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Abstract
A user-friendly graphical approach has been developed in the requirements analysis of
mission-critical digital systems, especially in assuring the consistency of software
requirements. This approach contains three distinct steps. Step One is software requirements
collection which collects all the requirements from the customer. Step Two is requirements
grouping which divides the set of requirements collected from Step One into smaller groups
(or subsets), the union of which is the original set of requirements. Requirements on a
specific aspect of software functionality are grouped together so that only logical operations
exist within each group. The requirements between the groups (or subsets) may be linked by
physical relations. Step Three is the actual analysis procedure for achieving unambiguous,
consistent (and more complete) requirements. The procedure contains two sub-step analyses:
the within-group analysis and the between-group analysis. A Tree-Based Graphical
Approach (TBGA) is developed for the within-group analysis to ensure that the requirements
are consistent within individual groups. Compared with the Purely Analytical Approach, the
Tree-Based Graphical Approach is more mechanical since the analytical approach is
sequential or one-dimensional while the graphical approach works in parallel or two-
dimensional. As a byproduct, it can also be used to prove logic identity. In addition, two
other approaches are identified for the within-group analysis in requirements: the Truth-
Table Approach and the Dynamic Flowgraph Methodology (DFM). These methods can be
used independently as well as used as a double check of the Tree-Based Graphical Approach.
The between-group analysis is performed using dependency diagram in which each group of
the requirements is represented by a node. If the groups are related physically, they are linked
by an arc. The between-group analysis makes use of physical laws to check consistency in
requirements between the groups as well as helps make individual group of requirements
more complete. The between-group analysis indicates that, in requirements analysis, physics
laws should be taken into account in addition to pure logic operations. If the within-group
analysis shows that the requirements are consistent within each group and the between-group
analysis show that the they are consistent between all linked groups, the customer's original
set of requirements is consistent. Otherwise, it is inconsistent. In either case, the result of the
analysis should be fedback to and shared with the customer.

Thesis Supervisor: George E. Apostolakis
Title: Professor of Nuclear Engineering
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Chapter 1

Introduction

1.1 A Broader Picture

Since the early 1970s, the United States Nuclear Regulatory Commission (USNRC) spent

significant amount of resources in the development and application of Probabilistic Risk

Assessment (PRA) technology including the ground-breaking work of the Reactor Safety

Study-WASH-1400 in 1975. In 1979, the USNRC issued a policy statement entitled "(US)

NRC Statement of Risk Assessment and the Reactor Safety Study Report (WASH-1400) in

Light of the Risk Assessment Review Group Report" (Risk Assessment Review Group

Report, NUREG/CR-0400). In addition to addressing specific criticisms of WASH-1400, the

1979 policy statement articulated limitations in the use of PRA in the regulatory arena. Many

of these limitations have been addressed; however, some still remain pertinent today. Primary

among these limitations is the characterization of uncertainties associated with calculated

probabilities of reactor accidents. PRA methodologies have, however, provided a better

means for identifying and characterizing the range of uncertainty.

The Three Mile Island (TMI) accident in 1979 substantially changed the character of the

analysis of severe accidents worldwide. It led to a substantial research program on severe

accident phenomenology. In addition, two major investigations of the accident (the Kemeny

and Rogovin studies) recommended that PRA techniques be used more widely to augment

the traditional deterministic methods of analyzing nuclear plant safety. In 1984, the USNRC

completed a study (NUREG-1050) that addressed the state-of-the-art risk analysis

techniques. In early 1991, the USNRC published NUREG-1150, "Severe Accident Risks: An

Assessment for Five U.S. Nuclear Power Plants". In NUREG-1150, the USNRC used

improved PRA techniques to assess the risk associated with five nuclear power plants. This

study was a significant turning point in the use of risk concepts in the regulatory process and



enabled USNRC to greatly improve its methods for assessing containment performance given

core damage initiation and subsequent accident progression. The methods developed for, and

results from, these studies provided a valuable foundation in quantitative risk techniques.

PRA methods have been applied successfully in several regulatory activities and have proved

to be a valuable complement to traditional deterministic engineering approaches. This

application of PRA represents an extension and enhancement of traditional regulation rather

than a separate and different technology. Several recent USNRC policies or regulations have

been based, in part, on PRA methods and insights. These include the Backfit Rule (10 CFR

50.109, "Backfitting"), the Policy Statement on "Safety Goals for the Operation of Nuclear

Power Plants" (51 FR 30028; August 21, 1986), the USNRC's "Policy Statement on Severe

Reactor Accidents Regarding Future Designs and Existing Plants" (50 FR 32138; August 8,

1985), and the USNRC's "Final Policy Statement on Technical Specifications Improvement

for Nuclear Power Reactors" (58 FR 39132; July 22, 1993). PRA methods also were used

effectively during the anticipated transient without scram (ATWS) and station blackout

(SBO) rulemakings, and have been used extensively in the generic issue prioritization and

resolution process. Additional benefits have been found in the use of "Risk-Based Inspection

Guides" to focus USNRC reactor inspector efforts and make more efficient use of USNRC

inspection resources. Probabilistic analyses were extensively used in the development of the

recently proposed rule change to reactor siting criteria in 10 CFR Part 100 (59 FR 52255;

October 17, 1994), especially in the area of estimating the Safe Shutdown Earthquake ground

motion for a nuclear reactor site.

Currently, the USNRC is using PRA techniques to assess the safety importance of operating

reactor events and as an integral part of the design certification review process for advanced

reactor designs. In addition, the Individual Plant Examination (IPE) program and the

Individual Plant Examination - External Events (IPEEE) program have resulted in

commercial reactor licensees using risk-assessment methods to identify any vulnerabilities.



1.1.1 Moving towards Risk-Informed, Performance-Based Regulation (RIPBR)

The purpose of applying risk-informed, performance-based approaches is to deal with

uncertainties in regulatory decision-making, and to strategically consider how to ensure

regulatory coherence during the transition from deterministic-based regulations to RIPBR.

1.1.1.1 Deterministic-Based Regulation

The USNRC has generally regulated the use of nuclear facilities (including nuclear materials

and reactors) based on deterministic approaches. Deterministic approaches to regulation

consider a set of challenges to safety and specify how those challenges should be mitigated.

In other words, the deterministic approach establishes requirements for use of nuclear

facilities and for engineering margin and quality assurance in design, manufacture,

construction, and operation of nuclear facilities.

USNRC established its regulatory requirements to ensure that a facility is designed,

constructed, and licensed to operate without undue risk to the health and safety of the public.

These requirements are largely based on deterministic engineering criteria. In addition, this

approach assumes that adverse conditions can exist (e.g., equipment failures and human

errors) and establishes a set of design basis events. It then requires that the licensed facility

design include safety systems capable of preventing and/or mitigating the consequences of

those design basis events to protect the public health and safety. As a matter, even the

deterministic approach contains implied elements of probability. For example, reactor vessel

rupture is considered too improbable to be included as an accident to be analyzed. However,

the likelihood that a single emergency core cooling system or system train would not

function was considered so high that safety train redundancy and protection against single

failure were required.

1.1.1.2 Risk-Informed, Deterministic-Based Regulation

A risk-informed, deterministic approach to regulation enhances and extends this traditional,

deterministic approach, by



* allowing consideration of a broader set of potential challenges to safety;

* providing a logical means for prioritizing these challenges based on likelihood

and risk significance, and

* allowing consideration of a broader set of resources to defend against these

challenges.

A risk-informed approach can be used to focus deterministic regulations by considering risk

in a more coherent and comprehensive manner. By considering risk insights, operating

experience, and engineering judgment, the USNRC and its licensees can focus regulatory

approaches and licensee activities on those items most important to public health and safety.

Where appropriate, a risk-informed regulatory approach can be used to reduce unnecessary

conservatism in deterministic approaches or can be used to identify areas with insufficient

conservatism and provide the bases for additional requirements. Deterministic-based

regulations have been successful in protecting the public health and safety and risk insights

are most valuable when they serve to focus the deterministic-based regulations and support

the defense-in-depth philosophy.

1.1.1.3 Performance-Based Regulation

A performance-based regulatory approach requires at least four key elements:

* There are measurable parameters to monitor acceptable plant and licensee

performance;

* Objective performance criteria are established to assess performance;

* There is licensee flexibility to determine how to meet established performance

criteria;

* Failure to meet a performance criterion must not result in unacceptable consequences.

In theory, a performance-based approach can be implemented without the use of risk insights.

This type of performance-based approach would require that objective performance criteria

be based on deterministic analysis and performance history. This approach would provide



additional flexibility to the licensee to determine how to meet performance criteria. However,

the net impact on public health and safety would be difficult to determine.

1.1.1.4 Risk-Informed, Performance-Based Regulation (RIPBR)

RIPBR uses risk insights, together with deterministic analyses and performance history, to

develop measurable parameters for monitoring plant and licensee performance, as well as for

developing criteria for performance assessment, and focuses on the results as the primary

means of regulatory oversight. Similar to a risk-informed, deterministic-based approach, an

approach based on RIPBR can be used to reduce unnecessary conservatism in deterministic

approaches or can be used to support additional regulatory requirements. In addition, the

approach can further focus performance-based approaches by defining the goal or purpose of

the approach in terms of performance characteristics and safety significance and permitting

the licensee additional flexibility in meeting the regulation. Performance-based initiatives can

be considered for activities where objective performance criteria can be established for

performance monitoring. Additional evaluation of performance-based approaches may result

in a determination that a number of functional areas are not amenable to performance-based

treatment.

1.1.2 Importance of RIPBR

The treatment of uncertainties is an important issue for regulatory decisions. Uncertainties

exist in any regulatory approach and these uncertainties are the direct result of limitations in

knowledge. These uncertainties and limitations existed during the development of

deterministic regulations and attempts were made to accommodate these limitations by

imposing prescriptive and overly conservative regulatory requirements. A probabilistic

approach has exposed some of these limitations and provided a framework to assess their

significance and assist in developing a strategy to accommodate them in the regulatory

process.



RIPBR is widely recognized as an important step towards the elimination of the burden of the

current deterministic-based, prescriptive regulatory structure and the restoration of the

economic competitiveness of the nuclear power industry. Moving to a RIPBR approach will

help develop more efficient and effective regulatory measures that focus directly on public

safety and will provide a basis for optimizing the regulations. RIPBR will play an especially

important role in the upcoming utility deregulation.



1.2 Statement of the Problem

Nuclear Power Plants (NPPs) rely on Instrumentation and Control (I&C) systems to support

plant display, monitoring, control, and protection. Traditional I&C systems are analog

systems based on hard-wired electromechanical and solid-state technology. Many of these

analog systems are still in operation and proven to be effective. However, analog systems

experience aging, e.g., drift in readings, random mechanical failures, environmental

degradation. These issues inevitably increase the workload on plant surveillance and

maintenance, and will lead to decreasing the overall availability of the NPPs, which, in

return, will affect the competitiveness of the NPPs. On the other hand, as other industries are

shifting towards digital systems, analog replacement parts are becoming more and more

difficult to obtain in the market.

The new digital I&C systems have many advantages over the existing analog ones. Digital

devices are essentially free of drift that afflicts analog devices, digital devices maintain their

calibration better, thus reduce calibration and maintenance. Digital systems have improved

system performance in terms of accuracy and computational capabilities, and they have

higher data manipulation and storage capacities. As a result, the plant operational conditions

will be better measured, monitored, and displayed. Digital systems can be easier to use and

upgrade. A detailed comparison between digital and analog systems is provided in Appendix

1. The Canadians have extensive experiences in digital I&C in NPPs. About twenty-five

years ago, their first digital system was implemented because of its better provision of on-line

control of the CANDU reactors, specifically in controlling power level and xenon

oscillations. In Europe, the N4 plant at the Chooz-B site in France and the Sizewell B plant in

the United Kingdom have employed integrated digital I&C systems. The U.S. electric

industry is approaching deregulation which allows the customers to have the option of

selecting their utilities freely as they are doing in the telecommunication business. As a

result, the energy utilities (including nuclear power industry) are facing fierce competition. It

is under these circumstances that the U.S. nuclear power industry expects that analog I&C

systems will be replaced by digital ones both in the existing NPPs and the advanced designs



which are currently under review by the USNRC. These new designs, including GE's

Advanced Boiling Water Reactor (ABWR) and Simplified Boiling Water Reactor (SBWR),

ABB-CE's System 80+, and Westinghouse's AP600, embody fully integrated digital I&C

systems[Chap
95]

However, with the advent of the advanced digital technology, USNRC is very concerned

about the potential new failure modes inherent in software. Among them are software design

errors, common-cause errors, and other possible failure modes different from the hardware

counterpart ([Thad93], [NRC97], [NRC95]).

