation of many thousands
to millions of activation functions in each time-step, resulting in a significant system
slowdown if the operations in use are even slightly slower. Equally, the small increase
in scale can have considerable compound effects on the size of the whole system if the
activation function calculation is parallelised, as is often the case in ANNs.

The asymptotic nature of the function can also result in weight stagnation. The small
gradients for input values located at the extremities of the function effectively traps
the weights, leading to what is known as the vanishing gradient problem.

3.3.3 Hyperbolic Tangent

The hyperbolic tangent (tanh) function is another logistic function that sees common
use in neural network implementations. Unlike the logistic sigmoid function, the tanh
function has an output range tanh(x) ∈ {−1, 1}. This means that tanh crosses the
origin, providing a good approximation for the identity function for small input values.
Tanh also has odd symmetry, which is preferred in activation functions as it makes it
more likely that the outputs (which in turn forms the inputs of the next neurons) are,
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Figure 3.8: The Hyperbolic Tan function (solid blue) and its derivative (dashed red),
showing its characteristic logistic S-shaped curve. With an output range tanh(x) ∈
{−1, 1}, this function offers odd symmetry, resulting in outputs which are, on average,
closer to zero when compared against the similar logistic sigmoid model.

on average, closer to zero [43].

Tanh may be expressed mathematically as follows:

tanh(x) =
ex − e−x
ex + e−x

(3.11)

As with the logistic sigmoid function, tanh has a simple differential form that may be
expressed in reference to the functions own output. Both the function and its derivative
are shown in Figure 3.8.

tanh′(x) = 1− tanh2(x) (3.12)

A comparison of activation functions in classification tasks was performed by Karlik
and Vehbi, resulting in the claim that the tanh function performs better than the
logistic sigmoid function [44]. In this comparison, a fixed size Multi-Layer Perceptron
(MLP) was trained with 500 iterations for each activation function under inspection.
This comparison was seemingly performed on one dataset, making it difficult to
draw any meaningful or generalised conclusions from the results. The work, however,
demonstrates the value of choice when it comes to activation function selection, with
different activation functions performing a given task with differing accuracy. Despite
the claims of superior performance and the advantages of odd symmetry, tanh is not
used as frequently as the sigmoid function due to its greater mathematical complexity.
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Figure 3.9: The Gaussian function (solid blue) and its derivative (dashed red). While
this function is less common, it is easily implemented in hardware and therefore worthy
of consideration for mobile or large network arrangements.

Unlike the logistic sigmoid function, tanh requires the calculation of two exponential
operations and a divide making it more computationally expensive to implement in
hardware.

3.3.4 Gaussian

Alongside the logistic activation functions, the Gaussian function, shown with its
derivative in Figure 3.9, has also been used as an activation function in some neural
networks. This function has the advantage that it does not require a division, which is
typically one of the most expensive operations in most activation functions.
Mathematically, the Gaussian function may be defined as follows:

g(x) = e−x
2

(3.13)

As with both the logistic sigmoid function and the tanh function, the Gaussian function
has a simple differential form that may be expressed in terms of the functions itself.

g′(x) = −2x · g(x) (3.14)

Both the Gaussian function and its differential are simpler to implement in hardware
than their logistic counterparts, however the Gaussian function has seen only limited
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Figure 3.10: The Rectified Linear Unit (or ReLU) function (solid blue) and its step
derivative (dashed red). This function is one of the simplest activation functions to
implement, making it a popular choice in recent neural network research.

use within the field. This is, in part, due to the fact that the Gaussian function
does not offer monotonic behaviour, meaning that two different weights can yield the
same performance. This makes training more complicated and can result in slower
convergence.

3.3.5 Rectified Linear Unit Function

The rectifier function, also known as the Rectified Linear Unit (ReLU) function, has
become the most popular activation function in deep learning and large scale neural
network implementations [45, 46]. This function, defined mathematically in Equation
3.15 and shown in Figure 3.10, represents the simplest activation function to implement
in hardware, requiring a single sign check and output selection.

f(x) = max(0, x) (3.15)

Unlike most of the other activation functions identified in this chapter, the ReLU
function does not have a continuous differential, as shown below in Equation 3.16. This
can cause issues when performing gradient descent training algorithms. Additionally
the zero gradient in the negative region of operation means that neurons using this
activation function can easily become stuck in an inactive state, leading to what is
known as the dying ReLU problem, where too many neurons become inactive for the
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network to perform the desired computation.

f ′(x) =

{
0, x ≤ 0

1, x > 0
(3.16)

Interestingly, the inactive region of the ReLU function also leads to one of its most
significant advantages over other activation functions. During training, any neurons
that operate within this negative region produce zero output meaning that they have
no influence on the networks operation. As a result, ReLU networks often display
greater sparsity than other continuous activation function networks, and the inactive
neurons may be safely removed post-training without any impact on the networks
performance.

The ReLU function also has the advantage that positive input values will never result in
the vanishing gradient problem, however this infinite positive range may easily become
an issue as training can cause the weights to run towards infinity if not accounted for
within the training algorithm.

Pennington et. al. performed an analytical comparison between ReLU and Sigmoidal
networks, finding that ReLU networks cannot exhibit dynamical isometry [47]. As a
result they show that sigmoid networks can consistently outperform ReLU networks
when properly-initialized. In spite of these limitations, the ReLU function has become
one of the most popular and actively researched activation functions in the last two years
due to its high speed and efficiency when compared against other popular activation
functions.

Softplus

A common alternative to the ReLU function is the softplus activation function. This
function is sometimes used in place of ReLU to address the issues seen in gradient
descent training algorithms [48]. This function provides a smooth approximation of
ReLU, resulting in an infinite order of continuity (C∞). Shown in Figure 3.11, the
differential of this ReLU approximation is actually the logistic sigmoid function. The
softplus function is mathematically described as follows:

f(x) = log(1 + ex) (3.17)

While this approximation provides continuity for gradient descent training, it still has
a gradient which rapidly approaches zero for negative input values. This means that
the softplus function is still susceptible to the vanishing gradient problem.
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Figure 3.11: The softplus function (Solid blue) and its logistic sigmoid differential
(dashed red). This function closely approximates the ReLU function without loosing
differential continuity. This improvement comes at the cost of simplicity, requiring
considerably more hardware to implement than it’s ReLU counterpart.

Leaky ReLU

Introduced by Maas et. al. [49] the Leaky ReLU function was designed to address the
issues caused by the vanishing gradient problem. Unlike the traditional ReLU, the
leaky ReLU adds a small, non-zero gradient to the negative region of the activation
function, helping to ensure that it cannot become saturated.

f(x) = max(αx, x) (3.18)

Where α is a suitably small constant (e.g. 0.1). Such systems were found to perform
almost identically to standard ReLU systems when used in Deep Neural Networks
(DNNs) [49].

3.4 Neural Network Structures

The ability of a neural network to represent a particular function is related to both
the activation function and the network structure. Certain structures are well suited
to particular tasks, such as MLP networks, which are typically used for classification
tasks; Convolutional Neural Networks (CNNs), which are commonly applied to image
recognition tasks; and Recurrent Neural Networks (RNNs), which are commonly applied
to temporal information. It is important to select a suitable network structure when
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designing a neural network for a given task or problem set. In this section three
different structures are highlighted and discussed. These structures were selected
to demonstrate specific properties and considerations that influence neural network
systems design.

3.4.1 Feed-Forward and Multi-Layer Perceptron
Networks

Feed-Forward Neural Networks (FFNNs) are the earliest and simplest form of ANN.
Such structures, like the one shown in Figure 3.12, use neurons formed into input,
output and hidden layers. The signals travel in a left to right direction from the input
layer to the output layer through the hidden layers with no feedback paths.

Input Neuron

Output Neuron

Hidden Neuron

Key

Signal Direction

Input Layer

Hidden 
Layer A

Hidden 
Layer B

Output Layer

Figure 3.12: Example structure of a four layer feed forward network, showing input
neurons, hidden neurons and output neurons. The differing line widths represent different
weighting within the networks connections.

MLP networks are a sub class of FFNNs that use the Perceptron model for each
neuron. These systems are easy to implement and train making them a practical
choice for simple regression, classification and clustering problems. In 1969, Minsky
and Papert proved that a single-layer Perceptron network is incapable of computing
certain functions (such as XOR) [50]. This rigorous study strongly deterred further
neural network research for a number of years and the pessimistic appraisal of neural
networks presented in the study has since been heavily criticized [35].

Linear Separability

On reflection, Minsky and Papert’s results identified an important property when
modelling functions using neural networks. Termed linear separability, this property
provides insight into the implementation complexity for a given function. A problem
space of n-dimensional vectors is linearly separable if it can be separated with a single
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Figure 3.13: The classic linear separability example, showing how the OR function
problem space may be divided into it’s two output classes using a single line. The XOR
function, however, requires two lines to define the problem space, making this function
linearly inseparable.

linear decision surface. Figure 3.13 shows two different two-dimensional problems,
‘XOR’ and ‘OR’. The ‘OR’ problem space may be easily classified using a single decision
surface, as shown, and is therefore linearly separable. The ‘XOR’ problem space,
however, is not linearly separable as it requires two decision surfaces to provide the
desired output classification.

A single layer Perceptron network, i.e. a single Perceptron, can represent any linearly
separable problem so long as there are sufficient inputs for each of the informative
dimensions. Multiple linear decision surfaces may be combined using extra layers of
Perceptrons to generate more complicated decision surfaces, overcoming this
representation limitation.

Network Depth

The number of layers in a network is known as the network depth. Each additional
layer in a network allows the previous layers results to be combined in a non-linear
fashion producing representations that are otherwise unavailable. A single layer network
provides a set of linear decision surfaces. A second layer allows these decision surfaces
to be combined with varying weighting, forming convex and open decision shapes. An
example problem space is shown in Figure 3.14, with a single decision surface shown for
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one layer and a combined decision shape made from two decision surfaces that could be
formed using a two layer network. An additional third layer may be used to combine
multiple decision shapes, forming complex decision boundaries by overlapping these
shapes as shown in Figure 3.14.

0 x

y

Output: 1

Output: 0

0 x

y

Output: 1

Output: 0

0 x

y

Output: 1

Output: 0

Output: 0

1 Layer 2 Layers 3 Layers

Figure 3.14: Arbitrary problem space division examples achievable by 1-layer, 2-layer
and 3-layer FFNNs. A single layer provides a single linear separation. Two layers allows
these linear seperations to be combined forming greater decision surface complexity.
With three layers these shapes may be combined in an abstract manner, allowing any
decision surface shape to be assembled.

The process of combining decision surfaces leads to the result that the linearly
inseparable ‘XOR’ problem can actually be represented by a simple two layer network
with two Perceptrons in the first layer and one Perceptron in the second layer,
resulting in the desired problem space division shown in Figure 3.13. This
demonstrates that linearly inseparable problems may be overcome through the
addition of new layers.

The Universality Theorem

The universality theorem states that a three layer neural network can be used to
approximate any continuous function with any desired precision and range, so long as
sufficient neurons are used in the hidden layers. George Cybenko published the first
proof for this concept in 1989 [51] using sigmoid activation to approximate continuous
functions. This proof was later generalised by Kurt Hornik in 1991 for multi-layer
FFNNs [52]. Figure 3.15 demonstrates the underlying principle, showing an arbitrary
function and two approximations generated by adding multiple offset step functions
at regular intervals. In this way the approximation may be improved by increasing
the frequency and number of step functions used. This principle is very similar to
that of the Fourier series, in which a set of sines and cosines may be added together
using the superposition principle to generate an arbitrary periodic function. In this
example, each step function is equivalent to an output in the hidden layer, so increasing
the step function frequency requires the addition of more neurons in the hidden layer.
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Figure 3.15: An arbitrary function (solid blue) shown alongside two different resolution
approximations constructed from time-shifted step functions. Approximation A shows
how the general form may be achieved using relatively few step functions, however
increasing the frequency (and in turn number of applied step functions) results in greater
approximation accuracy as seen in Approximation B.

The hidden layer outputs are then summed by the output layer, yielding the final
approximation.

Deep Neural Networks

Despite the universality theorem proving that three layers are sufficient for universal
non-linear function approximation, networks with far greater layer counts have still
become a key component of research efforts in the last 5 years. Such networks are
termed Deep Neural Networks (DNNs) in reference to the depth of layers found within
their internal structure. These DNNs can model complex non-linear relationships
within the provided input data, allowing complicated classification and regression tasks
to be performed. The extra layers enable the system to identify features in previous
layers, supporting associative abstraction of the data. Thus the network can model
complex data with fewer computational units than would be required by an equivalent
shallow network [53].

The addition of extra layers makes training more challenging, often resulting in
computationally expensive training procedures. Despite this issue, significant
advancements within the field of artificial intelligence have been provided by DNNs,
and with computational power continuing to improve it seems likely that such
networks will continue to find application in a range of specialisms [54].
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3.4.2 Recurrent Neural Networks

Unlike FFNNs, RNNs support bi-directional data flow within their internal structure.
This allows RNNs to learn patterns in sequential information, using historic entries to
influence the current network state. These networks may be considered to contain a form
of internal memory, represented by feedback loops within the networks themselves.

The temporal nature of these networks makes them particularly suitable for processing
and classifying sequential data such as: in language modelling, where the aim is to
measure the likelihood of a sentence structure or occurrence [55, 56, 57]; machine
translation problems, providing automated language translations [58, 59]; speech
recognition [60, 61, 62]; and musical composition [63].

Training RNNs presents a challenge, due to the hidden internal memory and signal
delays. The influence of internal memory on the systems state isolates the networks
instantaneous error from the current input values making it difficult to produce a
quantitative performance metric. Equally, the temporal nature of these systems means
that a correct output could become incorrect with time, making it challenging to test a
networks performance within a reasonable time frame. Techniques such as
‘back-propagation through time’ [64] have been developed to enable the training of
such systems, however these operations can take considerable time and computational
resource. Many of these methods also suffer from the vanishing gradient problem
previously mentioned, where small gradients in the error space trap the system
parameters in a non-optimal solution.

One of the most common forms of RNN is the Long Short-Term Memory (LSTM)
network. These networks are better at capturing long-term dependencies than other
RNNs and avoid the vanishing gradient problem. LSTMs were first proposed by
Hochreiter and Schmidhuber in 1997 [65] and have achieved notable results in a range
of tasks, such as handwriting recognition [66].

3.4.3 Hopfield Networks and Boltzmann Machines

So far, the networks considered have all contained sparse connectivity in the form
of layers, with distinct and separate input and output neurons. Hopfield networks,
however, do not follow this pattern. These networks are a form of RNN popularised
by John Hopfield in 1982 [67] but first described by Little in 1974 [68]. Unlike other
structures, Hopfield networks make use of fully connected neurons with no hidden layers.
They implement I/O neurons which act as both input and output for the network at
the same time.

Hopfield networks operate as content-addressable or associative memory. Each neuron
is fixed with an input value before the network is set free and allowed to oscillate. After
a suitable time period the network converges upon one of its learnt patterns, producing
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A) Hopfield Network B) Boltzmann machine

Figure 3.16: Example structures for both Hopfield networks (a) and Boltzman machines
(b). Hidden neurons are shown in solid yellow circles, while I/O neurons are represented
using bisected red-green circles. The varying edge thickness represents the varying
weights used in such networks.

steady outputs on the I/O neurons. In this way the network is capable of generating
a full pattern when only partial data is available, much like how human memory can
trigger detailed recollection following a partially associated stimulus.

Hopfield originally used binary threshold neurons [67]. In later work, Hopfield developed
an associative memory with continuous outputs in the range y ∈ {−1, 1} [69].

One issue with Hopfield networks is that they tend to stabilize to local minima rather
than the global minimum. This is largely addressed by a class of networks called
Boltzmann machines, which are trained using statistical rather than deterministic
methods [70]. Due to the close analogy between this statistical training approach and
metal annealing, these methods are commonly called ‘simulated annealing’. Unlike
Hopfield networks, Boltzmann machines make use of hidden neurons within their
structure. A global temperature is often implemented to avoid continuous oscillation
of these networks. Lowering this global temperature acts to lower the neuron energies,
in turn encouraging stabilisation of the network.

3.4.4 Convolutional Neural Networks

While FFNNs and RNNs have historically dominated neural network research, CNNs
have become some of the most popular and widely applied neural networks within
the early part of the 21st century. Also known as shift invariant and space invariant
artificial neural networks, CNNs were heavily inspired by the visual cortex in animals.
In 1968, Hubel and Wiesel noted that the visual cortex of monkeys was constructed in
a structured and identifiable manner, with only two key visual cell types in the brain
[71]. Building upon this concept, LeCun developed LeNet-5, the first artificial CNN
[72]. Since their introduction CNNs have found considerable use in tasks such as image
recognition, frequently outperforming other neural network topologies. Rawat and
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Wang provide a comprehensive review of CNN implementations in image classification
tasks. Despite its biological inspiration, after reviewing around 300 publications and
identifying a number of state of the art CNN results Rawat and Wang conclude that
the most significant challenge facing the research community is still to be found in
closing the theoretical gap between biological neural networks and CNNs [5].

A CNN typically consists of an input layer, output layer and many hidden layers. Each
of these hidden layers will commonly fall into one of three categories: convolutional
layers, pooling layers and fully connected layers. Each type of layer performs a specific
role and the arrangement of these layers will often impact the final performance of the
network.

Convolutional layers perform the shift invariant feature recognition. The result of these
layers is equivalent to convolving a filter or mask over the input and, as a result, the
output will always match the dimensions of the input. For image processing CNNs
this means that each convolutional layer produces a filtered image of its own. This
convolutional filtering is performed though use of many identical neurons that all have
the same weights as one another. In this way the convolutional layers are said to use
‘shared weights’, greatly reducing the number of free parameters that must be optimised
during training. These shared weight neurons are located spatially across the full data
space and only operate on a small local neighbourhood termed the ‘receptive field’. As
a result these neurons operate in a spatially local domain, requiring no long distance
or global connections. Figure 3.17 shows a small selection of convolutional neurons
in a single convolutional layer. The weights of each of these neurons are identical
(represented using matching colours) regardless of where on the image the neuron
operates.

Pooling layers compress the data, reducing the number of data points through a simple
operation. Max pooling selects the maximum value from a region on the previous
layer, while average pooling uses the average value from the previous layer. Both these
methods are illustrated in Figure 3.18.

Fully connected layers are often located at the end of the CNNs structure and operate
in the same manner as that of a perception neural network. These layers perform the
classification task, operating in a similar way to other classification networks.

In practice these layers are used in groups, such that there are many convolutional
filters applied to the previous layers outputs at the same time/stage. This means that
a 2D image input becomes a 3-dimensional data-structure within the CNN. In the case
of classification tasks, the fully connected layers receive this 3D structure, processing
it into a 1D list of class likelihoods. The convolutional layers may be visualised to
show the features that are identified by each filter, as shown in Figure 3.19. From this
figure it is seen that the first filters act as edge detectors, with the feature recognition
becoming ever more advanced as the data is passed to additional layers.
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Figure 3.17: Example convolutional layer, showing three neurons neighbourhoods on
the previous layer. Shared colours of the connection lines represent the shared weights
which are consistent between each of the neurons in the convolutional layer.
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Figure 3.18: Examples of max pooling and average pooling operations commonly used
in the pooling layers of CNNs. These layers help reduce the resolution of the input data,
allowing the system to identify the large structures within the data.
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Figure 3.19: Example CNN layers taken from Convolutional deep belief networks for
scalable unsupervised learning of hierarchical representations by H. Lee [73], showing how
the early convolutional layers form basic edge recognition, with the identified features
growing in complexity as the network is traversed deeper.

3.5 Network Training

One of the key factors of neural networks popularity is found in their ability to learn
and adapt to new problems or tasks. This learning process is apparent within many
biological systems and offers considerable computational value if successfully mirrored
in artificial systems. Significant progress has been made within this area, however
there are still unanswered and fundamental questions when it comes to the nature of
learning.

Typically neural network learning and training may be classed in one of two distinct
categories: offline and online learning. When using online learning, the network will
continue to refine and improve its classifications using the live data provided. Such
systems often require an oracle or feedback path to provide a measure of success and
error. In offline learning, systems are trained using a pre-defined set of data before
locking the internal weights and properties for use in a live environment. This method
often requires the data to be pre-processed to ensure that the correct result is available
for comparison and validation of performance.

Network training may be further classified into supervised and unsupervised learning.
Supervised learning is performed when the result or desired outcome is already well
known. In this case the network is trained against the desired result to ensure that
it learns the underlying rules of the problem. Typically these tasks will either be
classification or regression problems. In classification tasks the data must be assigned
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to categories (e.g. cat or dog), while regression tasks produce a real value (e.g.
weight).

In unsupervised learning the network must attempt to find some underlying pattern or
rule set that was previously unknown. Such systems will often be designed to perform
clustering or association tasks. A clustering problem requires the network to discover
an inherent grouping for the input data (e.g. online profiling through user behaviour),
while an association problem requires the network to discover the fundamental rules that
describe the bulk data provided (e.g. popular similar items in an online store).

Both supervised and unsupervised learning occur in biology, however supervised learning
has proven significantly easier to implement in artificial systems due to the inherent
measure of accuracy or error it provides.

3.5.1 Training, Test and Validation Datasets

Datasets play a key role in ANN training and validation processes, and the way these
datasets are formed and used is critical to the success or failure of a network. It is
common practice to separate the data into three unique non-overlapping datasets,
these are the training data, test data and validation data. Each dataset must contain
a random selection of data points such that the sets suitably represent the problem
space.

The training and test datasets are used during the training cycles. First, the training
data is provided to the network and a training algorithm is iteratively used to tweak
the networks parameters and reduce error. The test data is used between iterations to
generate a measure of network performance during training. The training algorithm
is switched off while running the test data through the network. The separation of
training and test data helps ensure that the network does not simply learn and mirror
the raw data used during training, in a condition termed over-fitting. As shown in
Figure 3.20, over-fitting results in poor test data performance when compared against
the training data performance. It is important to stop training before over-fitting to
ensure that the network performs optimally on unseen data.

Validation data may be used post-training to provide a measure of network performance
for comparison with other solutions. This validation data-set contains previously unseen
data, ensuring that the training process has not simply optimised the network for
the training and test datasets provided. All three datasets are critical components in
ensuring that a network will continue to achieve minimal error when presented with
live and unseen data.
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Figure 3.20: Example error seen during ANN training, showing how the networks
training data performance continues to improve with additional training cycles. Despite
this apparent improvement, the test data results reveal that the networks performance
on unseen data actually becomes worse after the early stopping point due to over-fitting.

3.5.2 Hebbian learning

Hebbian theory is an important neuroscience theory developed by Donald Hebb in 1949
[37]. As described in Section 3.2.1, Hebb’s rule states that any neurons that repeatedly
play a role in firing another neuron will result in growth that emphasises this trait.
Hebbian theory is also found in the idea that any two neurons (or indeed groups of
neurons) that are frequently active simultaneously will, with time, become associated
to one another such that one may encourage activity in the other. Mathematically this
is often generalized into the form:

∆wi = ηxiy (3.19)

where y is the postsynaptic response and wi is the ith weight, which modifies the ith
input, xi. The learning rate, η, controls the impact of learning on the weights and is
often small to avoid oscillation and ensure that any significant change is as a result of
the bulk behaviour.

This learning rule is simple to implement when considering single neurons or synapses,
however it does not monitor the performance of the network and therefore is not
suitable as a training algorithm on it’s own.

3.5.3 Back-Propagation Algorithm

The training of multi-layer artificial networks presented a significant problem in the
advancement of neural networks. Combined with Minsky and Papert’s critical review
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of neural networks [50], the lack of any theoretically sound algorithm for training
such systems led to a severe decline in neural network research. The invention of
the back-propagation algorithm played a considerable role in the resurgence of neural
network research, finally offering a methodology for training multi-layer networks.

Presented by Rumelhart, Hinton and Williams in 1986 [74], the back-propagation
algorithm has something of a contested past. Shortly after publication, Parker was
shown to have anticipated the work in 1982 [75]. After this it was discovered that
Werbos had actually detailed the method as early as 1974 [76]. Despite its contested
origins, the back-propagation algorithm has been key to expanding the range of problems
that neural networks may be successfully applied to.

Defining Network Error

The aim of back propagation is to reduce a networks overall error by manipulating
individual weights within the network. As such it is important to first define how
this overall error is calculated. For a given input vector the networks error, Etotal, is
commonly found using the Mean Squared Error (MSE) of Equation 3.20, where T
and Y are the target output and actual output values respectively for each of the m
neurons in the output layer.

Etotal =
m∑
i=1

1

2
(Ti − Yi)2 (3.20)

Considering a single neuron

In order to comprehend the back propagation algorithm it is necessary to first consider
the forwards function of a single neuron, shown in Figure 3.21.

XA=∑In YA=f(x)

wA1

wA2

wAn

A

EA=0.5(TA-YA)2

Figure 3.21: Internal operation of a single integrate and fire neuron. The internal
process is shown as two distinct steps, allowing derivation of back propagation algorithm
independent to activation function selection.
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The neuron may be considered to have two separate internal functions. First, the
weighted inputs are summed and the resultant value, x, is then passed through the
activation function, f(x). By separating the neurons internal functions in this way it
becomes possible to swap out the activation function used within the back-propagation
algorithm. If the neuron is located on the output layer of the network the error may
be found using equation 3.20.

The Output Layer

As the name suggests, the back propagation algorithm functions by propagating the
error backwards through the network, correcting the internal weights one layer at
a time as it progresses. As such it is necessary to start at the output layer of the
network.

Considering a single output layer neuron such as the one shown in Figure 3.21, the
change in error, Etotal, caused by changing a given weight, Wmodified, may be written
mathematically as ∂Etotal/∂Wmodified. Using the chain rule, this differential may divided
into the same sub-parts used in Figure 3.21, as shown in Equation 3.21.

∂Etotal
∂Wmodified

=
∂Etotal
∂yA

· ∂yA
∂xA

· ∂xA
∂Wmodified

(3.21)

Each of the sub-parts in Equation 3.21 may be found separately, before combining
them again to yield the desired derivative.

The Output Layer - Part 1

Using the definition of network error in Equation 3.20, the derivative of the error w.r.t.
a given neurons output may be written as:

∂Etotal
∂yA

=

∂

m∑
i=1

1

2
(Ti − yi)2

∂yA
(3.22)

The differential of the sum elements will be zero when A 6= i. This may therefore be
simplified to Equation 3.24 as follows.

∂E

∂yA
=
∂ 1

2
(TA − yA)2

∂yA
(3.23)
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∂E

∂yA
= yA − TA (3.24)

The Output Layer - Part 2

Considering an arbitrary activation function f(x), ∂yA/∂x may simply be rephrased as
shown in Equation 3.25.

∂yA
∂xA

= f ′(xA) (3.25)

The Output Layer - Part 3

Finally, the derivative of x w.r.t. the modified weight, Wmodified, may be found using
Equation 3.26 where yprev i is the output of neuron i in the previous layer and p is the
total number of neurons in the previous layer.

∂xA
∂Wmodified

=

∂

p∑
i=1

(Wi · yprev i)

∂Wmodified

(3.26)

As with Equation 3.22, the elements of this sum which do not use Wmodified will have
no partial derivative. This yields the simplified form shown in Equation 3.28, with
ymodified referencing the output of the neuron on the previous layer which is connected
to the weight under modification.

∂xA
∂Wmodified

=
∂(Wmodified · ymodified)

∂Wmodified

(3.27)

∂xA
∂Wmodified

= ymodified (3.28)

The Output Layer - Combined

Combining each of the sub-parts in Equations 3.24, 3.25 and 3.28, the impact of
modifying a given weight on the networks overall error may be found as shown in
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Equation 3.29.

∂Etotal
∂Wmodified

= (yA − TA) · f ′(xA) · ymodified (3.29)

Using this calculated impact factor, a new weight may now be calculated using Equation
3.30.

Wnew = Wmodified − (η × ∂Etotal
∂Wmodified

) (3.30)

where, η is the learning rate parameter and Wnew is the post-modification weight.

The Hidden Layer

Having calculated the new weights for the output layers, the back propagation algorithm
must then advance to the previous layer in the network. This layer does not have a
direct one-to-one relationship with the output error of the network and it is therefore
again necessary to calculate how changes in this layer will affect the overall error. A
simple example of this problem is shown in Figure 3.22, where the output of the target
neuron A passes through two separate output neurons, B and C, before contributing to
the overall error.

As before, the change in error, Etotal w.r.t. a given weight, Wmodified must be calculated.
Applying the chain rule and using the elements in Figure 3.22 yields the following
equation.

∂Etotal
∂Wmodified

=
∂Etotal
∂yA

· ∂yA
∂xA

· ∂xA
∂Wmodified

(3.31)

The latter two sub-parts of Equation 3.31 are of identical form to those found for the
output layer neurons. Therefore the only part which must be newly defined is that of
the change in error w.r.t. the neurons own output.

As shown in Figure 3.22 the output of the neuron may contribute to a number of
different error values (such as EB and EC). The error w.r.t. output may therefore be
written as follows.

∂Etotal
∂yA

=
m∑
i=1

∂Ei
∂yA

(3.32)
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XA=∑In YA=f(x)
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EC=0.5(TC-YC)2

Etotal=EB+EC

Figure 3.22: Layered neurons used to calculate the influence of early layer weights on
the final output error of the system. It may be seen that a weight change in the first
layer (A) will propagate through the second layer neurons (B and C), modifying the final
result of both EB and EC .

Applying the chain rule for a second time this may be re-written using the sub-parts
shown in Figure 3.22.

∂Etotal
∂yA

=
m∑
i=1

(
∂Ei
∂yi
· ∂yi
∂xi
· ∂xi
∂yA

)
(3.33)

Two of these three parts have been previously defined, yielding the expanded format
shown below in Equation 3.34.

∂Etotal
∂yA

=
m∑
i=1

(
(yi − Ti) · f ′(xi) ·

∂xi
∂yA

)
(3.34)

Considering the final part of Equation 3.34, it may be shown that ∂xi/∂yA = Wi, where
Wi is the weight between neuron i of the output layer and neuron A in question. This
yields a final equation for error w.r.t. output as shown below in Equation 3.35.

∂Etotal
∂yA

=
m∑
i=1

((yi − Ti) · f ′(xi) ·Wi) (3.35)

J. E. G-H-Cater 83 University of Bath



CHAPTER 3. ARTIFICIAL NEURAL NETWORKS

It should be noted at this stage that Equation 3.35 represents the impact of output
changes at the current layer as they are fed through the rest of the network layers.
Using Equation 3.29, it is possible to re-define this into a form which is irrespective of
the neurons depth within the network, as shown below. In this new form the results
from the previously calculated layers are used to calculate the results for the current
layer, allowing rapid progression through the network.

∂Etotal
∂yA

=
m∑
i=1

(
∂Etotal
∂Wi

· Wi

yi

)
(3.36)

Applying this expansion to Equation 3.31 yields a suitable equation for finding the
impact of modifying a weight buried within a network, as shown below in Equation 3.37.
Once again, ymodified refers to the value which the weight under modification would
scale in normal operation, while r represents the number of neurons in the previously
calculated layer.

∂Etotal
∂Wmodified

=
r∑
i=1

(
∂Etotal
∂Wi

· Wi

yA

)
· f ′(xA) · ymodified (3.37)

Algorithm Summary

Once each of the weight differentials have been defined the overall back propagation
method may be easily applied to any network. For ease of reference the key equations
are repeated in this section, with notes on their application where required.

The output layer weight differentials and other layer weight differentials may be found
using Equations 3.38 and 3.39 respectively.

Output Layer:
∂Etotal

∂Wmodified

= (yA − TA) · f ′(xA) · ymodified (3.38)

Other Layers:
∂Etotal

∂Wmodified

=
r∑
i=1

(
∂Etotal
∂Wi

· Wi

yA

)
· f ′(xA) · ymodified (3.39)

Since Equation 3.39 relies on the previous set of results, it is necessary to work through
the network one layer at a time, starting with the output layer. Using the newly
calculated weight differentials, a new weight may now be calculated for each layer using
Equation 3.30. Care must be taken to ensure that the original weights are used for any
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further calculations of weight differentials in a single back propagation training cycle.
The change or correction to each weight may therefore be defined as follows:

∆Wi = −(η × ∂Etotal
∂Wi

) (3.40)

where η is the learning rate.

3.5.4 Advanced Gradient Descent Algorithms

When using gradient descent training algorithms such as back-propagation there is
a trade-off to be considered when selecting the learning rate for the system. Steep
problem space gradients result in oscillation for systems with large learning rates,
however smaller learning rates will cause the system to propagate slowly in shallow
regions of the problem space. It is common to select smaller learning rates since an
oscillating system may never find a stable solution. For this reason, back-propagation
and other simple gradient descent algorithms are commonly found to converge slowly
when training. A number of different methods have been developed to address this
issue. These approaches often modify the step sizes on each iteration of the algorithm,
attempting to select the optimal learning rate using extra information about the
problem space itself.

Newton’s Method

Newton’s method (also known as Newton-Raphson iteration) is a common numerical
analysis tool for incrementally approximating the roots of a real-valued function. This
method provides quadratic convergence and has seen considerable use in a number of
applications, such as calculating the reciprocal of a number in hardware systems. The
quadratic convergence of this method means that it can outperform most other methods
when convergence is possible. The convergence itself, however, is not guaranteed if the
starting value is too distant from the actual solution. For this reason the underlying
function and starting values must be carefully considered if Newton’s method is to be
successfully applied.

In it’s simplest form, Newton’s method may be stated as follows:

xn+1 = xn −
f(xn)

f ′(xn)
(3.41)

where xn is the nth approximation of a root and f(x) is the real-valued function under
consideration.
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This function provides an iterative method for finding the roots or zero crossing values.
In the case of the reciprocal function, this may be performed by first defining f(x) such
that f(1/y) = 0. The Newton method may then be used to find the root of f(x) which
is, in turn, the reciprocal of y.

This method may also be used in optimisation problems, such as neural network training.
It is possible to optimise a system by solving the differential since a root or zero crossing
in the differential of a function represents a maxima or minima in the function itself.
Therefore Newton’s method may be applied to the differential of the error space,
yielding the minima locations. To perform this operation requires calculation of the
second-order derivative for the error space, and this method is therefore classed as a
second order algorithm.

This approach may be generalised for several dimensions by replacing the derivative of
the problem space with the gradient of the problem space, ∇f(x), and the reciprocal
of the second derivative with the inverse of the Hessian matrix, H(f(x)), where the
Hessian matrix may be defined as:

H(f(x))i,j =
∂2f(x)

∂xi∂xj
(3.42)

where i and j are the indices for the matrix.

These modifications yield the following version of Newton’s method:

xn+1 = xn − γ [H(f(xn))]−1∇f(xn) (3.43)

where γ ∈ (0, 1) to ensure smaller step sizes.

While this method provides better convergence over general gradient descent algorithms,
the calculation of the Hessian matrix can be very computationally intensive. This
makes this method unsuitable for many optimisation problems.

Gauss-Newton algorithm

The Gauss-Newton algorithm is a modified version of the Newton method that can
only solve non-linear least squares problems. Despite this limitation, the Gauss-Newton
algorithm has the considerable advantage that it does not require the second derivatives
to be calculated.

Given m functions r = (r1, . . . , rm) with n variables β = (β1, . . . , βn) where m ≥ n,
the Gauss-Newton algorithm attempts to find the values of β that minimises the sum
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of the squares, S(β), given by:

S(β) =
m∑
i=1

r2i (β) (3.44)

The iterative approximations for β may then be found using the following
equation:

β(k+1) = β(k) −
(
Jr
>Jr

)−1
Jr
>r
(
β(k)

)
(3.45)

where β(k) is the kth approximation and Jr is the Jacobian matrix, such that:

(Jr)i,j =
∂ri

(
β(i)
)

∂βj
(3.46)

While this method requires less computation than that of the Newton algorithm, there
is no guarantee that it will actually converge on a solution. Indeed this algorithm will
converge slowly, or even not at all, if the starting point is too far from a minimum.
Equally, if the matrix Jr

>Jr is ill-conditioned convergence may fail. This lack of
convergence creates problems when attempting to optimise large neural networks with
unknown problem spaces.

Levenberg-Marquardt algorithm

The Levenberg-Marquardt algorithm was independently developed by Levenberg [77]
and Marquardt [78]. Also designed to solve non-linear least squares problems, this
algorithm forms a hybrid of the Gauss-Newton algorithm and standard gradient descent
techniques. As a result, the Levenberg-Marquardt algorithm is more robust than the
Gauss-Newton algorithm, meaning it often finds a solution even when initialised far
away from the final result. By leaning on the strengths of the Guass-Newton algorithm,
this method provides an accelerated convergence when compared with traditional
gradient descent techniques.

Suitable for small and medium sized neural network problems, the
Levenberg-Marquardt algorithm interpolates between the Gauss–Newton algorithm
and gradient descent methods. Favouring standard gradient descent for regions that
contain complex curvature and utilising the Gauss-Newton method for areas where the
problem space is such that it is proper to make a quadratic approximation [79].
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The algorithm makes use of an approximation to the Hessian Matrix, defined as:

H ≈ J>J + µI (3.47)

where I is the identity matrix, J is the Jacobian matrix and µ is a positive value called
the combination coefficient.

With these approximations defined, Equation 3.45 may be reworked as follows:

β(k+1) = β(k) −
(
Jr
>Jr + µI

)−1
Jr
>r
(
β(k)

)
(3.48)

When the combination coefficient is very small, Equation 3.48 approaches Equation
3.45, representing the Gauss-Newton method. However large combination coefficient
values will result in Equation 3.48 approximating the steepest descent algorithm which
may be mathematically described as follows:

β(k+1) = β(k) − α∇S(β) (3.49)

Indeed, for very large values of µ, the learning coefficient in the steepest descent
algorithm, α, may be approximated using:

α =
1

µ
(3.50)

3.5.5 Genetic Algorithms

It is not always possible to apply gradient descent algorithms to optimise for a given
problem space. In these cases other algorithms are required to search the problem space
in an effective and efficient manner. Genetic algorithms are nature-inspired iterative
methods commonly used to find solutions to optimisation and search problems. Such
systems typically start with a population of randomly seeded candidate solutions and
then use a measure of fitness or success to identify the most promising candidates. These
identified candidates are then used in the ‘breeding’ stage to produce the next generation
of candidate solutions, relying on nature-inspired operations such as mutation and
crossover to define the new solutions properties. This process is then repeated until a
suitable solution is found.

In order to use genetic algorithms, the system being optimised must first be defined
using a ‘gene’ that fully specifies all tunable parameters in a single long entry. This
gene is used to define each of the candidates and modified during the breeding stages
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to produce the next generation of candidate solutions. Both crossover and mutation
are shown in Figure 3.23. With crossover, two promising genes are selected at random
and mixed together to yield two new child genes. In the case of mutation, small
parts of the gene are randomly changed while the majority of the gene is maintained.
Children of this process therefore maintain the majority of their one parents genetic
information.

Parents

B) MutationA) Crossover

Children
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A2

A3

A4
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A6
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...

An
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Figure 3.23: Crossover and mutation regimes typically used in the gene breeding steps
of genetic algorithms. Crossover results in child genes which contain a combination of
parameters from each of the parents genetic data as-is, while mutation results in small,
previously untested, modifications to a subset of selected parameters within one parent
gene.

Alongside breeding, it is common practice to also include a subset of the most promising
genes in the next generation of candidate solutions. Without this pass-through of
genetic information it is possible for the solutions to become worse - losing previously
good solutions. Some random genes are also added to the next generation to ensure
that the gene pool doesn’t stagnate or converge onto a single local maxima.