Funded by Idaho National Engineering and Environmental Laboratory, this study is one

prong of the three-pronged approach to the development of a methodology that would allow a

regulator to use RIPBR in the licensing of software used in safety-critical nuclear power plant

applications. The three throngs are

1. Identification of Issues and Selection of Case Studies;

2. Formal Method Development and Integration;

3. Formulation of Guidelines for Developing Performance Requirements.

The author's research was focused on software requirements analysis since, at this stage of

the software development cycle, that is where

* the largest amount of error in software is found,

* these errors are the most expensive ones to correct, and

* few methodologies exist.



1.3 The Waterfall Model and Software Requirements Analysis

1.3.1 The Waterfall Model

As the most widely used model in software standards, the Waterfall Model of software

development process is comprised of seven distinct stages/phases: planning activities,

software requirements analysis, software design, software implementation, software

verification and validation (e.g., testing), software installation, and operation and

maintenance (Figure 1.3-1). Feedback exists between stages. Once errors are detected

stemming from a previous stage, it must be fed back to that stage such that modifications can

be made. A detailed description of the Waterfall Model is provided in Appendix 2.

1.3.2 Requirements Analysis

Requirements Analysis is "a process of discovery and refinement" of customer

requirements[Pres87], of "removing errors in the statement of requirements"['Ices8]. The input to

the analysis is the customer statement of requirements and the end product is a Software

Requirements Specification (SRS) containing both functional and non-functional

requirements. Functional requirements are statements of what a software system is supposed

to do. Non-functional requirements are statements which are concerned with practical

constraints upon the software developer (e.g., programming languages). The analysis requires

both the developer and the customer take active roles. The customer attempts to reformulate

his nebulous concept of software functions and performance into concrete details while the

developer acts as interrogator, consultant, and problem solver.



Figure 1.3-1 The Waterfall Model (refined from [Wing93], [Boeh88], [Pres87])



1.3.3 Importance of Requirements Analysis

Studies have shown that about 50% of software faults can be traced back to faulty

requirements or specification. Rushby reports that[Rush 96 , of 197 critical faults found during

integration and system testing of the Voyager and Galileo spacecraft, only 3 were coding

errors (, 1.5%), the majority were in the requirements ( 49.2%, mostly of which is omission

in the requirements), interfaces ( 24.6%), and design ( 24.6%). While working on project to

develop a safety-critical system, Sayet found that, of all faults detected, 46% were in the

specification phase, 46% in coding, and 8% during integration test[saye90]. Basili reports that

48% of the errors were due to incorrect or misinterpreted functional specification or

requirements[Basi84]. Viola indicated that, in order to allow greater resolution for smaller error

bars (e.g., representing number of coding errors), histogram of error diagram has to be

rescaled by removing 160 errors identified from Software Requirements Specification review

process[Viol95]

More severely, these errors, if not detected and corrected early, can survive until later in the

software development cycle when correcting them would be up to two orders of magnitude

more expensive, or lead to project cancellation eventually. According to data presented by

Fairley ([Fair85, pp.48-50]), it is 5 times more expensively to correct a requirement fault at

the design phase than at requirements analysis phase, 10 times more expensively to correct at

implementation phase, 20 to 50 times more expensive to correct at acceptance testing, 100 to

200 times more expensive to correct once the system is operating. According to [Zave95],

requirements engineering is probably the most informal and subjective of all the areas in

computer science.

1.3.4 Inadequacy of Natural Languages in Documenting Software Requirements

Some of the reason as to why more errors tend to occur in the requirements or specification

phase are as follows. First, the customer usually can not describe precisely what the software

is supposed to do. Second, inadequate communication between the customer and the software



developer may result in a misunderstanding or misinterpretation of the requirements. Third,

the customer's requirements are constantly evolving as the project progresses. Fourth, the

software requirements written in natural language by the customer may be ambiguous,

inconsistent, and/or incomplete. For example, Parnas presents four different interpretations of

a requirement expressed in English concerning water levellPam91]. The original requirement is

"Shut off the pumps if the water level remains above l00m for more than 4s. "

Four interpretations of this requirement are

* "Shut off the pumps if the mean water level remains above 100m for more than

4s."

* "Shut off the pumps if the median water level remains above 100m for more

than 4s."

* "Shut off the pumps if the root-mean-square water level remains above 100m

for more than 4s."

* "Shut off the pumps if the minimum water level remains above 100m for more

than 4s."

The second example describes the requirements of software to store, retrieve, add and delete

telephone numbers from the telephone directory of a city. Citing this example, Butler shows

the inadequacy of natural languages as a medium of recording formal specification[Butl93] in

terms of addressing completeness and consistency issues. He concludes that "the process of

translating the requirements into mathematics has forced us to enumerate many things that

are usually left out of English specifications" and "the formal process exposes ambiguity and

deficiencies in the requirements" of natural languages.

These examples and other experiences have demonstrated the inadequacy of natural

languages in documenting precise requirements specification (due to their inherent

ambiguity), especially in safety- and mission- critical applications such as nuclear reactor

control and protection systems, airplane flight controller, crucial financial system.



1.3.5 Attributes of Software Requirements Specification

As the output of software requirements analysis, software requirements specification (SRS) is

the highest-level specification of a software component in a system. An SRS specifies what a

software component must do and what it must not do (e.g., completeness). Seven attributes

are identified in [USNRC95] for the SRS and are summarized here.

* Consistency-the requirements do not conflict with each other within an SRS;

* Completeness-an SRS should include all necessary requirements, define

software response to all realizable classes of input data in all

realizable class of situations, specify response to both valid and

invalid input values;

* Unambiguity-the requirements are interpreted the same way by all readers,

that is, every requirement has one and only one interpretation;

* Verifiability-a practical method or process exists (inspection, demonstration,

analysis, or testing) to verify that an implementation fulfills the

requirements;

* Readability--a reader can easily read and understand all the requirements, i.e.,

formality should not compromise readability and understand-

ability;

* Modifiability--the requirements are easy to modify correctly, and

* Traceability-the origin of each of its requirements is clear and it facilitates

the referencing of each requirement in future development or

enhancement documentation. Both forward and backward

traceability should be provided.

The work in this dissertation will be focused on requirements analysis, especially on

consistency, ambiguity and completeness of software requirements. The research leads to the

development of a Tree-Based Graphical Approach in software requirements analysis.
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Chapter 2

Current State of the Art and Practice

2.1 Formal Methods

2.1.1 Definition

The function of mathematical logic in digital systems is analogous to that of calculus in the

traditional, continuous systems: as an analytical tool calculating and predicating the behavior

of the systems as well as being a notation describing the systems. Rushby defines Formal

Methods as "methods that use ideas and techniques from mathematical or formal logic to

specify and reason about computation systems (both hardware and software)"[Rush95]. The term

"formal" in the terminology refers to the idea that a proof can be known to be valid based on

its "form" of reasoning, that is, the validity of a proof can be established by simply checking

the syntax of an argument regardless of its semantics[Btl 93, HoI95]. By contrast to fault removal

and fault tolerance, formal methods are fault avoidance techniques that will increase

dependability of software by avoiding errors throughout the software development cycle.

In the 1970s, formal methods were focused on proofs of program correctness[Hoar 69, Hoar7 1
, Lond75]

which turned out to be not only an expensive exercise, but a very difficult one. Since the

1980s, emphasis of formal methods has been shifting from program correctness to the use of

formalism in specifications. It is realized that the majority of errors in the software can be

traced back to the early phases of software development process, and the conventional

techniques such as code review and testing are very effective removing coding errors[Rush93b

More recently, with the development of efficient techniques for model checking, attention of

formal methods is being paid to large-scale mechanized model checking. However, due to

limited expressiveness of temporal logic, model checking is prevented from fully

characterizing the functionality required of a system. By contrast, emphasis is focused on the



important properties that the system should possess. Due to its excellent diagnostic ability in

the form of counterexamples, model checking is usually focused on incorrectness of a

program, e.g., finding errors, rather than proving its correctness.

Since no single tool or method is universal enough to support all the diverse applications of

formal methods to software, a spectrum of them have been developed (see Section 2.3 and

Appendix 4).

2.1.2 Categorization of Formal Methods

The definition of formal methods implies that the two primary components of formal

methods are Formal Specification (e.g., "to specify") and Formal Verification (e.g., to

"reason about"). Miner defines formal specification as "use of notations derived from logic to

describe assumptions about the world in which a system will operate, requirements that the

system is to achieve, and the intended behavior of the system"[Mne 95]. He also defines formal

verification as "use of formal logic to analyze specifications for certain forms of consistency,

completeness, to prove that specified behavior will satisfy the requirements given the

assumptions, to prove that a more detailed design implements a more abstract one."

Formal specification languages can be divided in to four categories (refer to Figure 2.1-1).

The first two categories are suitable for the sequential systems while the next two categories

are proper for the concurrent systems.

* Model-Oriented Specification Language The category models a system's

desired behavior in terms of abstract mathematical objects such as sets,

sequences (or lists), functions. Specification languages VDM and Z belongs to

this category;

* Property-Oriented Specification Language The category can further be

subdivided into axiomatic methods which use first-order predicate logic to

express pre- and post-conditions of operations over abstract data types, and



algebraic methods based on multi-sorted algebra and relate properties of the

system to equations over the entities of the algebra;

* Process Algebra Specification Language This category is applicable to the

concurrent system through describing their algebra of communication

processes. According to Rushby, this is the model-oriented counterpart for the

concurrent system[Rush93b];

* Temporal Logic Specification Language This category makes use of logic

designed to reason about timeLadk 87 , Whit90, Alle83, Bouz95, Kaut91]. According to Rushby,

this is the property-oriented counterpart for the concurrent system [Rush93b]

2.1.3 Taxonomy of Degrees of Rigor in Formal Methods

Rushby classifies formal methods into four levels of different rigor1 according to how and

what formal methods are used[Rush93b]. This taxonomy is cited by [USNRC95].

* Level 0- No Use of Formal Methods

Level 0 corresponds to the mainstream of the current industrial practice in

which verification is a manual process of review and inspection applied to

documents written in natural languages, pseudocodes, or programming

languages. Validation is based on testing driven either by software

requirements specification or the structure of the program.

1 Butler seems to have a different taxonomy. In [Butl93], he defines
* Level 1 as "Formal Specification of All or Part of the System",
* Level 2 as "Paper and Pencil Proof of Correctness" (which is consistent with Miner's

definition, "specification using a formal specification language with manual proofs"[Mine 9
5]),

* Level 3 as "Formal Proof Checked by Mechanical Theorem Prover".



Model-oriented
(e.g. VDM, Z)

Algebraic Method
(e.g., Act One, OBJ)

Process Algebras
(e.g., CSP, CCS)

Formal Methods and the Hierarchical Components (based on [Hinc93], page 29 of [Rush93b])
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eLevel 1 - Use of Concepts and Notation from Discrete Mathematics

The idea of Level 1 rigor of formal methods is to replace some of the natural

language used in the software requirements specification with notations from

logic and discrete mathematics. This level of rigor matches the way

mathematics is used in most other engineering disciplines. Hence, this level of

rigor is most liable to be accepted by the practitioners. Use of discrete

mathematics at this level provides several benefits. First, the versatile

collection of building blocks introduced in discrete mathematics can help in the

development of clear, precise, and systematic statements of requirements,

specifications, and designs. Second, discrete mathematics provides a compact

set of notations that allows descriptions of requirements, specification, and

design to be recorded and communicated with much less ambiguity than

natural language such that the recorder and the reader can share the unique

understanding of the notations. Third, axioms, theorems, and inference rules

can systematically guide the elaboration of the specification or design from one

level to another. Software Cost Reduction (SCR) introduced in Section 2.3.1 is

an example of Level 1 formal method. Level 1 formal method is what this

dissertation is intended to address. The purpose choosing this level of rigor is

two fold. First, the proposed methodology should rely on minimal knowledge

of formal logic and notations. Second, such a process helps analyst gain more

insight than running a commercial package as a black box. If software

requirements are proved inconsistent by a commercial package, a message will

be displayed. However, no hint will be given as where the inconsistency is, nor

will suggestions be given as how to remove the inconsistency through

modifying the requirements.

* Level 2 - Use of Formalized Specification Languages with Some Mechanized

Support Tools

In addition to retaining the benefits obtained from Level 1 applications of

formal methods, Level 2 applications of formal methods may contain

additional benefits. First, specification languages not only provide a standard



set of notations from discrete mathematics, but also address software

engineering concerns and allow specifications to be structured into units (e.g.,

modules, abstract data types) with explicitly specified interface. Second,

mechanized tools such as syntax checkers or type checkers allow more

efficient detection of certain types of faults or make it easier to be the "living"

documentation. Third, it is possible to generate a prototype implementation

from a specification to explore certain properties of the specification.

However, Level 2 specification languages may be optimized for a specific

domain of applications and cumbersome or inapplicable in other domains. As a

result, they may lead to implementation bias as means of specification.

*Level 3 - Use of Fully Formal Specification Languages with Comprehensive Support

Environments, Including Mechanized Theorem Prover or Proof Checker

Using a specification language with formal proof techniques, this level of rigor

has the highest level of rigor. Once the model is completely formalized, i.e.,

reduced to symbol manipulation, it is possible to mechanize proofs in terms of

proof checker 2, theorem prover3  or, most commonly, something in

between[Grov94]. The advantages of this approach are that requirements,

specification, and designs can be subjected to searching examination, and that

mechanization eliminates faulty reasoning with higher certainty than the paper-

and-pencil approach. But the fully formal specifications and automatic proofs

are expensive to develop, usually with rather impoverished notation based on

restricted logic for the sake of mechanized support. Therefore, one of the

barriers of Level 3 methods is the readability and understandability associated

with level of rigor. In general, the higher the level of rigor, the higher the cost.

Depending on the benefits desired from the formal methods, the criticality of

the application, and the resources available, higher levels of rigor of formal

methods are not necessarily superior to lower level ones.

2 Proof checker is a computer program that checks the steps of a proof proposed by a human being.
3 Theorem prover is a computer program that attempts to discover proofs without the help of human being.



2.1.4 Formal Methods and the Industry

Most of the formal methods have been developed by computer scientists and are aimed at

computer scientists or others with very strong background in discrete mathematics. As a

result, when formal methods are developed by computer science community, they are usually

difficult to be accepted by the practicing engineers due to the poor readability inherent in the

methods. There is still a long way before formal methods are universally accepted by the

industry.

2.1.4.1 Advantages of Formal Methods

* Experience gained from projects such as IBM's CICS shows that formal

methods do not necessarily increase the development cost, nor do they

necessarily cause delay[H mc93, 
Bowe951. It is true that cost does increase in the initial

phases of the development process. However, benefit pays off later as coding

and maintenance costs are reduced significantly. As a result, the overall

development of software costs will be decreased.

* Even though complete formal development (i.e., including proof and

refinement) requires a strong mathematical background, understanding and

writing formal specification requires relatively less knowledge of mathematics.

* Formal methods are not only beneficial to the safety-critical systems. In fact,

formal specifications help with any system[Hal 9
0]

2.1.4.2 Disadvantages of Formal Methods

* Obstacles exist to getting started with formal methods. These obstacles include

- lack of readability and understandability and insufficient education;

- immaturity of tools and difficulty in choosing the proper tool. Many

tools in existence are domain specific, research prototypes not mature

enough for industry application;



* Formal methods can not guarantee error-free software. Although formal

methods enable us to check rigorously for consistency in requirements and

reason about the properties of the requirement, human-generated specifications

or proofs are error-prone and formal methods do not check if requirements

themselves are correct[Hnc9 3, Hall90]

* Formal methods do not replace traditional software engineering methods such

as testing [ cinc93, Bowe95]

* Errors may exist in the formal verification tools themselves.

For more information, interested readers in this topic should refer to [Hall90], [Bowe95],

[Saie96], [Rose96], [Knig97], [Webe93], [Crai93], [Crai95].



2.2 Finite State Machine (FSM)

Used in many branches of computer science, a Finite-State Machine (FSM)[Rose95] is formally

defined as a six-tuple4 : M= (S, I, O, f g, so) comprised of a finite set of states S, a finite input

ser I, a finite output set 0, a transition function f that assigns a new state to each state and

input pair, an output function g that assigns an output to each state and input pair, and an

initial state so. Two basic types of FSM are the Mealy machine and the Moore machine. For a

Mealy machine, output is determined by both current inputs and current state. For a Moore

machine, on the other hand, output is solely determined by the current state. The behavior of

such a machine can be specified by giving rules of transitions between states and the set of

output values corresponding to each state.

FSM can be expressed using State Table to represent the transition function and output

function for all pairs of states and input. FSM can also be represented by State Diagram, i.e.,

directed graph with edges labeled as (input, output) pairs and arrows indicating respective

state transition. The advantage of the State Diagram is that the state transition and output

functions are expressed clearly on the graph, but the clarity vanishes when the FSM has many

states (e.g., 10 or more) since the state transition curves will inevitably overlap with each

other, making it difficult to keep track of. For a deterministic FSM with n states, there could

be as many as n2 state transition edges. On the other hand, the State Table is advantageous

when there are many states for an FSM. For each additional state, we can simply increase the

size of the table (e.g., number of rows or columns). The disadvantage of the State Table is

that, it is not as informative as the State Diagram in terms of state transition and output

functions. Hence, the State Table and State Diagram are complementary of each other.

It should be noted that the State Diagram looks very similar to the diagram of discrete

Markov model [Rama93] in stochastic analysis, e.g., probability and reliability theory. But the

4 In [Lync96], a State Machine is defined to be a triple (Q, Q0, 8), where
* Q is non-empty (finite or infinite) set of states,
* Q0 is a non-empty subset of the states known as start states,
* cQxQ is a binary relation over Q known as the transition relation.



two diagrams have fundamental differences. In Markov model, edges are labeled with the

probability of transitions from one state to another. The probability (or rate) is usually not

unity, so transition from one state to others is random. Markov model usually doesn't touch

upon input and output functions. In State Diagram, however, edges are labeled with ordered

(input, output) pair, indicating that the transition occurs from one state to another with the

input and generates the output. For a deterministic FSM, the transition will occur with

probability of unity.

An example of Mealy machine with S = {so, s1, s2,, s 3, s4 }, I= {0,1} and O = {0, 1} is shown

in Table 2.2-1 (State Table of the FSM). To read the table, the first row means that, if the

FSM is in state so with input 0 at time to, the FSM will be in state s, with output g=l1 at time

tn+,; if the FSM is in state so with input 1 at time tn, the FSM will be in state s4 with output

g=0 at time tn+,. Figure 2.2-1 shows an equivalent FSM expressed in State Diagram. In the

diagram, states are labeled inside the circles with (input, output) pairs labeled on the edges

whose directions represent state transitions.



An Example of Mealy Machine

Input

State 0 1

f g f g

so S, 1 s4 0

S, S, 1 s2

S2  S4 0 S 3  0

S 3  S 4  0 S3  0

S 4
S, O so 0

Table 2.2-1



Figure 2.2-1 A Graphical FSM Equivalent to Table 2.2-1

Start



2.3 An Overview of Methodologies on Software Requirements Analysis

2.3.1 Software Cost Reduction (SCR)

2.3.1.1 SCR Tabular Notation

SCR is the abbreviation for Software Cost Reduction, a formal notation developed by Parnas

and others at the US Naval Research Laboratory between the late 1980s and the early

19 9 0 s[Parn90a, Pa91, Pa95]. The concept of the methodology can be traced back to as early as the

19 7 0sTaus77] . The technique was tested and improved in a project involving an experimental

redesign of the Onboard Operational Flight Program for the United States Navy's A-7E

aircraft[W'1 94].

Realizing that the conventional formal methods were mathematically too sophisticated,

Parnas and his colleagues decided to seek a "middle road" to bridge the gap between the

theorists and the practitioners. The SCR specification language they developed makes use of

tabular notation based on finite-state machine model, e.g., via modes (states), condition

statements, and action statements. It classifies all data items and identifiers according to type

(e.g., input variable, mode, mode class) and uses special bracketing symbols to denote the

type associated with an identifier although one does not have to use the brackets as in

[McDo]. Besides, SCR can represent concurrency and temporal characteristics of a

systemlWil 94]

2.3.1.2 An Example in SCR Notation

SCR has been successfully employed in a variety of practical systems, including avionics

systems (e.g., a Shuttle CR for the "Heading Alignment Cylinder", in which SCR reveals that

several rows in one table have inconsistent or incomplete conditions[Rush97]), the A-7

Operational Flight Program, a submarine communications system[Heit 83], and safety-critical

systems of two Nuclear Power Plants: the Darlington plant in Canada[Joan , Joan92, Vio195, Vio196] and

one in BelgiumCour93]. More recently, a version of the SCR method called CoRE was used to

document the requirements of Lockheed's C-130J Operational Flight Program[Heit9 5 a]



Equipped with Canada's first computerized emergency reactor shutdown systems, Darlington

Nuclear Power Generation Station is a 4 x 880 MWe CANDU type[Petr9l] nuclear power plant

located east of Toronto. Each of the reactor has two independent shutdown systems: SDS1

control rod system and SDS2 liquid boron system. In addition to 6,000 lines of assembly

code in SDS1 and SDS2 combined, SDS1 has 7,000 lines of Fortran and SDS2 has 13,000

lines of Pascal[crai94]. Application of SCR notation to Darlington include three main steps:

* formalizing informal requirements by generating specification tables;

* use of existing code to develop program-function tables for it;

* demonstrating that the code is consistent with the specifications by comparing

the two tables developed above.

An example of a trip meter logic is given here in SCR notation. The code segment in Figure

2.3-1 is taken from [Viol96]. Software Design Document (SDD) is generated in SCR

notation by reverse-engineering the code segment. The reverse-engineered SDD is shown in

Table 2.3-1. Completeness of the requirements is achieved by developing a table with

mutually exclusive, collectively exhaustive columns and rows. When the conditions defined

in the rows and columns are satisfied, the corresponding actions described in the

requirements will be taken. Table 2.3-1 (A) specifies the new state of a reactor trip meter

(trip_state') with respect to its current state (trip_state), the sensors reading (signal), trip

setpoint (setpoint), and its deadband (db). To specify the requirements in English, if the

measured signal is below setpoint-db, then, no matter what the current trip state is, the trip

meter will be in the not_open status (i.e., no trip initiated); if the signal is between setpoint-

db and setpoint, then, the new meter state will remain in its current state; if the signal is

above the setpoint, the trip meter will be in open state (i.e., trip initiated) regardless its

current state. Table 2.3-1 (B) is an equivalent mutation of Table 2.3-1 (A). In the table,

completeness is achieved by exhaustively enumerating the mutually exclusive columns

named 1, 2, 3, and 4. Note that columns 1 and 4 each represent two columns hidden under the

don 't care notation "-" . When the conditions defined in the "Condition Statements" are

satisfied (i.e., columns), the actions will be taken in the corresponding "Action Statements".



void determine_trip_state (void)

Declarations ...

sequence_check(p_trip);

signal = get_signal();

setpoint = get_setpt();

IF ((signal < sigmin) I (sigmax < signal))

fatal error (90);

If ((setpoint < setpt_min) I (setptmax < setpoint))

fatal error (91);

new_trip = tripped;

IF ((signal <= (setpt-db)) ((signal < setpoint) && (trip_state ==

not_tripped))) new_trip = nottripped;

IF (signal >= setpoint)

new_trip = tripped;

trip_state = new_trip;

Figure 2.3-1 Code Segment from [Voil96]



Table 2.3-1 The SCR Notation for a Trip Meter

(A) Tabular Notation for the Last Section in Figure 2.3-1

(B) An Equivalent of (A)

Condition Statements 1 2 3 4
a: signal < (setpoint-db) a b b c
b: (setpoint-db) < signal <setpoint
c: signal 2 setpoint

trip state = open - T F

Action Statements
trip state ' = open x x

trip state ' = notopen x x



2.3.1.3 Tool Support for SCR Notation

In the Darlington case, the SCR notation was used to convince the Atomic Energy Control

Board of Canada (AECB), the Canadian nuclear regulatory agency, that the software in the

shutdown systems was of acceptable quality and in accordance with its specification. Even

though the control software of the two shutdown systems at Darlington is not big, application

of formal method turned out to constitute a substantial effort due to lack of tool at that time.

All the verification activities were done manually and some 30 engineers were involved in

different aspects of verification. The products include the documentation of specification,

code, and proofs as thick as "25 three-inch binders" (; 1.90 m) for each system. As observed

by Parnas at the certification of the plant that the "reviewers spent too much time of their

time and energy checking for simple, application-independent properties", rather than "more

difficult safety-relevant issues"' [Heit9 5b], the cost-effectiveness of SCR was hindered by lack of

tool support.