The exact breeding and gene generation methodology is an important factor when
designing genetic algorithms. If performed incorrectly, the system can stagnate resulting
in little to no change in subsequent generations of candidate solutions. The fitness
function or measure of success also plays a critical role in the performance of a given
genetic algorithm. If the fitness has been poorly defined the candidates will fail to find
an optimal solution.

Genetic algorithms can be very time intensive, especially as the number of free
parameters, and in turn gene length, increases. The challenge behind suitably defining
a breeding algorithm and fitness function, alongside the large number of weights
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requiring optimisation makes this approach less suitable for medium to large scale
neural networks.

3.5.6 Particle Swarm Optimisation

Particle swarm optimisation is a stochastic optimisation technique developed by
Kennedy and Eberhart in 1995 [80]. It was designed to model social behaviour, such
as that seen in flocks of bird or schools of fish. Since its initial conception, particle
swarms have been used to optimise a number of different problems, including neural
networks. The original model was further improved in 1998 by Shi and Eberhart
through the addition of an inertia weighting [81]. This extra weighting typically
decreases its influence as the simulation progresses helping the final solutions to
settle.

Particle swarm optimisation starts with a random population of points on the problem
space, termed particles. Each particle has a velocity, vn; inertia weight, ω; fitness value,
which is found using a pre-defined fitness function; and current position, Pn. On each
iteration the position of the best fitness achieved by the particle, Pb, is checked and
updated if necessary. The position of the global best fitness achieved by the whole
system, Pg, is also stored. These values are then used to calculate a new velocity, vn+1

using the following equation:

vn+1 = ωvn + C1R1(Pb − Pn) + C2R2(Pg − Pn) (3.51)

where C1 and C2 are constants selected by the designer, R1 and R2 are random numbers
of the range (0, 1). Once the new velocity has been calculated, the position is then
updated as follows:

Pn+1 = Pn + vn+1 (3.52)

A maximum velocity is often used to clamp the system and ensure that the target
minima are not skipped over by the swarm as a whole.

This algorithm has notable similarity to that of genetic algorithms. Both use an initially
random population, performing iterative searches on the problem space using this
population and a user defined fitness function. However, particle swarm optimisation
does not use evolution or generations of populations, rather the algorithm maintains
the initial population and instead moves them around the problem space.

The field of particle swarm optimisation has received significant interest within recent
years, with around 700 new publications added per year between 2010 and 2014. With
so many new particle swarm optimisation variants and test functions it is impossible
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to compare and identify the best variation or method, a problem readily identified by
Zhang et. al. in their comprehensive and detailed review paper [82].

Particle swarm optimisation techniques suffer from high computational complexity,
slow convergence and a considerable sensitivity to parameters. Additionally these
methods do not handle the relationship between exploitation (local searches) and
exploration (global searches) very well, and they therefore easily converge to local
minima. Considerable effort has gone into overcoming these issues [82], however often
the additional algorithm complexity only acts to increase the computational cost,
further limiting the cases where such methodologies are suitable.

3.6 Conclusions

This chapter has touched upon some of the key concepts in the field of ANNs. From the
early single layer binary networks to the modern and deep CNNs, each advancement
brings improvements to the power efficiency, training speed or ability to represent
complex non-linear problems. Over the last 5 years there has been a considerable
quantity of research publications, making it impossible to compare and quantitatively
identify a best solution or system. Within this huge range of research efforts, however,
there have been some key discoveries that have helped the field move forwards in leaps
and bounds.

In this chapter the field of ANNs has been divided into four key considerations: artificial
neuron models, activation functions, network topology and network training algorithms.
Each of these topics must be reviewed by a designer when developing a new ANN
system. Artificial neuron models have seen little advancement in recent years, with the
main focus shifting to activation functions and network topologies.

Within the topic of activation functions, ReLU has become the latest and most popular
activation function for use in a wide range of applications. Many variants and small
modifications have been tested, however the simplicity and effectiveness of the ReLU
function makes it likely that this trend will continue for the foreseeable future. Despite
ReLUs popularity, the logistic sigmoid function still finds significant use within neural
networks with recent work arguing that properly initialised deep sigmoidal networks
consistently outperform deep ReLU networks during training [47].

Network topology is arguably the area most influenced by the target application.
Modern classification and regression tasks frequently use deep FFNNs, achieving results
comparable to human performance on a number of test datasets. Image recognition
and object identification tasks require systems that offer shift-invariance, such as CNNs.
Their biological inspiration makes them particularly suitable for vision related tasks
and it seems likely that future advancements in such systems will be achieved through
closing the theoretical gap between biological and CNN structures. Tasks involving
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temporal data, such as speech recognition, will often require use of RNNs. These
networks contain feedback paths, making them more complex to train than their FFNN
counterparts. Of these networks, LSTMs have become popular, with their ability to
capture long-term dependencies and avoid the vanishing gradient problem, making
them particularly suited for such tasks. Hopfield networks and Boltzmann machines
form examples of RNNs, with a fully connected arrangement and unique I/O neurons
that act as both input and output for the network. These models are capable of
completing partial input patterns, making them particularly suited for classification
tasks involving partial, noisy or corrupt input data.

Network training forms the final key element in ANN design. From the original theory
of Hebbian learning to modern day training techniques, the questions surrounding
biological learning remain largely unanswered. Despite this challenge there have been
significant advancements within the field that have allowed neural networks to achieve
state of the art results. Back propagation is the earliest and most prolific training
algorithm, with its simplicity and intuitive process making it especially suited for
classification and regression tasks. Other gradient descent training algorithms have
shown considerable promise, however the addition of extra computation requirements
often makes such approaches unsuitable for large scale networks. Genetic algorithms
provide another nature inspired approach to network training, yet these methods
are somewhat unpracticable in their convergence and lean heavily on the designer
to accurately specify the fitness functions and breeding algorithms. Particle swarm
optimisation has provided optimisation solutions for a number of different problems
and shows considerable promise in neural network implementations. As with other
optimisation techniques these methods require significant computational resource. It
therefore seems likely that future progress within this topic will be heavily driven by
advancements in both computational power and efficiency.

Many of these choices depend on, not only the end application, but also the target
architecture or hardware. Implementing these systems on generic computing hardware
has become an increasing challenge as ANNs have grown from several neurons to several
million neurons and billions of synapses. Additionally, training these networks can
consume considerable time and computing resource and there is therefore considerable
commercial and academic interest in the acceleration of such processes. Google’s own
Tensor Processing Units, for example, were developed in response to the increasing scale
and popularity of neural network applications within their own data centres. These
custom hardware solutions realise speed improvements of between 15− 30× that of
contemporary Central Processing Unit (CPU) or Graphical Processing Unit (GPU)
stacks, with power improvements of between 30−80×, making them a critical component
in the continued success and growth of Google’s own computational capabilities [83].
These hardware systems are critical in the continued advancement and development of
ANN solutions and research. The next chapter in this thesis reviews the key neural
network hardware systems available to the research community, comparing their designs
and implementation limitations.
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Neuromorphic Hardware

First coined by Carver Mead in 1990 the term ‘neuromorphic hardware’ is used to
describe a circuit inspired by the energy efficiency and processing capabilities of
biological neural systems [6]. By this time, the process of combining thousands of
transistors into a single Integrated Circuit (IC) was well established - termed Very-Large
Scale Integration (VLSI), this process is still used today to build modern processors and
ICs. Noting a considerable and fundamental difference in the power per computation
between VLSI systems and even insect brains, Mead argued that there was clearly
something undiscovered regarding the way that biological neural networks process
data. Drawing comparisons between the estimated power used by an individual neuron
and that of a single transistor, it has been shown that they yield similar power per
activation. With this observation, Mead notes that:

“The disparity between the efficiency of computation in the nervous system
and that in a computer is primarily attributable not to the individual device
requirements, but rather to the way the devices are used in the system.” -
[6]

Alongside this conclusion, two primary causes of energy waste are identified in digital
processing systems. Firstly, focusing on the dynamic power consumption, it was
observed that a considerable portion of the energy consumed in a VLSI system is
used to charge the connections and wires between the transistors. The capacitance
of these connections is at best comparable to that of the of gate itself, and often
forms the majority of the node capacitance. Secondly, modern day processors make
use of many thousands of transistors when performing a single operation. As a
result, these operations consume several thousand times the computational power
of a single transistor while also increasing the static power consumption due to an
increase in leakage currents. Neuromorphic hardware, however, makes use of transistors
fundamental non-linearities to perform computation in a manner similar to that of
biological neural networks. This greatly reduces the number of underlying building
block elements required to perform the computation.
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Neuromorphic hardware has come to include any designs built to accelerate or efficiently
implement neural simulations and Artificial Neural Networks (ANNs). Despite the
considerable advancement of modern processing technologies, simulations large and
yet detailed enough to emulate multiple cortical areas are still impractical on standard
processing solutions. As a result many hardware alternatives have been explored,
aiming to provide more powerful, affordable and efficient neural simulation platforms
[84]. Alongside the desire to implement and reproduce the cognitive computation
performed by biological nervous systems, there is also the hope that neuromorphic
systems will provide clues for a new generation of asynchronous, low-power, parallel
computing solutions [14]. These systems stand to bridge the gap in computing power
when Moore’s law has fully run its course.

Hardware neuron implementations are much more energy efficient than neurons
simulated on generic computational devices such as Central Processing Units (CPUs),
making them well suited for large scale real-time neural emulation. These hardware
systems, however, are often less flexible than software implementations. As a result it
is up to the designers of these systems to select suitable models, redundancy and
hardware constraints to allow sufficient flexibility for the end applications. The
relative merits and correct mix of analogue and digital systems in neuromorphic
computing remains an open subject for further research, with the answer likely
dependent on the hardware’s target application [14]. It is highly unlikely that one
absolute solution or implementation will be discovered and instead a range of available
hardware systems may be beneficial, allowing the users choice when it comes to model
and architecture implementations.

This chapter considers the motivation behind many neuromorphic hardware efforts
before reviewing some of the key neuromorphic systems in use and development stages
today. These systems are each designed with a clear purpose or target application,
offering accelerated and efficient solutions to otherwise challenging implementation
problems. These same motivators led to the development of a hardware-optimised
activation function that will be developed in Chapter 7 and the novel grid-architecture
neuromorphic system introduced in Chapter 8.

4.1 Neuromorphic Hardware Motivation

There are a many different motivators for the development of neuromorphic hardware.
These motivations may be divided into two categories, computationally focused design
and biologically focused design. While the advantages of neuromorphic hardware are
shared between the two, the relevant weighting of different motivations and design
requirements often separates each of these approaches. Despite these differences, it is
important to note that progress in one category will often yield improvements when
applied to the other, such that the two research fields will never be fully independent
of one another.
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4.1.1 Computationally Focused Design

Computationally focused design includes implementations intended for the application
of neural network systems to computational problems, such as image recognition or
speech generation. These systems are typically less focused on biological accuracy
and instead require large numbers of neurons, often arranged into layered networks.
The underlying design and implementation of such computationally focused systems
becomes increasingly important as machine learning and deep learning find wider
application in commercial and industrial solutions.

Energy Consumption

As with many computational systems, the energy consumption per compute is an
important metric when it comes to neuromorphic hardware design. The ever increasing
scale of neural network implementations means that small improvements to the efficiency
of neuron models can have compound effects on the overall network efficiency. An
improvement of just 10nW per neuron, for example, would save a total of 10W on a
modern network of 1 billion neurons. When compared against traditional simulation
efforts, neuromorphic hardware is far more energy efficient [84], a trend reflected in the
observed power consumption of modern-day CPUs when compared against Application
Specific Integrated Circuit (ASIC) or even Field Programmable Gate Array (FPGA)
solutions.

Speed of Computation

Another common metric when considering computational systems is that of computation
speed. Often this must be weighed against the physical system size and energy
consumption, where improvements in one area frequently results in compromises in
the others. While some systems are capped at real-time 1: 1 speeds (when compared
with biological systems), it is more common to aim for accelerated computation, where
the system operates at faster than biological real-time. In these cases, systems that
require real-time operation may use time-division multiplexing techniques to simulate
many neurons with a single hardware neuron element. This technique allows systems
to emulate much larger networks than they would otherwise be capable of.

Network Scaling

The scale of the networks that may be emulated using a neuromorphic system is also
an important consideration when designing and selecting suitable hardware
implementations. Efforts to emulate multiple cortical areas require networks of
considerable scale. Alongside this biological modelling work, Deep Neural Networks
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(DNNs) have proven to be capable of relatively complex classification tasks. As seen in
Chapter 3, each additional layer provides new abstraction to the data processing. As
greater computation complexity is required from these networks, the scale of these
networks will therefore also increase. This trend has been evident in historic research
efforts within the field and will likely continue for the foreseeable future.

Despite the drive for ever increasing network size, there is also substantial motivation
for designing smaller network hardware which will support scaling in an efficient and
practical manner. These systems are often intended for mobile applications, distributed
data processing systems, or Internet of Things (IoT) devices. In these cases the aim is
to achieve good resource utilisation, ensuring that the network scale is sufficient for
the intended application. Overspecifying the network size in these instances results in
redundant resource and often equates to wasted fabrication space or energy. In these
applications, neuromorphic hardware offers a compact and efficient solution.

Cognitive Computation

Neuromorphic systems can easily be mistaken for a subclass of Turing complete machines.
Indeed some neuromorphic systems, termed neural Turing machines, represent the full
realisation of this association. These neural Turing machines form an abstraction of
Long Short-Term Memory (LSTM) networks and result in a neural network that may
be trained using gradient descent algorithms, yet at the same time yields an insight
into the networks inner workings [85]. It is important to recognise that, despite this
exception and the apparent similarities between neuromorphic systems and traditional
Turing machines, cognitive processing is very different to Turing computation. A
cognitive computational system may provide intuition or be capable of leaps in logic
otherwise unattainable by standard processing technologies. This emulation of thought,
however, comes at the cost of precision and uncertainty, resulting in systems that can
provide inspired yet somewhat uncertain solutions to a task.

An example of this difference can be observed when comparing the human mind
to that of a traditional computer. While a computer can accurately and rapidly
provide the answer to an arithmetic problem, it cannot interpret the underlying
value or meaning of that answer. The human brain, on the other hand, will often
be able to provide an approximate answer to an arithmetic problem alongside an
understanding of the underlying meaning. Alternatively, a young child can identify
between a cat and dog with apparent ease, while for computers such identification
proved a surprisingly challenging task for standard computational techniques. Despite
its speed and precision, leaps in logic (including those easily performed by young
children) and applying previously found shortcuts to new problems are two aspects of
human cognition that remain totally impossible to the computer.
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4.1.2 Biologically Focused Design

Unlike the computationally focused designs, biologically focused design is predominantly
used when accurate modelling of biological function is required. In such systems energy
consumption, speed and scaling are still important factors, however biophysical accuracy
becomes the key requirement overriding these otherwise desirable properties. The
complicated non-linear relationships and circular dependencies underlying the models
often means that only small numbers of neurons may be simulated, even when using
modern processing solutions. As seen in Chapters 2, there are trade-offs that may be
made to make this modelling task easier, however in some cases the loss of biophysical
accuracy is unacceptable. In such situations neuromorphic hardware offers a possible
solution, utilising the non-linearities in transistors and other analogue design techniques
to provide efficient, fast and accurate neuron models. Alongside producing accurate
neuron models for experiments, these systems may one day offer a practical method for
interfacing technology with biology, revolutionising the fields of both prosthetic design
and paraplegic surgery.

The biological nervous system’s ability to learn and adapt also holds considerable
promise if successfully replicated in technology. This could provide systems capable
of advanced noise rejection, fault tolerance and on-line learning and improvement.
While achieving human-like learning and understanding is, at present, beyond what is
technically feasible, it is often hoped that systems demonstrating learning capabilities
will come to solve previously unsolved problems.

4.1.3 Summary

There are many different motivations when designing neuromorphic hardware. While
most are focused on what improvements the current technology may offer today, it is
the promise of tomorrows solutions that is often more exciting and eagerly anticipated.
At present, almost all neuromorphic systems in development are designed with both
power and speed in mind. Often these designs are made in the hope that enabling
larger networks to be emulated will either unlock previously hidden understandings
behind the function of the biological nervous system or provide human-like performance
on some given tasks.

With the motivations for neuromorphic systems identified, this chapter now discusses
five key neuromorphic systems used in the acceleration of neural network applications.
These systems all differ in their underlying structure and design, reflecting their different
target applications.
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Figure 4.1: A SpiNNaker board, with its 48 ‘processing nodes’ or ICs. These boards
are attached together by means of a packet-switched network, allowing the system to
scale, supporting millions of neurons. Image taken from [88].

4.2 SpiNNaker

SpiNNaker is a general purpose real-time simulation system for large-scale spiking
neural systems of up to 1 billion neurons, first detailed in 2006 by Furber, Temple
and Brown [86, 87]. Unlike other neuromorphic designs, SpiNNaker is functionally a
hardware-accelerated software simulator that focuses on flexibility, power-efficiency and
fault-tolerance. This software implementation means that there is greater abstraction
from the underlying system itself, providing considerable flexibility when selecting a
suitable neuron model. Unlike other parallel computer architectures, SpiNNaker builds
on the assumption that tasks easily split into an arbitrary number of threads (like
that of neural network modelling) will perform better on systems supporting large
numbers of low-area low-power processors, rather than the typically larger optimised
performance processors [86]. This largely reflects the pattern seen in biology, where
large numbers of simple computational units (neurons) perform complex tasks with
significant energy efficiency.

The SpiNNaker system is formed from a network of circuit boards (like the one shown
in Figure 4.1), each supporting an array of identical custom ASICs termed ‘processing
nodes’. Each processing node contains two ICs: the chip multiprocessor and SDRAM.
The chip multiprocessor IC contains 18 ARM968 processors situated in synchronous
islands, while the SDRAM IC provides the memory used to store the synaptic data.
The processors share access to the SDRAM using self-timed packet-switched Network-
on-Chip (NoC), built using the CHAIN technology [89].

The synchronous processor islands are surrounded by a light-weight, packet-switched

J. E. G-H-Cater 98 University of Bath



CHAPTER 4. NEUROMORPHIC HARDWARE

asynchronous communications infrastructure [90]. An address-event signalling NoC
fabric is used to form an efficient multicast communications system, providing the
interconnectivity between the different chips. In place of the usual bus-based fabric, a
second self-timed packet-switched fabric is used to carry the signals, decoupling the
clock domains within and across the chip multiprocessor IC. All on-chip and off-chip
message sources are merged into a single stream of packets using an asynchronous
arbiter situated at the ICs interface [87]. A multicast router is then used to direct
incoming packets using the source ID and a routing Look-Up Table (LUT).

One of the 18 processors is selected during the boot process to act as a ‘monitor
processor’, dedicated to the system management functions rather than the normal
neural modelling operations. The remaining 17 processors provide the neuron modelling
solutions and are termed the ‘fascicle processors’. This flexible boot-up assignment
removes a major single point of failure, ensuring that the system has greater fault
tolerance.

SpiNNaker is a fully digital solution and uses integer values rather than floating point
arithmetic. Each fascicle processor can support the simulation of about 1, 000 Integrate
and Fire (IF) neurons, where each neuron has 1, 000 inputs and an average firing
rate of 10Hz [86]. The final system is designed to scale from single chip operation to
implementations involving tens of thousands of chips [91]. Action Potentials (APs) are
treated as all-or-nothing events and it is therefore assumed that the information is only
carried in the spike source and spike timing data.

The packet-switched network and address-event representation helps decouple the
implemented network topologies from the physical chip architectures. This means that
arbitrary network topologies may be easily tested, without requiring modification to
the underlying technology. The SpiNNaker communications network is arranged into
a torus structure in effort to reduce the maximum separation between any two chips
within the network. Alongside their normal function, the processing nodes also provide
system level debugging and management operations [92]. With the ability to simulate
practically any neural model, and a highly abstracted communications implementation,
SpiNNaker offers an extensive and flexible interconnectivity.

Some of the key limitations of the current SpiNNaker system are found in the early design
decisions for the system itself. Lack of support for native floating-point operations
greatly limits the implemented networks and constrains the range and fidelity of
any neural models used. Additionally, loading and reading data in SpiNNaker is a
time consuming task due to bottlenecks in the communications infrastructure. This
makes rapid iteration challenging to implement, with considerable downtime if the
network requires off-board modification between runs. The use of standard ARM968
processors offers good power efficiency, however these processors are not optimised
for neuromorphic operations meaning that they fall short of the energy efficiencies
achievable had the system been designed from the ground-up.

Using quoted figures for the power-efficiency of ARM968 processors it was estimated
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Figure 4.2: Structure of the TrueNorth neurosynaptic cores, shown connected to a
local router. The router provides connection to the other neurosynaptic cores, located
both on- and off-chip.

that a neuron with 1,000 inputs firing at a mean rate of 10Hz will consume 23−36µW of
power [86]. This relatively closely agrees with experimental results, where a simulation
of 17,000 real-time neurons requires around 0.55−0.75W in total [93], giving a measured
power consumption of approximately 32− 44µW per neuron.

4.3 TrueNorth

TrueNorth was developed by IBM as part of the Defence Advanced Research Projects
Agency (DARPA) SyNAPSE project. This neuromorphic system was designed under 7
key principles: minimising active power, minimising static power, maximising
parallelism, real-time operation, scalability, defect tolerance and hardware-software
one-to-one equivalence [94]. Much like SpiNNaker, TrueNorth is a fully digital and
hugely parallel system. Unlike SpiNNaker, however, TrueNorth forms a non-von
Neumann architecture resulting in a biologically inspired arrangement of mixed
memory and processing elements within the silicon. Each IC provides an aggregate of
1 million neurons and 256 million synapses and with demonstrations of 1, 4 and
16-chip systems, this hardware provides an effective and scalable solution [94].

Each of the TrueNorth ICs contain a 2D array of 4096 neurosynaptic cores. Shown in
Figure 4.2, these neurosynaptic cores contain a mix of neurons and memory, used to
store the neuron connectivity information and parameters. Localising the data storage
in this way provides a significant advantage in energy efficiency, greatly reducing the
communications overhead.
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Figure 4.3: Tasks performed by the neurosynaptic core during a single time step. Any
received signals that arrive after the synchronisation trigger will be stored in the buffers
ready for the next cycle.

Each core implements 256 neurons and 64,000 synapses. The synapses are arranged
into a synaptic crossbar array, as shown in Figure 4.2. Buffers are used on the crossbar
inputs to ensure that computation is synchronous and deterministic. This deterministic
nature of the TrueNorth architecture allowed software simulations to be developed with
one-to-one hardware-software equivalence accelerating development and verification
tasks [95].

The neuron model used within each neurosynaptic core is a modified leaky IF model,
detailed thoroughly by Cassidy et. al. [96]. This model has been used to demonstrate
all twenty of the fundamental neurocomputational properties of biological neurons
identified by Izhikevich [21]. In each system time-step, the neurosynaptic cores must
buffer all incoming inputs. On receiving a synchronisation trigger these buffered inputs
are then passed through the crossbar array before being used to calculate the new
neuron membrane potentials and generate new spikes. This full cycle is shown in Figure
4.3, and must be fully complemented in a single system time step.

TrueNorth has a quoted typical power consumption of 65mW making it highly efficient
when compared against other neuromorphic systems [94]. Cassidy et. al. also found
the system capable of providing 46 giga-synaptic Operations Per Second (OPS) per
watt when running a complex Recurrent Neural Network (RNN) with a 20Hz average
firing rate and 128 active synapses per neuron in real time [97].
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4.4 Neurogrid

Neurogrid, developed at Stanford University, is a complete hardware neuromorphic
solution. Using a mixed analogue-digital system, this energy-efficient neuromorphic
implementation targets large-scale biological real-time neural simulations [98].

The system is constructed from 16 identical ASICs, termed Neurocores. These
Neurocores are arranged into a binary tree routing network, where 12-bit packets are
used to provide core-to-core communications [99]. These packets may be passed in
either direct mode, where the message travels in a provided direction through the tree;
or split mode, where the message is copied to both children of the current node.

Each Neurocore contains a 256 × 256 silicon-neuron array, a transmitter, a receiver,
a router and two Random Access Memory (RAM) regions. The circuits used within
the neuron array may be divided into 10 distinct segments according to their function.
These are the soma and dendrite circuits, as well as four gating-variable and four
synapse-population circuits. The design and models behind each of these circuits is
provided in considerable depth by Banjamin et. al. [98]. Additionally, optional local
dendritic connections known as arbors may be used to distribute the synaptic inputs
between spatially neighbouring neurons.

A real-time network of 983,040 neurons and roughly eight-billion synapses was generated
to simulate a recurrent inhibitory network with a total of 15 layers. Each layer was
mapped onto a different Neurocore. During this simulation Neurogrid was found to
consume 2.7W of power [98]. A further study showed that an equivalent implementation
using arbitrary connections would consume an extra 0.4W to route the spikes [100].
This results in a total power consumption of 3.1W, yielding an efficiency of 941pJ per
synaptic activation.

Neurogrid does not, by default, support synaptic plasticity due to an underlying
architectural decision in which spatially neighbouring neurons share the same spatially
decayed input. In this way the system may be considered to have a shared dendrite
structure. The addition of an FPGA daughter board allows for the implementation of
long-range connections and individual connection weights. These individual connections
weights may then be used to support spike-timing-dependent plasticity [100].

4.5 Tensor Processing Unit

As arguably the first commercially focused neuromorphic hardware, the Tensor
Processing Unit (TPU) was originally developed by Google in 2013 to address a
computing resource crisis identified within Google’s own data centres. Google
recognised a growing number of users utilising features dependent on machine learning
tasks. The use of excess CPU and Graphical Processing Unit (GPU) computing power

J. E. G-H-Cater 102 University of Bath



CHAPTER 4. NEUROMORPHIC HARDWARE

was no longer a cost effective method to deliver for these tasks and it therefore became
a priority for Google to develop a new dedicated low-cost solution. As such, the TPU
is an ASIC designed to accelerate neural network machine learning tasks, with a
specific focus on supporting Google’s own machine learning language, known as
TensorFlow. The original solution was deployed in Google’s data centres in 2015 and
while these chips are not available for purchase, it is possible to rent computing time
using them through a Google provided service.

The architectural information on these chips is somewhat limited due to the commercial
interests surrounding this product. In 2017, Google published a handful of articles
detailing the design and development of the original TPU systems, the following
information is therefore applicable to TPU v1.0 and further improvements in power
efficiency and speed may be expected in later models.

The TPU v1.0 was originally designed to run DNN inference tasks 10 − 30× faster
with 30 − 80× better energy efficiency (when compared with contemporary CPUs
and GPUs on the same technology) [101]. This improvement is largely down to the
underlying 2D vector support that greatly expands the operations per instruction,
allowing instructions to operate on a 256 × 256 array of 8-bit data. This 256 wide
vector operation, however, means that all internal elements must be connected using
256-byte-wide paths.

At the heart of the TPU is the matrix multiply unit that contains 256 × 256 8-bit
multiply-accumulators. A set of 4, 096 256-element 32-bit accumulators is used to
produce the 16-bit products from this matrix. This multiply unit calculates one full
256-element partial sum per cycle. The weights are stored using on-chip First-In,
First-Out (FIFO) registers that read from an off-chip 8 Gibibyte (GiB) DRAM. Both
of these memories have error detection and correction hardware built-in to extend the
products lifetime.

The TPU was designed to be a co-processor on the Peripheral Component Interconnect
Express (PCIe) I/O bus, allowing it to plug into existing servers using the same
technology as GPUs. The system is therefore designed to run whole inference models
on-board the TPU, reducing the I/O requirements. Unlike GPUs, the TPU requires the
host server to send instructions over the PCIe bus rather than sequencing itself, resulting
in a solution which bears closer resemblance to that of a floating-point coprocessor. To
reduce bandwidth dependencies the system uses Complex Instruction Set Computer
(CISC) instructions and decoupled-access/execute memory instructions.

While new versions of the TPU have been released, published information on the
architectural improvements has yet to be announced. Some ideas on future
improvements of the TPU v1.0 were provided by Jouppi et. al. [83]. The development
team identified the short development cycle for this system (roughly 15 months from
conception to installation) as a limiting factor, stating that more aggressive logic
synthesis and block design could increase the clock rate by 50%. Additionally, using
GDDR5 memory would increase the weight memory bandwidth by more than 5×.
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With these relatively simple changes identified it is therefore possible to see how TPU
v3.0 represents a significant improvement over it’s predecessors.

The lack of published information and constrained availability of the TPU architecture
represents the largest limitations for this system. Without published scales and power
consumptions it is hard to compare the system with other existing neuromorphic
systems. Equally, the lessons learnt during the design of the TPU architecture are
unlikely to directly benefit the wider neuromorphic community due to the corporate
interests associated with this project.

4.6 Loihi

Loihi is another fully-digital neuromorphic chip, developed by Intel on their 14-nm
process [102]. As with many other neuromorphic systems, this chip is designed to
implement spiking neural networks in an efficient and effective manner. Each chip
contains 128 neuromorphic cores, three embedded x86 processor cores and off-chip
communication interfaces. An NoC is used to pass communications packets between
cores, while encapsulated packets are used for off-chip communications in four planar
directions. These protocols support scaling the system to 4096 on-chip cores and a full
16,384 chip array.

The neuromorphic cores make use of a fixed-size discrete time-step leaky integrate-
and-fire neural model. Each core implements 1,024 primitive spiking neural units or
compartments, which are grouped into sets of trees constituting neurons. This yields a
neuron density of 2184 neurons per mm2. Unlike other neuromorphic systems discussed,
each core includes a programmable learning engine that may be used to modify the
synaptic state variables as a function of historical spike activity. These learning rules
are programmed using microcode making them more flexible than other fixed learning
system implementations. The Loihi system may be programmed using a Python API,
as demonstrated by Lin et. al. using the MNIST benchmark dataset [103].

4.7 System Comparisons

The recently developed neuromorphic systems have all been designed to simulate large
numbers of neurons, with efforts like SpiNNaker and TrueNorth utilising inherently
scalable technologies to support huge neural networks with several billion synapses.
Since these research efforts have different target applications and goals, it can be
difficult to provide meaningful comparisons between them all. Table 4.1 provides a
quantitative comparison between each of the three most publicised research efforts.
From this table it may be seen that TrueNorth offers the best power density, an
important factor when considering the overall power consumption of the system as it is
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Table 4.1: Quantitative comparisons of TrueNorth, Neurogrid and SpiNNaker, showing
that TrueNorth yields the best power density while SpiNNaker’s highly flexible software
implementation results in a high power consumption [104].

System Neuron Count Synapse Count Power Density (mW/cm2)

TrueNorth 16, 000, 000 4, 000, 000, 000 20
Neurogrid 1, 000, 000 8, 000, 000, 000 50
SpiNNaker 20, 000, 000 20, 000, 000, 000 1, 000

scaled. This said, SpiNNaker supports the largest networks, and along with its software
implementation, it offers the most flexible and reconfigurable system available. These
features come at high cost when considering the power density, with the SpiNNaker
system using around 20× more power per cm2. Neurogrid’s neuron count is relatively
small when compared against the other two systems, however this systems supports
many more synapse connections per neuron. This high ratio of synapses means that this
system can simulate dense network structures, allowing researchers to push the limits
on network interconnectivity. Despite the extra connectivity provided, Neurogrid’s
analogue elements mean that it only uses about 2× more power per cm2 when compared
to that of TrueNorth.

Unlike the first three systems discussed, Google’s TPU was designed as an internal
product and sold as processing time on a neuromorphic system. There is only limited
information available for this system, due largely to the commercial interests associated
with its business model. Despite the lack of information, it appears that this systems
operates more like a hardware accelerator for neural network learning and inference
tasks. A key limitation is that these tasks must be developed using the TensorFlow
language. Google has now produced three incremental versions of this system and
reports considerable (but un-quoted) energy savings within their own data centres as a
direct result of the systems installation.

Intel’s Loihi system is a relatively new development, which includes its own on-chip
learning engine. This system stands to benefit from Intel’s close relationships with
chip fabrication facilities and has so far been implemented on their own 14-nm process.
Loihi’s maximum neuron density of 2184 neurons per mm2 is marginally worse than
TrueNorth’s, however this may be argued as a justifiable cost for the Loihi’s expanded
feature set.

4.8 GPUs and Other Accelerators

There are other solutions, besides neuromorphic systems, that are used to achieve
accelerated neural network implementations. While GPUs are not neuromorphic
hardware, they can offer considerable acceleration in ANN applications when compared
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against standard CPU solutions. Neural network inference and training are hugely
parallel tasks, with each node performing operations based only on its own input
data and model properties. As a result GPUs, which are optimised for large parallel
operations, perform ANN tasks very effectively.

Spiking neural networks, however, do not map so well to GPU architectures. This
is due to the networks dependence on its internal interconnectivity, meaning that a
large bandwidth between the processing elements is required. Spiking neural networks
are also designed to capitalise on their sparse nature of operation. It is the sparse
APs of spiking neural networks that yields high energy efficiency when compared with
other ANNs. Optimising a system for these two properties often requires new custom
hardware, making GPUs impractical for such applications.

Other acceleration approaches may also be taken to improve neural network performance.
Custom instructions can be added to processors to provide designers with highly efficient
and rapid operations, such as the calculation of the reciprocal of a number. These custom
instructions complement existing processor technologies, improving the performance
by committing extra chip area to efficiently or rapidly solving a small but regular
part of the larger task. This custom instruction approach provides further promise
when achieved through flexible reconfigurable processing fabric located alongside the
processor. In the context of Intel’s recent acquisition of Altera, alongside mention of
Altera FPGA co-processors, it is highly likely that this approach for task acceleration
will become more mainstream, making custom instruction design an important part of
function acceleration.

4.9 Conclusions

Neuromorphic systems are a fundamental part of neurological research and simulation
tasks. With correct application, these systems have the potential to provide processing
solutions that go beyond Moore’s law, enabling designers to continue the advancing
trend in computational power. Existing neuromorphic systems already offer solutions
to previously challenging computational tasks, helping to close the gap between
computational processing and human cognition. At the same time, they are providing
significant insight into the inner function of biological nervous systems, enabling a
wide variety of research. Leveraging function acceleration and optimisation, these
systems are constantly growing in scale and processing potential. The main
neuromorphic systems in development today are very different when compared against
the minimal and analogue systems designed by Carver Mead when he first coined the
term. The power efficiency of natural neural networks, however, has continued to
inspire the research efforts within the field. This has yielded a number of
implementations capable of better-than-CPU/GPU performance when implementing
neural network applications.
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Spiking neural networks have become a core focus for many neuromorphic systems. This
is partly because such systems may be easily implemented on multi-cast network-based
hardware. The fact that these systems are both sparse and event-driven helps realise
considerably low power solutions, however this generic communications infrastructure
is still very different to the biological nervous systems own interconnectivity.

Other large processor developers, such as Nvidia, have also announced that they are
designing new neuromorphic systems. It is therefore clear this field will grow ever
more contested, especially as customers depend on applications that utilise neural
networks with increasing frequency. Despite the considerable investment that has
already gone into neuromorphic research there are still many unanswered questions.
The answers to these questions may play a critical role in finding the most efficient
and practical implementations of neuromorphic systems. It is therefore important that
they are tackled in future systems to ensure that what may otherwise become widely
held assumptions do not cause the field to fall short of it’s biological inspirations.
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Chapter 5

Analogue Hardware Neuron
Models

Chapters 3 and 4 introduced two key areas that are strongly inspired by neuronal
physiology. Many of these systems have been designed with large scale networks in
mind, frequently driven by one of two desires: to produce novel and powerful cognitive
computation engines; or to produce large scale simulation systems capable of shedding
new light on the otherwise limited understanding of neural function. The neuromorphic
systems identified in Chapter 4 utilise a number of digital network principles, such as
packet switched networks, to provide effective scalability and support the large number
of neurons targeted by the hardware. The neuron models used in these systems are
approximations of the behaviour seen in real neurons, and these approximations are
carefully selected to ensure that they do not compromise the experimental results.
These approximations are often sufficient for the large scale digital stimulation of deep
networks that is usually performed on such hardware. However, when a higher level of
biophysical accuracy is required these approximations become insufficient.

The development of medical devices that seek to replicate or modulate biological neurons
is one area that often requires a higher level of biophysical accuracy. Such devices must
be small and energy efficient, and in cases where interfacing with biology is intended,
the analogue nature of biological function must also be replicated. These systems
often require far smaller networks of neurons than their computational counterparts,
emulating biological features such as the Central Pattern Generator (CPG) found at
the heart of many rhythmic and repetitive bodily functions. Analogue circuits are
particularly suitable for these tasks due to the small network size, analogue small-signal
interfacing requirements and low energy constraints.

Alongside medical devices, these highly efficient analogue neurons are sometimes also
implemented in mixed-signal solutions, as in the case of Neurogrid introduced in
Chapter 4 [98]. These mixed signal systems allow designers to produce solutions that
easily interface with standard digital devices while utilising the complex non-linearities
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more readily produced in analogue designs. The combination of these two elements
can produce smaller and more efficient biophysically accurate solutions, however noise,
quantization and signal-conversion becomes a critical design challenge. As well as
Application Specific Integrated Circuit (ASIC) implementations, programmable
analogue arrays, such as PAnDA, may be used to develop and implement new
mixed-signal neural networks [105]. As Moore’s law draws to a close these
analogue-digital hybrids are likely to find wider application, with the need for
continued improvements in processing power helping to offset the higher costs and
challenges typically associated with such designs.

There exists a wide range of analogue neuron models within neuromorphic literature
today. Indiveri et. al. produced a thorough and detailed review of these models,
separating them according to their function or purpose [14]. These designs have found
use in small neuromorphic chips (such as Neurogrid) as well as custom one-off circuits
where efficient neuron dynamics were required.

This chapter introduces some analogue neuron designs and demonstrates some of the
fundamental design issues that must be overcome if they are to see wider adoption.
The designs in this chapter are targeted towards fit-and-forget bio-electronic implants.
These implants utilise artificial neural CPGs to provide functions that can respond
to multiple physiological feedback sources. One example application is found in
cardiac pacemakers, providing a means for heart rate control that is driven by the
respiratory system, ensuring increased blood flow when greater breathing rates and
volumes are detected. In a healthy person, this cardiac synchronisation ensures that
oxygen reaches the body as required when performing strenuous activities. Modern
pacemakers, however, cannot offer this synchronisation - a limitation that leads to many
patients reporting a feeling of light-headedness when performing physical activity. The
development of a novel artificial CPG to control the pacemakers rate would help close
this gap, improving the quality of life for patients. While not explored in this work,
these same designs could be implemented in a mixed-signal network to allow researchers
to investigate the inner functions of biologically plausible neural networks.

This chapter starts by introducing a full custom analogue synapse built for a 0.35µm
Complementary Metal-Oxide-Semiconductor (CMOS) process. The design and results
from this work are detailed in Sections 5.1 and 5.1.2. Section 5.2 introduces a project
that investigates the application of analogue neurons in fit-and-forget bio-electronic
implants. The neuron model selected for this work is outlined in Section 5.2.1 before
the design and validation methods are described in Section 5.2.2. There is considerable
interest in the impact of medical procedures, such as Magnetic Resonance Imaging
(MRI), on the operation of bio-electronic implants. The Integrated Circuit (IC) was
therefore tested in a 3T static field matching the conditions of a standard MRI scanner,
as discussed in Section 5.2.3, before the key strengths and issues behind analogue
neuron design are discussed in Section 5.3.
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Collaborator Contribution

The inspiration for the cardiac CPG design comes from Prof Alain Nogaret who is an
expert in emergent synchronisation in local neural networks at the University of Bath.
The layout of the CPG IC was performed by Prof John Taylor, also of the University
of Bath, who is an expert in analogue IC design. The high field magnet tests were
kindly enabled by Hugh Blakes of Siemens MR Magnet Technology at Oxford. All
other aspects within the chapter are the work of the author.