More recent work on SCR is emphasized on developing supporting tools[Heit95a, Hert95b, Shen96,

Sree96]. Heitmeyer[Heit 95 a, Heit95b] is developing toolset that includes a specification editor for

creating and editing formal requirements specification, a consistency checker testing the

specification for selected properties, a simulator for symbolically executing the specification,

and a verifier for checking that the specification satisfies selected application properties;

Shen focuses on developing tools to transform (normal) tables into inverted tables and vice

versa[Shen96]; Sreemani attempts to transform an SCR specification into a format that Symbolic

Model Verifier (SMV) can process, and claims that, if properly implemented, SMV could

save time significantly, e.g., more than two weeks computer running can be reduced to 15

CPU seconds[sree961. For more information on SCR tools, readers should refer to the

proceedings of a 1996 workshop on tabular notations[work96]

2.3.1.4 A Counterexample for SCR Notation

SCR Tabular Notation makes it more user-friendly to analyze consistency and completeness

of software requirements specification or software design document. However, one should



bear in mind that tabular notation is good only in situations in which less than three variables

are involved. The following example is a segment of code written in the high level

programming language C or C++. Using tabular notation, our task is to back out the design

document from the code so that it can be checked against the initial design document.

if (a==3) result =11;

else if (b==8) result =12;

else if (c<9) result =13;

else if (d>7) result =14;

else result =15;

Since tables are usually two-dimensional, they are most suitable in handling two independent

variables. When more variables are involved (e.g., four in this case: a, b, c, d), we have to

embedded one table into another or create a super-table. Table 2.3-2 (A) is such a super-table,

which lists all the 16 (=24) possible combinations. The disadvantage of the table is that all the

combinations leading to the same result must be listed explicitly, e.g., eight combinations

listed lead to one single result (result=11). Table 2.3-2 (B) is somehow an improvement over

Table (A) in that only combinations that lead to different results are listed as columns of

Table (B). Its disadvantage is that each condition at each column must be marked

individually.



Table 2.3-2 (A) Corresponding Super-Table of the Code Segment

(B) An Equivalent of (A)

c<9 c>9

d>7 d 7 d>7 d< 7

a = 3 b = 8 result = 11 result = 11 result = 11 result = 11

b 8 result = 11 result = 11 result = 11 result = 11

a 3 b = 8 result = 12 result = 12 result = 12 result = 12

b 8 result = 13 result = 13 result = 14 result = 15



A better notation to document specificaiton of this segment of code is the a Tree-Based

Graphical Method developed in Appendix 7. In the tree developed in Figure 2.3-2, root and

the internal nodes represent independent variables (in circle), the edges at a level represent a

partition of the domain of an variable. The partition is labeled on the edges, and each leaf (in

rectangle) represents the action to be taken if the conjunction of the conditions from the root

down to the parent of that leaf is satisfied. For example, the leaf "result=13" is initiated if

a#3 and b#8 and c<9 are satisfied. By comparing Table 2.3-2 with Figure 2.3-2, it is obvious

that the graphical method is logically more intuitive and informative than the tabular

notation.

2.3.2 Requirements State Machine Language (RSML)

2.3.2.1 RSML and Its Tool Support

Modugno, Leveson and others[Modu96] have developed a state-based specification language

called Requirements State Machine Language (RSML). RSML is based on the finite state

Mealy machine with outputs on transitions between states (refer to Section 2.2). Each RSML

transition consists of a source state, a destination state, a triggering event, a guarding

condition based on the triggering event, and a possible output action. A transition will take

place and may generate an output action if the triggering event occurs and the guarding

condition is evaluated to be true. The guarding condition is expressed in a tabular

representation of disjunctive normal form named AND/OR table (e.g., "sum of product"),

whose leftmost column lists the logical expressions. Each of the other columns in the

AND/OR table represents a conjunction (AND) of the rows in leftmost column, the

disjunction (OR) of the columns other than the leftmost represents the guarding condition

(see Figure 2.3-3). RSML has been used in an aircraft Traffic Collision Avoidance System

(TCAS II)[Leve94a].According to [Leve97a], a toolkit called SpecTRM is under development.
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2.3.2.2 RSML and SCR

Using RSML notation, the same example as in Section 2.3.1.2 is expressed in Figure 2.3-3.

In the figure, four transitions are identified, namely OPEN to NOT_OPEN, OPEN to OPEN,

NOT OPEN to NOT OPEN, and NOT OPEN to OPEN. The guarding conditions to these

transitions are represented in AND/OR Tables 1 through 4, respectively.

* AND/OR Table 1 specifies that the transition of trip_state from OPEN to

NOT OPEN will be initiated if signal is less than or equal to setpoint -

db;

* Table 2 specifies that the transition of trip_state from OPEN to OPEN

will be initiated if either signal is greater than setpoint - db and less than

setpoint or signal is greater than or equal to setpoint. This guarding

condition can be simplified to "signal is greater than setpoint -db";

* Table 3 specifies that the transition of trip_state from NOT_OPEN to

NOT OPEN will be initiated if either signal is less than or equal to

setpoint-db or signal is greater than setpoint-db and less than or

equal to setpoint-db. This guarding contition can be simplified to

"signal is less than setpoint";

* Table 4 specifies that the transition of trip state from NOT OPEN to

OPEN will be initiated if either signal is greater than or equal to

setpoint.

It can be shown that Figure 2.3-3 is logically equivalent to Table 2.3-1. However, AND/OR

tables in RSML emphasize on state transitions (which are referred to as Action Statements in

SCR notation) while tables in SCR emphasize on the partitions of variables or "pre-

conditions" (the Guarding Conditions in RSML notation). AND/OR tables become complex

in the case when more than two logical variables are involved in guarding conditions (similar

to SCR notation) or more states are involved in state transitions.



1) Transition (trip_state): OPEN -> NOT_OPEN
Triggering Event: signal
Condition: AND/OR Table 1

signal< setpoint-db
setpoint-db<signal<setpoint

setpoint:signal

2) Transition (trip_state): OPEN -> OPEN
Triggering Event: signal

Condition: AND/OR Table 2

signalisetpoint-db
setpoint-db<signal<setpoint

setpoint-signal

3) Transition (trip_state): NOT_OPEN -+
Triggering Event: signal
Condition: AND/OR Table 3

signal:setpoint-db
setpoint-db<signal<setpoint
setpoint:signal

4) Transition (trip_state): NOT_OPEN --4

Triggering Event: signal

Condition: AND/OR Table 4

NOT OPEN

OR

T F

F T
F F

OPEN

OR

F

F

T

Figure 2.3-3 RSML Specification of the Example in Table 2.3-1

OR

T
F
F

OR

F F
T F
F T

signal!setpoint-db
setpoint-db<signal<setpoint

setpoint:signal



2.3.3 PVS Verification System

Based on years of experience at SRI International in building and using tools to support

formal methods, PVS provides mechanized support for formal verification as well as formal

specification.

The specification language of PVS is based on classical, typed higher-order logic. The basic

types include the built-in types (boolean, integers, and real, etc.), uninterpreted types

introduced by the user. The type-constructors include function, set, tuple, record,

enumeration, and recursive abstract data types (binary trees, lists, etc.). PVS specifications

are organized into parameterized theories that may contain assumptions, definitions, axioms,

and theorems. PVS expressions provide the usual arithmetic and logical operators, function

application, lambda abstraction, and quantifiers. Tabular specifications such as SCR are

supported with automated checks for disj ointness and coverage of conditions[0 wre96], [Rush93a]

The PVS theorem prover provides a collection of powerful primitive inference procedures

applied interactively under user guidance with a sequent calculus framework. The inferences

include propositional and quantifier rules, induction, rewriting, and decision procedure for

linear arithmetic. User-defined procedures can combine these primitive ones to generate large

proofs and yield higher-level proof strategies. PVS includes a decision procedure for the

relational p-calculus.

PVS is mainly intended for the formalization of requirements and design-level specifications,

and for the analysis of intricate problems. It has been applied to algorithms and architecture

for fault-tolerant flight control systems, and to problems in hardware and real-time system

design. Alpha-release of the current version of PVS is available through internet[SRI 97], but

documentation is not well organized, nor is it fully up to date. Unfortunately, specific training

is required to learn PVS notations.



2.3.4 Quasi-Classical (QC) Logic

To deal with inconsistent requirements, Besnard[Besn95] has developed a Quasi-Classical (QC)

logic which is essentially first-order propositional logic (see Chapter 3) that allows the

derivation of non-trivializable classical inferences. The inference rules of QC-logic are a

subset of the classical inference rules. Hunter[Hunt97] later improved the QC-logic (and named it

"labeled QC-logic") by prefixing labels to logic formulae so that it was possible to pinpoint

or track inconsistency in the requirements. However, QC-logic does not reduce the

dependency on knowledge of discrete mathematics.

2.3.5 Fuzzy Logic and Utility Function

Yen and others introduced an interesting concept into requirements analysis by developing a

quantitative measure analyzing the tradeoffs between conflicting requirements using

techniques from decision sciences (e.g., fuzzy logic and utility functions). They argue that

each conflicting requirement can be satisfied to some degree, rather than resolving the

conflict. This idea may be appealing in non-safety-critical applications (e.g., developing word

processing software), so that priorities can be assigned to requirements, assuming certain

features are more important than others and features with lower priorities can be ignored if

deadline approaches. However, according to a survey of 23 projects in 10 companies by

Lubars[Luba93], no company knew "how to assign and modify priorities or how to communicate

those priorities effectively to project members". For safety-critical applications, such as I&C

in NPPs, such a prioritization of requirements is not applicable.

2.3.6 Structured Analysis and Design Technique (SADT)

Developed SoftTech Inc., Structured Analysis and Design Technique (SADT)[Dick78 , Ross77a,

Ross77b] is made up of a hierarchical diagram, each of which is a network of boxes representing

activities. The arrows at four sides of a box represent input, output, control and mechanism

for the activity involved. However, SADT was only designed for manual application (e.g.,

with no more than 40 primitive constructs), and it does not provide rules to check consistency

and completeness of an SRS.



2.3.7 Systematic Activity Modeling Method (SAMM)

Systematic Activity Modeling Method (SAMM)[Lam b78] was developed by Boeing Computer

Service Co.. Expressed in hierarchy, a typical SAMM specification is comprised of a context

tree (i.e., labeled trees), activity diagrams (i.e., directed graphs) and condition charts (e.g.,

similar to decision tables).

2.3.8 Higher Order Software (HOS)

Higher Order Software (HOS)[Ha m i76 ] is a requirements specification language developed by

Higher Order Software Inc. to support entire systems development process. A system is

represented by a binary tree, each of whose node is a mathematical function with input

labeled to the right-hand side of the node and output to its left. According to [Ouya95], HOS

is no longer commercially available today and is replaced by Development Before The Fact

(DBTF) which is introduced in Appendix 4.

2.3.9 Requirements Statement Language (RSL)

Developed by TRW Defense and Space Systems Group, a Requirements Statement Language

(RSL)[Alfo 7 7 , Alfo85] specification specifies software requirements in terms of processing paths.

The paths are represented graphically by requirements nets (or R-nets) which are essentially

flow diagrams with logical connectives. Although developed hierarchically, the final SRS is

a single, flat diagram by eliminating the intermediate steps of refinement and decomposition.

As a result, the final SRS for a sizable problem will be very huge.



2.4 Summary

Most of the formal methods have been developed by computer scientists and are aimed at

professionals with strong background in discrete mathematics, rather than engineers. As a

result, when they are developed, they are usually difficult to be accepted and used by

engineers due to its poor readability or intensive training required. Parnas criticizes this

situation by saying that it "does no good to prove that a piece of software satisfies a

specification, if that specification cannot be read, understood, and criticized by potential

users of their representatives"[Pam93b]. Therefore, formal methods must have two attributes:

they must be formal, and they require minimal training.

None of the methods described above indicates the importance of conformance to physics

laws in requirements analysis, which the author has discovered to be very essential in safety-

critical systems such as nuclear reactor control. The author's approach to attack the problem

is to develop a user-friendly methodology from a practicing engineer's point of view.
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Chapter 3

Fundamentals of Mathematical Logic

Discrete mathematics is a branch of mathematics devoted to the study of discrete objects. It

covers a wide range of topics, including mathematical logic, boolean algebra, mathematical

reasoning, counting techniques, graph theory, data structure, etc. A key reason that discrete

mathematics is of increasing importance is that information is stored and manipulated by

computers in a discrete fashion. Discrete mathematics also provides the mathematical

foundations for formal languages.

Formal methods are grounded in mathematical logic and reasoning, which provide precise

and unambiguous meaning to a mathematical statement. A logical proof system consists of:

(1) language for stating propositions, (2) axioms accepted as true, (3) inference rules, and (4)

theorems.

3.1 Definitions and Terminology

Use of the standard definitions and terminology eases communication, reduces

misunderstanding or ambiguity. The following definitions are selected from many others

since they will be used throughout the context. They are summarized from [Rose95],

[Rush93b], [Leig97], and [Karg97].

Definition 3.1-1: A proposition is a statement that is either true or false, but not both. A

compound proposition is a proposition formed from existing propositions using logical

operators. A predicate is an expression containing variables such that if the variables are

replaced by values, the expression is a proposition. A predicate is also called a propositional

function.



Definition 3.1-2: An axiom is a proposition that is assumed to be true. Therefore, there is no

proof that an axiom is true. A theorem is a proposition that can be derived by applying

inference rules to the set of axioms. A lemma (plural lemmas or lemmata) is a simple theorem

used in the proof of other theorems. The distinction between a lemma and a theorem is pretty

arbitrary. Complicated proofs are usually easier to understand when they are proved using a

series of lemmas, each of which can be proved individually. A corollary is a true proposition

that can be established directly from a theorem that has been proved.

Definition 3.1-3: A set of axioms is consistent if no proposition can be proved to be both true

and false. Consistency is an absolute must for a proof system. A set of axioms is complete if

it can be used to prove or disprove any proposition. A proof system is sound if, starting with

axioms (which are valid), each subsequent formula derived with the inference rules is also

valid.

Definition 3.1-4: The rules of inference are the means used to derive new conclusions from

existing assertions.

Definition 3.1-5: A mathematical proof is a verification of a proposition by a chain of logical

deductions from a set of axioms. It has three distinct steps:

* to begin with true propositions, e.g., axioms;

* to use inference rules;

* to derive new true propositions.

Definition 3.1-6: A proof system is decidable if there exists an algorithm (i.e., a computer

program that is guaranteed to terminate) that can determine whether or not any given

statement is a theorem. A proof system is semidecidable if there exists an algorithm that can

recognize the theorem (i.e., the algorithm is guaranteed to terminate with the answer "yes" if

a theorem is given, but that need not terminate if a non-theorem is given-though if it does

halt, it must give the answer "no"). A proof system is undecidable if it is neither decidable

nor semidecidable.



Definition 3.1-7: A proof system is sound if every provable fact is true. A proof system is

complete if every true fact is provable. Inconsistent system can not be sound since an

inconsistent system contains both a proposition and its negation as theorems, which can be

used to prove any proposition, true or false. Only sound systems are of use in formal

methods. It would be nice if they are also complete and even nicer if they are decidable.

Definition 3.1-8: A tautology is a compound proposition that is always true, no matter what

truth values are assigned to the propositions that occur in it. A contradiction is a compound

proposition that is always false. A contingency is proposition that is neither a tautology nor a

contradiction.



3.2 Propositional Calculus

3.2.1 Basic Propositional Operations

The propositional calculus is sound (i.e., all valid theorems are provable), complete (i.e., all

provables are valid theorems), and decidable (i.e., by means of truth table). There are five

propositional operations: negation, conjunction, disjunction, implication, and equivalence in

descending order of precedence of operation. Other operations such as Exclusive OR, NAND,

NOR can be derived from these fundamental logic operations. For example, Exclusive OR is

the negation of equivalence, NAND is the negation of conjunction, and NOR is the negation

of disjunction.

3.2.1.1 Negation (-- or -)

Definition 3.2-1: Let P be a proposition, the statement "It is not the case that P" is defined to

be the negation of P, denoted as -,P or -P. -1P is true when P is false and false otherwise.

The negation of a proposition can also be considered as the result of the negation operator (-,

or -) operated on the proposition. The negation operator creates a new proposition from a

single proposition. As a result, the negation operator is called a monadic operator. The truth

table for -,P is shown in Table 3.2-1. In the table, T stands for truth value true, F stands for

truth value false. The size of the truth table (i.e., number of rows) is 2n , where n is the

number of independent propositions. Therefore, if n is large, the size of the table will be

explosive exponentially. In the negation operation, n=1. Hence the truth table has two rows.

3.2.1.2 Conjunction (A)

Definition 3.2-2: Let P and Q be two propositions, the conjunction of P and Q (denoted

PAQ) is defined to be the compound proposition that is true only when both P and Q are true

and is false otherwise.



The conjunction operator (A) creates a new proposition by operating on two propositions.

Hence, it is called a dyadic operator. The truth table of conjunction is shown in Table 3.2-2.

(To be consistent with boolean algebra, T is customarily denoted as 1 while F denoted as 0 in

the truth tables.)

3.2.1.3 Disjunction (v)

Definition 3.2-3: Let P and Q be two propositions, the disjunction of P and Q (also known as

inclusive or, denoted PvQ) is defined to be the proposition that is false only when both P and

Q are false and is true otherwise.

The disjunction operator (v) creates a new proposition by operating on two propositions.

Hence, it is a dyadic operator. The truth table of disjunction is shown in Table 3.2-3.

3.2.1.4 Implication (= or D or ->)

Definition 3.2-4: Let P and Q be two propositions, the implication PeQ is the proposition

that is false only when P is true and Q is false, and is true otherwise. In the implication, P is

called the hypothesis (or antecedent or premise or pre-condition), Q is called the conclusion

(or consequence or post-condition).

The implication operator (=) creates a new proposition by operating on two propositions.

Hence, it is a dyadic operator. It is most frequently used in deriving new propositions from

the known propositions in the format of "if P, then Q", "P implies Q", "P only if Q", "P is

sufficient for Q", "Q if P", "Q whenever P", "Q is necessary for P", etc. The truth table of

implication is shown in Table 3.2-4. This operation deserves more discussion with an

example. Let

P be the proposition "a polygon is a square", and

Q be the proposition "each internal angle of the polygon is 90 ". Therefore,



PeQ represents the sentence (or compound proposition) "If a polygon is a square,

then each internal angle of the polygon is 90 o,

To ease our discussion, let us start with the last row in Table 3.2-4. This row represents that a

true conclusion (i.e., Q is 1 or it is true that each internal angle of the polygon is 90 0) can be

derived validly (i.e., the truth value of PzoQ is 1) from a true premise (i.e., P is 1 or it is true

that the polygon is indeed a square). This case is rather straightforward. So is the third row,

which says that the reasoning is false (i.e., the truth value of P Q is 0) if we get a false

conclusion (e.g., each internal angle of the polygon is 90 0) when we start with a true premise

(e.g., the polygon is indeed a square).

The tricky cases are the first two rows, which indicates that if the premise is false, then no

matter what conclusion we end up with, it is a valid reasoning. Put it in another way, we can

get any conclusion (i.e., Q is either 1 or 0) from a false premise (i.e., P is 0). In other words,

we don't care what conclusion we get if premise we start with is false. In this example, if a

polygon is not a square, then we do not know whether each internal angle of the polygon is

900 from the implication: it may be (e.g., if the polygon is a rectangle) or may be not (e.g., if

the polygon is a trapezoid). The cases can be used as the basis for a vacuous proof, e.g., in

establishing base case in mathematical induction. The first row has applications in detecting

inconsistency (or contradiction) in the premise (i.e., we will conclude that P is 0) if we end

up with a false conclusion (i.e., Q is 0) and our reasoning process is valid (i.e., P-=>Q is 1).

This property can be used to detect inconsistency in Software Requirements Analysis (SRA).

By comparing columns 2 and 4 in Table 3.2-4, we get a very important property of

implication, that is, P-oQ is logically identical to -,PvQ. This equality can also be obtained

by applying De Morgan's Law and the Law of Double Negation to the third row, i.e.,

-(P=>Q) = PA-Q (row 3)

Therefore,

P=>Q = (PA-Q)

= IPv ( Q) (De Morgan's Law in Table 3.2-11)

= ,PvQ (Double Negation Law in Table 3.2-9)



3.2.1.5 Equivalence or Equality (< or =)

Definition 3.2-5: Let P and Q be two propositions, the equivalence of P and Q (denoted

P<*Q) is defined to be the proposition that is true only when P and Q have the same truth

value and is false otherwise.

As a dyadic operator, the equivalence operator is similar to equality of algebra (we might

interchangeably use < and = in the text). In logic, it is used to represent English phrases

"exactly when", "only when", "if and only if (iff)", "if... then..., and vice versa", "if...then,

and conversely", "sufficient and necessary for", etc. The truth table of equivalence is shown

in Table 3.2-5. From the truth table, it is concluded the P<: Q is the same as PoQ A Qz>P.

3.2.2 Derived Propositional Operations

3.2.2.1 Exclusive Or (ve or E)

Definition 3.2-6: Let P and Q be two propositions, the exclusive or of P and Q (denoted

Pv,,Q or PE)Q) is defined to be the proposition that is true only when exactly one of P and Q

is true and is false otherwise.

The exclusive or (v,) creates a new proposition by operating on two propositions. Hence, it is

a dyadic operator. The truth table of exclusive or is shown in Table 3.2-6.

* By comparing columns 3 and 6, it is concluded that PEQ<*(-,PAQ)v(PA-1Q);

* By comparing the table with Table 3.2-5, it is concluded that exclusive or is

the negation of equivalence.

3.2.2.2 NAND (I)

Definition 3.2-7: Let P and Q be two propositions, the proposition P NAND Q (denoted PIQ)

is defined to be false when both P and Q are true and is true otherwise.



As a dyadic operator, the NAND operation is the negation of conjunction. The truth table for

NAND is shown in Table 3.2-7.

3.2.2.3 NOR (1)

Definition 3.2-8: Let P and Q be two propositions, the proposition P NOR Q (denoted P4,Q)

is defined to be true when both P and Q are false and is false otherwise.

As a dyadic operator, the NOR operation is the negation of disjunction. The truth table for

NOR is shown in Table 3.2-8.

3.2.3 Important Logic Laws

Table 3.2-9 contains some important identities (or logic laws) found in standard formal logic

textbooks such as [Rose95]. In the table, P, Q, and R are propositions, T stands for true and F

for false. Familiarly with these laws is essential to simplify logic expressions and to prove

new logical identities.

3.2.4 Important Inference Rules

Based on tautology, inference rules are means of drawing conclusions for known facts or

assertions. Some important inference rules are listed in Table 3.2-10.

3.2.5 Some Important Theorems

All the theorems listed in Table 3.2-11 are either the author's original contribution or from

other literature. Literally, the majority of propositional logic theorems can be proved by using

the truth tables. However, the truth tables are not always the best proof method, the method

becomes tedious when three or more logical variables are involved in a theorem. The author

provides all the proofs in Appendix 9.



Table 3.2-1 Truth Table for Negation (-P)

P 1P

T F
F T

Table 3.2-2 Truth Table for Conjunction (PAQ)

P Q PAQ
F (O) F (0) F (0)
F (0) T (1) F (0)
T (1) F (0) F (0)
T (1) T (1) T (1)

Table 3.2-3 Truth Table for Disjunction (PvQ)

P Q PvQ

0 0 0
0 1 1
1 0 1
1 1 1

Table 3.2-4 Truth Table for Implication (PoQ)

P Q P-oQ P --PvQ

0 0 1 1 1
0 1 1 1 1
1 0 0 0 0
1 1 1 0 1



Table 3.2-5 Truth Table for Equivalence (P<>Q)

P Q P>Q Q~P P>Q P=:QAQrP
0 0 1 1 1 1
o 1 0 0 1 0
1 0 0 1 0 0
1 1 1 1 1 1

Table 3.2-6 Truth Table for Exclusive OR (PGQ)

P Q PGQ - 1PAQ PA -Q -iPAQ v PA-Q

0 0 0 0 0 0
0 1 1 1 0 1
1 0 1 0 1 1
1 1 0 0 0 0

Table 3.2-7 Truth Table for NAND (P I Q)

P Q PIQ PAQ -(PAQ)
0 0 1 0 1
0 1 1 0 1
1 0 1 0 1
1 1 0 1 0

Table 3.2-8 Truth Table for NOR (P ', Q)

P Q P , Q PvQ -1(PvQ)
0 0 1 0 1
0 1 0 1 0
1 0 0 1 0
1 1 0 1 0



Table 3.2-9 Important Logic Laws

' This name is given by the author. There might be other names.
6 This name is given by the author. There might be other names.