5.1 Initial Analogue Neuron Design

In order to explore the potential for analogue neural designs, an initial design was
produced using some spare space and I/O on a custom IC fabrication run. Due to
external deadlines, the design and layout had to be finished within two weeks, however
there was no cost associated with using the spare resource. This was the authors first
time designing a custom analogue IC and even with this short deadline, it formed a
valuable opportunity to gain insight into both analogue IC design and neuron modelling
considerations. The IC used the 0.35µm CMOS process provided by AMS AG (formally
Austria Micro Systems), with a total floorspace of 1mm2 available for the design.

To maximise the chance of success, and due to the relative inexperience of the author,
a pre-existing design was selected from literature. This permitted the chip layout and
verification process to become the main focus, whilst also providing a test chip to
compare future designs against. This section briefly details this work and considers the
resulting outcome and findings, identifying the factors that impact on the design of
new analogue neurons.

5.1.1 The DPI Synapse Circuit

One of the the fundamental building blocks of neural function is the synapse, which
may be modelled by dedicated synapse circuits. Synapse circuits convert pre-synaptic
voltage pulses into shaped post-synaptic currents. These circuits are often used to
shape and weight neural inputs in analogue designs. These designs commonly use
sub-threshold dynamics (meaning the transistors operate below their threshold region)
to translate the pre-synaptic pulses into the longer-lasting post-synaptic currents. A
form of integration is also used within these circuits, resulting in the summation of any
successive input signals. In effect, these circuits act as custom low-pass filters, with
transistors sized to ensure that the resulting current is of a similar shape to that of a
biological synapse output.

The circuit chosen for implementation was the Differential Pair Integrator (DPI) synapse
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Figure 5.1: The “DPI” circuit, originally defined by Bartolozzi and Indiveri [106] and
modified here to provide n parallel outputs using coupled p-FETs. This circuit takes an
input square pulse Vin and converts it to a post-synaptic Action Potential (AP) shaped
signal, performing linear integration and low pass filtering on successive incoming signals.

circuit, originally developed in 2007 by Bartolozzi and Indiveri [106]. This circuit builds
upon work by Merolla and Boahen [107] who proposed a log-domain integrator synapse
circuit. Merolla and Boahen’s design exploited the logarithmic relationship between
subthreshold MOSFET gate-to-source voltages and their channel currents, yielding a
true linear integrator that was capable of summing and shaping input pulses.

Unlike the original DPI circuit, the design was modified to support synapse weighting
through the addition of multiple mirrored outputs (dashed part of Figure 5.1). These
extra output points mean that this circuit may be used in a simple binary weighting
scheme, where multiple outputs are summed together at the input of the next neuron
to generate a weighted input. Since this circuit operates as a current model, these
output addition operations may be achieved by simply connecting the desired number of
outputs together. This modification makes the design unique from previously published
synapse circuits.

Bartolozzi and Indiveri originally define the output of the circuit using Equation
5.1:

Iout(t) =


IgainIw
Iτ

(
1− e−

(
t−t−

i
τ

))
+ I−oute

−
(
t−t−

i
τ

)
(Charge phase)

I+oute
−
(
t−t+

i
τ

)
(Discharge phase)

(5.1)
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Figure 5.2: Output current for an example DPI implementation. Weights were selected
to produce the circuit characteristic curve with a system gain of approximately 0.75.

where Iout represents the synapse output current; Iw is a synaptic weight bias current
set by the synaptic weight bias Vw; τ is the synapse time constant and Iτ is the time
constant bias set by the parameter Vτ ; t is the time, where a spike arrives at t−i and
ends at t+i ; and I−out and I+out represents the output bias at t = t−i and t = t+i respectively.
Igain represents a virtual p-type subthreshold current defined by

Igain = I0e
− k
UT

(Vthr−Vdd) (5.2)

where k is the subthreshold slope factor and UT is the thermal voltage of the virtual
p-FET.

By careful selection of these parameter values, an example DPI output may be generated,
as shown in Figure 5.2. The charge and discharge timing and signal size is controlled
though the parameters by a combination of sizing of transistor scales and bias voltages.
Figure 5.3 illustrates the layout of the DPI circuit on the test chip. A total of 8
p-FETs were used on the output side of this DPI circuit implementation, seen as the
8 transistors located to the far right-hand-side of the layout. All outputs and inputs
were broken out to pins on the chip itself to allow complete testing of the circuit using
different bias voltages.

With the DPI circuit completed, the final circuit block was sent off for integration into
the higher-level IC layout where the design was dropped onto available floorspace and
routed to pad-rings around the IC fabric. The design used spare space on another teams
IC run and, as a result, the pad-ring and final positioning layout was not performed by
the author.

5.1.2 Testing

Once the devices had been fabricated and packaged they were returned for testing.
Sadly, it was discovered that the final layout process had misaligned the design block,
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Figure 5.3: DPI Implementation on the 0.35µm AMS process. The eight output
p-FETs may be seen on the right-hand-side of the layout, providing a means for simple
output weighting.

resulting in a short circuit to ground of the input for the DPI circuit. This highlighted
a number of key issues with the current design pipeline used for this analogue IC
process. First and foremost, the Layout Versus Schematic (LVS) and Design Rule
Checking (DRC) validation steps were all performed by each designer at the individual
circuit block levels prior to the final aggregation and layout process. Had an LVS
validation been performed on the final design it would have immediately identified the
short-circuit prior to fabrication.

A number of methods for removing the short were considered, including laser ablation.
The design and intended test setup were simulated using Cadence Virtuoso to try and
find ways of correcting the short circuit, but unfortunately no viable methods could
be found. Further simulation work also highlighted some issues with the sizing of the
transistors when the full range of process parameter variation was considered. The
analogue design process is significantly more sensitive to the placement and sizing of
components than its digital counterpart. Analogue designs therefore require significant
development time and background understanding. Analogue IC design is frequently
considered an art form - with each designer applying their own style and technique. On
top of this, the underlying process and technologies used in the fabrication of the chip
has a direct impact on the design itself. This means that circuits developed for one
fabrication process must often undergo a complete re-design when moving to new scales
or technologies. Differences in rail voltages, available floorspace and surrounding noise
sources mean that designs must sometimes even undergo a re-design when implemented
on the same process and technology. It is this lack of simple design abstraction that
limits the adoption of analogue and mixed signal solutions [108]. Development of novel
design pipelines, alongside new field programmable analogue arrays may address this
issue, however the production of reliable and reusable parametrised analogue circuit
blocks remains a considerable research challenge at this present time.

The dependence on fabrication process makes replication of published findings
challenging and often leads to articles outlining the underlying theory rather than
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detailing the implementation itself. In the case of the DPI circuit this may be seen in
Bartolozzi and Indiveri’s paper where the circuit diagram and underlying
mathematical model are provided, without any attempt to detail the physical
transistor scales used when developing the fabricated circuit [106]. This abstraction is
necessary to ensure that the work remains independent of both process and fabrication
scale, however it means that the application of analogue IC research findings will often
involve considerable investments in both time and resource.

While it is disappointing that this test IC did not yield any experimental data or
results, the issues identified with this work have helped inform research decisions.
The importance of running LVS and DRC validation on all levels of hierarchy was
identified, ensuring that this type of short circuit failure will not happen in future
designs. Simulations across a wider process parameter variation must also be used to
guarantee that nominal operation is achieved over the full expected process variation
range. The challenges surrounding analogue abstraction and design replication were
also demonstrated. Novel abstraction techniques and new field programmable analogue
arrays are required to develop flexible and reproducible analogue neural networks,
and considerable design challenges must first be overcome to meet these requirements
[108].

The impact of process variation on analogue designs also represents a significant issue
for large scale neural network implementation. As the number of neurons implemented
on a single IC is increased, the variation in process parameters will lead to different
neuron model responses. Some means of process parameter correction must be built
into the system to ensure the network operates in a deterministic manner, allowing
the individual neurons to be tuned or matched to one-another. Without this neuron
tuning, each IC would have to be trained independently to account for differences in
their internal operation.

5.2 Analogue CPG Design

A second analogue design was produced that formed part of the EPSRC CResPace
project, aimed at developing adaptive bio-electronics for chronic cardiorespiratory
disease. This project intends to produce an adaptive pacemaker, using CPGs formed of
small neural networks to accurately reproduce biological motor sequences and mirror
their adaptation to multiple physiological inputs. The IC was developed to support
four analogue neurons, each broken out to the I/O of the chip, allowing the model
parameters and resulting model performance to be explored. Section 5.2.1 discusses
the model used to form the neurons, with Section 5.2.2 briefly reviewing the IC design
and validation.

When developing medical devices it is important to consider how the proposed solution
will impact pre-existing treatments and medical procedures. MRI techniques have been
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developed by a number of groups to measure cardiovascular function during breathing
cycles [109] and patients with cardiac and respiratory issues may therefore undergo MRI
procedures during the course of diagnosis and monitoring. It is therefore important
to explore how the magnetic fields generated by MRI scanners impact the operation
of any proposed analogue CPGs. Section 5.2.3 details a set of tests investigating
these effects, with experiments performed in a 3T static field generated using an MRI
magnet. Experiments involving dynamic (imaging) magnetic fields require a qualified
radiographer and access to a fully functional MRI machine. This greatly increases the
experimental cost and delay and it is therefore sensible to first check the system in
such static fields before moving to dynamic field tests.

5.2.1 Neuron Model

There are many different analogue neuron models and designs available [14]. As with
the wide range of mathematical and computational neural models, these often try to
emulate a specific element of the biological neurons function and must therefore be
selected according to the design requirements. In the CResPace project, it is critical
that the model generates and responds to biologically shaped APs as interfacing with
the human body is the intended end application. This specification also means that
the voltages, currents and timescales used within the system must be comparable to
those seen within biological neurons.

For these reasons, a model proposed by Mahowald and Douglas (termed the MD-Neuron
hereafter) was selected for its accurate emulation of the functional characteristics of
real nerve cells [110]. As a sub-threshold analogue model, this design leverages the fact
that the voltage-gated ionic channels of biological membranes in steady state display a
sigmoidal conductance-voltage relationship. This may be shown to closely match that
of a CMOS differential pair, yielding an efficient and direct silicon model [111].

The MD-Neuron circuit may be divided into distinct parts according to the implemented
ionic currents. This means that designers may add additional ionic currents as desired,
with minimal changes to the existing model framework. As with many other neural
models, the original MD-Neuron supports both potassium and sodium conductance. In
order to provide the relatively slow ionic current variables, common to neural models,
the MD-Neuron implements a set of low-pass filters in the form of follower-integrator
circuits, shown in Figure 5.4. These filters use a bias current, Ibias, to control the time
constants of the variables in question.

The Potassium Conductance

As described in Chapter 2, activation gates contribute to the conduction of ions, while
inactivation gates close the channels. The potassium channels use only activation gates
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Figure 5.4: The follow-integrator circuit, used as a low-pass filter to control the slower
ionic variables in the MD-Neuron. Ibias controls the circuits time constant, τ , while
Vmem represents the membrane potential and Vout yields the slower filtered membrane
potential.

and are therefore somewhat easier to implement. Figure 5.5 shows the potassium
channel circuit, with the underlying sub-circuits identified by boxed off regions. This
circuit uses the membrane potential, Vmem, to control the potassium current sink, gk.
When the conductance circuit (region C) is activated, the current sink, gk, draws current
off of the membrane capacitor (shown in Figure 5.7). This results in repolarisation of
the membrane potential.

The potassium conductance circuit is controlled using a differential pair (region B)
connected via a current mirror (region A). The differential pair receives a low-pass
filtered version of the membrane potential, Vmem, slowing the circuits response to
fluctuations in the membrane potential. This filtered input is compared against a
reference voltage, Vknee, while the bias current, IK max, defines the sum of the currents
flowing through the differential pair transistors (M3 and M4).

The Sodium Conductance

The sodium channel circuit, shown in Figure 5.6, must include both activation and
inactivation gates. In the case of sodium channels, the activation gates response is
almost immediate whereas the inactivation gate response is delayed. To account for
this time difference, the inactivation circuit makes use of another low-pass filter to
delay the membrane potentials effect on sodium inactivation. No filter is required
for the activation circuit since the activation response of sodium channels follows the
membrane potential directly.
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Figure 5.5: The MD-Neuron’s potassium channel circuit where a differential pair is used
to model the activation gates response to a delayed membrane potential. The desired
time-constant for the low pass filter is set using Ibias K LPF . Ibias K max and VK knee

determine the activation gates response to stimulus and EK represents the potassium
Nernst potential.
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Figure 5.6: The MD-Neuron’s sodium channel circuit where a set of differential pairs
are used to model the activation and inactivation gates response to a delayed membrane
potential. The desired time-constant for the low pass filter is set using Ibias Na LPF .
Ibias Na off max and VNa off knee determine the inactivation gates response to stimulus;
Ibias Na on max and VNa on knee determine the activation gates response to stimulus; and
ENa represents the sodium Nernst potential.
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The current mirror and activation differential pair used in this circuit are functionally
identical to those of the potassium channel circuit. The conductance circuit operates in
a similar fashion to before, however in this case the sodium conductance, gNa, acts as a
current source and drives voltage onto the membrane capacitors when activated.

To implement the overriding effects of inactivation, a second differential pair is added to
this circuit. When the delayed membrane potential exceeds the inactivation reference
potential, VNa off knee, current begins to flow through M1. This causes more of the
current INa on max to be sourced through transistor M2, reducing whatever current was
previously flowing through M5. In this way, the inactivation circuit can stop sodium
conductance regardless of the channels activation state.

Additional Ionic Currents

Additional ionic currents may be added to this model by using Figures 5.5 and 5.6 as
templates. In this way, channels operating as both current sources and current sinks
may be added with, or without, inactivation gate support.

The Membrane Potential

As suggested during the description of the ionic channels, the membrane is modelled
using a capacitor. Each of the ionic channels then either inject or drain current on this
capacitor, modifying the membrane potential Vmem. This setup is shown in Figure 5.7
and represents the complete MD-Neuron model.

5.2.2 MD-Neuron IC Design and Validation

With the model identified, a 0.35µm design for an IC was produced using the circuits
described in Section 5.2.1. Each of the subsystems were tested using ideal current and
voltage sources to ensure that the transistor dimensions were correctly sized. These
subsystems were then combined into a final design, replacing the current sources with
current mirrors and external connections where required. This IC was designed to
contain four neurons in total. Two of these neurons were modified to operate as voltage
clamped neurons, meaning that the voltage of the membrane may be set and the
associated ionic currents monitored. The other two neurons operate as standard neural
models, as intended for the final CResPace project. These four neurons were arranged
into a two-by-two grid taking up the majority of the available floorspace.

The default values used for each bias current and reference voltage are provided in
Table 5.1. Current divider circuits were added to the design, allowing input currents
to be reduced by a factor of 10 or 100, ensuring that the smaller bias currents of 1µA
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Figure 5.7: Top-level layout for the MD-Neuron, showing how the independent ionic
channel circuits are connected via the membrane potential, Vmem. A membrane capacitor,
Cmem, converts the ionic currents into membrane potential fluctuations. Currents may
be injected onto the membrane capacitor to emulate external stimulus.

Table 5.1: Bias currents and voltages used in the implementation of the MD-Neuron.
The smaller current values of 1µA and 100nA were produced using sets of current dividers
driven using 10µA current sources. Voltages are referenced to analogue ground.

Name Value

Ibias K LPF 100nA
Ibias K max 10µA

- -
VK knee 0V

- -
EK −0.5V

Name Value

Ibias Na LPF 1µA
Ibias Na off max 10µA
Ibias Na on max 10µA
VNa off knee 0V
VNa on knee 0V

ENa 0.5V

and 100nA could be reliably provided using external stimulus. As a result, the bias
currents required at the chip’s I/O level are all set at 10µA.

Spectre Design Validation

The completed design was simulated using Cadence Virtuoso Spectre models to ensure
that the neuron operated according to the design specifications. To perform these tests
a set of ideal voltage and current sources were connected to the neurons I/O, as shown
in Figure 5.8. A current pulse source was used as the input for the system and two
parameters, Twidth and Imax, were used to control the shape and scale of the excitatory
inputs.
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Figure 5.8: Neuron test bench setup with ideal current and voltage sources used to
set the various bias values. Decoupling capacitors were included on the voltage rails at
this stage to ensure that their later addition to the MD-Neuron IC wouldn’t negatively
interfere with the designs overall function.

J. E. G-H-Cater 120 University of Bath



CHAPTER 5. ANALOGUE HARDWARE NEURON MODELS

Three different modes of operation were tested using this setup. First, the neurons
response to sub-threshold stimulus was verified, using a 100µs, 5µA pulse. For this
test the neuron showed slight depolarisation before restoring to the resting potential,
as shown in Figure 5.9a. Next, a supra-threshold 100µs, 10µA stimulus was applied.
In this test the neuron generated a full AP. Shown in Figure 5.9b, the generated
AP continues beyond the time-frame of the input stimulus, as observed in biological
neurons. Finally, the neurons response to sustained stimulus was considered via the
application of a supra-threshold 10ms, 10µA pulse. In this test, the neurons produced
a tonic spiking signal shown in Figure 5.9c. This spiking pattern persisted throughout
the stimulus period before returning to a resting state when the input ceased.

Chip Layout

With the MD-Neuron IC design verified, the layout process was performed. At the
request of project collaborators, the membrane capacitors (Cmem in Figure 5.7) were
added on-chip. These capacitors are much larger than the transistors and therefore
represented a significant portion of the required floorspace for each neuron. The final
layout is shown in Figure 5.10.

Once the neuron layout was finalised, the chip layout was generated by arranging
multiple instances of these neurons around the available floorspace. Shown in Figure
5.11, the final chip contained 4 individual neurons. Two of these neurons were modified
to operate as voltage clamped neurons in an effort to support wider experimentation
when using the chips. Voltage clamped neurons have their membrane potential locked
at a target voltage allowing the resulting membrane currents to be measured. This
measurement technique allows the relationship between membrane potential and ionic
currents to be directly recorded.

As previously mentioned, the capacitors represent a significant portion of the design
floorspace. This significantly limits the number of neurons that may be arranged into
any given die and demonstrates another common issue with analogue IC design. In the
case of CPG emulation, which typically only contain a small number of neurons, this
scaling limitation is not a constraining factor and this design is therefore suitable for
its intended purpose.

Simulating the Test Setup

Plans to test the chips were drawn up while the IC underwent fabrication. This first
required a modification of the original test setup shown in Figure 5.8 to replace the
ideal sources with better representations of the test equipment itself. As shown in
Figure 5.12, current sources were replaced with resistive loads pulled to the appropriate
voltage rail, the Nernst potentials were generated using potential dividers and the input
supply was achieved through the application of a signal generator.
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(a) MD-Neuron’s response to sub-threshold stimulus, showing slight depolarisation before
undergoing full restorative repolarization.
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(b) MD-Neuron’s response to supra-threshold stimulus, showing full generation of an AP.
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(c) MD-Neuron’s response to an extended supra-threshold stimulus, showing tonic spiking
patterns that persist throughout the entire stimulus period.

Figure 5.9: MD-Neuron’s simulated response to different input stimuli, generated using
Spectre in Cadence Virtuoso.

J. E. G-H-Cater 122 University of Bath



CHAPTER 5. ANALOGUE HARDWARE NEURON MODELS

Figure 5.10: Layout for an individual MD-neuron, showing the relatively large
capacitors required to enable full ASIC implementation of the design.

These modifications to the test setup are critical in ensuring that the simulated results
are meaningful when compared against the experimental results.

Monte-Carlo Simulation

When fabricating ICs, process variation plays a key role in determining the success
and failure rates of a design. Sub-threshold designs, such as the MD-Neuron IC, are
particularly susceptible to process variation as the transistors in such designs are
operating in their non-linear region. A small change in the transistors parameters can
therefore have a dramatic impact on the transistors output for a given input value. This
means that small process variations can entirely change the dynamics of the system
as a whole. Designs must therefore be tested to ensure that the expected level of
variation does not result in failures. Biological neural systems, however, demonstrate
a high noise tolerance and reliable performance in changing conditions. Replication
of this robustness is a key motivator in neuromorphic hardware design, with the
hope that future systems will be capable of active adaption to less-than-ideal initial
conditions.

Monte-Carlo simulations are commonly used to assess the impact of process variation.
These tests perform a large number of simulations, tweaking the selected parameters to
explore the problem space. From these simulations, designers may assess how process
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(a) Final Layout

(b) Bonded Chip

(c) Fabricated Die (d) Fabricated Neuron

Figure 5.11: Final MD-Neuron IC layout, showing four individual neurons arranged in
a 2× 2 grid. (a) shows the layout as seen in Cadence; (b) shows a photo of the bonded
die; (c) shows the die itself, as viewed through a microscope; and (d) shows an individual
neuron.
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Figure 5.12: The experimental setup was reflected by changes to the simulated test
bench. This helped reduce the risks of variation between experimental and simulated
results by removing the ideal current and voltage sources.
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Figure 5.13: Monte-Carlo simulation of MD-neuron APs for a 100µs, 20µA pulse
stimulus.

variation will affect their designs.

A Monte-Carlo simulation was performed using the experimental setup shown in Figure
5.12. This Monte-Carlo simulation used 750 points, an amount chosen to ensure that
the simulation could be performed within the available compute time on the Cadence
server. Since a single experimental rig would be used to test the ICs, the bias currents
and chemical potentials may be assumed constant across all ICs and therefore remain
constant during the entire Monte-Carlo simulation. As this test was performed at
chip-level, there are two neurons to each Monte-Carlo simulated point.

To ensure that an AP would be produced by the majority of neural circuits under
test, a 100µs supra-threshold input pulse of 20µA was simulated. Figure 5.13 shows
the membrane potentials for all 1500 neural circuits following this 20µA, 100µs pulse.
This graph shows three distinct classes of operation. The first (marked as group A)
encapsulates all neurons which have fired in response to the stimulus. This group
contains 1450 of the simulated neurons. The second class (marked as group B) contains
all neurons which have undergone a small depolarization when stimulated, but rapidly
return to the resting potential. The final class of operation contains a single neuron
(marked C), which may be seen to undergo periodic AP generation regardless of input
stimulus. Such neurons may be identified rapidly since they fire even when no stimulus
is applied.

Focusing on neurons which fall into class A, it may be noted that the falling edge of the
AP is most susceptible to timing drift caused by process variation, while the upstrokes
are relatively similar. The resting potential and maximum firing potential are set by
the sodium and potassium potentials and are therefore largely unaffected by process
variation, however it may be noted that the resting potentials appear to pinch together
following an AP. This is likely due to the limit caused by the sodium potential, which

J. E. G-H-Cater 126 University of Bath



CHAPTER 5. ANALOGUE HARDWARE NEURON MODELS

stops the neurons from entering hyperpolarization.

These results show that there is significant variation in AP morphology caused by
process variation, with a total of 3.3% of the neurons failing to fire at all, and 1
neuron entering a complete failure state of periodic AP generation. This means that
these neurons will require careful tuning to ensure that they generate the desired APs,
however complete failure of the model is unlikely, with a predicted successful yield of
99.4%.

Experimental Setup

With the experimental setup simulated, an automated test bench was assembled to allow
the rapid testing of 20 MD-Neuron ICs, each containing two complete neural circuits.
As before in Figure 5.12, the supply rails were set to ±1.5V using a bench power
supply, with decoupling capacitors to reduce line distortion. The sodium and potassium
potentials were set to a fixed −500mV and 500mV respectively using potential dividers
and decoupling capacitors as simulated. Finally the inputs were connected to a signal
generator, using resistors to provide a simple current source. Each of the bias currents
were set to 10µA in order to match the previously simulated system.

An oscilloscope was used to record the neural signals produced in response to a given
stimulus. This oscilloscope and the input signal generator were connected to a computer
allowing automated stimulus generation and response recording.

The test system was programmed to produce a sequence of input stimuli, using 100µs
pulses ranging from 2µA to 20µA in steps of 0.25µA. The ICs response to each
stimulus was recorded for later analysis. Once all stimuli tests were performed the
IC was swapped and the process repeated until results for all 20 neural ICs had been
collected.

Experimental Results

Following collection, the experimental data was processed to detect any neurons
operating incorrectly. Of the 40 neurons tested, 2 were found to be operating within
class C outlined in Section 5.2.2. The other 38 neurons were all found to operate within
class A for a stimulus pulse of 20µA, as shown in Figure 5.14.

As discussed in Section 5.2.2, it may be noted that the falling edge of the AP is most
varied from IC to IC while the rising edge or upstroke is more consistent between
ICs. The resting potential and maximum firing potentials are again consistent between
ICs, with the same pinching of resting potential visible when you compare the resting
potential variance before and after an AP has occurred.
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Figure 5.14: MD-neuron IC APs for a 100µs, 20µA pulse stimulus.

Results Analysis

Both the simulated and experimental results showed class A and C responses to a
20µA stimulus. While class B responses were not seen in the experimental data at
20µA, lower stimuli values were seen to yield a class B response suggesting that the
simulated class B neurons have simply had their threshold level shifted by process
variation. From Figure 5.13 it is apparent that class B responses form a small sub-set
of the 1500 neurons under test and it is therefore unsurprising that the 40 physical
neurons have not demonstrated such significant threshold level changes.

The results may be better compared by plotting the AP averages and AP timing windows
as shown in Figures 5.15 and 5.16. In these plots it is clear that the experimental data
easily falls within the domain of the simulated data. This is to be expected due to
the difference in sample sizes between the 1500 simulated neurons and the 40 physical
neurons. The falling edges of both the simulated and experimental APs were prone
to timing drifts caused by process variation, with the bulk of the simulated results
and all the experimental results falling within a 500µs window. The rising edge of the
AP varied by about 250µs for both the simulated and experimental results. A close
inspection of the falling edges in Figures 5.13 and 5.14 also reveals that the falling
gradient is also prone to some variance, however this gradient seems more consistent
than the timing across the full range of Monte-Carlo results.

The voltage levels are set by the Nernst potentials and show high process variation
tolerance in both the simulated and experimental data. The modification to the width
of the APs is likely due to fluctuations in the time constant of the low-pass filters used
to generate the delayed membrane signals. A process variation tolerant integrate-follow
filter must therefore be designed if greater consistence between models is required.
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Figure 5.15: MD-neuron AP timing window according to a Monte-Carlo simulation of
1500 APs generated in response to a 100µs, 20µA pulse stimulus.
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Figure 5.16: Experimental MD-neuron IC AP timing window according to the
measurement of 40 APs generated in response to a 100µs, 20µA pulse stimulus.
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A small zero-crossing error may also be seen in the experimental results. This
perturbation was not seen in the simulated results and it was later discovered that
grounding issues in the signal generator and power supplies was the principle cause of
this divergence. Since the edge remains continuous it may be shown that any gradient
following or zero-crossing detectors would still function correctly in the presence of this
perturbation.

The simulated results closely match that of the experimental results suggesting that the
Monte-Carlo simulation provides a good representation of the expected performance
for this model of neurons. Two of the forty IC neurons, however, were found to be
in a failure state before connecting any input to the system, while only 1 of the 1500
neurons in the simulated tests was found to be in a state of failure. This suggest that
either the Monte-Carlo simulation has failed to identify a cause of neuron failure or the
chip batch itself was sitting close to the boundary of failure. It must also be considered
that the physical fabricated chips may fail due to other contributing factors outside of
process variation itself. For these reasons, the relatively high failure rate is not overly
concerning when compared against the simulated results.

Many of the changes in model performance may be undone through careful calibration
of the bias currents and voltages. In this way, one neuron may be made to operate in a
functionally similar fashion to that of another. This MD-Neuron IC may therefore be
used to generate hand-tuned CPGs for application in experimental medical
devices.

5.2.3 Operation Within High Magnetic Fields

It is important to consider how new medical devices may be affected by existing
treatments during the development stages. One of the CResPace projects key goals is
to develop a pacemaker solution that operates nominally within MRI scanners. This
task poses a significant technical challenge due to the large static and dynamic magnetic
fields used for MRI procedures. Unaccounted for, these fields can cause critical failure
in electronics or physical damage if the device contains sufficient ferrous material. If
successful, the CResPace project will revolutionise cardiorespiratory care, providing a
practical way for doctors to monitor patients who have active medical implants such as
pacemakers.

MRI scanners use a high static magnetic field of between 1T and 7T to align the
protons in water molecules within the body, with most clinical systems at either 1.5T
or 3T. A dynamic field of around 30mT is then used to agitate this alignment. The
time taken for the atoms to re-align to the static field provides information on the
structure and contents of the scanned area.

The high static fields make MRIs procedures unsuitable for any individual with surgical
implants that contain magnetic elements. Additionally, the dynamic fields can induce
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eddy currents in conductive elements which will both interfere with electronic systems
and heat the component. The strength of the static field means that large conductive
parts can produce considerable torque or resistance to motion when moved through
the field lines. These factors make MRI procedures unsafe for individuals who have
medical implants.

When designing a system that can be used safely within an MRI scanner there are two
core challenges. Firstly, the system must be safe for insertion into high magnetic fields.
This requires non-magnetic components and small metallic surface areas. Secondly,
the system must be unaffected when subjected to both static and dynamic magnetic
fields.

Method

The following section describes an experiment that was developed to test the MD-
Neuron chip design in high magnetic fields. An NMOS test structure was first profiled
within the field to provide insight into the underlying mechanics of any operational
change. This test structure contained a single 10/2 NMOS transistor on the 0.35µm
technology. An electromagnet capable of generating a 3 T static magnetic field was
provided by Siemens MR Magnet Technology, shown in Figure 5.17. This coil generates
a spherical region of uniform field about 1m in diameter.

This NMOS test was performed before the MD-Neuron IC test to measure the impact of
the magnetic field on a single transistor. It was possible that the hall effect could cause
changes in the transistors operation, leading to different transconductance properties.
These changes could cause higher-level circuits to fail and it was therefore necessary to
characterise any change in the transistors to enable further changes in the MD-Neurons
operation to be diagnosed and modelled. In the event of complete neuron failure,
this NMOS data could be used to build a Spectre or PSPICE model, allowing future
magnet-resistant designs to be developed and verified.

The NMOS test structure was profiled using a Source Measurement Unit (SMU) and
3V DC supply setup as shown in Figure 5.18. Programs were developed for the SMU
to automate the output and transfer characteristic recordings. The transfer
characteristics are taken for the range Vds = 0 to 3v with Vgs values of
[0.00, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50]. This process is repeated 10 times to ensure that
the impact of thermal effects and external noise is mitigated.

The output characteristics are profiled at Vds = 3v, sweeping Vgs from 0V to 3V in
increments of 0.01V. In both experiments the test chip must be powered for a couple
of minutes prior to the readings to ensure that the system had reached a thermal
equilibrium.

Each experiment is performed a total of four times, once outside the influence of the
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Figure 5.17: The test circuit board held within the electromagnetic coil capable of
generating a 3T static magnetic field, provided by Siemens MR Magnet Technology.

Vdd
NMOS

Source Meter
Channel 1

Source Meter
Channel 23v

Figure 5.18: Electrical setup for the NMOS test structure experiments. In these
experiments the output and transfer characteristics were recorded while under the
influence of different magnetic field orientations.
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Figure 5.19: The three orientations for the magnetic field lines, shown as black arrows
with their associated labels.

magnetic field and at three orientations within the field. These orientations are notated
as ‘Top’, ‘Length’ and ‘Side’, shown in Figure 5.19 where the magnetic field lines are
notated by the arrows in each case.

The MD-Neuron chip was also tested using the three field orientations. For the first
MD-Neuron test, a pulse stimulus is generated using an SMU. This pulse stimulus
drives the two neurons incorporated within the MD-Neuron IC. An oscilloscope provides
a recording of the neurons membrane potential, Vmem, allowing the neurons stimulus
response to be assessed. The SMU is programmed to generate 100µs pulses that range
from 10µA to 50µA. This setup tests the neurons AP generation in response to sub-
and supra-threshold stimuli.

For the second MD-Neuron test an extended stimuli set of 10ms width was generated.
This setup tests the neurons tonic spiking generation in response to continuous sub-
and supra-threshold stimuli.

In all three tests the out-of-magnet readings and three orientation readings were recorded
on the same day to reduce the impact of external factors. Prior to any experiments, the
magnet was slowly approached with both the test board and MD-Neuron IC to ensure
that the mechanical forces were within a safe threshold. The IC was passed through
the strongest region of magnetic field to detect if there was any significant motive
force on the device. These safety checks confirmed that there was minimal ferrous
material within the MD-Neuron IC making it safe for insertion within the MRI static
coil. Following the static field tests described in this work, further experimentation will
be required to assess the electrical and thermal effects caused by dynamic fields.
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Figure 5.20: NMOS transfer characteristics in a static 3T magnetic field for Vgs values
of [0.50, 0.75, 1.00, 1.25, 1.50] from bottom to top (Average value from 10 reading cycles).

NMOS Results

The NMOS tests are divided into two separate sets of experimental results. First the
transfer characteristics are shown in Figure 5.20. From these results it appears that
there is little-to-no change in the transistors transfer characteristics when situated in a
large static magnetic field. Figure 5.21 shows a zoomed portion of the Vgs = 1.50v curve.
From this figure it is seen that a chip with a Top oriented magnetic field sees a slight
reduction in transconductance when compared against the other readings. This shift in
Id occurs in each of the traces but is most apparent for larger values of Vgs.

It is possible to calculate the experimental threshold voltage, VT , using these Vds traces
in the first order approximation of the MOSFET equation shown in Equation 5.3.

Id =
1

2
Kn(Vgs − VT )2 [1 + λ(Vds − VdsSat)] (5.3)

Selecting two traces for a given Vds value, Equation 5.3 may be rearranged, with
common terms cancelling out as follows:

Id1
Id2

=
(Vgs1 − VT )2

(Vgs2 − VT )2
(5.4)
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Figure 5.21: Zoomed NMOS transfer characteristics, where Vgs = 1.50v (Average value
from 10 reading cycles).

Table 5.2: Experimental threshold voltage for a 0.35µm 10/2 NMOS transistor in
differently oriented static 3T magnetic fields.

Orientation Vt

No Magnet 0.570± 0.005
Top 0.572± 0.006
Side 0.571± 0.003

Length 0.570± 0.005

This Equation may be solved for VT yielding the experimental threshold voltage.

VT =

√
Id1Id2(Vgs1 − Vgs2)2 + Id1Vgs2 − Id2Vgs1

Id1 − Id2
(5.5)

The threshold voltage for the NMOS transistor in each field orientation is shown in
Table 5.2. These values were calculated using a value of Vds = 3v alongside the readings
from two traces Vgs1 = 1.5 and Vgs2 = 1.25. The threshold voltage calculated from the
experimental results closely matches that of a simulated 0.35µm 10/2 NMOS transistor,
with an expected threshold voltage of Vt(sim) = 0.565v.

The output characteristics are shown in Figures 5.22 and 5.23. From these results there
is no apparent change in the NMOS output characteristics when at field. These reading
were taken with a Vds value of 3v.
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Figure 5.22: NMOS output characteristics show identical characteristics when both
out- and in-field.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

2

4

6

·10−5

Vgs, (V)

I d
,
(A

)

No Magnet
Length
Side
Top

Figure 5.23: Zoomed output characteristics around the threshold.
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Both the threshold voltage and the characteristics of the transistor were found to align
with simulation results, showing little to no change when at field.

MD-Neuron Results

Once the NMOS test was complete, the MD-Neuron IC was also tested in each of the
field orientations. Readings outside of the magnetic field were taken for reference. Each
MD-Neuron IC contains two full neurons, and there are therefore two sets of results
for each of the tests. The MD-Neuron IC was tested for its response to a full range
of pulse and step stimuli. The IC chosen for this test was selected from the subset of
functional ICs identified during the initial process variation tests to ensure meaningful
results.

The results from the 100µs, 49µA supra-threshold pulse is shown in Figure 5.24. There
was no change in the neurons response when a strong magnetic field was applied in any
orientation. It is possible to examine the models internal settling time constants by
selecting the data from a stimulus close to the neurons internal threshold. In the case
of Figure 5.25 a pulse of just 24µA was provided to each neuron. Due to the differences
caused by process variation this stimulus caused one neuron to fire and the other to
simply repolarise post-stimulus. This is an interesting result as it yields the neuron
models behaviour at just either side of the membrane potential threshold.

Figure 5.25 shows that there was no change in the sub-threshold neuron. The supra-
threshold neuron, however, does appear to perform differently for each of the field
orientations. This difference in behaviour is not seen in the 23µA stimulus results,
where neither neuron fires, or the 25µA stimulus results and is therefore likely due to
this neurons threshold sitting very close to the 24µA stimulus. The boundary between
AP generation and stimulus rejection is unstable meaning that models whose stimuli
land upon this boundary can become sensitive to small fluctuations or noise, resulting
in large changes to the models response. The fact that the models performs predictably
either side of this stimulus supports this hypothesis.

The neurons response to step inputs was also recorded, allowing the generation of
tonic spiking to be monitored. Any differences in AP timing will present as different
spiking frequencies making it easy to identify any small changes that would otherwise
go unnoticed. Figure 5.26 shows the results from a 10ms 49µA pulse. In these results it
is clear that the two neurons operate consistently regardless of magnetic field presence
in any orientation.

Discussion

Both the NMOS and Neuron magnet test results suggest that any effect a static
high magnetic field may have on the AMS 0.35µm IC technology is minimal. Some
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Figure 5.24: The MD-Neuron IC shows an identical response to a 100µs 49µA pulse
stimulus both in and out of a static 3T magnetic field.

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

−0.4

−0.2

0

0.2

0.4

M
em

b
ra
n
e
P
ot
en
ti
al
,
V
m
em
,
(V

)

No Magnet
Length
Side
Top

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
−1
−0.5

0

Time (ms)

M
ea
su
re
d

S
im

u
lu
s
(V

)

Figure 5.25: MD-Neuron IC membrane potential for a 100µs 24µA stimulus both in
and out of field. One neuron within the IC is seen to fire while the other generates no
AP, this difference is due to process variation.
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Figure 5.26: MD-Neuron IC membrane potential showing identical tonic spiking in
response to a 10ms 49muA stimulus. In this test there is no discernable difference in
the results of the in-field and out-of-field neurons.

small deviation from the expected value was seen in the NMOS Vds curve traces for
a magnetic field oriented through the top face of the IC. The scale of this difference
seemed dependant on the Vgs value, with larger Vgs yielding a greater difference. At
Vgs = 1.50v the change was approximately 2.5µA placing it two orders of magnitude
smaller than the output signal itself. No other changes were observed in the NMOS
results, as seen in Figures 5.20 and 5.22. Previous experiments performed by Hebrard
et. al. found that transistor characteristics were seen to change in 7 to 10T fields,
however the change was found to be proportional to the square of the field strength
and deemed manageable within a 7T field [112]. This result aligns with the authors
own experiments, where either negligible or no change was observed during the 3T field
tests.