Name of the Laws Logic Laws

Identity Laws PAT < P

PvF P

Domination Laws PvT < T

PAF F

Completeness Law' Pv-,P T

Inconsistency Law6  PA-,P <* F

Idempotent Laws PvP < P
PAP P P

Double Negation Law -,(P) < P

Commutative Laws PvQ <* QvP
PAQ < QAP

Associative Laws (PvQ)vR a Pv(QvR)
(PAQ) AR < PA(QAR)

Distributive Laws Pv(QAR) : (PvQ)A(PvR)
PA(QvR) > (PAQ) v (PAR)

De Morgan's Laws ,(PAQ) < -,Pv-IQ
-,(PvQ) < -PA Q



Table 3.2-10 Important Inference Rules

Name Rules of Inference Corresponding Tautology

Addition P P = (PvQ)
.. PvQ

Simplification A Q (PAQ) = P

P

Modus Ponens P Q [P A (PoQ)] = Q

Q

Modus Tollens p = Q [Q A (P=>Q)] = P

P Q

Hypothetical Q = R (P>Q A Q>R) = (POR)
Syllogism .. P R

PvQ
Disjunctive Syllogism -P (PvQ) A-P > Q

.. Q



Some Important Theorems in Propositional Calculus

Theorem Number Theorem

Theorem 3.2-1A P => P v Q is a tautology.

Theorem 3.2-1B P A Q z P is a tautology.

Corollary 3.2-1 P A Q => P v Q is a tautology.

Theorem 3.2-2A If P = Q, then P A R QA R.

Theorem 3.2-2B If P > Q, then P v R Q v R.

Theorem 3.2-3 If P = Q and Q = R, then P = R.

Corollary 3.2-2A If P~P 2 A P2 =P 3 A P 3 =P 4 A ... A P 1,,>P, then P>Pn.

Corollary 3.2-2B If P Q A Q < R, then P > R.

Theorem 3.2-4A IfP = Q and S - T, then PAS - QA T.

Theorem 3.2-4B If P Q and S - T, then PvS = Q v T.

Theorem 3.2-5 P > P A Q is equivalent to P => Q. Mathematically,

(P Q) C (P => PA Q).

Theorem 3.2-6A PA (Pv Q)> P

Theorem 3.2-6B P v (P A Q) c P

Theorem 3.2-7A (P => Q A R) :> (P = QA P = R)

Theorem 3.2-7B (P => Q v R) c> (P => Q v P = R)

Theorem 3.2-7C (PAQ => R) > (P = Rv Q > R)

Theorem 3.2-7D (Pv Q > R) (P = RAQ > R)

Theorem 3.2-8 (P = RA Q -> R) :> (P A Q => R)

Theorem 3.2-9 (P A Q) v (-,P A R)v (QA R) (P A Q) v (P A R)

Theorem 3.2-10 PA Q = (P => Q)

Corollary 3.2-3 PA Q => (P Q)

Lemma 3.2-1 (P> (true>Q)) c> (P>Q)

Theorem 3.2-11 (P=Q) A (-,P=R) = (QvR)

Theorem 3.2-12 (P>Q) * (-1P*-Q)

Theorem 3.2-13 (POQ A Q R A R-P) < (P<>Q A Qe>R)

Corollary 3.2-4 (P 1=P 2 A P 2 -P 3 A P 3 P 4 A ... A P nzPn A Pn=P1) 1

(P 1 >P 2 A P 2 >P 3 A ... A Pn-_Pn)

Theorem 3.2-14 If PoQIA Q2 and ,Q1, then -P.

Table 3.2-11



3.3 Predicate Calculus

Like propositional calculus, predicate calculus is sound and complete. However, unlike

propositional calculus, predicate calculus is semi-decidable.

When each variable in a predicate is assigned to a value, the predicate is reduced to a

proposition with a truth value. Another kind of mechanism converting the predicate into a

proposition is called quantification. In general, two types of quantification are used, namely,

the universal quantification and the existential quantification. The universal quantification of

predicate P(x) is the proposition "P(x) is true for all values of x in the universe of discourse

X', denoted as VxeXP(x). The existential quantification of predicate P(x) is the proposition

"There exist an element of x in the universe of discourse X such that P(x) is true", denoted as

3xeXP(x) (see Table 3.3-1).

Some of the important theorems in predicate calculus are listed in Table 3.3-2.



Universal Quantification and Existential Quantification

Quantification When true? When false?

VxeX P(x) P(x) is true for every x in X There is an x in X for which
P(x) is false.

3xeX P(x) There is an x inX for which P(x) is P(x) is false for every x inX.

true.

Table 3.3-2 Some Important Theorems in Predicate Calculus

Theorem # The Theorem

3.4-1A VxeX. P(x) > -- 3xeX -P(x)

3.4-1B -VxeX. -,P(x) < 3xeX P(x)

3.4-2A VxeX. Vye Y P(x, y) < Vy eY VxeX. P(x, y)

3.4-2B 3xeX. 3yeY. P(x, y) < 3yEY 3xeX P(x, y)

3.4-2C VxeX 3ye Y P(x, y) # 3yeY VxeX. P(x, y)

3.4-3A (VxeX. P(x)AQ(x)) < (VxeX P(x)) A (VxeX Q(x))

3.4-3B (3xeX. P(x)vQ(x)) (3xeX. P(x)) v (3xeX Q(x))

3.4-3C (VxcX. P(x)vQ(x)) (VxeX. P(x)) v (VxX. Q(x))

3.4-3D (3xeX. P(x)AQ(x)) (3xX. P(x)) A (3xeX Q(x))

3.4-4A (VxeX. P(x))AR * (VxeX P(x)AR)

3.4-4B (VxeX. P(x))vR < (VxeX P(x)vR)

3.4-4C (3xeX. P(x))AR > (3xeX P(x)AR)

3.4-4D (3xeX P(x))vR * (3xeX P(x)vR)

3.4-5A Vxe 0. P(x) <: true

3.4-5B 3xe 0. P(x) <*false

Note A is a proposition without any quantifiers.

Table 3.3-1
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Chapter 4

The Proposed Methodology

4.1 Introduction

A set of propositional expressions (e.g., those translated from requirements) is consistent, if

and only if, there exists at least one assignment of truth values for the variables in each

propositional expression such that all the expressions simultaneously receive the true value

or, equivalently, the conjunction of the expressions receives the true valueIne 88].

Inconsistency is simply the negation of consistency. A set of logic expressions is inconsistent,

if and only if, for every assignment of truth values to the variables making up each

propositional expression, there is at least one expression receiving the false value.

Consistency requires the set of requirements be consistent physically and logically, i.e., no

contradictory requirements should exist in the set of requirements. To achieve consistency,

we need to undertake mathematical analysis, physical modeling, and/or logical reasoning. For

completeness, we want the set of requirements to describe all required properties or behaviors

of the software. This is the basis against which QA personnel check to see whether the final

product is really what has been expected.

This analysis is extremely important since the work required to correct a fault infused at an

early stage of software development process can cost up to two orders of magnitude more if

not identified and corrected immediately. With a set of complete and consistent requirements,

work during the remaining stages can be undertaken more efficiently and more cost-

effectively by minimizing the amount of rework.

Based on the concept of "divide-and-conquer", the graphical approach will be focused on

consistency checks. The task of Software Requirements Analysis (SRA) is divided into



groups of smaller sub-problems. Using tree-based graphical methods, we first analyze the

consistency of requirements in each group individually. In addition to the graphical approach

developed in the dissertation, the author identified three other approaches applicable to the

analysis: the Analytical Approach, the Truth-Table Approach, and the Dynamic Flowgraph

Methodology (DFM). By combining the results of the sub-problems, we analyze the

requirements of the original problem using dependency diagrams. The details of the process

will be illustrated by an example in Section 4.4.



4.2 Graphical Representation of the Logic Operations

As defined in Section 3.1, a proposition is a statement that is either true or false (not both),

e.g., "It is raining now" is a proposition, which is either true or false. There are five basic

logic operations on propositional logic: negation, conjunction, disjunction, implication, and

equivalence. Three derived operations are exclusive or, NAND, and NOR. These operations

are graphically expressed in Table 4.2-1, where P and Q are propositions. From the top to the

bottom rows of the table, the precedence of the operations is decreasing. The first row

represents the negation operation, which is true if P is false, and false otherwise. The second

row represents the conjunctive operation which is true if and only if its constituents P, Q are

true simultaneously. The third row represents the disjunctive operation which is false if and

only if its constituents P, Q are false simultaneously. The fourth row is rather tricky. The

implication is true if and only if either both of the constituents, P (the premise or pre-

condition) and Q (the consequence or post-condition), are true simultaneously or P is false.

The former case means that the truth of the consequence can validly follow from the truth of

the premise. The latter case simply means, if the premise is false, then any consequence can

follow from the premise. In other words, if the premise is not satisfied, one does not care

about the consequence at all. Logically, the implication operation (P>Q) is identical to

-1PvQ. Equivalence is a two-way implication, that is, P<Q is the same as PoQ and Q-P.

To simplify the graphics, the conjunction gate (A) itself is not plotted on the graph for

simplicity and in conformance with the organization charts as well as to distinguish the

operation from the disjunction gate (v).



Graphical Representation of Propositional Operations

Equivalent Graphical Priority
Propositional Operations

Representations (1 = highest)

Negation --P (or -P) (or -P)

p^Q
Conjunction P AQ 2

P I IQ

PvQ

P => Q
Implication P => Q 4

-P Q

P <=> Q
Equivalence P <-> Q 5

P^"-Q P^AQ

PVeQ
P Ve Q

Exclusive OR PveQ

SP"Q P^~Q

P Q

NAND P|Q I

-P ~Q

NOR PQ
-P -Q

Table 4.2-1



4.3 Procedure in the Proposed Graphical Approach

The purpose of requirements analysis is to resolve inconsistency and ambiguity in the

requirements, to remove all irrelevant information, and to achieve completeness. The

proposed methodology is comprised of three major steps listed below and also shown

schematically in Figure 4-3.1.

Step I Collection of software requirements.

In general, the requirements from the customer are given piece-by-piece

and evolve with time. If the customer has provided a complete set of

requirements, this step can be bypassed. In most cases, however, this will

not be the case.

Step II Grouping of software requirements.

This step divides the original set of requirements into groups whose union

is the original set.

Step III Analyze software requirements for unambiguity, consistency (and completeness)

using the proposed graphical approach.

Consistency of requirements is achieved by a process containing two sub-

steps known as the "within-group consistency" analysis followed by the

"between-group consistency" analysis.



Figure 4.3-1 Schematic of the Proposed Graphical Approach
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4.4 The Proposed Graphical Approach and An Example

The procedure described in Section 4.3 will be demonstrated through an example of an

automobile controller. The purpose of the controller is to control the modes of operation of

the automobile. The set of requirements is elicited in Table 4.4-1 (assuming that they have

been provided by the customer).

4.4.1 Requirements Grouping and Its Benefits

Software requirements are typically informal documents from the customer that are usually

evolving. If it is a brand new project with which the customer does not have much experience

or does not understand well, then it is usually the case that the requirements are ambiguous,

inconsistent, incomplete, or even ill-structured. On the other hand, if the customer wants to

upgrade an existing system that he understands pretty well, it is likely that the relationship

between the existing system and its successor is not defined clearly and correctly in his

requirements. Therefore, in either case, ambiguity, inconsistency, or incompleteness may

exist in the requirements.

Before grouping the requirements, it is crucial to identify keywords to serve as the titles of

groups. These keywords are usually the major tasks that the system is to accomplish and/or

constraints that the system is required to satisfy. Grouping is based on interrelations between

the requirements, e.g., requirements of a specific topic are grouped together so that

completeness and consistency analyses on that topic can be done fairly easily because they

are fewer in number and are logically related. Within each group, only logical operations

exist between requirements. If two requirements are related by physical relations, then they

belong to two different groups. Between these groups, we analyze their inter-consistency

based on their mathematical or physical relationships.



Table 4.4-1 Example: Requirements on an Auto Controller

1. The auto controller has six modes of operation: standstill,

constant acceleration, varying acceleration, constant speed

cruise, constant deceleration, varying deceleration.

2. If the auto controller is in standstill, then the auto speed

is zero.

3. If the auto controller is in constant speed mode, then the

auto speed is constant at 100 miles/hour or 44.4m/s.

4. If the auto controller is in constant acceleration mode,

then the auto must maintain the constant acceleration of 10

m/s 2

5. If the auto controller is in constant deceleration mode,

then the auto must maintain the constant deceleration of -10

m/s 2

6. The auto controller will not be in varying acceleration or

varying deceleration modes.

7. Combustion of gas is the source of power that accelerates

the auto. The nozzle opens at a constant rate of 20% of its

entire opening per second to regulate the intake of gas,

e.g., its opening is proportional to time once the constant

acceleration mode is entered.

8. Constant gas speed is assumed at the nozzle. All losses are

negligible and all energy generated by gas combustion is

converted into kinetic energy of the car (In reality, an

energy conversion factor, r, is assumed. For simplicity of

the analysis, this factor is assumed to be 1.0 here).



Since grouping combines similar requirements together, any changes made to the

requirements are confined locally. For example, if a requirement is changed in one group,

then changes in the requirements analysis are limited to this group or its related groups. One

does not need to worry about other groups. The same is true with the addition of

requirements. If new requirements are added to a specific group or an entire new group of

requirements is added, only that group or its related groups will be affected. Hence,

requirements analyses should only be conducted locally, i.e., within that group or between

the related groups. No other groups need to be worried about. This property of locality is very

important in software requirements analysis, in that software requirements are evolving

constantly in practice.

It should be noted that grouping is an important process, but it is not crucial. Grouping

collects all logically relevant requirements into one group and each requirement is assigned

into some group (i.e., no requirement is neglected). When grouping requirements, it is

common for an original requirement to contain information belonging to more than one

group. If this is the case, we can duplicate the requirement for as many times as the number

of groups to which the requirement correlates. Mathematically, this duplication does not alter

the truth value of the logical expressions, i.e., requirements do not become overly-restrictive

(see Theorem 4.4-1). Therefore, in no sense will the requirements grouping lose or gain

anything. However, in practice, a good grouping will facilitate requirements analysis. In the

example, requirements 1 through 6 for the car controller are collected into one group entitled

"Operational Mode" since these requirements refer to how the race car is operated, while

requirements 7 and 8 are grouped as "Driving Force" since they refer to the car's power

system.

Theorem 4.4-1

Let P,, P 2,, P... Pi,... Pn be propositions, then for any m 2 1 and I < i < n,



I A PA P ... A... P, A P2 A P3 A...AP, P, A PA... PA... AP,

I+--- m ----- |
Lemma 4.4-1

If Q is a proposition and m>1, then

Q < QA QA QA...AQ.

I, m - -

Proof of Corollary using Induction.

1. Base case with m = 2 is true directly from the Idempotent Law in Table 3.2-6.

2. Induction: Assume the lemmma is true for m, that is,

Q QA QQA QA...AQ.

Starting with induction assumption

Q < QA QA QA...AQ

I<- Im --

and substituting the Idempotent Law (i.e., Q < QAQ for the last proposition Q

in the induction assumption yields

Q Q A QA QA...A(Q A Q)
I m ----- +

which is equivalent to

Q ' * QA QA QA...A(Q A Q).

I ( M + 1 - 1

Therefore if the lemma is true for case m, the it is true for case m+l. By

induction, it is concluded that the lemma itself is true.

The correctness of the theorem can be justified by using the corollary with Q = Pi.

4.4.2 Within-Group Analysis

Within each group, we use inspection and the tree-based graphical representation of

propositional logic. A typical within-group analysis has four steps, as identified in Figure

4.3-1. First, inspection is used to remove any obvious ambiguities and inconsistencies that



may occur in different sections of the requirements document. For unambiguity, we need to

look for qualitative words that do not precisely specify what is required, e.g., "some",

"several", "many", "(quite) a few", "significant", "good criteria", "acceptable safety margin",

etc. These words are a source of ambiguity.

The next step defines logical variables. This step is the most challenging, as it requires the

judgment of the analyst. However, once this is done, the remaining work will be mechanical

and relatively straightforward, i.e., it will involve the manipulation of variables according to

the defined logical rules. In defining the events, one must always bear in mind that an event

and its negation shall never be defined as two different variables. Step Three translates

natural language requirements into equivalent propositional expressions using the definitions

in Step Two. In Step Four, the Tree-Based Graphical Approach (TBGA) is used to check for

inconsistencies hidden in the document.

4.4.2.1 Inspection

By inspecting the requirements, one might realize that requirements for two operational

modes of the controller are not specified, i.e., those for varying acceleration and varying

deceleration. This important discovery should be reported to the customer for clarification or

addition. In this example, however, these requirements turn out to be irrelevant information

(see Section 4.4.2.4: Tree-based Graphical Approach).

4.4.2.2 Variable Definitions

Let

SS = auto controller's standstill operational mode

CA = auto controller's constant acceleration operational mode

VA = auto controller's varying acceleration operational mode

CS = auto controller's constant speed operational mode

VS = auto controller's varying speed operational mode

CD = auto controller's constant deceleration operational mode

VD = auto controller's varying deceleration operational mode



a = auto's acceleration (positive means acceleration,

negative means deceleration)

A = gas nozzle entire area of opening, i.e. maximum of A(t)

t = time after a mode of operation is entered

A(t)= k-t opening of nozzle at time t

v = auto speed

VF = the variable representing gas speed at the nozzle

vF = the constant value of gas speed at the nozzle

Subscripts SS, CA, VA, CS, VS, CD, VD refer to the

parameters under auto controller's corresponding

modes of operation.

4.4.2.3 Translation of Requirements from English to Logic Expressions

Once variables are defined, the English requirements for the auto controller in Table 4.4-1

can be translated into corresponding mathematical expressions. The result of the translation is

shown in Table 4.4-2.

It should be noted that, when translating requirement 7 into mathematics, one finds that at no

time should the opening of the gas nozzle be greater than the maximum possible opening(i.e.,

A(t)_A). However, this is missing from the original set of requirements. Therefore, translating

requirements from natural language into mathematics does help us re-think about the

requirements and makes them more complete.

4.4.2.4 Tree-Based Graphical Approach

In constructing the tree model, the logic expressions are translated into the equivalent tree

based on Table 4.2-1 which includes the graphical representation of five logic operations.

The graphical approach is more mechanical and less mathematics-oriented than the purely

analytical approach. For any one familiar with fault tree analysis (FTA), the graphical

method is very straightforward. For those unfamiliar with FTA, only slight training is

necessary. Therefore, it is expected to be very helpful for practicing engineers.



Table 4.4-2 Example: Mathematical Representation of Requirements

for an Auto Controller

Requirements # Group "Operational Mode"

1 SS v e CA ve VA ve CS ve CD ve VD

2 SS Vss=O

3 CS > Vs =44. 4m/s

4 CA = aCA=l Om/s 2

5 CD = aCD=- Om/s 2

6 -,VA A- VD.

Group "Driving Force"

7 Vt, A(t)=k.t AA(t) 4

8 VF=VF (where vF is constant gas speed at the nozzle).



Tree-Expansion Algorithm The idea behind the graphical method is straightforward. To

check whether the requirements are consistent is equivalent to checking whether the

corresponding logic expressions can hold the truth value of true simultaneously, i.e., the

conjunction of the logic expressions can be true. Each of these expressions is transformed

into its equivalent graphical form, i.e., the transformation is an identity. The rule of tree

expansion is to start with the simplest branch followed by the ones containing the same basic

events or their negation as in the already expanded one. It should be pointed out that the order

in which the next branch/sub-expressions is picked in the analysis does not affect the result of

the analysis. However, it does affect the structural complexity of the tree in the process of the

analysis (see Sections 4.5.5 and 5.3.2.5 for more detail). Hierarchically, these equivalent

forms are transformed into more basic forms until we end up with the definitions of events

(or variables). Since each transformation is an identity, the consistency check of the original

logical expression is equivalent to the consistency check of the leaf level. In other words, the

conjunction of (the disjunctions of) the leaf level events is the same as the top event which

represents the conjunction of the requirements to be analyzed.

Tree-Pruning Algorithms In the course of performing the transformation, it is always a

good practice to simplify the tree based on logic constraints, i.e., prune the branches that

contradict any known true branch. As a matter of fact, if a leaf contradicts any known true

branches/leaves, then the tree can be pruned upward (i.e., towards the root) until the first OR

gate is encountered. This is because, if a leaf is false, the conjunction of this leaf with any

other leaves or subtrees must also be false. Therefore, they must be pruned from the tree.

Conversely, if a leaf is true, the disjunction of this leaf with any other leaves or subtrees must

be true. As a result, they also should be pruned from the tree to simplify the analysis. As a

special case, if a true leaf appears later in the analysis, this later leaf should be pruned from

the tree.

The tree-based graphical approach for within-group analysis of group "Operational Mode" is

shown in Figure 4.4-1. In the figure, the numbers in the two highest levels of nodes represent



the logical expression numbers in Table 4.4-2. Satisfying the set of requirements at level 1 is

equivalent to satisfying each individual requirement simultaneously (level 2). Then the level

2 nodes are expanded further until the basic definitions are reached. For example, according

to the rule of tree expansion, box 6 is expanded, followed by box 1. During the expansion,

any leaves/branches that contradict any known true leaves/branches must be pruned from the

tree. For example, when expanding box 1, it is realized that -1VA is true from the previously

expanded box 6, so VA is not true. As a result, VA should be pruned from the tree. Similarly,

VD is pruned (dashed boxes in Figure 4.4-1). No other branches can be pruned in the

example. The analysis shows that the set of requirements for group "Operational Mode" is

consistent and can be simplified as in Table 4.4-3.

The within-group analysis for group "Driving Force" was not identified as necessary. If an

inconsistency is detected during the within-group analysis of any group, it must be reported

to the customer. Then the analyst and the customer must find a resolution and the

requirements must be revised before any further effort is invested in the between-group

analysis of requirements.

4.4.2.5 Tree-Based Graphical Approach (TBGA) vs. Fault Tree Analysis (FTA)

Despite the fact that the Tree-Based Graphical Approach (TBGA) looks similar to Fault Tree

Analysis (FTA), there are fundamental differences between the two. First, FTA does not have

logic operations such as implication (-) and equivalence (e). These two operations play

significant roles in TBGA. As a result, no logical derivation from known facts to unknown

facts exists in FTA. Second, the purpose of FTA is to identify, through back tracking, all the

minimal cut sets (MCS) or prime implicants that lead to the top event[Yau95 , [Yau98]. In TBGA,

the purpose is to check whether the top event could happen (i.e., the requirements are

consistent) through logical reasoning. Third, FTA is used to identify the weaknesses of a

system, so that measures can be taken to reduce the probability of the top event, while the

graphical method is simply another way to simplify logic expressions and has nothing to do

with probabilistic or numerical analyses at all.



Table 4.4-3 Example: Simplified but Equivalent Representation of Requirements

Using the Tree-Based Graphical Approach (TBGA)

TBGA-Simplified Requirements (Operational Mode)

1 (SSv, CAVe CSve CD)A VAA, -VD

2 SS=> Vss=0

3 CS: Vcs =44. 4m/s

4 CA>aCA= 10Om/s 2

5 CD>aCD=- Om/s 2



Figure 4.4-1 Within-Group Analysis for Group "Driving Force" in the Example
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4.4.3 Between-Group Analysis

Through within-group analysis, we conclude that, the requirements are consistent within each

group. However, the analysis does not rule out the possibility of inconsistency between the

related groups.

To check consistency between the groups, we use dependency diagrams. These dependence

diagrams indicate physically relationships between groups of the requirements. Therefore,

requirements in one group may constrain those in other groups. In the dependency diagram,

each group is represented by a solid circle. An arc connecting two groups indicates that the

two groups are directly dependent, e.g., by physical laws. The analyst must identify all the

arcs such that consistency can be completely checked. Between-group consistency is assured

by analyzing all the arcs in the dependency diagram. Represented by dashed circles,

intermediate groups may be needed to bridge two groups not directly related. In this example,

the two groups are related by the law of energy conservation (Figure 4.4-2).

According to requirement 8, all energy generated by gas is converted into kinetic energy of

the auto during the constant acceleration mode, i.e., r1=1.0. This can be described by the

differential equation.

1 1
v, -A(t)-p-q -dt -r = - m(v + dv) 2  

Im2 (4.4-1)
2 2

where

p is the average density of gas at the nozzle,

m is the total mass of the auto, including the driver,

q is the energy generated by combustion of unit mass of gas.

The right hand side of Equation 4.4-1 represents the increment in the cars kinetic energy

during time t and t+dt while the left hand side of the equation represents the energy generated

by the combustion of gas during the same time period. Equation 4.4-1 can be simplified as



VFPq A(t). dt = v -dv (4.4-2)
m

Integrating this differential equation yields

2vF pq .A(t)dt (4.4-3)

From requirement 8 in group "Driving Force", opening of the nozzle is proportional to time

A(t)=kt (4.4-4)

Equation 4.4-3 can be simplified as

v= - t (4.4-5)
m

Therefore, the acceleration that can be provided by the engine, aEng,,,, which satisfies group

"Driving Force" is

aEngme = v (4.4-6)
aEPIg,,e d m

To satisfy the requirements in group "Operational Mode", it is required that

aEngine aCA (4.4-7)

In other words, to satisfy the requirements in both groups, it is required that the maximum

acceleration generated by the engine (aEngine) exceed that specified by the requirements (aCA).