The lack of any change in the NMOS performance suggests that there should be little
change in the Neuron IC itself. The results from the neuron tests, shown in Figures 5.24
and 5.26 support this assumption, showing no difference in the neurons AP response to
a supra-threshold stimulus. The frequency of the tonic spiking remains constant, with
the in-field APs appearing concurrently to that of the out-of-field results.

There was some small drift in the neurons operation for an at-threshold pulse, shown
in Figure 5.25. These differences are likely due to the unstable nature of AP generation
when provided with a stimulus that sits at the threshold level. In such a situation a
small deviation caused by noise or other external factors can directly influence whether
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an AP is generated or not. On inspection, the neurons were found to operate identically
in- and out-of-field for stimuli at ±1µA of this threshold level. The smaller stimulus
resulted in neither neuron firing which directly supports the conclusion that the neuron
was sitting at its threshold value.

The APs shown in Figures 5.24 and 5.25 bear some notable similarities and differences
to the classical AP introduced in Figure 2.4. Firstly, the MD-neuron is seen to produce
either Graded Potentials (GPs) or APs depending upon the stimulus. In the case of
GPs, a sub-threshold depolarisation is seen under stimulus, with the neuron rapidly
undergoing repolarization. As expected, this repolarization causes a slight overshoot
beyond the resting potential. The AP response, however, appears to differ slightly
in shape from that of the classical model. Many of the key properties of an AP are
still apparent in Figure 5.25. Namely, the supra-threshold depolarisation may be
identified before a sudden upstroke. The neuron then undergoes repolarization and
hyperpolarization for a refractory period. The most notable difference is therefore
in the peak shape of the AP itself. It has been shown that the internal timings of
this model are strongly tied to both the parameter currents and process variation
effects. This difference in peak shape is therefore most likely a direct result of the
models parameters applied. Figure 5.16 also shows a clipped AP shape. In this
case the model was operating with values close to that of the Sodium and Potassium
Nernst potentials. This caused the neuron to limit the hyperpolarization and upstroke
depolarisation resulting in a clipped appearance. Given that the general structure of
the AP is maintained, these small fluctuation in AP morphology are not of primary
concern.

The lack of any change in operation means that this MD-Neuron design is suitable
for use in large static magnetic fields. The effects of process variation far outclass
any effects caused by the presence of the magnetic field, as seen in the two on chip
neurons - where each responds differently but consistently to the same input stimuli.
The CResPace project must therefore explore methods to tune the neuron models
post-fabrication to ensure that each and every neuron operates in a predictable and
controllable manner. The design already includes bias currents to allow this tuning to
take place, and the addition of simple but controllable current sources on chip would
allow further exploration of each bias currents range and impact. Future studies into
the impact of dynamic magnetic fields may now be performed in the knowledge that
the large static field will cause no detrimental effect on the results or outcome.

5.3 Conclusions

Analogue IC design offers a direct, highly efficient and effective way to emulate
biophysically accurate neural models with little hardware overhead. Despite this
apparent solution, many new neuromorphic efforts heavily utilise digital methods
within their hardware. The low adoption of analogue neural circuits may, in part, be
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linked to the limited application of analogue ICs seen within other fields of electronics.
Alongside this bias, a number of other barriers to mass adoptions have been identified
within this work.

First, and foremost, analogue design requires considerable understanding of the
underlying model and fabrication process. This dependence on process technology
makes the generation of neuromorphic library parts impractical. Voltage rail levels and
available floorspace adds further variation to the design and layout, with many factors
also dependent on the interface requirements. This often results in the development of
custom solutions for a given analogue neuron design on a given technology,
representing a significant time commitment. In contrast, digital synthesis is a well
established field that allows designers to share work. Due to developed digital
pipelines and an inherent hierarchical structure, the technology underlying the
implementation is often kept independent to the design itself making it easy to move
to a new process with minimal effort. In general, the principles of analogue abstraction
and hierarchy are recognised to differ significantly from that of digital design, meaning
there is little computational framework when developing new analogue solutions.
Many aspects of analogue abstraction remain to be discovered, with the general
adoption of Turing machines and digital logic limiting the wider development and
research of analogue design techniques [108].

Another limitation demonstrated by the current MD-neuron chip design is found in
the use of large capacitors with each implemented neuron. The size of these capacitors
is determined by the scale of the currents used within the model. Reducing the scale of
the capacitors would require a reduction in the scale of the currents used throughout
the circuit. To provide the relatively slow timings seen within biological neural function,
biophysically accurate neural models must either use currents within the deep-sub-
threshold region or larger capacitors operating as low-pass filters. Systems operating
within the deep-sub-threshold region will be especially susceptible to noise and process
variation, further adding to the complications and challenges associated with analogue
design. Alternatively, small numbers of neurons may save space by utilising external
capacitors, however large neural arrays become quickly constrained by the available IO
resulting in a requirement for on-chip solutions. As seen in Figure 5.11a, if the currents
are kept above the deep-sub-threshold region, these on-chip capacitors can dominate
the available floorspace limiting the number of neurons that may be implemented upon
a single IC.

Even when developing systems within the sub-threshold region and above, the effects
of process variation cannot be ignored. While digital designs also suffer from process
variation, its effect is minimised by the saturated mode of operation that digital systems
utilise. In contrast, sub-threshold analogue designs can become highly susceptible to
process variation resulting in changes from small fluctuations in system timings to
outright model failures. Addressing and mitigating these effects is a time consuming
task and often requires external bias values to be tweaked for each individual circuit
instance. This would represent a significant time commitment and is not practical
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when scaling the neural models to several thousand neurons.

This work has shown that the generation of small sets of biophysically accurate neural
models is possible with analogue techniques. An implementation of an MD-neuron has
been demonstrated, including both the design summary and validation results. Analogue
designs are well suited for biophysically accurate neural models, offering considerable
power efficiency and inherent non-linear operation in a manner which more closely
reflects nature than that of digital systems. Despite these advantages, the development
of practical and abstracted analogue solutions presents a significant design challenge.
These challenges may be addressed with time, as analogue computational techniques
and devices such as field programmable analogue arrays are further developed. With
the wide adoption and established pipelines for digital design, however, it seems likely
that digital models will remain the most common solution for large scale neuromorphic
systems for many year to come. The remainder of this thesis considers such digital
designs, looking at methods to optimise and accelerate these systems.
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Chapter 6

Optimising Biophysically Accurate
Neural Models

Chapter 5 introduced an analogue implementation of the Hodgkin-Huxley neuron
model and identified a number of design challenges and complications when using this
model in large scale neuromorphic systems. As a consequence of these design
challenges many neuromorphic systems are developed using digital, rather than
analogue, techniques. This allows designers to leverage well established digital design
pipelines and build solutions that easily interface with existing processor technologies.
Biophysically accurate models are often continuous, while digital systems are discrete.
Some conversion must therefore be performed before the analogue neuron models may
be implemented in digital systems.

A digital implementation of the Hodgkin-Huxley neuron, for example, requires the
model to be first converted into the discrete time domain. In this chapter this conversion
and associated design challenges are addressed in Section 6.2. Following this work the
model must be optimised or approximated to allow efficient implementation. Section
6.3 considers the approximation of the exponential function, providing some important
underlying representations of the operation. A number of approximations are then
detailed in the remainder of this Section before they are compared and applied to the
Hodgkin-Huxley model. Having identified suitable approximations for the exponential
operation, a set of hardware implementations are generated using System Verilog.
These implementations allow the size and speed of each approximation to be recorded
and compared, as discussed in Section 6.4.

The hardware implementations use a library of reconfigurable floating point maths
blocks, developed by Alex Beasley at the University of Bath. These blocks were chosen
because they provided insight into their inner workings, ensuring that there was no
hidden optimisations that would only be applied to some of the approximations under
consideration.
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6.1 Digital Numerical Representations

Digital systems are inherently quantized and discrete. Neuron models must therefore
be converted to a quantised value and discrete time domain form before they can be
implemented using digital hardware. The degree of quantisation depends upon the
numerical representation used within the system. Integer representations yield the
simplest hardware but are incapable of representing decimal values and therefore require
any implemented models to be quantised into integer steps. This level of quantisation
often results in the loss of precision or model dynamics and is rarely acceptable when
modelling neurons.

A fixed point representation uses a defined number of fractional bits to represent real
values. In this representation the level of quantisation is determined by the scale of the
least significant bit, such that the quantisation interval, Q, is given as follows:

Q = 2−B (6.1)

where B is the number of decimal bits. As such, the number of decimal bits must be
chosen to ensure that the required precision is provided. This means that the precision
is constant over the whole represented range, even if the modelled system only requires
high precision for small values - as is often the case in neuron models. Additionally,
both the integer and fixed point representations have a range defined by the number of
integer bits used. This means that wide buses are required for large ranges or precise
values.

Floating point representation (as defined by the IEEE 754 standard) splits the stored
bits into three distinct parts: the sign bit, the exponent and the mantissa. These three
parts are then used to construct the stored value as demonstrated below with the two
values -0.4275 and 125.

−0.4375 =

Sign︷︸︸︷
− 1.

Mantissa︷ ︸︸ ︷
7500000×2

Exponent︷︸︸︷
(1021 − 1023)

125 =

Sign︷︸︸︷
+ 1.

Mantissa︷ ︸︸ ︷
9531250×2

Exponent︷︸︸︷
(1029 − 1023)

In this case, the 1023 subtracted from the exponent is the bias, defined according to the
double precision IEEE 754 standard. Using this form, floating point numbers have a
considerably large representation range. The precision or quantisation of floating point
numbers is dependant on the size of the number as the decimal mantissa is scaled by
the exponent. This means that large numbers are quantized into larger intervals, while
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smaller numbers use smaller quantisation intervals. As a result floating point numbers
can represent both small-signal and large-signal systems with a relative precision.

Floating point numbers are used extensively within commercial processors meaning that
hardware accelerators are most compatible when supporting a floating point interface.
Additionally, biophysically accurate models require highly precise small-signal dynamics
as well as a large numerical range. Floating point numbers can therefore provide
the desired precision for the small-signal dynamics without unnecessarily increasing
the precision over the whole range. This helps reduce the number of bits required to
represent the full operational range. For these reasons the digital systems considered
in this chapter will be developed as floating point solutions.

6.2 Digital Hodgkin-Huxley Models

For ease of reference the Hodgkin-Huxley model is restated below in Equation set
6.2, 6.3 and 6.4. In this model, V is the membrane potential; CM is the membrane
capacitance; I is the injected current; EK , ENa and EL are the potassium, sodium and
leakage Nernst potentials; n and m are the potassium and sodium activation gating
variables; h is the sodium inactivation gating variable; and ḡK , ḡNa and ḡL are the
maximum potassium, sodium and leakage conductances. Equation 6.2 is termed the
Hodgkin-Huxley equation; Equation set 6.3 are the gating variable equations; and
Equation set 6.4 are the rate equations.

CM
dV

dt
= I −

Ik︷ ︸︸ ︷
ḡK n4(V − EK)−

INa︷ ︸︸ ︷
ḡNa m

3h(V − ENa)−
IL︷ ︸︸ ︷

ḡL(V − EL) (6.2)

dn

dt
= αn(V ) · (1− n)− βn(V ) · n

dm

dt
= αm(V ) · (1−m)− βm(V ) ·m

dh

dt
= αh(V ) · (1− h)− βh(V ) · h

(6.3)

αn(V ) = 0.01
10− V
e

10−V
10 − 1

βn(V ) = 0.125e
−V
80

αm(V ) = 0.1
25− V
e

25−V
10 − 1

βm(V ) = 4e
−V
18

αh(V ) = 0.07e
−V
20 βh(V ) =

1

e
30−V

10 + 1

(6.4)
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Equations 6.2 to 6.4 represent a continuous-time analogue model and are therefore
unsuitable for direct implementation using digital logic, which operates in the discrete
time domain. The analogue model may be converted to a more suitable form using
Euler’s method of approximation [113]. The process to achieve this conversion is detailed
in Appendix B. Once converted to the discrete time domain the Hodgkin-Huxley model
may be directly implemented using the following steps:

1. Set the initial simulation values, V0 = Vrest, n0 = 0, m0 = 0, h0 = 0 and j = 0.

2. Calculate the α and β gating variables for each channel using Equation set 6.4.

3. Calculate the time constant, τx, and steady state value, xss, for n, m and h using:

xss =
αx

αx + βx

τx =
1

αx + βx

(6.5)

4. Calculate the next gating probability (n, m and h) values using Euler’s method:

nj+1 = nss(tj)− (nss(tj)− nj) · e−
∆t
τn

mj+1 = mss(tj)− (mss(tj)−mj) · e−
∆t
τm

hj+1 = hss(tj)− (hss(tj)− hj) · e−
∆t
τh

(6.6)

5. Calculate the channel conductance, gi, for each set of simulated ionic channels:

gk = ḡK n4
j

gNa = ḡNa m
3
jhj

gL = ḡL

(6.7)

6. Calculate
∑
gi and

∑
giEi.

7. Calculate the membrane potential time constant, τV , and steady state value, Vss,
using:

Vss =

∑
giEi∑
gi

+
Iinj∑
gi

τV =
C∑
gi

(6.8)
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Figure 6.1: GUI for controlling the MATLAB Hodgkin Huxley simulator, showing the
default neuron parameters. Input stimuli may be produced from a set of parametrised
input shapes, with the option to add additional red noise to the signal.

8. Calculate the next membrane potential value, Vj+1:

Vj+1 = Vss(tj)− (Vss(tj)− Vj) · e−
∆t
τV (6.9)

9. Increment time index, j.

10. Repeat from Step 2.

This process was used to develop a Hodgkin-Huxley simulator in MATLAB. The
simulator supports custom neuron parameters such as channel conductance, Nernst
potentials and the membrane capacitance. Parametrised DC, step, pulse, ramp and
sine input stimuli are supported, with the option to include red noise distortion on
the input signal. The entire simulation system is controlled using a Graphical User
Interface (GUI), shown in Figure 6.1.

The gating probabilities and resulting membrane potential for both a noisy pulse
and sine stimulus are shown in Figures 6.2 and 6.3 respectively. These figures show
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the system generating the characteristic Action Potential (AP) when excited by a
sufficiently large input stimulus. The first 10ms of data in each simulation must be
disregarded as the system has a transient response while the internal variables find a
stable equilibrium.

6.2.1 Computational Cost

The Hodgkin-Huxley model is a computationally expensive model to implement. This
is especially apparent in the discrete numerical representation, where four different
Ordinary Differential Equations (ODEs) must be computed for each simulated time-step.
Computational time is the key constraint when utilising this model, thus any methods
that reduce the computational time of a each time-step have compound effects on the
overall simulation speed.

The model makes considerable use of both the division and exponential operations.
These operations are computationally expensive, as shown in Figure 6.4, and often
require estimation to provide rapid calculation. Before resorting to approximations,
however, it is possible to first rephrase parts of the model into a more computationally
efficient representation.

In Equation 6.9 the exponential power contains a division, with the variable τV as
the denominator. This τV variable is defined in Equation set 6.8 and also contains a
division where the time-dependant variable forms the denominator. By recognising
that τV is only used in Equation 6.9, it may be redefined or even incorporated into the
final Equation as follows:

Vj+1 = Vss(tj)− (Vss(tj)− Vj) · e−
∆t
C

∑
gi (6.10)

In this form, −∆t/C is constant, making it possible to compute this value at the
start of the simulation. This removes the requirement for any division within this
operation, replacing it instead with a single multiplication. These methods do not add
any error to the final calculation, as the two equations are mathematically equivalent,
however multiplication is easier to perform making the final solution more efficient.
This highlights the importance of the implementation methodology when investigating
the computational expense of any process. As a further example of this principle, the
impact of implementation approach may also be seen in Infinite Impulse Response (IIR)
filter design. IIR systems of Nth-order are often implemented using one of two distinct
methods. The first, termed direct form I, is the most straightforward design requiring
2N delay elements, while the second, termed direct form II, requires N delay elements.
By changing the order of operations in the implementation of the filter, direct form II
achieves the same representation with half the required delay elements of direct form
I.
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Figure 6.2: Outputs from the MATLAB Hodgkin Huxley simulator, using a 0.5ms,
0.2µA injected pulse stimuli with noise generation enabled. The membrane potential plot
shows three distinct APs generated in response to the input stimuli, with the internal
gating probabilities, N , M and H, responsible for generating these APs shown.
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Figure 6.3: Outputs from the MATLAB Hodgkin Huxley simulator, using a 10Hz,
0.2µA sinusoidal stimuli with noise generation enabled. The membrane potential plot
shows tonic spiking APs generated when the input stimuli exceeds the neurons threshold,
with the internal gating probabilities, N , M and H, responsible for generating these APs
shown.
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Figure 6.4: Computational time for each operation on a standard processor, shown
relative to the Addition operation. These benchmark measurements were taken on an
Intel i7-8700K.

Manipulating the operations in this way is not always possible and there are cases
where approximations are necessary to provide the desired speed or efficiency. The
exact nature of the approximations will depend on whether the solution is area or
speed constrained. The reciprocal and exponential functions are two elements widely
identified as computationally challenging operations [114, 115]. This is especially
apparent when considering Field Programmable Gate Array (FPGA) implementations
of neural networks, where the exponential and division operations are seen to use the
largest number of resources in Look-Up Table (LUT), Flip Flop (FF) and Digital Signal
Processing (DSP) blocks [116]. It is necessary to explore different implementation
techniques for efficient operations if large numbers of biophysically accurate neuron
models are to be implemented effectively in digital hardware. The remainder of this
chapter considers implementations of the exponential function, looking at the impact
and potential gains caused by utilising different approximations.

6.3 Approximating Exponentials

Having identified that exponential and division operations represent the highest
computational cost within the Hodgkin-Huxley model, this section will now consider
ways to approximate the exponential function. When approximating any function the
required speed, resource, and accuracy will largely determine the suitability of the
implementation. With floating point numbers, operation error is often measured
relative to the Unit in the Last Place (ULP), which is the smallest value represented
by the least significant bit in the mantissa. In the case of the Hodgkin-Huxley model it
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could be argued that the accuracy must be to 1 ULP to ensure that the approximation
matches the accuracy of the original function. While this is possible, it results in large
and slow approximative models. In this section it is assumed that some small
approximation error is acceptable, so long as the neuron model operates in a
functionally equivalent way to that of the original model. This is a valid assumption if
the desire is to run multiple large scale neural simulations - exploring a wide range of
parameters and setups.

Choosing a Suitable Base

Digital systems typically utilise binary representations and operations in base-2 are
therefore often more computationally efficient than operations in other bases. This
is especially apparent when computing integer powers, where powers of two may be
computed using a simple bit-shift operation. For this reason it is beneficial if the
natural exponent is converted into a power of two by first defining a new converted
input, n, such that:

ex = 2n (6.11)

Taking the natural log of both sides yields:

x = ln(2n) = n · ln(2) (6.12)

Rearranging this equation provides the conversion factor required to calculate n, as
follows:

n =
1

ln(2)
· x (6.13)

This converted input allows all exponential operations to be replaced with powers of two,
resulting in operations that are more easily implemented within binary systems.

Fractional Exponentials

Integer powers of two may be calculated through simple bit-shift operations, as shown
previously. Fractional powers, however, are more complicated and often require
approximation to meet performance requirements. The supported interval over which
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the approximation must be valid may be reduced by first isolating the integer and
fractional parts of the operation using the following relationship:

2n = 2bnc · 2frac(n) (6.14)

where n is a real value and frac(n) is the fractional part of n, defined as frac(n) =
n−bnc. This enables the integer part to be computed using a bit-shift operation, while
the fractional part may be calculated by some approximative means. Defined in this
way, frac(n) falls within the positive range frac(n) ∈ [0, 1]. This limits the range for
the approximation, constraining and focusing the approximation effort while improving
resource utilisation.

The remainder of this Section considers a number of approximations for ex and 2n where
n ∈ R [0, 1]. In the case of 2n approximations, each may be used in conjunction with
the methods above to approximate the exponential function, defined mathematically
as:

ex = 2b 1
ln(2)

·xc · f
(

1

ln(2)
· x−

⌊
1

ln(2)
· x
⌋)

(6.15)

where f(x) is the chosen approximation of 2x for the range x ∈ [0, 1].

6.3.1 Linear Interpolation

Piecewise linear interpolation is arguably the simplest of approximative methods. This
method uses linear polynomials to approximate a function as a set of linear regions.
This is demonstrated in Figure 6.5, where two lines are used to provide a coarse
approximation of the function y = 25x.

There is significant error visible in the approximation shown in Figure 6.5. Whether
this error is acceptable depends upon the end application. In cases where greater
precision is required, designers may choose to increase the line count by dividing the
function into successively smaller regions. These regions need not be regular, and
the method of selecting suitable boundaries will largely dictate the associated error
of the approximation. While each additional line will increase the accuracy of the
approximation, it will also require additional memory or compute resource to store and
calculate the new linear region. There is a trade-off between resource requirement and
approximation accuracy when selecting the number of linear regions.

The approximation shown in Figure 6.5 represents a simplistic piecewise linear model,
where each line directly connects the data points located at the region boundaries.
Referred to as point-to-point piecewise approximations in this work, this approach
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Figure 6.5: Demonstration of a simple 2-line piecewise linear approximation for the
function y = 25x.

means that there is zero error at the boundaries, with the largest error located near the
centre of the region, as shown in Figure 6.6. It is possible to spread this error across
the valid region by carefully adjusting the lines gradient and offset. The methodology
behind this correction depends on whether the maximum absolute error or maximum
percentage error must be minimised.

Calculating the Maximum Absolute Error

Each line in the point-to-point piecewise approximation may be defined in the following
form:

ln = anx+ bn (6.16)

where an is the gradient and bn is the offset of the n-th line, ln. The gradient and offset
values are defined by the linear interpolation of the two boundary points (x1, y1) and
(x2, y2) across the valid region and may be calculated as follows:

a =
y2 − y1
x2 − x1

b = y2 − ax2
(6.17)
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Figure 6.6: Example of the absolute error for point-to-point piecewise linear
approximation when applied to the function y = 2x between two boundary points,
X1 and X2.

The absolute error for an approximation of y = 2x may be defined within each valid
region as:

EAbs = |ax+ b− 2x| (6.18)

Taking the differential of this error with respect to the input, x, yields:

dEAbs
dx

=
ax+ b− 2x

|ax+ b− 2x| · (a− 2xln(2)) (6.19)

This differential is undefined at ax+ b = 2x, where the error is zero. By definition, this
occurs at the boundary points in the point-to-point piecewise linear approximation.
Solving for dEAbs/dx = 0 then provides the following location for the maximum absolute
error, xAbsErr:

xAbsErr = log2

(
a

ln(2)

)
(6.20)

This function is independent of the offset value, b, meaning that the maximum absolute
error position will remain constant regardless of whatever line offset value, b, is used.
The location of this maximum error may be used in Equation 6.18 to find the magnitude
for the maximum error, EAbsMax:

EAbsMax = alog2

(
a

ln(2)

)
+ b− a

ln(2)
(6.21)
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This maximum error is for the point-to-point piecewise approximation and is therefore
not optimised in any way.

Minimising the Maximum Absolute Error

A corrective offset, c, may be added to the line in effort to reduce the maximum absolute
error. In this case, the line takes the form ln = anx + bn + cn, and the error may be
defined as follows:

EAbsC = |ax+ b+ c− 2x| (6.22)

As before, the position of the maximal error will be independent of the offset value.
From observation it may be seen that shifting the line down to reduce the error at the
maximum error point will also result in increasing error at the two boundary locations. It
may be shown that the minimum maximal error will occur when Ex1 = Ex2 = EAbsMaxC .
While the corrective offset may be found mathematically, as shown in Appendix C, it
may also be seen from Figure 6.6 that shifting the line down by half the maximum
error will reduce the error at the maximum error point by half, while increasing the
error at the boundary points by the same amount. This means that the final corrective
value to achieve minimal maximum error is given by:

c = −1

2
EAbsMax (6.23)

This yields a final line of the form:

ln = anx+ bn −
1

2
En (6.24)

where an is the gradient, bn is the initial offset and En is the maximum error, EAbsMax,
for the n-th line, defined in Equations 6.17 and 6.21. While this is a relatively simple
corrective measure to employ, there is a considerable limitation in its practicality.
Originally, two adjacent boundaries shared the same boundary point, ensuring that
the approximation was continuous. With the corrected model, each region employs its
own corrective value resulting in discontinuity between regions. Any gradient descent
operation performed on this approximation will therefore risk becoming stuck at the
region boundaries.
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Minimising the Maximum Percentage Error

While absolute error is easy to calculate, its application in exponential functions can
result in unnoticed but significant error for small input values. Percentage error may
therefore yield a more suitable metric for such functions as it incorporates the target
value within its formation. Unlike the absolute error case, shifting the approximation
offset, b, will result in different magnitudes of percentage error at the two boundary
locations. For this reason it is necessary to modify both the gradient, a and offset, b,
when minimising the percentage error.

The percentage error between the lines l = ax + b and y = 2x may be defined as
follows:

E% =
l − y
y

(6.25)

where y is the actual output of the exponential 2x.

As before, it may be assumed that the minimal maximum error will occur when the
error at the valid region boundaries (x1 and x2 in Figure 6.6) is equal to the largest
error within the valid approximation region itself. Under this assumption, a gradient-
offset scale factor k may defined using the two boundary points, such that a = kb, as
follows

(ax1 + b)− y1
y1

=
(ax2 + b)− y2

y2

y2((ax1 + b)− y1) = y1((ax2 + b)− y2)

ax1y2 + by2 − y1y2 = ax2y1 + by1 − y1y2

a(x1y2 − x2y1) = b(y1 − y2)

a = b
y1 − y2

x1y2 − x2y1
= kb

∴ k =
y1 − y2

x1y2 − x2y1
(6.26)

This gradient-offset scale-factor may then be used to redefine the linear approximations
with a single parameter, b. This scaling will provide the required gradient to ensure
that the percentage error at the two boundaries will be equal for any selected offset
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value.

l = kbx+ b (6.27)

Using Equation 6.27 in Equation 6.25, the derivative of the percentage error may be
shown to be:

dE%

dx
= −2−xb (kxln(2)− k + ln(2)) (6.28)

As before, the maximum error will occur at the roots of Equation 6.28, defined as
follows:

b = 0

k 6= 0, x =
k − ln(2)

kln(2)

(6.29)

The first of these roots may be ignored since b = 0 would result in a zero gradient
line that sits along the axis. The maximum error therefore occurs at the following
location:

xw =
k − ln(2)

kln(2)
(6.30)

With the worst error located, it is once again possible to spread the error by setting
the offset, b, such that E%w = −E%x1 :

E%w = −E%x1

kbxw + b− yw
yw

=
kbx1 + b− y1

y1

kbxwy1 + by1 − ywy1 = kbx1yw + byw − y1yw

b (kxwy1 + y1 + yw + kx1yw) = 2y1yw

∴ b =
2y1yw

kxwy1 + y1 + yw + kx1yw
(6.31)
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Figure 6.7: The percentage error for point-to-point and percentage error optimised
piecewise linear approximations of the line y = 2x. Showing decreased percentage error
in the optimised model for 1-, 2-, and 5-line approximations.

Brought together, Equations 6.26, 6.27, 6.30 and 6.31 provide a method for finding the
optimal piecewise linear approximations of the function y = 2x. Figure 6.7 shows the
percentage error for 1, 2 and 5 line piecewise approximations of 2x, with and without
this optimisation. From this figure it is clear that the optimised method achieves
the minimum possible percentage error across the full range x ∈ [0, 1] for any n-line
piecewise linear approximation. Were the line to use a different gradient or offset the
error at either the boundaries or max point would increase, resulting in an increased
maximum percentage error.

The percentage error approximation may also be shown to provide continuity across the
boundaries of the linear regions. This makes such approximations suitable for gradient
descent optimisation techniques commonly used in computational neural models. One
key downside to this method of approximation is found in the fact that there is error
about x = 0. Such error can result in small-signal errors propagating within the
model.

6.3.2 Polynomial Approximation

Instead of dividing the target function into multiple approximation regions, as with
piecewise linear approximation, it is also possible to improve the accuracy of a model by
increasing the order of the approximation itself. Unlike piecewise linear approximation,
polynomial approximation uses higher-order polynomials to approximate the whole
function space. The approximation becomes more accurate as the order is increased,
however higher order polynomials require greater computation resulting in either slower
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Table 6.1: Polynomial approximations of y = 2x with their associated maximum
percentage error across the range x ∈ [0, 1]. In each case increasing the order of the
approximation is seen to reduce the error by more than an order of magnitude.

Polynomial Approximation Function Maximum Error (%)

0.3427x2 + 0.6494x+ 1.0038 3.7522× 10−1

0.0790x3 + 0.2241x2 + 0.6968x+ 0.9998 1.8700× 10−2

0.0137x4 + 0.0517x3 + 0.2417x2 + 0.6929x+ 1.0 7.2154× 10−4

0.0019x5 + 0.0089x4 + 0.0559x3 + 0.2401x2 + 0.6932x+ 1.0 2.2714× 10−5

or lager implementation hardware.

Typically polynomial approximations are unsuitable for exponential functions due
to the diverging error caused by the difference between an nth order polynomial
and a continuous exponential (the reasons for this divergence are made apparent in
the derivations d(yx)/dx and d(xy)/dx). In this case, however, the approximation is
constrained within the range x ∈ [0, 1] and it may therefore be approximated using a
low-order polynomial with relative accuracy.

Table 6.1 shows four different polynomial approximations from 2nd order to 5th order.
With each increase in order, the percentage error may be seen to reduce by more
than an order of magnitude. The cost of this improvement comes at two additional
multiplications operations and an additional add operation for each order.

As with the piecewise approximation, this error may be minimised mathematically by
spreading the error between the maximum error point and the boundaries (x = 0 and
x = 1). The methods behind such optimisation becomes increasingly complicated with
each increased order of approximation.

6.3.3 Euler Generalised Continued Fractions

Thus far, approximations that utilise the base-2 conversion have been considered. There
are many methods that provide approximations for fractional exponents directly. One
method is a continued fraction for ex that can be obtained via an identity of Euler. This
method uses an iterative model, meaning that the system may use the same hardware
to iteratively generate an increasingly accurate approximation of the exponential.

Mathematically, the continued fraction may be represented as either a single infinite
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fraction or, as shown below, as a set of iterative functions:

y = 1 +
2x

f(x, 1)− x

f(x, n) = 4n− 2 +
x2

f(x, n+ 1)

f(x, nlimit) = 1

(6.32)

In this form it is apparent how one block of hardware may be used to repeatedly
compute the result of the function f(x, n) until the desired accuracy is reached. In
this way these implementations can provide the user with customisable accuracy post
fabrication. The effect of increasing the depth, n, in this iterative model is seen in
Figure 6.8, where each additional layer of iteration shifts the error curve along the
input axis without greatly affecting the overall shape of the error function itself.

Considering the zoomed error plot shown in Figure 6.8b, it is clear that this
approximation may be used to provide very-high accuracy for a known input range by
selecting a suitable depth. It should noted that this method requires the depth to be
select prior to calculation as the approximation must start at the chosen depth and
propagate the result back up the chain. The downside of such iterative methods,
however, is found in the latency of the system, where the iteration requirement results
in an implementation that often takes more than n clock cycles to calculate a single
output value. This latency scales quickly when computing many thousand operations
within a simulation, resulting in a slow final solution. The act of approximating the
exponential function with a large number of division operations also limits the realised
efficiency of this model and is therefore only practical if an optimised division
operation is already required, and yet available, elsewhere on the hardware.
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(a) The full plot of the percentage error when approximating the exponential function ex

using different iterations, n, of the Euler continued fraction approximation model.
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(b) A zoomed plot of the percentage error when approximating the exponential function ex

using different iterations, n, of the Euler continued fraction approximation model. The error
is seen to rapidly cross the 1% point for each iteration depth, with deeper iterations providing
a better range of valid approximations.

Figure 6.8: Plots of the percentage error caused by using Euler continued fraction
models to approximate the exponential function ex.
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6.3.4 Power Series Approximation

Another common iterative method for approximating the exponential function may be
achieved through the direct implementation of its power series representation. Defined
mathematically below, the power series provides a means of calculating the result of a
real exponential operation with increasing accuracy.

ex =
∞∑
i=0

xi

i!
(6.33)

Unlike the generalised continued fraction, the power series starts as a coarse
approximation, refining its result with each additional element or iteration. This
means that such implementations may be left running without strict timing
requirements while other time consuming operations are performed. The error for this
implementation is shown in Figure 6.9. As with the other iterative methods, this
approximation provides very high accuracy for well constrained input ranges. While
the power series still uses the division operation, the denominator is always an integer
value meaning this approximation may utilise division hardware further optimised for
such specific application.

As seen in Figure 6.9, each additional layer of this iterative model both shifts the error
and stretches the error function along the x axis. While this model may be further
optimised for implementation in hardware, the error of this model climbs sooner than
that of a continued fraction model of the same depth.

6.3.5 Small-signal Approximations

Each of the previously considered approximations have focused on accuracy first. A
simplified model may be produced by instead designing an approximation focused on
implementation efficiency. Starting with the small-signal approximation, it may be
seen that ex can be implemented with a single addition operation when operating on
small values of x, as shown below:

ex ≈ 1 + x (6.34)

This model is well suited for systems guaranteed to operate within the small-signal region
where x < 0.1, however in the case of the Hodgkin-Huxley model the approximation
must be valid for a wide range of input values. The high accuracy at values around the
zero point, along with the simplicity of implementation makes this approximation a
tempting alternative if the range may be constrained in some way.
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(a) The full plots, showing the relatively rapid climb to 100% error for iteration counts from
n = 1 to n = 11.
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(b) Zoomed to show the error functions between 0 and 1% for different depths of iteration.

Figure 6.9: Plots of the percentage error caused by using the power series to approximate
the exponential function ex.
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It has already been shown that a base-2 conversion constrains the required
approximation range to between 0 and 1. In this way another implementation focused
approximation may be produced such that:

2x ≈ 0.9645 + x (6.35)

This approximation is significantly worse than other approximations considered within
this chapter, with a maximum percentage error of 11.44%. However with a single
addition operation, this error may be suitable in some conditions where the highly
simplified implementation is of greater importance. The discontinuities introduced by
this model are unavoidable due to the gradient being locked at 1.

The final issue seen with many of these approximations is the error about the origin.
This may be addressed by actively switching the approximation model as the input
values become small. For example, the simplified linear model shown above may
be replaced with the small-signal approximation when the input is below a certain
threshold. By setting this threshold at the crossover point of the two approximations it
is possible to ensure continuity between the two approximations. This hybrid model
uses the relationship ex = 2bnc · 2n−bnc for most of the input values, switching to a more
accurate representation only when suitable.

ex ≈
{

1 + x When x < 0.0802,

(2 << bnc) · (0.9645 + (n− bnc)) Otherwise
(6.36)

where the << operator represents the left bit-shift operation that is equivalent to 2n.
The error for this model is shown in Figure 6.10 alongside the error of the individual
elements that form the hybrid model.

Figure 6.10 shows how careful use of multiple approximation models can provide
accuracy in the required operational regions without compromising the full
approximation range itself.

6.3.6 Applying the Approximations

Having identified a number of different approximations, the impact of their application
in the Hodgkin-Huxley model will now be considered. First the required operational
range of the approximation must be found. Using the MATLAB simulator described in
section 6.2, with the default parameters shown in Figure 6.1, it is possible to record
the input values provided for each exponential operation. Figure 6.11 shows the values
taken by each of the exponential operation inputs during a single AP under normal
conditions. From this figure it is clear that a suitable approximation within the range
x ∈ [−10, 5] should be sufficient.
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Figure 6.10: Percentage error for the hybrid model, showing how two different models
may be combined to yield a model with carefully selected regions of high accuracy. In
this model, the error about the origin is kept low, while the error across the entire range
is constrained to within a constant maximum value of 3.57%.

It is possible to compute the maximum percentage error caused by an approximations
application by evaluating the approximations error over the expected operational range.
Table 6.2 shows this error for a set of incremental ranges between [−20, 10]. This limit
was chosen as double the expected input range for the Hodgkin-Huxley model, as shown
in Figure 6.11. Multiple observations about the approximations may be made from
Table 6.2. Firstly, the models that utilise the power of two conversion (that is the linear
piecewise and polynomial models) yield a constant maximal error regardless of the
range over which they are applied. This makes them especially suited for applications
requiring reliable approximation over large or undefined ranges. The downside of these
models is found in their error at x = 0, meaning that these models may fail if the
system utilising them is sensitive to small signals.

The Euler’s continued fraction model results in large error for negative values, however
this error may be reduced by increasing the iteration count. There is no error about
x = 0, making this model very good for small-signal applications, even when using
low iterations. The Euler’s Continued Fraction is undefined for some values of x when
using an even iteration count and the location of this node moves up the x-axis as the
iteration count is increased.

The power series does not suffer from these undefined points. This said, the power series
is intended for use with positive input values, resulting in very large error for negative
values. As before, there is zero error at the origin, and when compared with Euler’s
continued fraction the error for small positive values is seen to decrease more rapidly as
the iteration count is increased. Since the Hodgkin Huxley models exponential inputs
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Figure 6.11: Exponential function inputs for the default neuron parameters when
stimulated with a pulse input of 0.2µA. From this plot it may be seen that a range of
[−10, 5] is required for an approximative exponential function to replicate the neural
models original operation.
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mainly settle in the negative region it is highly likely that the power series will fail to
produce a suitable approximation.

Finally, the hybrid model offers the best of both worlds, with a constant maximal
error across the full range of values and zero error at the origin. This constant error
value may be reduced further by mixing different approximation models into the hybrid
model as required.

It is not possible to asses these approximation models by error alone. The MATLAB
simulator was therefore modified to incorporate each of these approximations, allowing
their effects on the Hodgkin Huxley model to be seen directly. Figures 6.12 and
6.13 show the results of these implementations, displaying the membrane potentials
depolarisation in response to a 0.5ms pulse input of 0.2µA and a 0.07µA step input
respectively.

Using the results from this simulator it is possible to assemble a table of the
approximation performance, considering the models capability to replicate three core
elements in the Hodgkin Huxley model - the DC resting potential, phasic spiking and
tonic spiking behaviours. The DC resting potential can be evaluated by how closely it
matches the original models voltage. In this work, an error of less than 0.1% is deemed
an acceptable approximation, an error of up to 1% a close approximation and anything
greater as unacceptable. Phasic spiking is the term used to describe when a neuron
generates a single AP in response to stimuli. If the timing of the AP, and its recovery,
is closely matched to that of the original model the approximation may be deemed as
good. If, however, the model successfully produces a single AP with different timings,
the approximation may be considered close but not ideal. Finally if the model fails to
produce a singular AP the approximation is unsuitable. Tonic spiking is seen when a
neuron produces a fixed frequency of APs in response to a continuous input stimuli, in
this mode any approximation that generates the same frequency of APs is considered a
good match while approximations that present stable tonic spiking without matching
the target frequency are only a close match. Models that fail to produce a stable tonic
spiking response are considered unsuitable.

With these definitions, Table 6.3 has been assembled, showing the performance of
each approximation method across the three core modes of operation. In this table,
‘X’ represents a good approximation, ‘≈’ represents a close approximation, and ‘−’
represents an unsuitable approximation.

Systems with relatively high percentage error, such as the 4 iteration Euler’s continued
fraction, are still capable of close representation of the Hodgkin Huxley model. At
the same time systems with relatively small error, such as the linear piecewise models,
struggle to accurately reproduce the tonic spiking behaviour seen in the original model.
The power series model is locked in a continued fire mode and requires a total of 21
iterations before it produces a tonic spiking behaviour that is dependant on input
stimulus. These results suggest that the success of the approximation model depends
on a mixture of both a low full range error performance and very low small-signal
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Figure 6.12: Comparative plots of the membrane potential, Vmem, for a Hodgkin
Huxley neuron utilising each of the approximation models. A 0.5ms input stimulus of
0.2µA was used to trigger the AP.
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Figure 6.13: Comparative plots of the membrane potential, Vmem, for a Hodgkin
Huxley neuron utilising each of the approximation models. A near threshold 0.07µA
step input stimulus was used to trigger the neural spiking behaviour.
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Table 6.3: Approximation performance for three different fundamental neuron functions.
In DC resting ‘X’ represents less than 0.1% error, ‘≈’ represents less than 1% error and
‘−’ represents ≥ 1% error. Phasic spiking is judged according to the models ability to: X)
generate an AP with correct timing and recovery windows; ≈) generate a characteristic
AP in response to the stimulus. With tonic spiking, the models are judged according to
their ability to: X) generate a pulse train of APs of the correct frequency; ≈) generate a
pulse train of characteristic APs that is triggered by the input stimulus.

Approximation DC Resting Phasic Spiking Tonic Spiking

1-Line Piecewise ≈ − −
2-Line Piecewise ≈ − −
3-Line Piecewise X ≈ −
4-Line Piecewise X ≈ −
5-Line Piecewise X ≈ −
6-Line Piecewise X ≈ ≈
7-Line Piecewise X ≈ −
8-Line Piecewise X ≈ ≈

2nd Order Polynomial X ≈ −
3rd Order Polynomial X X ≈
4th Order Polynomial X X X
Euler Fraction, n = 1 − − −
Euler Fraction, n = 2 − − −
Euler Fraction, n = 3 ≈ ≈ −
Euler Fraction, n = 4 X X X
Power Series, n = 1 − − −
Power Series, n = 2 − − −
Power Series, n = 3 − − −
Power Series, n = 4 ≈ − −
Power Series, n = 5 − − −
Power Series, n = 6 X − −
Power Series, n = 17 X ≈ −
Power Series, n = 18 X − −
Power Series, n = 19 X ≈ −
Power Series, n = 20 X ≈ −
Power Series, n = 21 X ≈ ≈

Hybrid ≈ X X
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error. This theory is supported by the performance of the hybrid model that manages
to achieve approximations of all three modes despite the relatively simple underlying
approximative model.

The error in the DC resting potential for the hybrid model was 0.74% and is caused
by the 1-line piecewise element of the model. This error can therefore be removed by
instead using the 2nd order polynomial as the latter part of the hybrid model. Such
a hybrid/polynomial model would provide a good approximation of all three neuron
modes of operation.

It is clear that there is no absolute best model to select when choosing an exponential
approximation. The effects of error on the final solution can be somewhat
unpredictable, meaning that any approximative model should be used carefully with
related findings checked against full models prior to publication. It has been shown
that approximative models can produce very close representations of key neural
function. Such approximative models will allow researchers to rapidly iterate on, and
study, large scale arrangements of neurons; performing aggregate tests that are
typically unreasonable with full biophysically accurate neural models.

6.4 Implementing the Approximations in

Hardware

The impact of using approximations on the Hodgkin Huxley model has been considered
without any measure of the resource requirement for implementation. Having shown
that the approximations are suitable, this Section considers the cost of implementing
such systems in hardware. Each of the approximations were implemented on an Altera
Stratix V FPGA using SystemVerilog.

Tables 6.5 and 6.6 show the resource requirements and fitting results when implementing
the non-iterative models on the Stratix V FPGA, Tables 6.7 and 6.8 show the results for
the iterative models. These models were implemented using double precision floating
point maths blocks to ensure that the results were of comparable precision to that of a
standard modern day processor. For comparison against each of these approximations,
the performance and requirements for Altera’s own floating point double precision
exponential block or ‘megafunction’ are provided in Table 6.4. These megafunctions
are performance-optimized by Altera for their own FPGA devices, providing a good
comparative metric when considering the effectiveness of a new function implementation
on an Altera FPGA.

These results show that the non-iterative approximation models require fewer Adaptive
Look-Up Tables (ALUTs) than Altera’s own solution, with the piecewise and most of
the polynomial solutions requiring less than half that of the megafunction. All of the
non-iterative models use fewer of the relatively large DSP blocks, meaning that these
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Table 6.4: Resource usage or performance for Altera’s own implementation of one IEEE
floating point double precision exponential megafunction (ALTFP EXP) [117].

Resource Type Resource Usage

ALUTs 2905
Registers 2285

DSP Blocks 58
FMax (MHz) 205.32

implementations require significantly less floorspace. The iterative models, on the other
hand are much larger than that of the Megafunctions and other approximative models.
Each of the approximations also quote a much lower maximum clock frequency (FMax),
meaning that calculations will take longer when using the approximations. Despite this
apparent slowdown, the approximate models can still outperform the Megafunction
implementation when computing the results of multiple neurons. Taking the 4-line
piecewise pipelined model as an example, which uses less than 37% of the ALUTs, 21%
of the DSPs and 19% of the registers required by the Megafunction, it is reasonable
to expect to fit around three of the 4-line piecewise models into the space of a single
ALTFP EXP Megafunction. Since this implementation is pipelined, this means that
the approximate model could output 3 results per clock cycle, yielding a theoretical
calculation speed of 247.56Hz which is faster than the Megafunctions quoted speed of
205.32Hz.

6.4.1 Hodgkin-Huxley Implementations

With the approximations demonstrated in hardware, a full Hodgkin-Huxley model was
constructed for the Stratix V FPGA. The top-level structure of this implementation is
outlined in Figure 6.14, showing how the exponential operations were used alongside
standard IEEE floating point operations to implement the Hodgkin-Huxley discrete
mathematical model. The results for the 4-line piecewise approximation based
implementation are shown in Figure 6.15. In this result, and each of the other
functional approximation models identified in Table 6.3, the characteristic AP shape
may be seen clearly at the location of the pulse stimulus.

The underlying maths blocks utilised in this study support half-, single-, and double-
precision. Thus it was possible to rapidly test the implementation on a number of
different precisions. In all cases, however, it was found that the Hodgkin-Huxley model
would fail unless implemented with double-precision. For this reason, the half- and
single-precision resource usage and speeds are not quoted within this thesis.
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Figure 6.14: Top-level arrangement for the Hodgkin-Huxley FPGA implementation,
showing how the exponential approximations were used alongside full IEEE floating
point maths operations.

6.5 Conclusions

Many different approximations to the Hodgkin-Huxley model have been proposed and
implemented within this chapter. It has been shown that high accuracy about the origin
is required for effective tonic spiking replication, while good accuracy across the full
supported range is also needed to reliably produce the characteristic AP morphology.
The linear piecewise models are therefore not suitable for neuron modelling unless a
large number of linear segments are used. In this case, the error about the origin is
the constraining factor, meaning that a functional piecewise model (such as the 8-line
model) provides far greater accuracy across the full range of approximated values than
is actually required.

The polynomial models provide a greater accuracy than their linear counterparts. In
these models, the error about the origin is still likely the constraining factor. In Table
6.2 it may be seen that the 2nd order polynomial model produces comparable error to
that of the optimised 3-line model. A direct implementation of the polynomial would
require 2 addition and 3 multiply blocks, while the 3-line model requires 1 addition
and 1 multiply block alongside logic to select and store the 6 weights used in the
generation of each line. Whether the additional logic and registers represent a better
investment of available resource depends largely on what technology the final solution
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four line piecewise approximative exponential block. The characteristic membrane
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responsible for such action.
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is implemented upon and it is therefore impossible to state categorically which model is
better. With both the piecewise and polynomial methods it must also be remembered
that additional logic is required to compute the integer and fractional parts of the
floating point number. This additional logic is included in the quoted hardware sizes of
Tables 6.5 to 6.8.

The Euler’s continued fraction model required a large number of resources in
implementation, but the iterative nature of this model provides designers with a
variable precision solution. Matching the full range performance of the base-2 models
(such as the piecewise and polynomial models) is impossible as it would require the
iteration count to tend to ∞ to provide the required accuracy at extreme input
values.

The power series produced very poor representations of the Hodgkin-Huxley model,
requiring large numbers of iterations before even a single AP was generated. This is
largely due to the fact that the Hodgkin-Huxley model operates within the negative
domain for a lot of its internal variables. While the power series is a direct representation
of the exponential function, it is not accurate for negative values and therefore not
suitable for this application.

The hybrid model represents a unique combination of two different approximations,
enabling the designer to select the accuracy for target regions. In the default hybrid
model, a single line was used to approximate all values above x = 0.0802. This line was
selected to use only a single addition operation, ensuring that the hardware requirement
is minimal. For smaller values, the small value approximation ex = 1 + x was used.
Despite its simplicity, this model achieved full representation of the Hodgkin-Huxley
model, with only a slight deviance in the resting potential. This deviance can be
removed fully using a more complicated large input approximation, such as the 3-line
piecewise or 2nd order polynomial approximations. This model benefits from having
minimal error for small values while also providing constant maximum error for any
range selected.

This work has shown that approximations may be used to provide good and functional
digital hardware Hodgkin-Huxley implementations. It was found that very-high
accuracy about the origin is required to generate a functionally equivalent tonic
spiking response. Additional, the accuracy across the entire range influences the
models ability to generate the characteristic APs. This full-range accuracy need not be
as strict as the small-signal accuracy, meaning models may utilise more approximative
methods for large input signals without suffering failures in representation. The hybrid
model uses 10 fewer multiply operations and 1 less addition operation when compared
against the 4th order polynomial model, the only other non-iterative model to achieve
accurate phasic and tonic spiking responses. These seemingly small improvements
stand to have significant compound effects on the overall system when many thousands
of neurons are being simulated. In the recent work of the Human Brain Project, for
example, a simulation of macaque visual cortical areas was demonstrated - using
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197,936 neurons within the primary visual cortex [118]. In such a project the hybrid
model would provide a reduction of 1,979,360 multiply operations and 197,936
addition operations in each time-step, greatly reducing the computational time and
power required. The application of suitable approximative methods is therefore a
crucial element in the continued advancement and scaling of biophysically accurate
neuron simulations. In cases where biophysical accuracy is not required, however,
computationally efficient models may be used to further improve on the computational
costs associated with the simulation. Such models may still benefit from optimisation
and approximation techniques. Chapter 7 considers these models, showing how further
acceleration may be achieved in such applications.
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Chapter 7

Hardware Accelerated Activation
Functions

A number of effective approximations for the exponential function, implemented as
part of a discrete time Hodgkin-Huxley model have been discussed in Chapter 6. These
approximation were shown to produce functionally equivalent neuron performance,
comparing the approximated models response to both step and pulse stimuli against
the original Hodgkin-Huxley model. Such computationally intensive implementations
are necessary when biophysical accuracy is required, however there are many cases
where this requirement does not apply. When this requirement is removed, artificial
neuron models that offer enhanced efficiency and performance are more desirable. A
number of these models are identified and described in Section 3.2. Typically, they
use activation functions to provide their non-linear operation, as discussed in Section
3.3. While these models are more easily implemented than their biophysically accurate
counterparts, they still require the application of resource intensive exponential and
reciprocal operations to compute the results of their internal non-linear activation
functions. Specifically, the popular Sigmoid function requires both an exponential
and reciprocal operation. The cost associated with these operations scales rapidly in
large neural networks of hundreds of thousands to millions of neurons. The power
consumption and speed of individual neuron models have therefore become critical
figures of merit as Artificial Neural Networks (ANNs) have grown in scale, where small
improvements to the individual neurons leads to compound improvements for the whole
system [33].

Building upon the work of Chapter 6, this chapter considers the acceleration and
implementation of activation functions for large-scale ANN implementations. Section
7.1 reviews the methods currently used to accelerate digital activation functions. The
common activation functions used in ANNs are then restated in Section 7.2, before
introducing a number of custom sigmoidal-shaped activation functions, along with
hardware focused approximative models in Section 7.3. Validation is a critical step when
developing any new model. The datasets used to validate the models are introduced
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in Section 7.4 before the simplest approximative model is shown to yield a resulting
network accuracy within ±1% of an identically sized logistic sigmoid network when
tested against the MNIST dataset in Section 7.5. Finally a hardware version of the
model is introduced in Section 7.6, with the findings discussed in Section 7.7.

7.1 Accelerating Artificial Neurons

Repetitive and computationally intensive tasks can often be efficiently accelerated
by adding additional specialist hardware. As an example, it is common to utilise a
Graphical Processing Unit (GPU), shown in Figure 7.1b, to perform largely parallel
mathematical calculations. In this case, the specialist design of the GPU offers improved
performance over the more general Central Processing Unit (CPU), shown in Figure
7.1a. Custom hardware can also be added to a processors silicon to accelerate a specific
operation, known as a custom instruction and demonstrated in Figure 7.1c. Custom
instructions can yield even greater acceleration if the task is well defined and unlikely
to change. Just as a CPU has a predefined set of specific instructions it can perform, a
custom instruction allows the processor to utilise the custom hardware, performing one
specific task with high efficiency or speed. Hardware acceleration is a critical factor in
accelerating both neural network training, and inference, as they continue to grow in
complexity and scale.

Beyond custom instructions, fully custom systems may also be applied to efficiently
accelerate and implement ANNs. Unlike custom instructions, which merely add to
a pre-defined CPU architecture, fully custom systems are designed from scratch to
perform a given task with high efficiency or speed. This means that these systems often
have considerable differences from standard computational architectures. Many such
stand-alone hardware systems currently support the application of massive-scale ANNs,
such as SpiNNaker [91], Neurogrid [98] and TrueNorth [94], that aim to provide large
scales whilst maintaining energy efficiency through custom architectures and flexible
hardware implementations. GPUs, Field Programmable Gate Arrays (FPGAs) and
Application Specific Integrated Circuits (ASICs) have also been used to provide state-
of-the-art acceleration for machine learning. Of these three, GPUs often provide the
most significant speed improvements at the expense of higher power requirements. This
is largely due to the considerable investment that has been made into the production
of fast and efficient high-power GPU products. Their availability and general purpose
application within computing systems makes them a convenient solution for machine
learning. ASICs can produce significantly better energy efficiency at moderate speeds by
virtue of being designed explicitly for machine learning, however the long development
cycle of approximately 6 to 12 months and prohibitively high fabrication costs often
means that such solutions are not suitable for research. Commercial solutions, such as
GraphCore do exist, however these are rare and their development requires considerable
expertise and investment. FPGAs provide a flexible and cost effective method for
specifying custom hardware, yielding speed and energy improvements over general
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Figure 7.1: CPUs and GPUs leverage different architectures to achieve optimal
performance when performing different tasks. The CPU, shown in (a), has a single large
cache, control unit and fewer Arithmetic Logic Units (ALUs) than the GPU, shown in
(b). Additionally, hardware may be added to implement custom instructions alongside
standard processors, as shown in (c).
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Figure 7.2: Example FPGA architecture, showing the customisable interconnection
and core logic fabric that allows designers to specify and implement their own custom
digital circuits.

purpose processors. Shown in Figure 7.2, FPGAs use a collection of programmable logic
blocks, Digital Signal Processing (DSP) blocks and memory blocks, along with with
programmable interconnect fabric allowing designers to specify and implement custom
digital circuits. This flexibility, however, comes at a cost, with an FPGAs solution
typically using slightly more power than a custom ASIC solution. This difference in
power consumption is largely due to the additional routing circuitry that gives FPGAs
their flexibility.

Each of these acceleration approaches typically attempts to approximate a pre-defined
model or function as closely as possible, while optimising it for the platform in use.
However, it is possible to specify functions that can be efficiently implemented in
hardware with little-to-no compromise on computational performance. A faster and
more efficient neural implementation may therefore be developed by instead taking the
hardware constraints into consideration and designing a totally new model. Such
models may be fully implemented in hardware, maintaining their 1st order continuity,
or they may be further approximated to yield an even more efficient solution.
Additionally, they may be specified in single or double precision making them suitable
for direct implementation as a hardware accelerated custom instruction to provide
speed improvements for processor implemented ANNs.

7.2 Activation Functions

In ANNs, each neuron commonly includes an activation function that is used to shape
the output at each simulated time-step. Taking the general perceptron form introduced
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Table 7.1: Common non-linear activation functions and their derivatives

Name Activation Function Derivative

Logistic Sigmoid Function f(x) = 1
1+e−x

f ′(x) = f(x) [1− f(x)]

Hyperbolic Tangent Function g(x) = 2
1+e−2x − 1 g′(x) = 1− g(x)2

Gaussian Function h(x) = e−x
2

h′(x) = −2xh(x)

Rectifier (ReLU) Function y(x) = max(0, x) f ′(x) = (x > 0)

Softplus Function z(x) = ln(1 + ex) z′(x) = 1
1+e−x

in Section 3.2.2, this may be mathematically described as follows:

Y = F

(
i=n∑
i=0

(WiXi) +B

)
(7.1)

where Y is the output, Wi and Xi are the i-th weight and input respectively, n is the
total number of inputs (both excitatory and inhibitory), B is the bias and F (x) is
the activation function. The activation functions used are typically non-linear as this
provides the computational potential when the neurons are arranged into structured
layers [35]. From Equation 7.1 it is clear that these non-linear activation functions can
easily represent the most computationally intensive task, with the remainder of the
model using addition and multiplication operations. It is therefore logical to start with
the activation function to see whether it may be improved through implementation as
a custom instruction. A set of common activation functions, first introduced in Section
3.3, is restated along with their first order derivatives in Table 7.1.

When selecting or defining an activation function there are many criteria that must
be considered. In a gradient descent trained system, these criteria include speed of
calculation for both the function and its derivative. Frequently the function must also
be asymptotic at the extremities and have 1st-order continuity to ensure a smooth
descent of the problem space whilst training. Without this continuity, areas of the
problem space will have an infinite gradient meaning that it is possible for the tuned
parameter to become trapped in local minima or repeatedly oscillate about the global
minimum. Two common activation functions used in ANNs are the logistic sigmoid and
the Rectified Linear Unit (ReLU), the reasons for their popularity highlight some of the
fundamental characteristics required when designing new activation functions.
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7.2.1 Logistic Sigmoid

The logistic sigmoid function is historically the most commonly used activation
function in ANNs. This function boasts an asymptotic, monotonic, non-linear output
with a simple derivative form that may be expressed in terms of the function itself.
Despite these advantages, the logistic sigmoid function includes both a natural
exponential and reciprocal operation, making it computationally expensive for large
scale networks. Often, these operations utilise iterative methods to calculate a result,
making considerable use of add, bit-shift and multiply circuitry. Such an approach
leads to large area consumption and internal delays when compared against simpler
maths operations. Many approximations of sigmoid activation functions have been
produced in order to provide smaller or faster implementations.

Kwan demonstrated a sigmoid-like second-order piecewise activation function that
was successfully applied to multilayer Feed-Forward Neural Network (FFNN) training
[119]. Later, Faiedh et. al. presented a polynomial approximation of both the sigmoid
activation function and its derivative, using single-precision floating-point representation
[120]. Basterretxea et. al. proposed a recursive piecewise linear approximation scheme,
showing high approximation accuracy with low memory requirements [115]. Gupta et.
al. suggested an analogue conductance based model that used transistor asymmetry in
cross-couple differential pairs to generate the sigmoid and its derivative [121]. Namin
et. al. chose to use linear piecewise approximation, along with a Look-Up Table (LUT),
to emulate a hyperbolic tangent sigmoidal function [122]. Tsai et. al. demonstrated a
hardware-focused sigmoid function calculator, and Gomar et. al. produced a similar
hardware model that achieved a 99.97% similarity to that of the original sigmoid
function [123, 114]. As shown, there are many published approximations, however these
often result in discontinuity in the first derivative. This loss of continuity has adverse
effects on a gradient descent training algorithm.

7.2.2 ReLU

Within the last few years, ReLU has become one of the most common activation
functions within ANN research, with considerable application in deep learning problems.
Its success is founded in its simplicity of implementation, requiring a mere sign check
to select both the output and derivative values. Despite this, there are cases where
ReLU is not suitable (for example in control systems) due to a lack of continuity in
the differential, unbounded outputs, and non-differentiable zero conditions. It has also
been shown that a suitably initialised sigmoidal network can outperform deep ReLU
networks, with the formers capability to achieve isometry found to be impossible by
the ReLU counterparts [47].

The softplus function may be used as an approximation of the ReLU function to provide
differential continuity. This function makes use of exponential elements and has the
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logistic sigmoid function as its first order derivative. It therefore stands to reason that
any improvements in the sigmoid model may also be applied to the softplus function
offering improvements during network training.

7.3 Hardware Optimised Functions

It is clear from Table 7.1 that activation functions and their derivatives commonly use
division and exponential operations to achieve their non-linearities. These
computationally expensive operations must be addressed if activation functions are to
be improved in speed or efficiency. The remainder of this chapter introduces and
validates a novel implementation of modified activation functions, providing
accelerated ANN performance.

The natural exponentials found in many activation functions are often computed using
piecewise approximation, LUTs, or analogue non-linear dynamics. Another approach,
however, is to use the relationship shown in Equation 7.2.

ex = 2[xln(2)] (7.2)

Since multiplying a binary number by 2 equates to a bit-shift in hardware, an integer
power of two only requires simple logic. Additionally, since the input to each activation
function is already scaled by input weights, the ln(2) scale factor seen in Equation
7.2 may be removed by instead scaling the stored weights within the network. This
reduces the need to calculate this multiplication on each neuron output, modifying
Equation 7.1 as follows:

Y = F

(
i=n∑
i=0

([Wiln(2)]Xi) +Bln(2)

)
(7.3)

Using this method of weight scaling, the exponentials in each activation function may
be replaced with 2x. This removes the requirement for the calculation of a natural
exponent, shown in Figure 6.4 to be > 4× slower than an Addition operation on a
modern processor, replacing it with a significantly simpler bit-shift operation.

7.3.1 Redefined Logistic Sigmoid

It is important to consider the impact on the differential when modifying an activation
function in this way. Indeed, the relative advantage of replacing the natural exponent
with a power to the base-2 may be deemed worthless if it makes the differential

J. E. G-H-Cater 189 University of Bath



CHAPTER 7. HARDWARE ACCELERATED ACTIVATION FUNCTIONS

significantly more complicated to calculate. Applied to the logistic sigmoid function,
as shown in Equation 7.4, the differential may be calculated as follows:

f(x) =
1

1 + 2−x
= (1 + 2−x)−1 (7.4)

Therefore:

f ′(x) =
d

dx
(1 + 2−x)−1 (7.5)

Applying the chain rule to Equation 7.5 yields equation 7.6.

f ′(x) = −(1 + 2−x)−2 × d

dx
(1 + 2−x)

= −(1 + 2−x)−2 ×−2−xln(2)

=
2−xln(2)

(1 + 2−x)2
(7.6)

This may be expanded and re-written as follows:

f ′(x) =
1− 1 + 2−x

(1 + 2−x)2
· ln(2)

=

[
1 + 2−x

(1 + 2−x)2
− 1

(1 + 2−x)2

]
· ln(2)

=

[
1

1 + 2−x
−
(

1

1 + 2−x

)−2]
· ln(2) (7.7)

Substituting Equation 7.4 into Equation 7.7 yields:

f ′(x) =
[
f(x)− f 2(x)

]
· ln(2) (7.8)

Finally this yields the same form as that of the original sigmoid equation, as shown in
Equation 7.9.

f ′(x) = f(x) [1− f(x)] · ln(2) (7.9)
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7.3.2 Redefined Activation Functions

The logistic sigmoid, TanH, Gaussian and Softplus functions may all be converted into
a base-2 format using this method. In each case the original differential forms are
maintained, as shown in Table 7.2. Each of the differential equations have an additional
ln(2) scaling factor, however this may be removed by instead incorporating it into
the learning rates used during training. Many training algorithms utilise a scaling
factor to control the rate at which the network is modified while undergoing training.
Known as the learning rate, this value may be scaled to account for the additional
ln(2) in the differentials, removing the need for an extra multiply operation during the
calculations.

Table 7.2: Proposed base-2 activation functions and their derivatives

Function Type Activation Function Derivative

Logistic Sigmoid f(x) = 1
1+2−x

f ′(x) = ln(2) · f(x) [1− f(x)]

Hyperbolic Tangent g(x) = 2
1+2−2x − 1 g′(x) = ln(2) · [1− g(x)2]

Gaussian h(x) = 2−x
2

h′(x) = ln(2) · [−2xh(x)]

Softplus z(x) = ln(1 + 2x) z′(x) = ln(2) · 1
1+2−x

7.3.3 Converting Activation Functions Post Training

The base-2 activation functions shown in Table 7.2 are mathematically equivalent to
their traditional exponential counterparts when the weights and learning rate have
been scaled by a factor of ln(2). This scaling factor means that it is possible to convert
between the two activation function forms with relative ease. This enables designers to
move between the two activation function models, meaning that networks trained with
the traditional activation functions may be optimised post-training. To achieve this
conversion the weights and learning rate must undergo the following scaling:

W2 = ln(2) ·We

l2 = ln(2) · le
(7.10)

where W2 and We are the weights and l2 and le are the learning rates for the base-2
model and exponential model respectively. Once this conversion has been performed
the activation function may be swapped out without any re-training required.

Designers may also reverse this process, converting optimised models back into their
full forms. This allows solutions to be moved freely between the optimised and full
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implementations, greatly increasing the chances of adoption for any new optimised
hardware model that is built upon the base-2 models. This one-to-one equivalence
makes these new neuron models applicable in all cases where the original natural
exponent models are used. The relative computational gains achieved through the
application of the base-2 models is therefore available to both new and long-standing
implementations, meaning an efficient implementation of the new models will have a
significant impact on neural network solutions.

7.3.4 Decimal Power Approximations

Integer powers of base 2 maintain a simple hardware equivalence (as seen in Chapter
6), while the decimal powers add greater complexity. Unlike the biophysically accurate
models discussed in Chapter 6, however, the artificial activation function approximations
may diverge from the original model values so long as the performance of the network
is not negatively impacted. The impact of any differences in absolute value will be
negligible since ANNs use training algorithms to map the non-linear activation function
onto the problem space. In this case it is the preservation of the underlying properties
of the activation functions, such as the general shape and continuity of the equations,
that is critical to ensuring that training will achieve a comparable mapping of the
problem set.

By rephrasing the power to separate the integer and decimal values as shown in equation
7.11, it is possible to separate the implementation into two parts. The integer power,
or bit-shift, and the decimal power, which will require approximation. This limits the
approximation input to a range of 0 to 1, enabling a smaller implementation for a given
accuracy when compared against a full approximation of 2x.

2i.d = 2i × 20.d (7.11)

The same approximation methods commonly applied to activation functions may also
be used to approximate the decimal component shown in Equation 7.11. Figure 7.3a
illustrates a 1-line linear piecewise approximation for 2x, which uses Equation 7.12.
The error for this approximation may be seen in Figure 7.3b to fall within ±3%.

2i.d ≈ 2i × (0.97018× d+ 0.9702) (7.12)

The approximation may be further simplified by recognising the similarity between the
form of Equation 7.12 and that of an IEEE 754 double precision floating point number
[124], shown in Equation 7.13.

Float V alue = 2Exponent × (Raw Mantissa+ Implicit One) (7.13)
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Figure 7.3: The output (a) and percentage error (b) of 2x, its 1-line approximation
and the proposed bitwise approximation.

From this comparison it is clear that i may be treated as the exponent. Since 0.97 ≈ 1
the decimal power component could be approximated by simply using d as the raw
mantissa. As d is already in the range 0 to 1 there is no scaling required to perform this
operation. This bitwise replacement would require a single add to apply the exponent
offset, however the value i.d would first need to be represented in a fixed-bit format to
allow isolation of the integer and decimal parts. Mathematically, this approximation
may be represented as follows:

2i.d ≈ 2i × (d+ 1.0) (7.14)

where the input is identified as an integer part i and decimal part d. The output and
percentage error associated with this technique may be seen in Figure 7.3. This novel
approximative model stands to significantly reduce the computational cost of activation
functions. It is important, however, to first assess whether these approximations and
equations have any negative impact on neural network performance when compared
against their original versions.

7.4 Datasets

Some benchmark must first be defined in order to measure any effect the new activation
functions may have on ANN performance. The newly proposed activation functions
must be tested against the original exponential versions to allow for a meaningful and
fair comparison. For this validation, datasets must be chosen or generated, allowing the
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performance of the different activation functions to be assessed in a controlled manner.
In this work one established dataset and 7 generated datasets were used to test the
activation functions.

It is the impact of the new activation functions on the network performance that will
determine if the optimised activation functions are viable replacements for existing
solutions. For this reason the activation functions must be tested in-network, using a
consistent network topology and training algorithm. The training datasets must be
delivered to the network in the same order to avoid any external effects on network
training. With these precautions in place, any difference in post training network
performance will be as a direct result of the activation function in use. It is therefore
important to select a collection of different datasets, resulting in a distribution of tests
that will reveal any general trends in activation function performance.

7.4.1 The MNIST Dataset

The Modified National Institute of Standards and Technology (MNIST) dataset is
a large collection of labelled handwritten digits. This dataset is one of the most
established benchmarks for image classification networks. The dataset was developed
in response to concerns with existing handwriting recognition benchmarks, such as
the issue of small or over-varied data sets. Originally selected by Chris Burges and
Corinna Cortes from a collection of US National Institute of Standards and Technology
(NIST) handwriting databases, MNIST is split into two distinct parts, a training set
of 60,000 fully labelled examples, and a test set of 10,000 fully labelled examples. A
modified version generated by Yann LeCun has since seen considerable application
within published works making it a strong benchmark to assess the capability of new
systems [5, 125]. While the original NIST utilised bounding boxes to centre the data,
the LeCun version is modified to provide centring by centre-of-mass with large data
windows. The digits are size-normalised and centred in a fixed-scale greyscale image.
Following this pre-processing it is expected that humans could accurately and correctly
classify the characters to within a 0.2% error [126]. A handful of random examples
taken from the training set and paired with their associated labels are shown in Figure
7.4.

3 6 7 9 8 4 9Label:

Image:

Figure 7.4: Example images and the associated labels taken from the MNIST training
set.

Since its development, many network architectures and training algorithms have been
tested against the MNIST dataset, providing a clear way to compare different approaches
and solutions. In 2012, Ciresan et al. [127] almost matched human performance using a
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Table 7.3: The main Scikit-Learn “make classification()” parameters used in generating
the classification datasets.

Parameter Description

n samples The number of samples or data points.
n features The number of features or input values.
n informative The number of features that inform the correct class.
n classes The number of classes in the dataset.
n clusters per class The number of clusters used in generating each class.

new multi-column Deep Neural Network (DNN) that boasts a performance of only 0.23%
error. This same network was tested against other image classification benchmarks
improving on state-of-the-art solutions in a number of them. A year later, Wan et. al
demonstrated an ANN capable of 0.21% error on the MNIST dataset [128]. This network
used Dropout, meaning that some weights were set to zero during training. Benchmarks
like MNIST are critical in the comparison and assessment of ANN capabilities, showing
that the gap between human and machine performance is closing rapidly in specific
applications.

7.4.2 Generated Datasets

Whilst MNIST provides a realistic and practical benchmark for novel ANN
implementations, it only tests networks against a specific problem-set or task.
Networks that perform well using MNIST may fail in other applications. It is therefore
critical to test new ANNs against a broad spectrum of problem class to ensure that
any change in performance is detected. Generated datasets provide a means of testing
a networks capability in mapping data with specific user-defined properties. These
properties can be chosen to highlight specific features or operations. The volume of
data that may be generated using these techniques makes this approach very useful
when comparing different systems.

Generating this data by hand represents a significant time commitment, and it is
therefore common practice to use programming techniques to procedurally generate
the datasets. Python is a popular high-level programming language, commonly used in
the machine learning community. The Scikit-Learn library is a machine learning
library written in Python that includes a set of instructions for generating
classification datasets with user-defined properties [129]. The command
sklearn.datasets.make classification(), for example, generates a random n-class
classification problem according to its parameters, listed in Table 7.3. This
Scikit-Learn library was used to generate the 7 additional datasets for comparing the
activation functions.

Four distinct classification datasets were generated using the make classification()
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(a) Classification set A, where n samples =
10000, n features = 2, n informative = 1 and
n clusters per class = 1
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(b) Classification set B, where n samples =
10000, n features = 2, n informative = 2 and
n clusters per class = 1
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(c) Classification set C, where n samples =
10000, n features = 2, n informative = 2 and
n clusters per class = 2
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(d) Classification set D, where n samples =
10000, n features = 2, n informative = 2,
n clusters per class = 1 and n classes = 3

Figure 7.5: Generated classification datasets, with their generation parameters listed
for each instance.
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function. These are shown in Figure 7.5. These datasets were designed as incrementally
challenging tasks. Classification set A, shown in Figure 7.5a, represents a simple task
where a linear decision boundary sits along the axis. The clusters are intentionally mixed
at the boundary meaning that no solution should achieve 100% accuracy. Without this
uncertainty it is possible for networks to easily achieve perfect results, minimising the
information that may be gained from comparing different network performance.

Classification set B, shown in Figure 7.5b, contains data defined by two inputs. Once
again the clusters are bordering one another to ensure that the accuracy is not locked
at 100% for any network. Classification set C also uses two input features. Unlike
the previous sets, however, this data contains two clusters within each class. The
secondary clusters from each class overlap one another within the same problem space,
making this a challenging dataset to classify. This was generated to inspect how the
new activation functions perform when dealing with unclear classification problems, as
is often the case when working with real data. Finally, classification set D is shown in
Figure 7.5d, and is a three class classification task where all classes closely border one
another.

These classification datasets represent relatively simple linearly separable tasks (with the
noted exception of Set C). Real data, however, is not always structured in this manner.
Sometimes the classes are arranged in distinct regions, or ‘blobs’, in the problem
space, as reflected in the dataset shown in Figure 7.6a. This data was generated using
Scikit-Learns make blobs() function, providing an additional benchmark for comparing
the activation functions performance.

A Gaussian distribution problem was also designed, as shown in Figure 7.6b. In this
dataset the classes sit within one another, with the inner classes entirely surrounded
by the outer ones. The encapsulation of one dataset within another presents a unique
classification challenge, requiring the system to correctly map the enclosed classes as
closed regions within the problem space. Finally, a dataset comprising of two interlaced
crescent shaped classes was generated, shown in Figure 7.6c. Each of these extended
classification datasets represent types of problems seen within real data, making them
useful in comparing the operation of different activation functions.

The datasets generated all contain two features, meaning that the data points sit within
a two dimensional space. This was a design decision made to ensure that the ANNs
problem space mapping could be visualised using a simple graph. The values at each
point in the graph are generated by passing a comprehensive grid of input values into the
networks. In practice many more inputs are used for classification problems, however the
additional inputs merely result in increased network dimensionality and these smaller
datasets are therefore still valid for comparing activation function performance.

Each of these datasets was divided into 9000 training points and 1000 test points.
These numbers were chosen to ensure that there were significantly more training points
than test points and that the resulting performance measurements would be provided
in steps of 0.1%. By dividing the data in this way the trained networks are more likely
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(a) Blobs classification set, where n samples
= 10000, n features = 2 and centers = 4.
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(b) Gaussian classification set, where
n samples = 10000, n features = 2 and
n classes = 3.
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(c) Moons classification set, where n samples
= 10000 and noise = 0.2

Figure 7.6: Extended classification datasets, with their generation parameters listed
for each instance.
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to learn the underlying patterns of the data rather than just regurgitate the raw data
itself.

7.5 Activation Function Performance

Comparison

The newly defined datasets were used to test the activation functions, producing a
comparative metric for each model. This allowed the classification accuracy of models
using these activation functions to be compared against one another directly. The
results from this comparison are presented later in Table 7.4. The activation functions
chosen for these tests are restated in Equations 7.15 and 7.16.

f(x) =
1

1 + e−x
(7.15)

f(x) =
1

1 + 2−x
(7.16)

The linear approximation and bitwise approximation model discussed in Section 7.3.4
were also used alongside the full implementation models. These are defined below in
Equations 7.17 and 7.18.

f(x) =
1

1 + 2−bxc · (0.97018 (x− bxc) + 0.97018)
(7.17)

f(x) =
1

1 + 2−bxc · ((x− bxc) + 1.0)
(7.18)

Figure 7.7 shows each of the activation functions and their associated error. From
these plots it is clear that each activation function maintains the sigmoid-like shape.
The error for both approximations is largest for negative values, with large positive
values becoming asymptomatically more accurate. The large negative value error makes
sense when the output of the sigmoid function is considered. Since negative values
produce small output values, only a small error is required to produce larger percentage
error.
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Figure 7.7: The output (a) and percentage error (b) of 2x, its 1-line approximation
and the proposed bitwise approximation sigmoid functions.

7.5.1 Methodology

A neural network framework had to be developed to allow each of the chosen activation
functions to be implemented and tested in a consistent and reliable manner. A neural
network class was written in Python to support custom neural network structures,
a code listing is provided in Appendix D. This class was written to utilise external
activation functions, defined at runtime using the class parameters. Isolating the
network class from the activation function definitions in this way allows new activation
functions to be tested without considerable rework of the underlying test bench. The
network class includes a simple back-propagation training regime to train the networks
against a dataset.

The activation functions themselves were implemented as an additional Python library
written in the C programming language, a code listing is provided in Appendix E.
The use of the C programming language allows these functions to operate at a much
lower computational level than implementations written in Python. At this low level,
the floating point bit-wise elements within the function can be directly modified
using similar techniques to that of equivalent hardware implementations. The binary
approximation could therefore be tested without the considerable overhead otherwise
required for bit manipulation through numerical means.

Each neural network was trained using the datasets described in Section 7.4. The simple
back-propagation training algorithm was used for all training procedures. In each case
the networks were exposed to the training data before a measure of performance was
taken using the test data. Since the trained performance of a given network is influenced
by random factors, such as the starting conditions of the network, this process was
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repeated on a large number of networks to allow statistical analysis and comparisons.
For the MNIST dataset, 256 networks were trained for each activation function, while
7680 networks were trained against each generated dataset for each activation function.
The classification accuracy and training profile for each network was recorded to allow
direct training performance comparisons between activation functions.

The training data was also presented to each network in a fixed order to ensure that any
influence caused by data permutation was consistent across each of the networks under
inspection. The basic back-propagation algorithm was used throughout the experiment
since this test was designed to assess the performance of the new activation functions
and not intended as an in depth analysis of different training algorithms. This training
algorithm was detailed in Section 3.5.3.

Training any large network is a time consuming task, and the act of training several
hundred networks for each dataset with each activation function presents a significant
computational challenge. The Balena High Performance Computing (HPC) cluster
at the University of Bath was therefore utilised to ensure that the results could be
generated within an acceptable time frame. This HPC facility has 3,480 general
purpose Intel “IvyBridge” and “Skylake” compute cores, with 16 and 24 cores per
node, respectively. There is over 23 TiB of distributed memory, with 4 or 8 GiB/core,
as well as an additional 2 nodes that have 512 GiB each for large memory-intensive
jobs. There are a range of NVidia P100 and K20x General Purpose GPUs and Intel
Xeon Phis (5110P) co-processors. The system has 0.7PBs of BeeGFS high-performance
parallel file system and is connected by low-latency Intel TrueScale Infiniband at
40Gb/sec. This resource is shared amongst its users through a SLURM scheduler to
ensure that computing tasks are performed within an acceptable time frame. This
parallel computer enabled 255 networks to be trained in parallel, with a single core
acting as a central management unit to collect and store the results. This combined
with the HPC queue system enabled the computationally intensive task of training and
testing these networks to be fully automated, and results were generated in a fraction
of the time required if performed on a single machine. Each trained network was locked
to a single core to ensure that the HPC didn’t optimise one activation function solution
over the others. This means that the results were equivalent to running the experiment
on 255 stand-alone computers and ensured that each implementation had the same
processing resource available.

Finally, as a means of testing the conversion methods introduced in Section 7.3.3, a total
of 510 networks were trained with the original exponential based sigmoid activation
function. These networks were then converted into the three base-2 activation function
models, before testing them against the test data in each dataset. Any change in
performance was monitored closely to inspect the effects of conversion or approximation
post training.
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Table 7.4: Mean dataset performance of the networks using each of the sigmoidal
functions and approximations. The best performance for each of the datasets is marked
with a * symbol.

Mean Accuracy (%)

Dataset Network Size Sigmoid Base-2 Model Linear Piecewise Bitwise

MNIST 784-100-10 94.35 * 93.66 93.67 93.67
Blobs 2-20-5-4 89.41 * 84.57 84.70 84.78
Gaussian 2-50-5-3 90.17 * 88.47 88.47 88.47
Moons 2-20-2 85.72 86.62 * 86.59 86.58
Generated A 2-4-2 90.02 90.04 * 90.04 * 90.04 *
Generated B 2-4-2 99.30 99.30 99.30 99.30
Generated C 2-4-2 85.16 85.94 * 85.91 85.92
Generated D 2-20-5-3 80.22 * 80.18 80.16 80.16

7.5.2 Results

The logistic sigmoid, base-2 sigmoid, 1-line piecewise and bitwise activation functions
were tested against each of the datasets, using a fixed number of training epochs for
each network. In total, 256 networks were used for each activation function on the
MNIST dataset while 7680 networks were used for each activation function on each of
the generated datasets. The mean performance for the activation functions was then
calculated and is shown in Table 7.4.

Following this initial test, the performance of the 510 converted networks for each
activation function was also recorded. For each network, the original sigmoid
activation function performance was subtracted from the results to yield a measure of
the relative performance change as a direct outcome of post-training conversion.
Figure 7.8 illustrates the results for this experiment. From this figure it is clear that
the base-2 and sigmoid activation function models are functionally equivalent when
conversion is applied, as there is no change in performance. The additional
approximation used in the linear and bitwise activation functions results in a small
spread of network performance. Since the approximations affect each and every node
within the network, the overall effect is seen to produce a normal distribution within
the performance change plots.

The results in Table 7.4 demonstrate that, while there is a change in classification
accuracy when moving between the models, the difference between the full sigmoid
and bitwise approximation model is relatively small. Within the converted results the
spread in performance is seen to follow a slightly skewed normal distribution, with
more than half the bitwise approximation networks falling within ±0.015% of the full
model performance. Since the bitwise model was generated from the ground-up with a
hardware implementation in mind, it is logical to now compare this model against the
original sigmoid models computational efficiency and resource utilisation.
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Figure 7.8: MNIST dataset performance difference in 510 converted networks, showing
the change in the networks performance following a conversion from a logistic sigmoid
function.

Input Increment Reciprocal Output

Double Q6.52 Double

Float to 
Fixed

Bitwise 
Power

Figure 7.9: Flow diagram for hardware accelerated custom instruction, with data-type
shown below.

7.6 Custom Instruction Implementation

The resource utilisation of the new bitwise model must be considered to ensure that it
yields an efficient and effective neural network model before the relevance and meaning
of the results in Section 7.5.2 may be assessed. A parametrised hardware version of
the bitwise approximation model was developed to support double precision custom
instruction acceleration. Figure 7.9 illustrates the process flow for this model, showing
the fixed-width and double-precision elements. Since the bitwise approximation moves
the fractional bits into the mantissa there is no benefit to having more fractional
bits than the number of bits supported by the mantissa itself. Equally, the logistic
sigmoid function is asymptotic and approaches 0 and 1 for values outside the range
±15, therefore limiting the signed integer elements to 6 bits provides a suitable range so
long as the conversion contains saturating logic. As such the fixed-width representation
chosen for this double precision implementation is Q6.52.

This hardware system was synthesised on an Altera Cyclone SoC 5CSEMA5F31C6,
an FPGA which includes an ARM A9 core. ARM is a well established processor
manufacture, with their devices commonly found in low-power or mobile solutions. The

J. E. G-H-Cater 203 University of Bath



CHAPTER 7. HARDWARE ACCELERATED ACTIVATION FUNCTIONS

Table 7.5: Throughput for the sigmoid function on a number of processing architectures.

Hardware (or processor) Core Clock Speed Throughput Clock Cycles per Calc.

Proposed Bitwise Accelerator 87.7 MHz 87.7 MHz 1
Intel Core i7-7800x 3.5 GHz 87.0 MHz 40
Intel Core i5-4460 3.2 GHz 71.4 MHz 45
Intel Xeon E5-2609 2.4 GHz 44.1 MHz 54
Intel Core i5-650 3.2 GHz 12.5 MHz 254
AMD 1090T 3.2 GHz 12.3 MHz 260

ARM A9 core is therefore a practical device to test custom instruction implementations.
The final system yielded a requirement of 2604 Adaptive Logic Modules (ALMs), 4138
registers and 68 DSP blocks. This chipset was selected to allow easy integration of the
custom instruction within the ARM core. The DSP block requirements are due to a
58-bit multiply performed in the Newton-Raphson Reciprocal block. The Altera tool
suite includes a timing analysis tool called TimeQuest. Using TimeQuest it was shown
that the proposed design could run at a maximum clock speed of 87.70 MHz. The
system has an issue rate of 1 clock cycle, meaning that a valid output is available on each
clock cycle. These features combined, the solution yields a custom instruction capable
of 87.7 MFlops. To achieve this speed the system has been pipelined, meaning that a
setup of 38 clock cycles is required before the first result becomes available. In large-
to massive-scale networks there will be thousands of activation function calculations
to perform meaning that such setup cycles are negligible when comparing the overall
calculation times.

Using the synthesis tools power analyser (Quartus PowerPlay) the total consumption
for this implementation is 76.59mW, comprising a dynamic power consumption of
43.71mW. The Newton-Raphson implementation used in this accelerator represents
87% of this power and uses most of the quoted DSP blocks. These values were found
using the default ‘6 slow 1100mv 0c’ model with a clock of 86.96MHz.

It is possible to compare the accelerated bitwise implementation to that of a sigmoid
implementation on modern processors as shown in Table 7.5. The processor
implementation used the standard C++ exponential function, which was called 1
billion times to calculate the average computation time. All values were double
precision IEEE 754 floating point numbers to be consistent with the bitwise
accelerated version. The CPU implementation ran on a single core for comparison
against a single accelerator. In practice a custom-instruction accelerator could be
implemented as either a single accelerator per CPU, as one accelerator per core or
even as one accelerator per register. However, there is a trade-off between computation
speed and size when deciding how to implement the custom instruction within the
processor fabric itself.

While the proposed bitwise function throughput is comparable to that of the Intel Core
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i7, this accelerated system has a clock speed of only 87.7 MHz and requires only 1 clock
cycle per calculation leading to a considerably lower power consumption than any of
the general purpose processors that have core speeds of at least 2.4 GHz.

7.7 Discussion

The results in Table 7.5 show that the proposed bitwise accelerator yields a comparable
throughput to that of a modern high-end processor. Table 7.4 shows that the MNIST
mean performance fell by less than 1% when using the bitwise implementation in place
of a sigmoid activation function. At the same time, the number of clock cycles required
per calculation was reduced by 97.5% when compared against an Intel Core i7-7800x.
The throughput remains approximately constant despite the large differences in clock
cycles. It is highly likely that variance seen in Table 7.4 for the generated datasets is
due to the training profiles and the activation functions impact on training convergence.
This theory is supported by the conversion results in Figure 7.8 which show that, while
the approximations can cause some small changes in network performance, the full
base-2 model can represent a sigmoid model perfectly with suitable scaling applied to
the weights. Since the scale factor acts to influence the learning rate indirectly, it seems
likely that the problem space is being scaled through use of these custom activation
functions.

The hardware implementation is intended for use as a custom-instruction to accelerate
a CPU or GPU using dedicated hardware. This concept is demonstrated in Figure 7.1c.
Whilst a fully custom FPGA implementation would permit maximum performance it
would be at the cost of accessibility and usability. Future processor technologies are
increasingly likely to include FPGA fabric, providing users with a space for custom-
instruction implementation on chip. This prediction is justified in the context of Intel’s
recent acquisition of Altera [130], alongside mention of Altera FPGA co-processors.
Such FPGA-CPU pairings already exist and therefore make good targets for neural
network implementations, however as this technology matures it is likely to become
mainstream in commercial and industrial applications, making custom instruction
design an important part of function acceleration.

7.8 Conclusions

Efficient and fast ANN implementations are required to support the continued
advancement and scaling of neural network applications. The computational
complexity of an activation function plays a considerable role in the computational
cost of the network as a whole, with each neurons output requiring its own activation
calculation. The sigmoid function represents a good approximation of learning rate
seen in success-based learning within nature, however, in it’s full state it cannot
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compete with the computationally efficiency shown by the more abstract ReLU model.
Unlike ReLU, the Sigmoid function has a continuous non-zero differential and
asymptotic extremities. It also closely reflects a class probability distribution as shown
in section 3.3.2. An efficient sigmoid implementation would allow large networks to
leverage these properties without significantly compromising the computational
efficiency of the system as a whole. Additionally, a continuous version of the ReLU
function commonly used in gradient descent training, termed the Softplus function,
has the Sigmoid equation as it’s differential. Training this function therefore requires
the calculation of the Sigmoid. For these reasons, a novel approach to implementing
sigmoidal equations has been developed in this chapter, considering a direct solution
and two approximative methods.

A conversion between the traditional sigmoid and the proposed base-2 sigmoid was
also shown. This direct conversion mapping is crucial when designing new custom
instructions and hardware accelerators, as it allows a network to be trained using the
accelerated hardware before mapping it to a more standard sigmoid based model for
use in regular computer architectures. While the whole hardware system was able to
run at 87.70 MHz the accelerated bitwise power module actually had an upper speed
of 443 MHz, making it significantly faster than the rest of the system. Unless the data
already starts in fixed point representation, the requirement of an extra float-to-fixed
converter must also be considered when looking at the performance for this bitwise
power module. The float-to-fixed converter yielded a speed of 180 MHz, however this
could be improved by building a pipelined custom addition block instead of using the
standard addition operator within the module.

The approximations are suitable for use in double precision systems, yielding a good
result when compared to the full sigmoid model. Both of these models were built using
the assumption that the derivative would be approximately equal to that of the full
base-2 model, however this in-built error did not appear to slow the learning rate of
the system in any observable fashion. The robustness of these networks is surprising
given that the bitwise approximation based activation function had a percentage error
as large as 6% for large negative numbers. It should be noted that in this area the
function output is rapidly approaching zero, and therefore even small changes to the
output level can have significant impact on the percentage error of the function.

When compared with other general purpose processors, the hardware accelerator shows
a significant speed improvement over older models and keeps pace with some of the
latest CPU products. The number of clock cycles required to perform the sigmoid
calculation has been reduced by a factor of 40 when compared with the next best
processor. Given that this custom solution will be significantly more energy efficient
than a general purpose processor, it is still beneficial to use such acceleration in large-
to massive-scale networks even when the computation speeds are similar.

This chapter has focused upon accelerating the sigmoid function. However the methods
introduced could easily be applied to the other base-2 activation functions shown in

J. E. G-H-Cater 206 University of Bath



CHAPTER 7. HARDWARE ACCELERATED ACTIVATION FUNCTIONS

Table 7.2. Additionally, this accelerated sigmoid function could be used for the softplus
model to accelerate the derivative calculations and speed up training.

In the hardware implementation the accelerator provides an increase in the direct
calculation speed of the sigmoid function - which in turn is measured as throughput.
This makes the assumption that the memory bandwidth is high and the latency is
low enough to ensure that the pipelined module is fully utilised. Given that the
accelerator runs at 87 MHz this is not an unreasonable assumption. The surrounding
delays and latency associated with other parts of a neural network implementation may
become the dominant factor in the speed of a system using this accelerator, however
there is considerable published work that clearly identifies a need for accelerated
activation functions making this a relevant step in the acceleration of neural network
implementations [114, 123, 122, 121, 115, 120, 119, 131]. Of course further optimisation
could still be performed. Reworking the multiply within the reciprocal operation
block, for example, and replacing it with an optimised pipelined version may offer
improvements in maximum clock speeds or reductions in DSP block requirements

In this chapter a new base-2 activation function and a simple bitwise approximation
for decimal powers of two that requires no mathematical operations was introduced.
These proposed activation functions and approximation models have been tested
against common and generated datasets to provide performance comparisons alongside
the standard logistic sigmoid function. A double-precision floating point hardware
accelerator was built using the bitwise approximation activation function allowing
direct comparison with modern day processing solutions. To the authors knowledge this
work represents the first double precision floating point sigmoid accelerator, capable of
calculating a result to within 6 Unit in the Last Place (ULP). This hardware system was
built in System Verilog and shown to be faster than modern day processors performing
the same task. The clock cycles per calculation are compared against an Intel Core
i7-7800x, with an improvement of 97.5% demonstrated when using the new activation
function model.
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Chapter 8

Utilising Neural Network
Locality

The performance gains available from conventional processors are limited by
fundamental constraints, as predicted by Moore’s law and Dennard scaling. A
paradigm change is required to develop more advanced and powerful processors that
go beyond these observed trajectories. In many cases, nature can provide examples of
powerful and intelligent processing approaches, from these it is possible to construct
bio-inspired technologies, such as neuromorphic systems, which promise to address or
even remove the current constraints. At present, however, there is a significant
disparity between the performance of these systems in nature, and those implemented
artificially. This chapter explores one of the fundamental differences between biological
neural networks and Artificial Neural Networks (ANNs), that of inter-neuron
connectivity. The connectivity seen in naturally occurring networks is very different to
that of current hardware implementations, and designing neuromorphic systems based
on the predominantly local connectivity seen in nature has the potential to
dramatically improve performance and scaling in modern processing platforms. The
movement of data, and the infrastructure to enable its communication, both use
additional power and hardware resource. Processing solutions, such as the biological
brain, that can both store and process data locally therefore stand to reduce this
power and resource consumption. Additionally, the signal delay and signal attenuation
seen in the biological brain is close to theoretical minimum values, while the number of
synapses for a given volume is close to a theoretical maximum [132]. This suggests
that the structure used within nature represents a heavily optimised system, and
replication of its efficiency and density is therefore desirable.

As the scale of modern neural networks grows rapidly the interconnection requirements
between neurons present an increasing challenge. Dedicated connection infrastructure,
packet switched networks and cross-bar arrays have all been applied in attempt to
deliver interconnectivity. These hardware implementations frequently assume exhaustive
connectivity between neurons, with packet switched networks prone to packet loss and
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non-deterministic signal delays, often resulting in bottlenecks when transmitting large
quantities of data [133]. These issues are not found in biological neural networks. It
should therefore be possible to develop new architectures to reduce the dependence on
global communications by considering the connectivity of biological networks.

This chapter outlines existing reconfigurable architectures before introducing a novel
locally-connected architecture for implementing biologically inspired neural networks in
real-time. The proposed architecture is validated using the segmented locomotive model
of the C. Elegans, performing a demonstration of forwards and backwards serpentine
motion, as well as coiling behaviours. The concepts of locally and globally connected
architectures are discussed, with local connectivity discovered to offer up to a 17.5×
speed improvement over hybrid systems that use combinations of local and global
infrastructure.

Section 8.1 presents an overview of connectivity in neural networks, highlighting a key
difference between the connectivity seen in artificial and biological systems. Section
8.2 considers two architectures that ‘close the gap’, highlighting their differences and
relative merits. One of these architectures, termed the grid architecture, is introduced
in this section as a fully local communications system. Section 8.3 introduces the
methodology used to validate this new novelly connected architecture, introducing
both a 2D and 3D C. Elegans physical model that allows for direct visualization of
movement as a result of neuron simulations. The results of these tests are presented in
Section 8.4 and analysed in Section 8.5, where a speed improvement of up to 17.5× for
a 50 segement C.Elegans locomotive model is shown when implemented on the fully
local grid architecture. Finally, a discussion on the limitations of locally connected
architectures is provided in Section 8.6, with the conclusions highlighted in Section
8.7.

The critical contributions of this work are the introduction of the novel grid
architecture; the discovery that locally connected architectures can realise signifiant
speed and scalability improvements over their hybrid-local and global counterparts; a
demonstration that Convolutional Neural Networks (CNNs), which appear to contain
a high degree of locality within their connectivity, map poorly to locally connected
architectures; and the identification of differences in artificial and biological system
dimensionality, revealing that both the connection infrastructure and underlying
technologies require careful consideration when using biology as inspiration for new
systems.

8.1 Neural Network Connectivity

The supported connectivity within any neuromorphic system forms an important metric
in determining the functionality of the system as a whole. A system with too few
connections cannot fully represent a large heavily-connected network, while a system
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A) Globally Connected B) Locally Connected
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Figure 8.1: In globally connected networks every neuron is connected to every other
neuron directly (or via some communications infrastructure). In locally connected
networks this is not the case - instead there is a measure of locality to the interconnection
meaning that direct signals cannot be passed between all neurons, as shown for neurons
A and B where an additional neuron, C, sits along the communications path.

with too many connections wastes resource on redundant connection infrastructure.
Finding a suitable balance for this neuron interconnectivity is therefore an important
consideration when designing efficient and mobile neuromorphic systems. Since these
systems typically operate as general purpose neuro-computing devices, it is common
for such systems to use connection infrastructures that provide exhaustive neuron-to-
neuron interconnection options resulting in a fully connected graph that may represent
any network of suitable size. While this solution provides a high degree of flexibility
when fitting new networks to hardware, it also often results in unused resource as few
networks require this exhaustive one-to-one connection support.

In this work the term ‘global connectivity’ is used to refer to exhaustive solutions that
allow any neuron to directly communicate with any other neuron within the network. It
is important to note that this does not require unique dedicated hardware for each and
every interconnection. Network based implementations are often used within this field
to yield a high interconnectivity while sharing the resource through traditional network
management techniques. The distinction between a ‘globally connected’ system and that
of a ‘locally connected’ system is therefore found in a neurons ability to communicate
with any other neuron within the system without requiring the assistance of any
additional neurons acting as ‘relays’. This concept is shown in Figure 8.1 where neurons
A and B are connected directly in the global system, but not in the local system where
an additional neuron, marked C, sits between the two neurons in question. In this way
locally connected networks are sparser than globally connected systems.

8.1.1 Connectivity in Hardware

Despite the large variation in neuron models, the communication infrastructure used
to link neurons together into large neural networks is often more consistent in design.
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Global connectivity provides the greatest flexibility for reconfigurable architectures, and
is therefore often assumed as a requirement for new neuromorphic architectures.

Packet-switched networks are the most common communication method used to pass
signals from one neuron to another, with each packet typically containing the firing
neurons identity and time of excitation. One such packet-switched network system
is SpiNNaker [90, 91, 92], which was introduced in detail in Section 4.2. Each of the
processor cores used within this system are surrounded by a light-weight packet-switched
asynchronous communications infrastructure allowing any neuron within the system
to communicate with any other neuron. This globally connected system is arranged
into a 3D torus structure in an effort to reduce the maximal distance between any
two points and therefore accelerate the long-range communications between neurons.
One of the constraining factors of such designs is the communications channel, with
implementations of highly active large-scale networks requiring significant network
bandwidth. This bandwidth requirement creates a choke point in the system, slowing
the speed at which simulations can be performed. In the worst case this can also lead
to dropped packets within the communications infrastructure, meaning that signals
and data can be lost during a simulation.

To avoid the issue of communications bottlenecks, unique connections in an all-to-all
configuration can also be used. Such systems typically make use of cross-bar arrays
and memristor structures to provide reconfigurable hardware interconnects in a small
silicon package [134, 135]. These systems yield the fastest neuron to neuron throughput,
however they scale at a rate of O(N2) making them unsuitable for large-scale networks
of several thousand neurons. They will also contain significant redundant connectivity
for any given application as many of the connections will go unused in a typical neural
network.

Some hybrid systems, such as TrueNorth (introduced in Section 4.3) offer a mix of
local and global connection infrastructure in attempts to reduce the unused connection
count while limiting the long-distance communications bottleneck. These systems still
provide global connectivity, however they use the local connection infrastructure to
complement the global communications infrastructure and avoid it’s over-utilisation. In
TrueNorths case, (local) short-distance communications are handled by an on-chip 64K
crossbar array and asynchronous routers, and (global) long-distance communications are
handled by protocols for intra-chip connections [94]. TrueNorth also uses time-division
multiplexing to allow a single computational unit to calculate the outputs of 256 logical
neurons. These neuron outputs are then connected locally through an on-chip 64k
synaptic crossbar array. The interchip connections are handled by a packet-switched
network providing the full global connectivity.

Neurogrid (introduced in Section 4.4) is another hybrid system with a mixed
analogue-digital implementation that operates in the deep sub-threshold region of the
semiconductor devices. Synaptic inputs between spatially neighbouring neurons are
distributed using a custom local arbor system, or a multi-cast router; while the global
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core-to-core connections are handled using a binary tree routing network [98]. The
local arbor system bears resemblance to general cross-bar array implementations,
resulting in a fast and effective local connection infrastructure at the expense of high
resource requirements.

A common denominator of neuromorphic platforms is the flexibility to handle arbitrary
levels of connectivity between any and all neurons. Whilst this is a clear advantage
in general solutions, for specific examples this can lead to loss of efficiency. Finding
a balance between flexibility and reduced redundancy will play a critical role in the
development of new and novel neuromorphic systems for low-power or mobile devices.
One approach to manage this issue is the implementation of a neural fabric that
can be optimally configured for different scales of connectivity, whilst retaining the
reconfigurability of the large scale neuromorphic implementations.

8.1.2 Connectivity in Nature

Neuromorphic systems began with heavily bio-inspired solutions in an attempt to
address the power consumption gap between biological systems and that of digital
systems. This biological inspiration has continued to drive innovation and development
within the field. The free living nematode Caenorhabditis Elegans (C. Elegans) has
become a key component in scientific understanding of the wider function and
arrangement of the biological nervous system. The C. Elegans is a transparent
nematode that is approximately 1.3 mm long and takes 3.5 days to maturate. With
only 302 neurons in its nervous system, the C. Elegans was the first organism to have
its connectome (the neuronal ‘wiring diagram’) fully mapped [136]. The animal moves
forwards and backwards in a serpentine fashion using rectilinear locomotion to locate
food and escape predators. It may also exhibit coiling behaviour in the event of a
sudden stimulus to the animals side. It has a muscular structure built up of 8 distinct
regions that run down both sides of its body as shown in Figure 8.2. These muscles
are used to produce locomotion through sinusoidal activation which propagates down
the animal in a synchronised fashion.

The C. Elegans connectome is divided into a number of functional sub-systems, such
as the locomotory system responsible for eliciting the animals characteristic motion. A
model of this locomotory system (discussed later in Section 8.3.1), which contains a
sub-set of 86 neurons and is connected by 180 synapses, was developed by Claverol
et. al. [137] and Bailey [15] and demonstrated the neural patterns characteristic of
forward, reverse and coiling motions in C. Elegans.

The natural division of the nervous system into smaller sections is also found in larger
animals, such as rodents and small birds. This high locality in neural processing has
allowed researchers to emulate complex systems, such as the auditory system of a bat,
without needing to simulate the animals entire nervous system [138].
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Figure 8.2: Anatomy of the C. Elegans: A) viewed laterally, showing the nerve ring
located at the head end of the animal; B) Cross-section, showing the two major nerve
clusters and 8 muscle structure that run down the animals length, adapted from images
found at www.wormatlas.org; and C) A fluorescent subset of neurones within C. Elegans
showing projections running alongside the pharynx. The overall structure of the head
region can be seen in the blue, overlaid transmission. Image courtesy of John Chad and
Ilya Zheludev.
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The nervous systems of primates follows a similar functional hierarchy. However due to
the increasing size and complexity, it can often be harder to explicitly identify neurons
or regions responsible for specific actions. One example of a highly localised processing
system in humans is the control mechanism behind the urinary bladder - there is a clear
distinction between the roles of the somatic motor system and the sympathetic and
parasympathetic nervous systems in the micturition of the bladder. The sympathetic
innervation of the bladder originates in the lower thoracic and upper lumbar spinal
cord segments where sympathetic activity causes the internal urethral sphincter to
close. Activation of this pathway by a modest increase in bladder volume due to the
accumulation of urine thus closes the internal sphincter and inhibits the contraction of
the bladder. Urine is held in by the somatic motor innervation of the external urethral
sphincter. Patients who have lost descending control of the sacral spinal cord continue
to exhibit autonomic regulation of the bladder function, since micturition is stimulated
reflexively at the level of the sacral cord by sufficient bladder distension, as measured
by the stretch and pressure mechanoreceptor afferents within the pelvic sacral plexus
[139]. Although the interactions are multiple, and complex, it is clear that bladder
control largely occurs close to the bladder and the sacral roots, with only distant and
occasional interaction from the encephalon.

Each sub-system is highly effective at specific tasks and demonstrates a largely localised
solution which has a clear benefit in terms of energy cost and complexity. The level to
which this specialisation and segmentation occurs in the Human Nervous System (HNS)
remains an open question, however some small examples have already been identified
and this is most evident in reflex systems found within the Peripheral Nervous System
(PNS).

8.1.3 Measuring Connectivity

There is a clear difference between the connectivity seen within modern neuromorphic
systems and biological nervous systems. This locality of connection, however, is hard
to define in a quantitative manner as it is obscured by a networks layout and inherent
complexity. A quantitative measure of locality would therefore be a useful metric when
considering the differences between hardware and biological systems.

In the 1950s Rent discovered empirically that there was an inherent power-law
relationship between the number of gates and the number of terminals within
Very-Large Scale Integration (VLSI) circuits. This observation was later used to
generate a scaling property known as “Rent’s Rule” by Lanzerotti et. al. in 2005 [140],
however the basis for this relationship was first explained earlier by Landman and
Russo in 1971 [141]. This rule takes the general form:

T = kgp (8.1)
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Table 8.1: Comparison of both physical and topological Rent coefficients, p, reproduced
from Communication Locality in Computation: Software, Chip Multiprocessors and
Brains by D. Greenfield [143].

Network p (Physical) p (Topological)

Globally Connected Architecture 1.0 1.0
VLSI 0.901± 0.006 0.73± 0.04
C. Elegans 0.740± 0.070 0.77± 0.06
Human MRI 0.828± 0.005 0.75± 0.07
Human DSI 0.782± 0.014 0.78± 0.07

where T is the number of terminals, g is the number of gates or internal components, p
is the power-law exponent (between 0 and 1), and k is a constant of proportionality that
was later interpreted by Christie and Stroobandt as the average number of terminals per
gate [142]. Christie and Stroobandt derived Rent’s rule theoretically for homogeneous
systems, observing that a measure of the optimisation achieved in placement is reflected
by the parameter p, known as the “Rent exponent”. Low values of p represent systems
with short interconnects while larger values represent systems with greater degrees of
interconnection.

Rent’s rule may be used to define the connectivity in hardware neural networks, relating
the internal (local) and external (global) connections within the network [143]. In
these networks, the terminals are synapses and the gates are neurons. An important
aspect of Rent’s rule is that if the equation is re-framed in terms of logarithms [144],
the relationship between T and g becomes linear when both axes are expressed in
logarithmic terms as shown in Eq. 8.2.

log(T ) = log(k) + p ∗ log(g) (8.2)

This yields an offset value log(k) and a linear slope (in the log domain) determined by
the Rent coefficient, p. One of the interesting observations in nature is that, as shown
in Table 8.1, this coefficient tends to be the same for all neural structures, typically
about (p = 0.75) for both lower order animals such as C. Elegans, and for human brains
[144]. The globally connected neuromorphic systems, however, yield a Rent exponent of
p = 1 due to their requirement for generalised solution representation. This difference
in Rentian scaling suggests that some savings in resource may be achieved through
the careful constraining of the interconnection infrastructure to explore the trade-off
between local and global connectivity.
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8.2 Utilising Locality in Neural Architectures

It has been shown that there is a difference between the interconnectivity of
neuromorphic and biological networks. Section 8.2.1 details a hybrid-local system
designed by Bailey [15] that uses locally connected synapses to alleviate the load on a
global connection bus. A novel fully-local architecture is then introduced in section
8.2.2. Both of these systems have been designed as abstracted reconfigurable solutions,
allowing individuals to implement networks using them without needing to edit or
understand the underlying hardware infrastructure. This is similar to that of Field
Programmable Gate Arrays (FPGAs), where an individual uses a high-level Hardware
Description Language (HDL) to define a hardware-independent circuit which is then
implemented using a hardware specific toolchain.

8.2.1 Hybrid Local - The Column Architecture

The column architecture is a neuromorphic system designed to leverage the locality
of neuron connections seen in nature. This reconfigurable neural hardware system
is capable of real-time simulation of neural networks, making use of hybrid-locality
to reduce the communications bottlenecks. Designed using custom VHDL building
blocks, the system may be programmed to simulate a desired network using a set of
configuration words. In order to reduce the connectivity requirements, the neurons and
synapses were developed as separate blocks and conceptually arranged into two columns,
as shown in Figure 8.3. This allowed a novel local connection infrastructure to be used
within the synapses, reducing the global bus communications requirements.

The neuron blocks were designed to operate in two modes, as either a base neuron or a
pattern generator. In the base neuron mode the neuron takes input from the synapses,
passes it through a threshold block and triggers a burst generator if the threshold is
exceed. In the pattern generator mode, the input is replaced with an internal oscillator
that triggers the burst generator at user defined intervals. These two modes may be
programmed by the end user using the pre-defined configuration words, shown in Table
8.2. As such, this model allows the end user to customise the neurons contained within
the network without requiring a detailed understanding of VHDL.

The synapse blocks perform the bulk communications within the system. Designed to
support connections to the neighbouring synapses at both the input and output sides
of the block, these synapses perform the summing operations for the various neuron
stimuli while also providing a way for multiple synapses to be triggered concurrently by
the same neuron. These local internal connections within the synapse column reduce
the communications between the synapse and neuron columns considerably as each
neuron need listen to only one synapse within the system. The various configurations
these connections support are shown in Figure 8.4. Synapse 1 and synapse 2 are not
connected in any way; synapse 3 has it’s output connected to synapse 4, meaning that
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Figure 8.3: High level design of the column architecture. The two communications
buses, the control module and connections (solid blue arrows) and the reconfigurable
connections (dashed red arrows) are shown. Optional connections between the synapses
allow for reductions in the bus utilisation - therefore reducing the risk of communications
bottleneck issues.

Table 8.2: Configuration word for the neuron block operating in the base neuron mode.

Bits Length Function

7 - 0 8 Address
15 - 8 8 Excitation Threshold
23 - 16 8 Inhibition Threshold
32 - 24 8 Burst Length
47 - 32 16 Action Potential Time
63 - 48 16 Refractory Period

Table 8.3: Configuration word for the neuron block operating in the pattern generator
mode.

Bits Length Function

7 - 0 8 Address
8 1 Enable Phase Offset

40 - 9 32 Period
72 - 41 32 Phase Offset
80 - 73 8 Burst Length
96 - 81 16 Action Potential Time
112 - 97 16 Refractory Period
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Figure 8.4: Synapse configuration examples. Synapse 1 and 2 are operating
independently. The outputs of synapse 3 and synapse 4 are connected together, yielding
the sum of these two blocks as an output. Synapse 5 and synapse 6 are connected
together at both input and output to support concurrent activation of an already active
synapse.

synapse 4 will output the sum of the two synapses; and synapse 5 is connected to
synapse 6 at both the input and output stage. This last configuration allows a synapse
to be activated by a pre-synaptic neuron even while the synapse is already active.

As with the neuron blocks, the synapse blocks are fully configured using the configuration
word detailed in Table 8.4. This configuration is performed alongside the neuron
configuration and once again allows full use of the system without prior knowledge of
VHDL.

The neuron and synapse columns are connected together by two buses. These buses
are global connections, allowing any neuron to connect to any synapse and vice versa.
At any time only one neuron and one synapse may drive the neuron and synapse buses

Table 8.4: Configuration word for the synapse block.

Bits Length Function

7 - 0 8 Input Address
15 - 8 8 Output Address
23 - 16 8 Synaptic Weight
55 - 24 32 Synaptic Delay
87 - 56 32 Synaptic Duration

88 1 Input Link
89 1 Output Link
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respectively, however many neurons and synapses may listen to these buses at the same
time. To ensure that these buses are not multiply driven a global controller is used that
cycles through the address space. The neuron (or synapse) that contains the active
output address drives the neuron bus (or synapse bus) for that clock cycle, and any
synapses which has the same address in their input address register will listen to the
bus for that clock cycle. In this way the neuron and synapse bus use time-division
multiplexing to appear fully transparent to the system, allowing full global connectivity.
Since the system must cycle through all neurons in each simulated time step, the
maximum system simulation clock frequency, Fc, is impacted by the number of neurons
simulated, n, and may be found using Equation 8.3, where Fi is the internal system
clock frequency.

Fc =
Fi
n

(8.3)

This clock scaling creates significant problems when simulating large neural networks
of several thousand neurons. Since each neuron must drive the bus once per simulated
time step, the simulation clock must run much slower to accommodate for the increase
in scale. This system is therefore not scalable. By ensuring that synapse to synapse
connections were performed outside the scope of the wider connection infrastructure,
however, this hybrid-local system achieved measured speed-ups of 20x that of previous
models it was compared against [145].

8.2.2 Fully Local - The Grid Architecture

In order to overcome the fundamental scaling limitation of the column architecture,
this work introduces a new grid based architecture that more closely reflects the locality
seen within natural systems. Unlike the column architecture, this new grid architecture
brings the neurons and synapses back together into a single block or node. These nodes
are arranged into a 2D grid, connected in a North, East, South, West fashion to their
direct neighbours using a custom connection infrastructure. The system is made up of
two distinct elements, the node, which is an arbitrary neuron implementation and the
IO block, operating as a connection to external actuators and sensors.

As shown in Figure 8.5, the connection infrastructure sits between each of the nodes
and re-directs the incoming signals according to user-defined configuration bits. This
allows the nodes to be connected into loops, with each neuron situated upon a total
of four different loops - connected to one on each face. The loop data is internally
latched within the nodes, allowing all nodes to drive their outgoing loop segment at all
times.

A global controller cycles through the address space, 0 to m, where m is the node-count
of the largest loop in the network. At address 0 all the nodes drive their outputs onto
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Figure 8.5: Grid architecture connection infrastructure examples. Using pairs of straight
connections and two bracket connections, loops are formed within the architecture to
connect neurons to one another. Each loop connector block supports three types of
connection: x - no connection; 1 - straight connection; and 0 - loop end connection.

the loop, passing them along to the next node in the chain. For all other addresses the
nodes simply pass the data around the loop, operating in a similar manner to that of
shift registers. The nodes use internal registers to determine when to read the current
loop values, allowing any node to receive input from any other node within a shared
loop. Each node has a virtual neighbourhood that defines which other nodes it may
connect to through a single loop, as shown in Figure 8.6. In this fashion, no node is
more than one intermediate node away from any other node in the system.

Input/Output (IO) blocks are situated on the grid providing the IO interface for the
system. These IO blocks replace nodes within the loops meaning that inputs may be
driven locally to any desired loop within the system. Like the traditional nodes, the IO
blocks are able to drive data into the loop and read data from the loop, however they
also have an external communications point that connects to an external pin on the
Integrated Circuit (IC) package. These pins may be connected to sensors or actuators,
providing IO for the network; or they may be connected to one another, acting as a
long range connection that operates outside of the neighbourhood domain. An example
of the grid layout with demo loops is shown in Figure 8.7.

The system clock speed is dependent on the network and may be loosely associated
to the largest number of connections that the most connected neuron requires to or
from itself. In Figure 8.7 loop ‘C’ is seen to be the largest connected loop, with 8 units
contained within its domain. The system clock must therefore run at least 7 times
slower than the internal clock, regardless of the number of neurons used overall. The
loops are implemented as a ring of shift registers, with a register located at each node
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Figure 8.6: Available local neighbourhood of a neuron supported by the grid
architecture.

input, meaning that the propagation delay remains fixed regardless of loop size. This
architecture can mimic a fixed-width layered network by simply assigning loops down
the full length of each column.

Since this system represents a communications solution, the nodes themselves can be
defined to use a broad range of different neuron models. In this work, and for simplicity,
a configurable Integrate and Fire (IF) model was used. This model contains internal
weights that are applied to the incoming stimulus. The weighted input is added together
and passed through a threshold block and if the threshold is exceeded, the output is
set high ready for the next loop cycle. All loop cycles are kept in synchronisation,
meaning that smaller loops shut down once finished while waiting for the larger loops
to complete their cycles. This shutdown step for small loops helps reduce the overall
power consumption by avoiding unnecessary data transmission.

This grid architecture is configured, as before, using configuration commands. These are
sent along a serial control bus that connects to a computer to allow the configuration and
monitoring of the system during use. These configuration commands set the connection
infrastructure arrangement, the node weights, IO direction and the controllers address
space range. In a technique similar to that of FPGA synthesis engines, it is up to the
network synthesis tool to arrange the network and fit the neurons into neighbouring
node loops, with an aim to minimise the maximum loop size.

Both these architectures require an internal clock and controller that propagates
fully through an address space once for each simulated time-step. While the column
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architecture requires each neuron to have a unique address, the grid architecture
requires neurons to only have unique addresses within any given loop. As such, many
neurons may drive independent loops at the same time, reducing the total cycle count
required per simulated time-step. This architecture supports two-dimensional scaling
which is independent of the system clock timings. A pseudo-global connection can be
achieved, with any node located a maximum of one node away from any other node,
and a single neuron can send and receive in four directions at the same time allowing for
rapid transmission through a network. This architecture can support locally connected
networks with a small number of global connections.

Intermediate Representation

In order to produce a scalable and practical architecture it is important to consider how
a particular network may be synthesised onto the hardware. There are a number of
different methods for high-level representation of a network. An intermediate translation
must be defined to allow a user to move from such high-level descriptions to a physical
mapped solution and this often reflects the physical architecture through its defined
structure.

The grid architecture includes a scan chain for loading parameters into the system,
thus the intermediate representation will be structured in a serialised form, with the
whole network defined as a single entry. To define a network, the connectivity and
individual neuron parameters must all be included in the final serialised format. A
number of different connection options were shown in Figure 8.5. Each node can
support four connections, with one starting on each face of the node. The direction of
these connections is determined by the connection infrastructure hardware, forming
straight and bracketed connections into larger loops. The selection of these directional
connections is performed using single bit parameter values. Alongside the connection
information, the serialised data also includes the weights, neuron and IO block
settings.

The implications of the interconnect options offered by this architecture must also be
considered when mapping a high-level design, and inherent to this is the concept of
locality between neurons. Figure 8.6 shows a neuron (the ‘central’ node) and its local
‘neighbourhood’ neurons. For two neurons to be connected they must exist within the
one-another’s neighbourhoods and it is therefore up to the synthesis engine to find an
arrangement of nodes which results in all nodes sitting within the neighbourhoods of
their connected nodes. This task becomes a fitting problem, similar to that performed
by FPGA synthesis engines. Neurons sitting on the same row or column will share in the
row or column neighbourhood respectively. This can be used to create layers of neurons,
allowing a simple implementation of Feed-Forward Neural Networks (FFNNs).
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High Level Network Design Tool

It is necessary to provide some form of high level programming interface to easily map
a known neural network onto the grid architecture. For this purpose a software tool has
been developed that permits the user to define a network and its corresponding weights.
This software tool exports a low level programming file that is used to configure the
hardware grid architecture.

The software tool is divided into three core parts. These are the global controls,
such as reset and synchronisation; the interconnectivity definitions, used to arrange
to loop connections within the architecture; and the neuron configurations, defining
the threshold and weights. The global controls are pre-defined by the software tool,
ensuring that the reset, write enable and synchronisation signals are all generated
correctly.

The interconnectivity definitions are performed using a graphical interface. Each neuron
within the network is connected to four interconnect switches in a North, East, South,
West fashion. The grid architecture has a rectangular structure and so the configuration
process is split into columns, where each column starts and stops with an IO block.
Each column is responsible for the interconnect switches on the eastern and northern
sides of the neurons with an additional interconnect switch north of the bottommost
IO block. This is shown in Figure 8.8. The green cells in interconnection blocks are
configured graphically by selecting a routing direction. Only the cells marked in green
require definition, with the remaining cells auto-populating to form closed loops.

Each neuron has three standard configurable parameters, the input weights, the input
bias and the threshold. The bias and threshold values are singular for each neuron
block, whereas the weights are a vector with an entry for each possible connected input.
The neuron parameters are setup as shown in Figure 8.9 with 5 neurons in this example
numbered N0 to N4 and permissible weights in the range -4 to +3.

This graphical interface makes configuring the grid architecture a straightforward
task for the user, greatly reducing the time required to setup and use the proposed
neuromorphic solution.
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Interconnect Setup

(Use \, /, | and --- as appropriate)
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| | | |
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--- --- _/      \_ ---

--- --- --- --- ---
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N4

IO Bottom

N2

N3

N0

N1

IO Top

Figure 8.8: Design of the interconnects between neurons within a single column of the
grid architecture. In this case there is a top and bottom IO block and 5 neuron blocks N0
- N4, with routing blocks located in-between each neuron and IO block vertically as well
as on the right horizontal. The routing blocks can be configured graphically by selecting
a routing direction in each of the green cells. The right horizontal routing blocks appear
on every grid column with the exception of the far right IO column.
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Top Connection Weights

N + 13 N + 12 N + 11 N + 10 N + 9 N + 8 N + 7 N + 6 N + 5 N + 4 N + 3 N + 2 N + 1 Self

N0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

N1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

N2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

N3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

N4 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Right Connection Weights

N + 13 N + 12 N + 11 N + 10 N + 9 N + 8 N + 7 N + 6 N + 5 N + 4 N + 3 N + 2 N + 1 Self

N0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

N1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

N2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

N3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

N4 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bottom Connection Weights

N + 13 N + 12 N + 11 N + 10 N + 9 N + 8 N + 7 N + 6 N + 5 N + 4 N + 3 N + 2 N + 1 Self

N0 0 0 0 2 0 0 0 2 0 0 0 0 0 0

N1 0 0 0 0 1 -4 0 0 1 0 0 0 1 1

N2 0 0 0 0 2 0 0 0 0 0 0 0 0 0

N3 0 0 -4 0 0 0 0 0 1 0 0 1 1 1

N4 0 0 0 0 0 0 2 0 0 0 0 0 0 0

Left Connection Weights

N + 13 N + 12 N + 11 N + 10 N + 9 N + 8 N + 7 N + 6 N + 5 N + 4 N + 3 N + 2 N + 1 Self

N0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

N1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

N2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

N3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

N4 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(-4 to 3)
From

To

(-4 to 3)
From

To

(-4 to 3)
From

To

(-4 to 3)
From

To

Figure 8.9: Grid architecture weight vectors for single column comprising 5 neuron
blocks. The weights are in the range -4 to +3 and are configurable for every possible
input connection to the neuron.
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8.3 Validation Methodology for a Fully Local

Architecture

A well constrained and understood biological system is required to assess the
applicability of the novel grid architecture design and compare its performance with
that of the previously established column architecture. The C. Elegans locomotory
system, responsible for locomotion generation within the C. Elegans nematode, is well
documented and therefore this locomotory system was used to demonstrate and
validate the representation capabilities of the grid architecture at a network level. The
locomotory system of the C. Elegans has already seen common usage in both the
MBED Cellular Automata Neuron model by Claverol et al [137] and the column
architecture by Bailey [15]. These models showed that an ANN was capable of
generating the same motor neuron patterns as had been observed in living C.
Elegans.

This section details the C. Elegans event-based locomotive model before discussing
the implementation of the model on the novel fully-local grid architecture, allowing
direct comparison between the grid and column architectures. The resulting neural
network is also used to drive a 2D and 3D model to provide a visual representation of
the simulated animal’s resulting rectilinear locomotion.

8.3.1 The C. Elegans Locomotive Model

First introduced by Claverol [146], the C. Elegans event-based locomotive model
simulates a small part of this animals connectome, containing only 86 neurons and 180
synapses. This neural circuit is responsible for the forward and backwards locomotion
as well as coiling behaviour. The structure of this neural circuit is highly regular with
very few variations from animal to animal within the species.

The model may be divided into 10 segments to match the animals nervous system itself.
The majority of these segments take the form shown in Figure 8.10, where there is a
high level of locality within the model. The muscle cells, denoted DM and VM, drive
muscle activation within their respective segments. These are triggered by the motor
neurons in adjacent segments, labelled VA, VB, DA and DB. These motor neurons
require concurrent activation from both the muscle cells and the synchronization cells,
marked AVA and AVB. The two remaining neurons, VD and DD, operate as inhibitory
neurons and are responsible for the contralateral inhibition of the muscle on the opposite
side of the animal. In this arrangement only a limited number of connections join to
adjacent sections and a total of two neurons (AVA and AVB) are connected globally,
joining to all segments. The head and tail segments have two additional neurons each
(marked NRD, NRV in the head and TSD, TSV in the tail), to act as stimulation points
for the rest of the locomotive system. These extra neurons may be seen highlighted in
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#D
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Neurons

Figure 8.10: Slice of the C. Elegans locomotion model originally developed by Claverol
[137], showing clear segmentation with local connectivity and sparse global connectivity.

green in Figure 8.11, which shows the construction of the head and tail sections of the
locomotive model. Each of these stimulation neurons represent separate neural systems
which, combined, guide the animals locomotion. In the event-based model these neural
systems are replaced with a set of frequency controlled oscillators that generate the
desired stimulus input frequencies. The 8 distinct regions of muscle shown in Figure 8.2
are grouped into two sets: the dorsal set; and the ventral set. These are then treated
as a singular muscle with just one dorsal and ventral motor neuron driving each set
per segment, as shown in Figure 8.10.

This event-driven model has been utilised in numerous different implementations for
neural hardware [146, 147, 148, 149]. These models provide resultant behaviours that
new systems may be compared against to ensure functional equivalence and make the
locomotive model a practical test for new biologically inspired reconfigurable
architectures, providing a simple yet functionally verifiable network inspired by
nature.

8.3.2 Representation Validation - The C. Elegans Locomotive
Model

The locomotive model of the C. Elegans may be divided into small, repeated segments
(as shown in Figure 8.10). Each segment exhibits a high order of local connectivity,
with relatively sparse connections from one segment to another.
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Figure 8.11: The C. Elegans locomotive head and tail segments - showing high locality,
with limited connections to adjacent segments. In total, there are only two global neurons
that connect to all segments. These global neurons (AVA and AVB) are shown duplicated
here for readability.
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Figure 8.12: The segment from Figure 8.10 implemented on the grid architecture with
full scalability, extending the model to an arbitrary number of segments is a simple case
of inserting more columns, no changes to the fundamental architecture are required.

J. E. G-H-Cater 229 University of Bath



CHAPTER 8. UTILISING NEURAL NETWORK LOCALITY

By utilising the local connectivity seen within this model, it was implemented using the
grid architecture system described in Section 8.2.2 (an example mapping is shown in
Figure 8.12). The largest loop within this implementation, which lies along the width
of a single segment, contains 10 neurons. This system therefore requires 9 clock cycles
per simulated system time-step regardless of the number of segments implemented.
This represents a 9× speed increase in the 10 segment system when compared to the
direct implementation of Bailey [15].

The sensory AVA and AVB neurons are actually two single neurons that connect along
the entire length of the C. Elegans. These neurons have no incoming connections
from within the network and they may therefore be divided into a number of identical
neurons that are all driven by the same external stimulus, as shown in Figure 8.12.

The C. Elegans locomotive model was implemented on the grid architecture using
a CycloneV FPGA. With the reconfigurable grid architecture built onto the FPGA,
configuration files were generated to describe the locomotive models network. While
such configuration files would nominally be generated by a synthesis engine, the
ones used in this test were defined by hand. This was done to ensure that any
comparisons drawn between the grid and column architectures themselves were tested
fairly without external influence from synthesis algorithms or hidden layout decision
processes. Synthesis and system fitting are two concepts well established within FPGA
and Custom IC development and therefore are of limited interest when verifying the
architectures fundamental ability to represent a problem or task.

HDL test bench files were developed and used in Modelsim, a multi-language HDL
simulation environment by Mentor Graphics, to program the grid architecture with
the generated configuration files. This test bench also simulates the stimuli for the
network, recording the response at each time step. It was designed to wrap around
the architecture-under-test, connecting to the IO blocks and the control/programming
interfaces. This allowed the architecture to be reconfigured on command, providing
monitoring for the output signals and direct control over the input stimuli. The stimuli
for generating forwards, backwards and coiling behaviour within the locomotive model
are shown in Figure 8.13. Each locomotive behaviour is selected by generating the
associated oscillation signals at the AVA, AVB, DRN, DTN, VRN and VTN neurons as
shown. The test bench was configured with custom control signals to easily select and
generate the desired stimuli on command. These input stimuli each yield a predictable
motor response, and therefore the test bench was setup to record all motor neuron
outputs for verification. These recorded motor neuron signals were then written to file
to support further investigation and validation.

The test bench was configured to test for forwards, backwards and coiling behaviour
as seen in a healthy animal. Since the system is easily configurable, gene knockout
tests may also be performed. In gene knockout tests, specific neurons or synapses are
disabled. The resulting network operation (in this case motion generation) is then
re-tested and compared against a healthy sample. These tests are often used to help
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Figure 8.13: The stimulus signals passed to the head and tail control neurons and the
two global AVx neurons. Signals of the form A) produce forwards motion, signals of the
form B) yield backwards motion, while signals of the form C) yield coiling behaviour.

inform research into the specific role and operation of a given neuron within the nervous
system. These tests provide an interesting comparative metric when assessing new
artificial implementations, as they are usually performed on live biological specimens
and therefore yield biological data against which the artificial system may be compared.
For example, the UNC25 gene knockout mutation causes the Dorsal and Ventral motor
neurons to latch into a constant firing mode when activated. This causes the animal to
seize up, resulting in a shrinking behaviour.

Through the implementation of a healthy C. Elegans model, alongside the UNC25 gene
knockout model, the grid architecture may be validated against both the hybrid-local
column architecture and biological results.

8.3.3 2D Mechanical Model

In order to further validate the architectures output, a new 2D mechanical model of
the C. Elegans was developed. This model reads the output muscle signals generated
by the implemented model, driving the muscles on the simulated animal to generate
motion. This motion may then be compared against recordings of the animal itself
providing insight into the resulting locomotion caused by a given signal train.

Since the C. Elegans is a soft-bodied creature, this mechanical model must act to
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++ + + +

Vertex

Armature Pivot

Simulation Origin

Figure 8.14: Screen capture of the mechanical model, showing the vertices as purple
circles; the armature joints as grey circles; the muscles and structural supports as lines
and the simulation origin as a yellow square.

maintain the animals structure while also applying deformation in event of muscle
activation. This model was built using principles from force-directed graphs. As
shown in Figure 8.14, vertices were placed at equal distances along the length of the
C. Elegans, conceptually representing the ends of the muscles. Edges were drawn
between neighbouring vertices along the length of the animal, representing the muscles
responsible for locomotion. Finally cross-bars and vertical struts were added to ensure
that the simulated volume maintained its structure when force was applied by the
muscles.

Edge Forces (Muscles and Structure)

Each of the edges are treated as linear springs with non-zero resting length, l0.
Connected vertices are therefore attracted to one another using Hooke’s law as shown
in Equation 8.4, where Fs is the force applied to a vertex that is connected to another
vertex by an edge of length l with a spring constant ks. The unit vector û points from
the vertex acted upon towards the vertex connected by the edge under
inspection.

~Fs = ks · (l − l0) · û (8.4)

While all edges operate as spring attractors, they may be conceptually separated into
two categories. The first class are those that operate as muscles and sit along the two
sides of the animals; the second are those that act as structural supports for the model.
These structural edges maintain a fixed resting length throughout the entire simulation,
acting to support and shape the body of the simulated C. Elegans. The edges marked
as muscle, however, are modified by muscle contraction, with activation causing the
resting length, l0, of the edge in question to shorten. Muscle relaxation causes the
length to restore to its default value.
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The muscle length modification is not instantaneous, using a simple feedback loop to
control the length at any simulation time step. This helps ensure the motion is fluid
and is a closer representation to the way muscles contract in biological systems. This
feedback loop is shown in Equation 8.5, where Ā represents the muscles activation
signal (0 when activated and 1 when relaxed), lmax is the relaxed resting length of the
muscle, ln is the current length of the muscle, ln+1 is the next muscle length, and km is
the muscle constant used to scale the muscles response to stimulus.

ln+1 = (Ā · lmax − ln) ·Km + ln (8.5)

Vertex Forces (Volume)

The vertices of the model are repelled from one another to ensure that the body doesn’t
collapse during muscle contraction. This force is calculated using an inverse square
law to ensure that its effect is minimal when vertices are adequately spaced. In this
simulation a form of Coulomb’s law was used to provide this vertex repulsion, as shown
below in Equation 8.6:

~Fvi = −Ke ·
q1q2
x2
· v̂ (8.6)

where ke is a constant, q1 and q2 are virtual charges to control a vertex’s influence on
the model, d is the distance between the two vertices in question and v̂ is a vector
which points towards the other vertex in the vertex pair under consideration. This
inverse square law ensures that the repulsive forces become significantly larger than
any other force within the system as the vertices near one another.

Combining Forces

The law of conservation of momentum may then be applied to calculate the acceleration
caused by the superposition of these forces as shown in Equations 8.7 and 8.8. In these
equations, the vertices are given a mass, m; the total spring force, Fs and the total
vertex repulsion force, Fv are calculated; and the velocity v is used with a drag constant
kd.

0 = m~a+ kd~v + ~Fs + ~Fv (8.7)

~a = − 1

m
· (kd~v + ~Fs + ~Fv) (8.8)
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This acceleration value may then be used to calculate the new velocity of the vertex at
each time step, ensuring that the system finds equilibrium at rest.

This mechanical model was designed to read the raw ventral and dorsal muscle activation
signals produced by the grid hardware architecture on the Modelsim test benches. These
activation signals were stored by the test bench as time-synchronised boolean values
representing motor neuron activations. These motor neuron signals were linked to the
associated muscle length using Equation 8.5.

Once the simulated motion was generated, the angles made between the C. Elegans
segments is calculated and saved. This data makes it possible to support 3D model
actuation as outlined in Section 8.3.4.

8.3.4 3D Model

A 3D model was also built to allow direct visualisation and comparison of the animals
movement. This simulation makes validation of the neural model easier as it provides
a visual representation of the results that may be compared against the biological
counterpart.

This model was built using a 3D modelling and animation package 1 and rigged with a
simple linear armature, shown in Figure 8.15a. Each bone in the armature represents
a segment along the animals length. Vertex weights were used to control each bones
influence along the simulated animals length, shown for the head bone in Figure 8.15b.
The segment angles generated using the 2D physics model were imported and applied
to the armature using a simple python script. Finally materials, backdrops and lighting
were added to the simulation, allowing the resultant motion to be simulated and
rendered in 3D.

With the pipeline from hardware implementation to 3D model designed, it is trivial
to trial new network modifications, such as gene knockout mutations - resulting in a
visual 3D representation of the animals motion that may be quickly compared against
biological findings.

1Blender was used for this work, available: http://www.blender.org
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(a) Armature and body of the simulated C. Elegans model, with
the armature highlighted in orange.

(b) Weight painting example to control the influence of each
armature bone.

(c) A Python script was used to control the armatures bone
positions and rotations, reading the data from the exported 2D
model data.

(d) Material, lighting and camera setup used to generate the final
motion animations. Selected to match real biological recordings.

Figure 8.15: The 3D model was rigged using a standard armature, before the 2D model
data was used to simulate the C. Elegans deformation and motion. Materials and and a
simple white background were used to match the footage from biological examples.
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Figure 8.16: Forward and backward locomotion behaviour of a 10 segment C. Elegans
model, with a bi-phasic control signal to generate stimulus applied to the head and tail
of the model. This results in a propagating wave of signals leading to sinusoidal motion
in the C. Elegans. Muscle activation is shown as a solid block of colour due to the high
frequency oscillations of the muscle cells.

8.4 Validation Results

As described in Section 8.3 the reconfigurable grid architecture was verified using the
C. Elegans locomotive model. First a stimulus was applied that, in nature, is observed
to cause forwards and backwards motion. Then the coiling and UNC25 knockout
behaviours were also tested. The implemented networks response to this stimulus was
recorded and used in a 2D and 3D model to produce a simulation of the locomotive
behaviour. This section presents the results from these test, comparing them with
previous studies and the biological animal where relevant.

Forwards/Backwards Motion

The grid architecture was configured with a simulated C. Elegans constructed from 10
segments. Forwards and backwards locomotion was then observed using a bi-phasic
control signal to produce the appropriate head and tail stimulation. The resulting
motor neuron signals generated by the grid architecture are shown in Figure 8.16.
The top-most trace in this figure is the control signal used to drive the forwards
and backwards stimulus. This control signal is setup to oscillate at an arbitrary low
frequency, resulting in an alternating forwards and backwards locomotion.

The top bundle of signals in Figure 8.16 form the dorsal muscle cells, while the bottom
bundle represent the ventral muscle cells. Activation of these neurons is shown as blocks
of colour due to the high frequency oscillations produced by the muscle cells. These
neurons are numbered from head to tail starting at 0, such that movement propagating
head to tail will move from the bottom to the top of each bundle. Vertical lines are
drawn every 500 milliseconds on the x-axis.

Activity begins on the Ventral side of the head and propagates down to the Dorsal side of
the tail, taking approximately 2900 milliseconds to complete one full cycle. These signals
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Figure 8.17: Frames taken from the 3D animation2, showing the sinusoidal motion
indicative of forward movement in the simulated 10-segment C. Elegans. In this animation
the animal is moving left-to-right, as shown by the propagating waves moving right-to-left
down the length of the animal. The muscle contraction data for this animation was
generated using the grid architecture.

produce a sinusoidal motion in the animal, yielding a forwards locomotion. Figure 8.17
shows frames from the animated 3D model, where this propagating sinusoidal motion
is shown with the muscle activation propagating right-to-left down the length of the C.
Elegans.

These results were consistent with Bailey’s column architecture results and yield the
same propagating waves as seen in previous work and observed in nature [15]. The
muscles were observed to oscillate at a frequency of 0.57Hz which matches the findings
of Karbowski et. al. [150]. The propagating muscle signals were found to match those
of Claverol et. al. [146] in both shape and structure. The exact timing in the signals
varies from model to model, largely due to differences in the timing of stimulation pulses.
The works of Mailler et. al., Niebur et. al. and Bailey et. al. [151, 152, 147, 148] are
all agreed on the underlying nature of propagating muscle signals and the resulting
serpentine motion. These properties are observed in the muscle activation signals
moving down the length of this simulated animal and in the 3D model itself. Boyle
et. al. additionally provide stills from simulations of their model [153]. These stills
were compared against the 3D animation and found to have the same core locomotive
properties.

The locomotive model was mapped onto the grid architecture with a maximum loop
size of 10. This means that only 9 sub-steps were required to pass all neurons outputs
to their neighbours within the system and preform a single simulation step. In contrast
the hybrid-local column architecture required all 86 neurons to drive the buses once
each for a simulation step meaning that 86 sub-steps were required. This reduction in
sub-steps enabled the grid architecture to outperform both the column architecture and
previous implementations by a simulation speed increase of 9× and allows new segments
to be added to the locomotive model without any reduction in performance.

2Full video available at: https://youtu.be/PKIIKkSBtjE
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Figure 8.18: Coiling behaviour of a 10 segment C. Elegans model, with stimulus
applied to the Ventral side of both the head and tail. This results in motor neuron
activation along the ventral side only, producing a coiling action towards the centre.
Muscle activation is shown as a solid block of colour due to the high frequency oscillations
of the muscle cells.

Figure 8.19: Frames taken from the 3D animation, showing the coiling behaviour in
the simulated 10-segment C. Elegans on the grid architecture, with time progressing
from left-to-right. The muscle contraction data for this animation was generated using
the grid architecture.

Coiling Behaviour

Coiling behaviour has also been demonstrated in previous implementations of the C.
Elegans locomotive model. Figure 8.18 shows the Dorsal and Ventral muscle cells
response to a stimulus applied to both the head and tail simultaneously. In this
situation, activation begins at both the head and tail of the animal and then propagates
to the centre. This muscle activation leads the animal to coil towards the stimulus,
which in this case was applied to the Ventral side of the animal. The results for this
test are consistent between the grid and column architectures. The 3D model was again
generated, showing that the signals do indeed lead to coiling behaviour towards the
stimulus, as observed in nature. Frames from this simulation may be seen in Figure
8.19.

UNC25 Knockout

The UNC25 gene knockout has a well defined impact on the operation of the C. Elegans
locomotive system. This mutation disrupts the pathway for synthesis of the inhibitory
neurotransmitter GABA [154]. This disruption is reflected in the class D neurons (DD
and VD) which become unable to release inhibitory neurotransmitter onto the muscles
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Figure 8.20: UNC25 knockout behaviour of a 10 segment C. Elegans model, with
stimulus applied to the head and tail of the model to generate forwards motion. This
results in a seizure in the animal, with both dorsal and ventral muscles firing as the
activation propagates down its length. Muscle activation is shown as a solid block of
colour due to the high frequency oscillations of the muscle cells.

to stop them firing. In this mode, the muscle cells enter a state of constant firing,
resulting in a full muscular seizure along the animals length [149].

Within the simulated locomotive model this mutation may be implemented by
significantly increasing the firing threshold of the DD and VD neurons. Applying the
standard forward motion stimulus to the head of a C. Elegans with this gene mutation
leads to a propagating seizure starting at the head. Figure 8.20 shows the motor
neuron response to such stimulus. As expected the mutation results in seizures in the
model on both architectures, propagating from head to tail as the locomotive
behaviour communicates down the animals length.

Summary

The grid architecture has been shown to fully emulate the C. Elegans locomotive model
with no failure or shortcoming in its network representation. The timing and structure
of muscle activation waveforms were checked against previous works and found to be
in accordance with the new results. The 3D model behaviours were also reviewed
visually and found to be consistent with observed behaviours seen in nature. Forwards,
backwards and coiling behaviour were all demonstrated and the system was shown to
be suitable for testing gene knockout behaviour with accurate and biologically correct
results.

8.5 Results Analysis

The C.Elegans model has been successfully demonstrated on the new fully-local grid
architecture. An important aspect to consider is the scalability (and its effect on
speed) that is possible with this architecture when compared against existing systems.
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Table 8.5: Worst-case maximum frequencies for the key column and proposed grid
architecture subsystems.

Sub-system Column Architecture Proposed Architecture

Neuron Clock 9.84 MHz 82.13 MHz
Communications Clock 187.34 MHz 82.13 MHz

While the column architecture benefits from supporting a hybrid communications
infrastructure, its clock speed is positively correlated to the neuron count. The grid
architecture, however, is constrained by the maximum loop size required when fitting
the network to the underlying system. Since the 10 segment C.Elegans requires 86
neurons and the largest grid loop was 10 neurons, the grid architecture should be
8.6× faster than the column architecture when implementing the same locomotive
model.

This performance gain assumes that both systems run with the same internal clock
speed. In reality this is not possible, as different architecture modules will have different
clock constraints. The Altera tool-suite provides a timing analysis tool that may be
used to calculate the clock constraints for each module. The key clock constraints
for both the column and grid architecture are shown in Table 8.5. These maximum
clock frequencies were generated using the synthesis timing analysis tools. The grid
architecture neurons latch the communications loops, meaning that the communications
clock is limited by the neuron clock rate. The column architectures neuron clock is
also notably slower than the other modules in this table. This difference is due to
the way synapses may be chained together within the architecture and represents the
absolute worst-case speed, where all synapses are chained together resulting in a large
propagation delay. Taking these delays into consideration the grid architecture is 3.5×
faster than the column architecture when implementing the 10 segment locomotive
model.

While the column architecture supports a faster communications clock, the grid
architecture benefits greatly from the reduced number of neurons on each
communications bus as a direct result of its locally connected nature. This means that
large networks require fewer communications clock cycles to simulate a single system
time step. With the grid architecture, each communications loop that is isolated from
the remainder of the communications network increases the overall simulation step
frequency, improving the speed at which simulation results may be produced. At this
stage, the neuron clock speeds become the dominant limiting factor. The column
architecture’s neuron clock speed closely correlated to the number of interconnected
synapses implemented within the simulation. The grid architecture, however, supports
an inherent internal latching of the data on each loop resulting in a fixed neuron clock
speed. This fixed frequency means that the grid architecture’s neurons achieve a speed
improvement of around 8× that of the column architecture’s worst-case neuron
speeds.
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Figure 8.21: Comparison of the column architecture and grid architecture simulation
time-step frequencies with increasing network size. Each additional segment results in a
decrease of the hybrid-local column architecture, while the fully-local grid architecture
maintains it operating simulation step frequency of 8.213 MHz.

The impact of system size on system speed may be calculated by increasing the number
of segments used in the C.Elegans model. As shown in Figure 8.21, the column
architecture forms a ‘roof-line’ model, where suitably small networks (such as a 1
segment C.Elegans) are limited by the neuron clock frequency. With the addition of
each segment, the total number of neurons simulated is increased by 8. This increase
in neuron count causes the simulation frequency to fall away asymptotically towards
zero, with the communications frequency now limiting the overall speed.

The grid architecture has a constant simulation frequency as the largest loop size does
not increase with the addition of more segments. In Figure 8.21, the 3.5× gain may
be seen in the 10 segment simulation while the estimated 8.6× speed improvement
occurs when simulating a 25 segment model. Since the hybrid-local column architecture
continues asymptomatically, the simulation frequency gain of the grid architecture
continues to increase as new segments are added.

This demonstrates how locally constrained architectures can offer significant benefits
when simulating systems which also represent a certain degree of locality within their
structure. Indeed a 50 segment C.Elegans simulation realises a simulation speed
improvement of as much as 17.5× when implemented on a fully-local architecture.

8.5.1 Suitability of Fully Local Systems

Having shown that the fully local grid architecture is capable of representing a
biologically inspired network, it is important to now consider whether such systems are
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practical for such tasks. In many cases this comes down to a subjective choice based
on software preferences, hardware availability and ease of application. It is possible,
however, to identify four fundamental criteria that may be used when selecting a
suitable hardware system for biological emulation. These criteria are biological
accuracy, scalability, performance (which could be in terms of speed, area or both) and
flexibility. For each of these criteria, the proposed grid architecture will be compared
with the previous hardware implementations of Claverol [137] and Bailey [15].

Biological Accuracy

As has been demonstrated in section 8.4, the basic locomotory behaviour, coiling
response and the effect of UNC-25 knockout has been validated in the model
implemented using the grid architecture. These results are consistent not only with
the observed biological behaviour, but also with the hardware models developed by
Claverol [137] and Bailey [15]. There are more mutation conditions that could be
evaluated however these three fundamental tests are validation of the efficacy of the
model as they show the independent neuron behaviour under locomotion, the
asymmetric behaviour of coiling and the shrinking behaviour of the UNC-25 knockout.
This clearly demonstrates the fundamental behaviour of the implemented model is in
full agreement with the underlying event-based locomotive model, and so the grid
architecture could therefore used as a research tool for biological neural network
emulation and real-time experiments.

Scalability

One key advantage of the grid architecture is found in its 2-dimensional nature,
resulting in the ability to scale the system in both axes arbitrarily. Using the software
programming interface, the design is abstracted to a network level making it very
easy to generate and program a network accordingly. The connectivity is assumed to
be highly local, and while this will not provide the full connectivity for completely
arbitrary networks, long-range connections can be defined using the IO blocks to jump
between loops. This is analogous to the approach used in the well known Globally
Asynchronous, Locally Synchronous (GALS) systems. Importantly, this feature permits
the rapid scaling of models such as C. Elegans to an arbitrary number of segments
without any change in underlying network architecture.

Performance (speed/resources)

From a resource perspective the grid architecture is an efficient system. Using a level of
granularity that maps from the neuron network level directly to hardware, this system
offers sufficient local connectivity to ensure that the model utilizes the communications
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infrastructure effectively. It has been shown that the grid architecture achieves a
significant speed improvement over the column architecture. For locally connected
networks, with relatively low numbers of connections, this performance improvement
can be dramatic - as in the case for the C. Elegans, where the largest loop within the
model, which lies along the width of a single segment, contains only 10 neurons.

Flexibility

The abstraction of the model to a hardware architecture makes the whole approach
extremely flexible from a network definition and programming perspective. Unlike
the fully coded approaches of Claverol and Bailey. The HDL library approach of
Bailey meant that a standard synthesis software tool would be required to configure
the network, with the resulting design not necessarily representative of the locally
connected nature of the nervous system being analysed.

Using the software interface to define the connectivity and the weights makes the
process straightforward, and most importantly the definition of an underlying hardware
fabric gives a known structure and fundamental behaviour that is consistent and simple
to extend or modify. This solution is more akin to the operation of FPGAs, where
a well defined hardware system supports abstracted circuit definitions to allow rapid
experimentation and implementation.

8.6 Limitations of a Locally Connected

Architecture

The results in Section 8.4 show that a predominantly local architecture, such as the grid
architecture, is capable of simulating a naturally occurring network, with a biologically
feasible response to gene knockout mutations. Since there are resource benefits to
utilising locally connected architectures, it is also of interest to consider how artificial
networks map onto such systems.

One of the most popular neural network topologies at present is the CNN; typically
CNNs are used for pattern recognition problems [5]. These systems are structured as
deep feed-forward networks, with layers of shared weights to convolve filters across the
whole input space. The layers in a CNN are typically well regimented, with connections
only present between conceptually neighbouring layers. These layers fall into three
key categories: the convolutional layers, which perform a convolutional operation on
the input data; the pooling layers, which combine outputs from a layer, compressing
the data into a smaller dataset; and the Multi-Layer Perceptron (MLP) layers which
perform the final classification task. These MLP layers are typically located at the
output side of the system, operating on the filtered data. CNNs use the principle
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Figure 8.22: Example receptive field of a single pixel in a convolutional layer. Each
pixel takes input from a local set of points on the previous layer.

of shared weights within their convolutional layers which dramatically reduces the
training times and problem space exploration requirements. Each neuron in these layers
receives input from a sub-sample of spatially local data points known as the receptive
field (shown in Figure 8.22). The neurons within the layer therefore output a filtered
result that is equivalent to convolving a single neurons receptive field across the entire
dataset.

With both the clear layered structure and neuron receptive fields, it is apparent that
there is a significant measure of locality within CNNs. However, when attempting
to map such networks to the grid architecture it was found that CNNs scaled poorly.
With 2D image recognition CNNs, the output of each convolutional layer produces a
filtered 2D image. These images are conceptually stacked within the same space, with
one image layer producing multiple filtered feature layers/images. This stacking must
align along a new dimension to keep the convolutional neurons spatially near to their
receptive field, meaning that a 3-dimensional structure is required to represent a CNN
for 2D image recognition.

The extra dimension required to represent a CNN creates a serious fitting problem
when attempting to fit a 2D image recognition CNN onto a locally connected hardware
architecture. The architectures are constructed using standard IC fabrication
technologies that are not continuously scalable in the third dimension, supporting only
a small number of discrete layers. As such, the local communication infrastructure in
such systems quickly reaches capacity when unpacking a locally yet densely connected
three-dimensional CNN to fit onto a fundamentally two-dimensional architecture.

The scale of modern CNN implementations also causes issues when attempting to
produce a hardware accelerated solution. Previous implementations have resorted to
splitting the convolutional layers apart, calculating each one sequentially and then
storing the working results in off-chip DRAM for further calculations [155, 156, 157, 158].
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Even these measures result in layers that cannot be fitted to a modern FPGA system
and in each system a further tiling operation must be performed to break the layers into
smaller manageable parts. Once the CNN has been successfully defined in a recursive
manner further acceleration may be achieved by systematically exploring the impacts
of loop unrolling, loop pipe-lining and tile sizing. These methods are described in detail
by Zhang et. al. and shown to yield a ∼ 2× improvement over previous recursive
implementations [155]. Such systems again differ massively from the CNN structures
seen in nature, with the recursive approach requiring significant communications and
data manipulation. Data reuse becomes a key aspect in such accelerators, attempting
to reduce this communications dependency by reducing the memory access required by
the system [157]. The proposed grid architecture supports reconfiguration and could
therefore be utilised in a recursive manner, however the dimensionality issues previously
mentioned would cause a significant performance decrease. Many CNN accelerators are
designed specifically for CNN implementations and therefore utilize architectures and
innovations that yield significant power and speed advantages over implementations of
CNNs on generic neuromorphic systems.

It is worth noting that this dimensional issue was not met with the C. Elegans locomotive
model. However this is largely because the model was already simplified to constrain
the simulated motion onto a plane. The animal itself has a total of eight rows of
muscles along its length supporting free motion in 3 dimensions. The locomotive model
simulates only two of these muscle rows, limiting the motion to only dorsal and ventral
contraction on a surface.

Neuromorphic systems were originally conceived in effort to close the gap between
natural biological processing and standard digital techniques [6], however with current
fabrication techniques the design of such systems are constrained to a limited number
of 2D layers. Biological systems, on the other-hand, operate in dense 3D structures.
This loss of dimensionality leads to new challenges, causing artificial systems to require
significant communications resource. Recursion and time-division multiplexed hardware
resources have found considerable use in neuromorphic systems. These methods
provide some mitigation for the dimensionality issue by effectively transferring the lost
dimensions into the time domain. Future technologies such as 3D-fabrication techniques
may offer new solutions for this shortcoming in artificial systems, however such systems
are not readily available at this current time.
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8.7 Conclusions

With Moore’s Law reaching its inevitable end, a new processing paradigm must be
developed. It can be observed that most hardware implementations are large systems
with support for full global connectivity. However, many naturally occurring neural
systems are locally-connected specialised systems. In this chapter a new fully-local
reconfigurable architecture has been described and shown to be capable of simulating
real-time biologically inspired neural networks.

The simulation results matched previous work and that of biological observation,
proving that such systems are a good option for testing neuron ablation. The resulting
0.57Hz muscle activation oscillation during forwards locomotion was shown to be
consistent with the work of Karbowski et. al.[150]. The reconfigurability offered by
the system makes it easy to adjust a network and rapidly iterate on an experiment
making it a practical system to complement wet-work experimentation. The locality of
the grid architecture was found to provide a maximum clock-speed improvement of
between 3.5× and 17.5× that of the hybrid column architecture when simulating a
multi-segment C.Elegans locomotive model. This shows the advantages of implementing
networks on architectures that reflect the inherent structure of the network within the
architectures underlying arrangement.

In addition to the local model, an animated model of a C. Elegans was constructed
and connected to the neural network outputs, allowing an artificial locomotive model
to drive the motion of the simulated animal. This provided a clear way to compare
the resulting locomotion with that of biological recordings and other simulations. The
results from this model were checked against the stills provided by Boyle et. al. and
found to be in accordance with their results [153].

Following this work, the fitting of CNNs onto such local architectures was considered. It
appears likely that the difference in dimensionality between 3D biological systems and
2D silicon ICs plays a critical role in limiting the ability to replicate natural systems in
efficient and compact artificial architectures. Greater generic and global connectivity
is required to provide replacement for the lost dimensionality, resulting in significant
resource usage. Future research into 3D chip stacking and new fabrication techniques
may alleviate this issue, however until this point it seems likely that the power and
resource advantages provided by locally connected architectures will be somewhat
mitigated by the complexity of the networks users desire to implement.

In conclusion, this chapter shows that locality and dimensionality both have significant
impacts when organising a neural network, and therefore local connectivity should be
considered alongside globally connected packet-switch systems when designing new
and novel architectures. As seen with FPGA and Application Specific Integrated
Circuit (ASIC) solutions, a trade-off between flexibility and efficiency arises. A globally
connected system provides maximum flexibility, while a constrained connectivity can
yield greater efficiency in terms of power and energy. Since neural networks benefit from
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their ability to adapt, the actual post-training flexibility required for neural network
implementations is, to date, a question which remains to be answered. It seems likely,
however, that some middle-ground between the highly efficient and well constrained
naturally occurring systems and the highly flexible globally connected systems may
be found to be most suitable for end-user applications and technologies. As a result,
it is critical that the communications infrastructure in future neuromorphic systems
undergo the same rigorous selection and testing process as that of the neural models
themselves. Without innovation in this connectivity, communications between neurons
will rapidly become the limiting factor for massive scale neural networks.
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Conclusion

The continued improvement in processor speeds and scales has driven computational
technologies for the last century. Gordon Moore famously observed that the number of
components applied in Integrated Circuits (ICs) doubled approximately every two years,
while Dennards scaling states that the power density of transistors remain constant as
their size is reduced. This reliable and incremental trend has allowed new processors
and IC technologies to continuously improve in both their computational power and
energy consumption. This trend, however, cannot continue indefinitely, with physical
scaling limits leading to what is commonly known as the end of Moore’s law. The
industry is rapidly approaching scales that cannot be reduced and Dennard scaling was
observed to break down after 2006, with leakage currents now playing a key role in
determining the performance of an IC [4].

With the end of Moore’s Law and the fast approaching physical transistor scaling limits,
new technologies and design paradigms must be developed to allow the continued
improvement of general processor technologies. As this trajectory reaches its long
predicted end, designers and engineers must look to other sources of inspiration, such as
that of the human brain, to provide future improvements in computing power [6].

Neural networks are ubiquitous as tools for data analysis and information processing.
In the early part of the 21st century neural networks found widespread application in
many research fields, alongside major integration into new commercial products. These
systems typically excel at classification, speech generation and image recognition tasks
[5], producing state of the art results that rival custom made and hand tuned algorithms.
The scale of these Artificial Neural Networks (ANNs) has grown substantially in recent
years, driven largely by increases in processing power and memory capacity. For
example, the full SpiNNaker system targets 1 billion neurons and 1 trillion synapses
[92], while TrueNorth offers 1 million spiking neurons and 256 million synapses [159].
The increase in network scale has enabled more complex and powerful neural networks
to be constructed, and there is a continuing drive to produce even larger networks. As
a result, the design of efficient and effective hardware implementations is an important
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research topic [34].

Neuromorphic hardware was developed in an effort to realise the efficiency and cognitive
potential seen in biological systems. Originally coined by Mead to refer to bio-inspired
analogue circuits [6], this class of hardware now includes both analogue and digital
circuits designed to offer accelerated computation for either biophysically accurate or
computationally efficient neural models and networks.

With potential applications in bio-interfacing and mobile computation, future
neuromorphic systems must offer powerful cognitive computing systems using energy
efficient and compact solutions. At the other extreme, where High Performance
Computing (HPC) implementations of neuromorphic systems are used to perform
large scale computation tasks, the efficiency of these systems is equally critical. This is
seen in Google’s own application of their Tensor Processing Units (TPUs), where they
claim to have realised an order of magnitude improvement in performance per watt
[83]. The efficiency of the underlying models and hardware used in the production of
next generation neuromorphic systems will therefore become a critical metric as the
scale and application of these networks increases.

9.1 Analogue Neuromorphic Systems

The original neuromorphic systems were designed to leverage similarities in the non-
linear function of biological neurons and transistors. This direct and efficient method of
mapping the biological dynamics onto transistor circuits has resulted in a large number
of different circuit designs and implementations. Chapter 5 demonstrates one such
implementation of a Hodgkin-Huxley model - resulting in an efficient sub-threshold
design that uses 29 transistors and 3 capacitors to model the full sodium, potassium
and leakage channel dynamics of a biological neuron. This design was fabricated on a
0.35µm process and used parametrised currents (up to 10µA) and voltages to provide
a fully tuneable solution. Simulations demonstrate the implementations ability to
produce biophysically plausible Action Potentials (APs) and tonic spiking patterns in
response to a supra-threshold stimulus.

9.1.1 Advantages

Power consumption has already been identified as a critical metric by which
neuromorphic systems are commonly compared. Analogue implementations often
benefit from the non-linear characteristics of transistors, allowing simple circuits to
realise relatively complex mathematical relationships. These systems achieve
considerably lower power consumption than their digital counterparts while also
providing an analogue interface that closely represents that of natures own neural
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systems. Analogue circuits are therefore well suited for bio-interfacing applications in
particular, where the system is required to interface directly with the biology.

Additionally, these systems often require few components when compared with their
digital equivalent, making them a small and effective solution when space is a limited
resource. However circuit size is largely dictated by the system requirements meaning
that these systems can scale rapidly when specific timing constants or signal magnitudes
are required.

9.1.2 Limitations

The decision to incorporate the capacitors into the neuron chip introduced in Chatper
5 was made to ensure that the resulting solution was suitable for integration into
bio-medical devices such as pace makers. From the layout shown in figure 5.10 it can be
seen that the membrane and channel capacitors use around 90% of the available chip
floor-space. This highlights one of the fundamental issues with biophysically accurate
analogue neuron ICs. In order to match the relatively slow timing seen in biological
neurons, the analogue ICs must either use currents within the deep-sub-threshold region,
or large capacitors operating as low-pass filters. These systems become more susceptible
to noise as the currents are reduced to allow a reduction in circuit area.

While the chip was based on a published neuron design, implementation of the circuit
proved a challenging and time intensive task. This is largely because analogue design is
process specific, meaning that implementations of the same design on new technologies
or processes require development to ensure that their function and performance meets
expectations. This requirement to re-design a solution for each and every fabrication
process greatly limits the adoption of analogue designs. Published works in this field
can often only describe the underlying design principles or models used to achieve
the implementation, leaving individuals to attempt implementation within their own
process and pipeline. Small changes in technology can lead to considerable changes in
performance when the circuits in question depend on the non-linear and sub-threshold
performance characteristics of their internal components.

Adding to this challenge, analogue designs are significantly less common than their
digital counterparts. This means that individuals specialising in analogue IC design
have become a somewhat limited resource making it impractical for small companies
or individuals to support custom analogue solutions.

Finally, process variation was observed to have considerable impact on the timing and
response characteristics of the implemented neural model. The falling edge of the
AP was shown to vary by more than 1ms in a 1,500 point Monte-Carlo simulation,
representing a change of as much as 92% of the mean AP timing window. This
performance variance is unsurprising when operating with currents of several micro-
amps. Small fluctuations within the chip fabric itself, alongside variance in the transistor
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dimensions leads to different performance even when produced as part of the same
fabrication run, resulting in changes to system timings and even outright model failures.
Addressing and mitigating these process variation effects is a time consuming task.
External bias values must be used alongside an additional calibration step. This would
represent a significant time commitment and is not practical when scaling the neural
models to several thousand neurons. Variation as a result of thermal properties would
also mean that regular re-calibration was necessary. While this calibration could be
automated, this would require the design and test of an additional system which, in
and of itself, could suffer from similar fluctuations.

9.1.3 Conclusion

Custom analogue solutions yield some of the smallest and most efficient systems in
neuromorphic engineering. It is not unlikely that the analogue nature of the nervous
system plays a core role in its inherent efficiency. However, until the nervous systems
ability to learn and adapt has been further understood, the issues with reliability
and variation common to sub-threshold analogue designs make the production of
large scale analogue networks impractical at this current time. The work described
in Chapter 5 has shown that an on-chip analogue system can be used to implement
a biophysically accurate neural model. For small custom solutions this approach
may yield considerable gains over the more generic digital approaches seen in modern
neuromorphic systems.

9.2 Digital Neuromorphic Systems

Digital solutions have become commonplace within IC design. With the benefit of well
defined libraries that help isolate the design pipeline from the end technology or process,
these systems are highly transferable and easily described. Hardware Description
Languages (HDLs) allow systems to be tested using Field Programmable Gate Arrays
(FPGAs) before implementation on Application Specific Integrated Circuits (ASICs).
With the wide adoption of these techniques, the cost and risks associated with digital
systems design has been greatly reduced when compared against historic digital systems
or analogue solutions.

Digital neuromorphic systems take the established lessons and techniques from Very-
Large Scale Integration (VLSI) design and apply them to new novel processors inspired
by biological neurons and networks. These systems are often more focused on the
computational abilities of a given model, using computationally efficient and somewhat
simplified models rather than attempting to replicate nature with biophysically accurate
neurons. Where biophysical accuracy is required, however, digital system may still be
utilised as shown in Chapter 6. These systems require optimisation or approximation
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to make them practical.

9.2.1 Achieving Optimised Biophysical Accuracy

The performance is commonly considered second to model representation accuracy
when developing biophysically accurate models, and the Hodgkin-Huxley model is
most commonly used as a golden reference against which new models are validated.
The model contains multiple Ordinary Differential Equations (ODEs) and internal
parameters that each rely heavily on reciprocal and exponential functions. These
functions are computationally expensive, and accelerating them at a fundamental level
can have a compound effect on the system as a whole. Section 6.3 identified and
refined 5 approximations for the exponential function. These approximations were
compared against one another for percentage accuracy before their application within
a Hodgkin-Huxley model was tested.

From the Hodgkin-Huxley implementation tests it has been shown that a relatively high
accuracy about the origin is required for effective tonic spiking replication, while the
accuracy across the full supported input range need not be as strict to reliably produce
the characteristic AP morphology. The Euler fraction and power series approximations
were found to perform poorly without a large number of iterations and this is likely
due to the relatively early and rapid climb in error seen as the input magnitude
increases.

It was shown that the 2nd order polynomial approximation produces comparable error
to that of the optimised 3-line approximation (see Table 6.2). A direct implementation
of the polynomial system would require 2 addition and 3 multiply blocks. The 3-line
system would require 1 addition and 1 multiply block alongside the logic to select and
store the weights used for each of the lines. The relative trade-off between registers and
maths blocks depends largely on the underlying technology or hardware used for the
final implementation - showing that even the implementation of an effective exponential
maths block requires oversight of the end application.

A hybrid model was introduced that uses a unique combination of two different
approximations for different input regions. By switching between the approximations,
the designer may select different accuracies (and in turn trade-off resource requirements)
for target regions. In the basic hybrid model used in Chapter 6, a single line was
used to approximate all values above x = 0.0802. This line required a single addition
operation, representing what can be considered the minimum hardware requirement
for any approximation. For values below x = 0.0802, the small value approximation
ex = 1 + x was used. This hybrid approximation achieved full representation of the
Hodgkin-Huxley model at the expense of a 0.74% deviance in the resting potential. This
deviance could be removed fully using a more complicated large input approximation,
such as the 3-line piecewise or 2nd order polynomial approximations. This hybrid
model’s relative success can be attributed to the combination of minimal small value
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error and constant maximum error across the full input range.

The relative gains achieved by removing a few maths operations from a neural model
can be more easily recognised when considered in system or network scale terms. The
basic hybrid model uses 10 fewer multiply operations and 1 less addition when compared
with the direct 4th order polynomial model that was the only other non-iterative model
to achieve both phasic and tonic spiking. Even assuming that the same exponential
block is used for all exponential operations in a single neuron; a simulation of a single
neocortical column, which typically contain 10,000 neurons and 30 million connections,
would result in 100,000 fewer multiply operations and 10,000 fewer addition operations.
This reduction in mathematical operations drastically reduces the scale and power
consumption of hardware implementations.

9.2.2 Computationally Efficient Model Acceleration

In computational or artificial neural models, the biophysical dynamics are exchanged
for simpler non-linear activation functions. The use of these activation functions
allows networks of massive scale to be implemented with considerable ease when
compared against their biophysically accurate counterparts. The exponential function
still sees considerable use within these models, however when optimising for hardware
implementations the emphasis is on non-linear form rather than absolute value. This
means that approximations that produce the correct shape can perform with comparable
results to that of a fully implemented activation function.

The logistic sigmoid, tanh, gaussian and softplus activation functions all use natural
exponentials in their computation. Chapter 7 shows that this natural exponential may
be directly replaced with a power of two. The effect of this replacement is seen in the
first order derivatives, where an additional ln(2) factor appears, as shown in Table 7.2.
This scaling of the derivative values, however, may be absorbed into the learning rate
constant. By replacing the exponential powers with powers of two the calculations
may be performed as simple fixed-point bit-shift operations. A conversion technique
to migrate models between the full exponential and base-2 models was demonstrated,
resulting in identical performance for all networks tested. This conversion makes the
base-2 models more applicable to the research community as fully trained systems need
not undergo re-training to migrate between the two representations.

The base-2 and approximation models were compared against the exponential sigmoid
model, using a mixture of generated and established datasets. These comparisons
show that model selection has a small impact on the systems performance, however
this impact lacks any general trend when comparing the sigmoid and base-2 models.
This suggests that neither model is better than the other in performance as a general
purpose classification system.

A double-precision floating point hardware accelerator was built using the bitwise
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approximation activation function allowing direct comparison with modern day
processing solutions. When compared against modern processor technologies, the
hardware bitwise accelerator operation achieved a throughput of 87.7MHz at a rate of
1 clock cycle per calculation. This beats the throughput of an exponential operation
on the next best processor by 0.7MHz, which additionally required 40 clock cycles at
3.5GHz.

The results of this study show that new base-2 models may be used in place of
exponential models to achieve similar, if not identical, performance at a reduced
computational cost. This approach of designing the models from the ground up with
hardware optimisation in mind could be applied to many other aspects of neuromorphic
engineering. Models such as the base-2 sigmoid proposed in this work will play a
critical role in the adoption of ANNs on both low-power constrained mobile devices and
high-power large scale server implementations. The design of hardware accelerators that
complement modern processor techniques provides a good intermediate solution that
allows generic processors to realise power and speed improvements without considerable
architecture redesign.

9.3 Designing for Network Connectivity

The communications infrastructure used to model synapses and connect neurons
together is another major challenge on large scale neuromorphic systems. As neurons
are accelerated, the communications bottleneck will rapidly become the constraining
factor in network scale and speed. Most modern neuromorphic system utilise packet
switching networks to achieve the appearance of all-to-all connectivity while saving
on hardware resources. These systems use lessons from large scale computer networks
and communications networks to achieve a flexible and relatively low power solution.
This represents a considerable change from the structure and communications seen in
biological neural systems. It is therefore interesting to consider how the principles of
biological synapses and connectivity may be implemented in hardware.

This difference in connectivity is best highlighted using Rent’s rule. Apply Rent’s
rule to the Human Nervous System (HNS) and the C. Elegans and an average Rent
coefficient of 0.77 is found. In contrast this coefficient is 1.0 for all-to-all connected
networks. This suggests that there is a sparsity in connectivity that may be utilised
in the design of effective hardware neuromorphic systems. A novel locally connected
grid architecture was introduced in Section 8.2.2. Using principles from FPGA design,
this architecture is built from simple sub-elements with support for reconfigurable
operation and connectivity. This configurability was demonstrated using the C. Elegans
locomotive model, and was shown to produce reliable and correct response to stimulus
when compared against previously published works. A 3D model of the C. Elegans was
built and connected to the architecture allowing visualisation of the animals locomotive
response to different stimuli.
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The C. Elegans model achieved a constant clock speed of 82.13MHz on the locally
connected grid architecture, regardless of the number of model segments simulated.
Compared against the hybrid column architecture by Bailey, this represents an
improvement of 3.5× to 17.5× in maximum clock-speed showing that systems which
reflect the underlying models connectivity can yield considerable improvements over
generic fully connected architectures.

9.3.1 Connectivity Limitations in Artificial Systems

High degrees of locality are also seen in artificial systems, such as Convolutional Neural
Networks (CNNs) where the convolutional layers only access a local neighbourhood of
values from the previous layer. This locality is not unsurprising since CNNs are heavily
inspired by biological systems, where long range connections have a high cost in space,
delay and noise. Despite this apparent locality, it was identified that these systems
do not map effectively onto locally connected architectures. This is largely due to the
differences in the dimensionality of silicon hardware implementations and the CNNs
themselves. CNNs effectively form 3-dimensional systems, with each convolutional
layer forming an additional image layer stacked along the 3rd dimension. Standard IC
solutions, on the other hand, are said to be 2.5D in recognition of the fact that they
are formed from a discrete number of 2D layers. This loss in dimensionality means
that the stacking of the convolutional layers must be unravelled onto the 2D structure.
Performing this task heavily increases the utilisation and requirement for long range
connections. This limitation makes it difficult to match the performance and speed
seen in biological systems where there is an inherent 3-dimensional structure.

This dimensionality constraint is not unique to the neuromorphic field and future
technologies may help close this gap as new fabrication techniques are developed. Until
this point, it is likely that locally connected architectures will be somewhat limited
in their application, with global systems effectively replacing the lost dimension with
long-range connections that allows the structures to be unrolled onto a 2D system.

9.4 Future Directions and Challenges

There are many more challenges that must be overcome for neuromorphic computing
to realise the efficiency and computational potential that is seen in nature. This multi-
disciplinary field must still answer significant questions regarding the nature of learning
and consciousness, as well as identifying the critical elements of the nervous system
that contribute to its processing functions. From an engineering perspective, careful
selection and design of neuromorphic architectures stands to accelerate this research,
directly improving the energy efficiency and increasing the scales at which experiments
may be performed. This work has demonstrated a number of design improvements to
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that end, however further optimisation and design exploration is still possible.

The bitwise sigmoid hardware accelerator design in Chapter 7 realised a significant
efficiency improvement over standard Central Processing Unit (CPU) implementations.
The implementation, however, used 68 Digital Signal Processing (DSP) elements. These
DSPs were predominantly required to implement a basic 58-bit multiply performed as
part of the Newton-Raphson reciprocal block. This multiply operation represents the
slowest signal path in the system and is therefore also the limiting factor on maximum
clock speed. Techniques to perform fast and efficient pipelined fixed-point multiply
operations are well established within the engineering community and it would therefore
be interesting to investigate how the custom instruction may be further accelerated
and reduced in scale by redesigning the multiply implementation. Improvements to
this multiply operation stands to accelerate the maximum clocks speed of the entire
implementation, further advancing the gains achieved through hardware acceleration.
While this custom instruction was designed for FPGA implementation, it would also
be interesting to test the design on an ASIC device where additional speed and power
savings may be realised.

The EPSRC CResPace project, discussed in Chapter 5, continues to investigate the
development of adaptive bio-electronics for chronic cardiorespiratory disease. The
MD-Neuron chip was demonstrably functional in large static magnetic fields, meaning
that the design can safely approach non-operational Magnetic Resonance Imaging
(MRI) scanners. Further tests must now be performed within dynamic field conditions
to ensure that the device remains operational during MRI procedures. The dynamic
fields will induce currents within the IC, and it is therefore important to assess how
these additional currents impact the operation of the device. Arranging these tests
represents a considerable challenge for the CResPace project, as any experiments
involving dynamic (imaging) magnetic fields require a qualified radiographer and access
to a functional medical MRI machine. In the time taken to arrange these experiments
further design work may also be performed, building on the results in Chapter 5. A
functional pacemaker with a novel neural-interface must be designed, using the neurons
demonstrated in the MD-Neuron IC to form a Central Pattern Generator (CPG) that
controls the heart rate. This design work may progress alongside the dynamic field
tests, allowing the CResPace team to test the latest design when an MRI machine
becomes available. Even with these later designs, some further adjustments should be
expected post-MRI test to help ensure the product is immune to any negative effects of
the dynamic field. It is hoped that the CResPace experiments will help inform research
on the application of neural-interfacing circuitry for next-generation prosthetics and
pacemakers.

Finally, Chapter 8 identified a fundamental difference in dimensionality between that
of neuromorphic architectures and biological neural networks. This dimensionality
difference is unlikely to be addressed while ICs remain constrained to a fixed number of
2D layers. Continued developments in new fabrication materials and technologies may,
one day, provide solutions for this problem, with attempts such as chip-stacking already
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showing promising results in improving the speed and efficiency of hardware solutions
[160]. Future 3-dimensional IC designs may achieve the efficiencies and computational
powers seen in nature, leading to a revolution in processing and artificial intelligence
systems.

9.5 Closing Thoughts

While future technologies promise faster and larger neural networks, it is possible to
achieve improved efficiency in today’s systems through the careful and deliberate design
of a networks internal functions. This principle has been shown using the base-2 sigmoid
function, where a clock-cycles per calculation improvement of 97.5% was achieved over
the industry standard model. The efficiency and effectiveness of these models grows
ever more important as these systems find application within day to day life. Neural
models stand to improve bio-electronics, computer science, control engineering, finance
and many other important fields. Improvements in these models that allow the network
scales to increase or chip area and power to decrease will lead to more powerful and
compact systems that provide exciting and novel solutions to previously challenging
problems.
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Appendix A

Defining Protein Switching
Probability Equations

Let it be assumed that a number of proteins exist, [x], that can take one of two different
states. The rates of moving between these states may be defined as αx and βx, such
that the following rate equation may be written:

[x]
Deactivated

αx−−⇀↽−−
βx

[x∗]
Activated

(A.1)

Assuming that these switching rates are constant, a differential form may be defined
from this rate equation as follows:

d [x∗]

dt
= − βx [x∗]︸ ︷︷ ︸
Becoming De−active

+

Becoming Active︷ ︸︸ ︷
αx [x] (A.2)

If this differential form is divided by the total amount of protein (that is [x] + [x∗]),
this yields:

d

dt
· [x∗]

[x] + [x∗]
= αx

[x]

[x] + [x∗]
− βx

[x∗]

[x] + [x∗]
(A.3)

Let x be defined as proportion of active proteins, such that:

x =
[x∗]

[x] + [x∗]
(A.4)
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APPENDIX A. DEFINING PROTEIN SWITCHING PROBABILITY EQUATIONS

This value will sit within the range x ∈ [1, 0] as it is a proportion. In a similar way the
proportion of deactivated proteins, (1− x), may be defined as follows:

1− x =
[x]

[x] + [x∗]
(A.5)

Using these proportion definitions in Equation A.3, the rate at which the protein
activates may be found:

dx

dt
=

Becoming Active︷ ︸︸ ︷
αx (1− x)− βxx︸︷︷︸

Becoming De−active

(A.6)

where x is the proportion of active proteins in a sample, while αx is the activation rate
and βx is the inactivation rate of said protein.
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Appendix B

Numerical Solution for the
Hodgkin Huxley Model

For ease of reference the Hodgkin-Huxley model is restated below in Equation set
B.1, B.2 and B.3. In this model, V is the membrane potential; CM is the membrane
capacitance; I is the injected current; EK , ENa and EL are the potassium, sodium and
leakage Nernst potentials; n and m are the potassium and sodium activation gating
variables; h is the sodium inactivation gating variable; and ḡK , ḡNa and ḡL are the
maximum potassium, sodium and leakage conductances. Equation B.1 is termed the
Hodgkin-Huxley equation; Equation set B.2 are the gating variable equations; and
Equation set B.3 are the rate equations.

CM
dV

dt
= I −

Ik︷ ︸︸ ︷
ḡK n4(V − EK)−

INa︷ ︸︸ ︷
ḡNa m

3h(V − ENa)−
IL︷ ︸︸ ︷

ḡL(V − EL) (B.1)

dn

dt
= αn(V ) · (1− n)− βn(V ) · n

dm

dt
= αm(V ) · (1−m)− βm(V ) ·m

dh

dt
= αh(V ) · (1− h)− βh(V ) · h

(B.2)
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αn(V ) = 0.01
10− V
e

10−V
10 − 1

βn(V ) = 0.125e
−V
80

αm(V ) = 0.1
25− V
e

25−V
10 − 1

βm(V ) = 4e
−V
18

αh(V ) = 0.07e
−V
20 βh(V ) =

1

e
30−V

10 + 1

(B.3)

To solve this model numerically, a solution for ṅ, ṁ, ḣ and V̇ must be found. Euler’s
method may then be applied to generate a discrete numerical model suitable for
simulation on digital systems.

B.1 Gating Variable Equations - Steady State

It is shown in Appendix A that the activation and inactivation gating variables, stated
in Equation set B.2, may all be written in the following form:

dx(t)

dt
= αx · (1− x(t))− βx · x(t) (B.4)

In this form, V is assumed constant or suitably slow, such that αx and βx may be
treated as constants. This form represents a 1D autonomous ordinary differential
equation. In such equations, it may be shown that as t→∞, x→ ±∞ OR x→ xss.
Since the gating variables are probabilities locked between 0 and 1 it may be safely
assumed that as t→∞, x will approach a steady state value, xss.

At steady state, dx/dt = 0 by definition. Therefore:

0 = αx(1− xss)− βxxss

= αx − αxxss − βxxss

= αx − xss(αx + βx)

∴ xss =
αx

αx + βx
(B.5)

This result is somewhat intuative since the equalibrium will only be reached when the
proportion of active channels, x, complements the proportions of the switching rates,
αx and βx.
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B.2 Gating Variable Equations - Time

Constant

Rearranging Equation B.4, it may be written in the form:

dx

dt
= αx(1− x)− βxx

= αx − αxx− βxx

= αx − x(αx + βx)

1

αx + βx

dx

dt
=

αx
αx + βx

− x

Using the newly defined steady state value in Equation B.5, this may be re-written as
follows:

1

αx + βx

dx

dt
= xss − x

Defining a scaling constant, τx, such that τx = 1/(αx + βx), this may be re-phrased as:

τx
dx

dt
= xss − x (B.6)

In this form, τx represents the system time constant. This may be seen in the fact that
it scales the rate of asymptotic approach without influencing the steady state value
itself. For this reason the gating variable time constants may be defined as follows:

τx =
1

αx + βx
(B.7)

B.3 Gating Variable Equations - Separation of

Variables

As mentioned in Section B.1, it has been assumed that αx and βx are constant. If this
is the case, xss and τx are also constant. This makes it possible to redefine Equation
B.6 with respect to x(t). First, rearranging the equation yields:

dx(t)

xss − x(t)
=
dt

τx
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Taking the integral of both sides:∫
1

xss − x(t)
· dx =

∫
1

τx
· dt

−ln |xss − x(t)| = t

τx
+ c

=⇒ xss − x(t) = e−
t
τx ec

∴ x(t) = xss − ke−
t
τx (B.8)

where k = ec. Setting t = 0, x(t) becomes the initial condition, x0, yielding:

x(0) = xss − ke−
0
τx

x0 = xss − k

∴ k = xss − x0

Using this definition in Equation B.8 results in the following definition for x(t):

x(t) = xss − (xss − x0)e−
t
τx (B.9)

In practice, xss and τx are not constant, instead dependant upon V (t). If it is assumed
that V (t) (and therefore αx and βx) change slowly compared with the simulation sample
rate, Equation B.9 may be re-written using Euler’s method resulting in the following
discrete representation:

xn+1 = xss(tn)− (xss(tn)− xn) · e−∆t
τx (B.10)

B.4 Gating Variable Equations - Final Numerical

Model

As identified at the beginning of Section B.1, each of the gating variables are written
in the same form. As a result this process may be applied to each of the equations in
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turn, resulting in the following numerical solutions:

nN+1 = nss(tN)− (nss(tN)− nN) · e−∆t
τn

mN+1 = mss(tN)− (mss(tN)−mN) · e− ∆t
τm

hN+1 = hss(tN)− (hss(tN)− hN) · e−
∆t
τh

(B.11)

where the steady state and time constant values are calculated using the associated α
and β values from Equation set B.3 in the following equations:

xss =
αx

αx + βx

τx =
1

αx + βx

(B.12)

B.5 Membrane Voltage - Numerical Solution

The original Hodgkin-Huxley equation may be re-written in the channel generalised
form:

C
dV

dt
=
∑

gi(Ei − V ) + Iinj

=
∑

giEi −
∑

giV + Iinj

where gi and Ei incrementally represent each of the considered channel conductances
and Nernst potentials. Dividing through by

∑
gi yields:

C∑
gi︸ ︷︷ ︸

τV

dV

dt
=
giEi∑
gi

+
Iinj∑
gi︸ ︷︷ ︸

Vss

−V

This equation is in the same form as that of Equation B.6, resulting in the following
definitions for τV and Vss:

Vss =
giEi∑
gi

+
Iinj∑
gi

τV =
C∑
gi

(B.13)
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Again, assuming that V (and therefore
∑
gi) changes slowly with respect to the sample

rate, Euler’s method may be applied to generate a discreet numerical solution, resulting
in the following equation:

Vn+1 = Vss(tn)− (Vss(tn)− Vn) · e−
∆t
τV (B.14)
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Appendix C

Linear Piecewise Minimisation

Each line in the point-to-point linear piecewise approximation of y = 2x passes through
the points (x1, 2

x1) and (x2, 2
x2), where x1 and x2 are the boundary locations for

the approximation region. A single line may therefore be defined in the following
form:

ln = anx+ bn (C.1)

where an is the gradient and bn is the offset of the n-th line, ln. The gradient and offset
values are defined by the linear interpolation of the two boundary points (x1, y1) and
(x2, y2) across the valid region and may be calculated as follows:

a =
y2 − y1
x2 − x1

b = y2 − ax2
(C.2)

The absolute error for an approximation of y = 2x may be defined within each valid
region as:

EAbs = |ax+ b− 2x| (C.3)

In such an arrangement, the maximum error of the approximation, Emax, will occur
between x1 and x2 at the location x = xmax, while the error at each boundary will be
zero. Adding an offset to the line allows this error to be shared between the boundaries
and the maximum error location. As the offset is increased, the error at the boundaries
increases linearly, while the error in the maximum error location decreases linearly.
The minimum maximum error will therefore occur when:

J. E. G-H-Cater 281 University of Bath



APPENDIX C. LINEAR PIECEWISE MINIMISATION

−Ex1 = Exmax

Therefore:

−(ax1 + b+ c− 2x1) = axmax + b+ c− 2xmax

2c = −(axmax + b− 2xmax)− (ax1 + b− 2x1)

By definition, ax1 + b = 2x1 and axmax + b− 2xmax = Exmax , meaning:

2c = Exmax

c =
1

2
Exmax

The line that best spreads the error between the boundaries and maximum error
location is therefore defined as follows:

ln = anx+ bn −
1

2
En (C.4)

where En is the linear approximations maximum error without any offset
correction.
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Appendix D

Python Neural Network Class

The following neural-network class was written using Python to support arbitrary
activation functions. It uses the ‘activation’ function library defined in Appendix
E.

D.1 Python Class Library -

‘neuralFunctions.py’

1 # Import numpy for easy array handling and dot products

2 import numpy

3 # Import scipy.special for the sigmoid function expit()

4 import scipy.special

5 # Import plotting library

6 import matplotlib.pyplot as plt

7 # Import custom activation functions library

8 import activation

9 # Import pickle for saving objects (the neural network)

10 import dill as pickle

11 import copy

12

13 # Use something like:...

14 # n = LoadNeuralNetwork("./RESULTS/2017-12-18_10-09-13_MNIST/Net.p")

15 def LoadNeuralNetwork(filename):

16 # Loads a neural network from file
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17 with open(filename, 'rb') as f:

18 n = pickle.load(f)

19 return n

20

21 # Neural network class definition

22 class NeuralNetwork:

23 # Initialize the network

24 def __init__(self, shape, learning_rate, activation_function,

25 bias = 1.0, filename="", std="", weights=""

26 ):

27 # Set the number of nodes in each input, hidden and output layer

28 self.shape = shape

29 self.layers = len(shape)

30 self.bias = bias

31

32 # Weight matrices, wih (input->hidden) and who (hidden->output)

33 # Weight inside the matrices are w_i_j

34 # Where a link is from node i to node j in the next layer

35 if ( weights =="" ):

36 if ( std=="" ):

37 self.weights = [

38 numpy.random.normal(0.0, pow(self.shape[i+1], -0.5),

39 (self.shape[i+1], self.shape[i]+1))

40 for i in range(self.layers-1)

41 ]

42 else:

43 self.weights = [numpy.random.normal(0.0, std,

44 (self.shape[i+1], self.shape[i]+1))

45 for i in range(self.layers-1)

46 ]

47 else:

48 self.weights = copy.deepcopy(weights)

49

50 # Set the learning rate

51 self.lr = learning_rate

52 # Set the activation function

53 self.activation_function = lambda x: activation_function(x)
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54

55 def save(self, filename):

56 # Saves the neural network to file

57 with open(filename, 'wb') as f:

58 pickle.dump(self, f, pickle.HIGHEST_PROTOCOL)

59

60 # Train the network using back-propagation of errors

61 def train(self, inputs_list, targets_list):

62 # Add bias onto inputs_list

63 inputs_list = numpy.append(inputs_list,self.bias)

64 targets_list = numpy.append(targets_list,self.bias)

65 # Convert inputs into 2D arrays

66 layer_outputs = [numpy.array(inputs_list, ndmin=2).T]

67 targets_array = numpy.array(targets_list, ndmin=2).T

68

69 layer_inputs = []

70

71 for i in range(self.layers - 1):

72 # Calculate signals into layer (LHS of weights)

73 layer_inputs.append([numpy.dot(self.weights[i],

74 layer_outputs[i])])

75

76 # Calculate the signals from layer (RHS of weights)

77 ac_results = numpy.append(self.activation_function(

78 layer_inputs[i][0]), self.bias)

79 ac_results = numpy.array(ac_results, ndmin=2).T

80

81 layer_outputs.append(ac_results)

82

83 # Current error is (target - actual)

84 errors = [targets_array - layer_outputs[self.layers-1]]

85

86 # Hidden layer errors are the output errors, ...

87 # ...split by the weights, recombined at hidden nodes

88 for i in range(2, self.layers):

89 layer_error = numpy.dot(numpy.asfarray(

90 self.weights[self.layers - i].T), errors[i-2][0:-1])
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91 errors.append(layer_error)

92

93 errors.reverse()

94

95 # Update the weights for the links between the layers

96 for i in range(self.layers - 1):

97 # Calculate the new weights for layer

98 gradient = layer_outputs[i+1] * (1.0 - layer_outputs[i+1])

99 new_weights = self.lr * numpy.dot((errors[i] * gradient),

100 numpy.transpose(layer_outputs[i]))

101

102 # Remove the weights going into the bias nodes...

103 # ...as bias node is fixed at self.bias

104 self.weights[i] += new_weights[0:-1]

105

106 # Query the network

107 def query(self, inputs_list):

108 # Add bias onto inputs_list

109 inputs_list = numpy.append(inputs_list,self.bias)

110 # Convert the inputs list into a 2D array

111 # First entry is the output of the input layer!

112 layer_outputs = [numpy.array(inputs_list, ndmin=2).T]

113

114 # Layer inputs are the output side of the weights layers

115 layer_inputs = []

116

117 for i in range(self.layers - 1):

118 # Calculate signals into layer (LHS of weights)

119 layer_inputs.append([numpy.dot(self.weights[i],

120 layer_outputs[i])])

121

122 # Calculate the signals from layer (RHS of weights)

123 ac_results = numpy.append(self.activation_function(

124 layer_inputs[i][0]), self.bias)

125 ac_results = numpy.array(ac_results, ndmin=2).T

126

127 layer_outputs.append(ac_results)
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128

129 return layer_outputs[self.layers - 1][0:-1]
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Appendix E

Activation Function Library for
Python

Each of the new activation functions introduced in this thesis were first written and
tested using a custom made C library for Python. This allowed for implementations
that were closer to their hardware equivalents, with the editing and moving of individual
bits. The files used to build this library are shown below for reference.

E.1 Header File - ‘activationmodule.py’

This file registers the library with Python. The library may be built and installed by
calling python3 activationmodule.py build in terminal, followed by the command
sudo python3 activationmodule.py install. Scripts may then access the library,
using import activation whenever they require access to the activation
functions.

1 from distutils.core import setup, Extension

2

3 module1 = Extension('activation',

4 sources = ['activationmodule.c'])

5

6 setup (name = 'Activation',

7 version = '1.0',

8 description = 'A set of activation functions',

9 ext_modules = [module1])
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E.2 Library Functions - ‘activationmodule.c’

This file defines the C functions used by the activation function library. Also included
are the python specific requisites to enable the interface between a python script and
these C functions.

1 #include <Python.h>

2 #include <math.h>

3

4 #define FRACT_BITS 23

5 #define FIXED_ONE (1 << FRACT_BITS)

6 #define INT2FIXED(x) ((x) << FRACT_BITS)

7 #define FLOAT2FIXED(x) ((int)((x) * FIXED_ONE))

8 #define FIXED2INT(x) ((x) >> FRACT_BITS)

9 #define FIXED2DOUBLE(x) (((double)(x)) / FIXED_ONE)

10 #define FIXED2FLOAT(x) (((float)(x)) / FIXED_ONE)

11

12 #define MANTISSA_ONE (1 << 23)

13 #define MANTISSA2FLOAT(x) (((float)(x)) / MANTISSA_ONE)

14 #define FLOAT2MANTISSA(x) ((unsigned int)((x) * MANTISSA_ONE))

15

16 // ------------------- Define Datatypes -------------------------

17

18 typedef union fixed {

19 struct {

20 unsigned int decimal : 23;

21 int integer : 6;

22 int waste : 3;

23 } part;

24 int full;

25 } FIXED;

26

27 union FloatingPointIEEE754 {

28 struct {

29 unsigned int mantissa : 23;

30 unsigned int exponent : 8;

31 unsigned int sign : 1;
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32 } raw;

33 float f;

34 };

35

36 // ------------------- Main Activation functions --------------------

37

38 // TwoXSig Function - Base two sigmoid function

39 static PyObject * activation_twoxsig(PyObject *self, PyObject *args)

40 {

41 union FloatingPointIEEE754 i;

42 float power;

43 float res;

44

45 if (!PyArg_ParseTuple(args, "f", &i.f)) {

46 return NULL;

47 }

48

49 power = powf(2, -i.f);

50 res = 1/(1+power);

51 return Py_BuildValue("f", res);

52 }

53

54 // One-line base two sigmoid approximation

55 static PyObject * activation_twoxsig_1_line(PyObject *self,

56 PyObject *args)

57 {

58 union FloatingPointIEEE754 i;

59 union FloatingPointIEEE754 power;

60 float res;

61 FIXED i_fixed;

62

63 if (!PyArg_ParseTuple(args, "f", &i.f)) {

64 return NULL;

65 }

66

67 // Invert X since 2^-x is needed!

68 i.f = -i.f;
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69

70 // If number is huge (i.e. exponent bigger than 31)

71 if (i.raw.exponent > 131) {

72 // ... asymptote will have been reached.

73 res = i.raw.sign;

74 } else {

75 // Convert to fixed representation

76 i_fixed.full = FLOAT2FIXED(i.f);

77 // Result of 2^x is always positive!

78 power.raw.sign = 0;

79 // Add bias to integer value

80 power.raw.exponent = 127+i_fixed.part.integer;

81

82 // If the mantissa is at risk of underflowing...

83 if (MANTISSA2FLOAT(i_fixed.part.decimal) < (0.02982/0.97018)) {

84 // ...reduce the exponent by one...

85 power.raw.exponent = power.raw.exponent - 1;

86 // ... and multiply the decimal part by 2.

87 power.raw.mantissa = FLOAT2MANTISSA(

88 (0.97018*MANTISSA2FLOAT(i_fixed.part.decimal)+0.97018)*2.0

89 );

90 } else {

91 // ...move decimal value into mantissa with correction.

92 power.raw.mantissa = FLOAT2MANTISSA(

93 0.97018*MANTISSA2FLOAT(i_fixed.part.decimal) - 0.02982

94 );

95 }

96

97 res = 1/(1+power.f);

98 }

99 return Py_BuildValue("f", res);

100 }

101

102 // Bitwise approximation of base two model

103 static PyObject * activation_twoxsig_basic(PyObject *self,

104 PyObject *args)

105 {
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106 union FloatingPointIEEE754 i;

107 union FloatingPointIEEE754 power;

108 float res;

109 FIXED i_fixed;

110

111 if (!PyArg_ParseTuple(args, "f", &i.f)) {

112 return NULL;

113 }

114

115 // Invert X since 2^-x is needed

116 i.f = -i.f;

117 // If number is huge (i.e. exponent bigger than 31)...

118 if (i.raw.exponent > 131) {

119 // ... asymptote will have been reached.

120 res = i.raw.sign;

121 } else {

122 i_fixed.full = FLOAT2FIXED(i.f);

123 // Result of 2^x is always positive

124 power.raw.sign = 0;

125 // Add bias to integer value

126 power.raw.exponent = 127+i_fixed.part.integer;

127 // Move decimal value into mantissa

128 power.raw.mantissa = i_fixed.part.decimal;

129 res = 1/(1+power.f);

130 }

131

132 return Py_BuildValue("f", res);

133 }

134

135 // ------------------- Python Specifics ----------------------

136

137 // List of functions defined in the module

138 static PyMethodDef activation_methods[] = {

139 {"twoxsig",

140 activation_twoxsig,

141 METH_VARARGS,

142 PyDoc_STR("A full 2^x sigmoid function.")
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143 },

144 {"twoxsig_1_line",

145 activation_twoxsig_1_line,

146 METH_VARARGS,

147 PyDoc_STR("A 1-line approximation of the 2^x sigmoid function.")

148 },

149 {"twoxsig_basic",

150 activation_twoxsig_basic,

151 METH_VARARGS,

152 PyDoc_STR("An efficient bit-bashing approximation of \

153 the 2^x sigmoid function.")

154 },

155 {NULL, NULL} // sentinel

156 };

157

158 // Define module documentation

159 PyDoc_STRVAR(module_doc,

160 "A set of efficent and fast activation functions, \

161 by Jonathan G-H-Cater."

162 );

163

164 // Define module entry

165 static struct PyModuleDef Activations =

166 {

167 PyModuleDef_HEAD_INIT,

168 "activation", // Link Module Name

169 module_doc, // Link Module Documentation

170 -1,

171 activation_methods

172 };

173

174 // Initialization function for the module

175 PyMODINIT_FUNC PyInit_activation(void)

176 {

177 return PyModule_Create(&Activations);

178 }
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