By substituting values for the parameters, the validity of the inequality can be checked. If the

inequality is satisfied, the requirements between the two groups are consistent. Otherwise,

they are not. It should be noted that Equation (4.4-6) is valid only when requirement 7 is

satisfied (A(t)=k.t A or t A/k). In addition, through the between-group analysis, we can

also make the requirements more complete, e.g., by discussing with the customer the addition

of requirements for the values of p, q, m, etc.. Also omitted from this analysis are the

requirements for constant deceleration that will surely impose additional requirements on the

brakes.



Energy Conservation

Operational
Modes

(CA mode)

Figure 4.4-2 Between-Group Analysis for the Example



4.5 Four Approaches Applicable to Within-Group Analysis

In Section 4.4.2, a Tree-Based Graphical Approach (TBGA) is developed to perform within-

group analysis of software requirements. The graphical approach is very user-friendly and

can be learned by a novice very quickly. In this section, three other approaches are identified

and shown to be applicable to the within-group analysis: the Purely Analytical Approach, the

Truth-Table Approach, and the Dynamic Flowgraph Methodology (DFM). Please note that

* the first approach is taken directly from [Ince88], [Hoar69], [Lond75];

* the second approach is taken from a standard electrical engineering approach

for hardware design of digital circuits[Ward90], [Shaw93]. However, the application of

the methodology here for software requirements analysis is entirely original;

* DFM is usually applied to solve multi-valued logic problems under time-

dependent conditions. The author originally applies DFM to automate the

within-group portion of the software requirements analysis.

4.5.1 A Simple Example

Application of the three approaches, as well as the Tree-Based Graphical Approach, will be

illustrated by a simple example whose requirements are provided in column 2 of Table 4.5-1.

Three logical variables are identified in this simple example and are defined as

A = The computer system will be in state A

B = The computer system is in state B

C = The computer system is required to have property C.



Simple Example: Requirements for a Computer System

Table 4.5-2 Simple Example: the Purely Analytical Approach
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Requirements Equivalent Expressions

1 A computer system can only be in two states, AvB

either A or B;

2 If the computer system is in state B, then it is B>C

required to have property C;

3 The computer system is not in state B. ,B

Expression # Manipulation/Derivation Derived from

1. (AvB) A (B > C) A -B Requirements 1, 2, 3

2. -B (1)

3. AvB (1)

4. A (2, 3)

5. B> C (1)

6. -BvC (2 or 5)

7. AA-B (2, 4)

Table 4.5-1



Then, the requirements written in English are translated into formal logic respectively as

shown in column 3 of Table 4.5-1. Mathematically, it requires (AvB) A (BOC) A -B be true.

Four approaches will be used to show the analysis.

4.5.2 The Purely Analytical Approach

The Purely Analytical Approach is discussed in [Ince88], [Hoar69], [Hoar71], and [Lond75].

This method is usually expressed in tabular form with three columns: the first column records

the sequential order of the analysis, the second column represents the results of the analysis

derived from the expressions listed in the third column. As a result, the expression numbers

in the third column must be strictly less than those in the first column of the same row. In

Table 4.5-2, row 1 means it is derived from the original requirements. Row 2 means -B is

derived from expression 1. In other words, the fact that -B is true is derived from the fact

that (AvB) A (Br C) A -B is required to be true (refer to Theorem 3.2-1B in Chapter 3).

Similarly, each of rows 3 and 5 is derived from expression 1. Row 4 is derived from

expressions 2 and 3, that is, A must be true when both -B and AvB are true simultaneously.

As a rule, if the numbers in the third column are separated by a comma, the expression in the

row is derived from the expressions in the rows with corresponding numbers in column 1.

Row 6 is true, either from rows 2 (i.e., if -B is true, -BvC is true) or 5 (i.e., B= C is

equivalent to -BvC by definition). Finally, row 7 takes the conjunction of all the basic

events in the second column of the table. Since no contradictions are found in the analysis, it

means that the requirements are consistent. Mathematically, this means

(AvB) A (B C) A -B = AA-,B (4.5-1)

Now we can translate Equation (4.5-1) back into English with A and B defined in Section

4.5.1 , and the requirements in Table 4.5-1 can be simplified as

"The computer system can only be in state A, not state B".

Comparing with Table 4.5-1, it is noticed that requirement 2 has been removed from the set

of requirements because it is irrelevant.
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4.5.3 The Truth-Table Approach

The Truth-Table Approach is a standard electrical engineering method in designing and

simplifying digital circuits. This approach checks for all possible permutations of truth values

assigned to all the literals (i.e., logical variables) involved in the logical expression. For a

logic expression containing n independent variables, there are 2n rows in the truth table since

each variable has two truth values, true(]) or false (0). Each row in the table corresponds to a

distinct permutation of truth value assignments to the variables. For each permutation, first

determine the truth values of the components in the logical expression, e.g., AvB, B=-C, and

-B in this example, as shown in columns 4, 5, and 6 of Table 4.5-3. Then, determine the

corresponding truth values of the logical expression, TOP=(AvB) A (B=>C) A --B. Finally,

check to see if there is any row in the truth table that satisfies the logical expression (i.e.,

making it be true). If this is the case, the logical expression is satisfiable. In other words, the

corresponding requirements are consistent. Otherwise, the logical expression is not satisfiable

or the corresponding requirements are inconsistent.

When the logical expression is satisfiable, there are two ways to find its simplified and

equivalent expression based on the truth table. Picking all the rows that evaluate the logical

expression to be true, we

* take the disjunction of the conjunctions of the variables (also known as the sum

of products) and simplify the disjunction analytically. Each of the conjunction

corresponds to a row that evaluates the logical expression as true. In the

conjunction, if a logical variable is true (or 1) in that row of the table, the

variable itself is used, otherwise its negation is used;

* take the disjunction of the conjunctions of the variables and simplify the

disjunction using Karnaugh maps. This graphical method is recommended if

six or fewer logical variables are involved in the logical expression. Readers

interested in the method should refer to [Shaw93], [Rose95], [Ward90] for a

more detailed discussion.
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The advantage of the truth-table approach is that it is a mechanical process. The

disadvantages are

* the approach requires exponential time, i.e., for an expression involving n

independent variables, the truth table contains 2' rows. This is unsatisfactory

for n>3;

* most of the rows in the truth table are useless under many circumstances, i.e.,

they can not satisfy the logical expression. Therefore, the effort to create these

rows is futile. However, they can not be avoided since one does not know

whether they are futile until after they have been developed;

* with 2" rows in a truth table, it can be error-prone if evaluated manually.

In this example, when the triple (A, B, C) = (1, 0, 0) or (1, 0, 1), the top expression is true.

Taking the disjunction of the conjunctions, the logical expression is simplified as

(AvB) A (B=C) A -1B = (AA-BA--iC) v (AA-1BAC) (4.5-2)

or

(AvB) A (BoC) A -B =AA--B (4.5-3)

Not surprisingly, Equation (4.5-3) is exactly the same as Equation (4.5-1).
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Simple Example: the Truth-Table Approach
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A B C -B AvB B=:>C TOP=(AvB) A (B C) A- B

0 0 0 1 0 1 0

0 0 1 1 0 1 0

o 1 0 0 1 0 0

o 1 1 0 1 1 0

1 0 0 1 1 1 1

1 0 1 1 1 1 1

1 1 0 0 1 0 0

1 1 1 0 1 1 0

Table 4.5-3



4.5.4 The Dynamic Flowgraph Methodology (DFM) Approach

4.5.4.1 Features of DFM

Based on the Logic Flowgraph Methodology (LFM)[G u a r8
4, 88, 90], a method for analyzing

processes with feedback and feedforward control loops in steady state, the Dynamic

Flowgraph Methodology (DFM) aims to extend LFM to systematically model and analyze

the hardware and software components of time-dependent embedded systems. According to

[Yau95], two features were added to LFM to address the issues relevant to an embedded

system:

* the ability to deal with the dynamic aspect of the system, since time transitions

are often present in the software and hardware of embedded system;

* the ability to identify and represent the continuous physical and the

discontinuous logic influences present in the system, i.e., use of multi-valued

logic.

Normally, DFM works in a deductive fashion, i.e., it uses reverse causality backtracking of a

top event to find the prime implicants. Corresponding to the minimum cut sets (MCS) of a

binary fault tree, the prime implicants of a multi-valued logic tree, are the minimum

combinations of basic events whose simultaneous occurrence will ensure the occurrence of

the top event. The prime implicants are the unique failure modes of non-coherent systems,

i.e.., systems NOT gates as opposed to simply AND-OR logic[Henl92]

Through use of directed graphs, with relations of causality and conditional switching actions

represented by edges that connect nodes and operators in the diagram, a DFM model

integrates three types of networks. The Time-Transition Network describes the sequence in

which software modules (e.g., subroutines) are executed, the Causality Network shows the

functional relationships among key hardware and software parameters, and the Conditioning

Network models discrete software behavior caused by conditional branching or discontinuous

hardware performance due to component failure. The building blocks of these networks
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include Process Variable Nodes, Condition Nodes, Causality Edges, Condition Edges,

Transfer Boxes, Transition Boxes, and their associated decision tables (Table 4.5-4). Process

Variable Nodes are used to represent essential physical or hardware variables of the digital

system. Like process variable nodes, Condition Nodes represent physical or software

parameters that identify component failures, changes of process operation regimes and

modes, or software conditional branching. Condition Nodes can be associated with transition

for this purpose. Causality Edges are employed to connect Process Variable Nodes which

have a cause-and-effect relationship between the variables. Condition Edges are used to

model discrete behavior of the system. They link parameter nodes to transfer boxes, showing

the possibility of using a different transfer function to map input variable states to output

variable states. A Transfer Box models a transfer function between Process Variable Nodes.

In spite of indicating a cause-and-effect relationship similar to that of a Transfer Box, a

Transition Box differs from a Transfer Box in that a time delay for the transition is assumed

to exist between the time when the input variable states become true and the time when the

corresponding output variable states are reached. As an extension of a truth table, a decision

table allows each variable to be represented by any number of states, instead of being limited

to the binary logic of 0 (false) and 1 (true). The decision tables are constructed from

empirical knowledge, physical equations, logic relations, software, or pseudo code.

4.5.4.2 Automated Tool

The directed graph approach of DFM is implemented by a toolset which allows the system

model to be constructed and analyzed automatically[ASCA]
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Building Blocks of a DFM Model
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Name of Building Block DFM Graphical Representation

Process Variable Node 0

Condition Node

Transfer Box

Transition Box

Causality Edge

Condition Edge

Table 4.5-4



The toolset consists of a model editor and an analysis engine. The model editor provides a

graphical environment for the user to construct a model representing the system of interest. A

DFM model discretizes key process parameters, represented by nodes, into states. The

domain of each node is a set of consecutive, non-negative integers usually starting with zero.

These nodes are linked together via connectors (e.g., a transfer box) to represent, in network

form, the causal and temporal relationships of the system being analyzed. The details of the

underlying system parametric functions are expressed in terms of multi-valued logic decision

tables associated with connectors. Once the model is set up, one can use the DFM analysis

engine to automatically search for prime implicants of a given top event. A typical execution

of a DFM analysis is a two-step process. The two basic steps are:

Step 1 Build a model of the system for which a safety analysis is required. The

model consists of both the controlling software and the entities being

controlled. Multi-valued logic relations are used to discretize continuous

domain quantities, including time;

Step 2 Use the model developed in Step 1 to systematically search for the prime

implicants of a top event, desirable or undesirable, depending on the

objectives of the analysis.

One mode of a DFM analysis is conducted by back tracking through the model to identify, in

"reverse causality", the combinations of causes that bring about system level top events. Such

an analysis is based on a series of intermediate decision tables. An intermediate decision

table is an equivalent to a truth table in the binary logic system, which is modeled as a set of

logic gates in conventional fault tree analysis. As Yau emphasizes ([Yau98]), "a single DFM

model can be used to analyze an unlimited number of system top events" since the logical

relations "in the decision tables are sufficient to generate all the associated prime implicants".

The advantages of DFM over Software Fault Tree Analysis (SFTA)[Leve 83] include its

capability to deal with multi-state logic (as well as binary logic) and dynamics. In other

words, DFM provides a multi-valued, timed fault tree which can be viewed as a series of
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snapshots of conventional fault trees. In the conventional fault tree, only the probabilities of

occurrence of events may be time-dependent, while in the DFM model, in addition to time-

dependent probabilities of occurrence of events, the events themselves are also time-

dependent. And DFM is applicable to non-coherent situations in which NOT gates (or their

equivalents) are present, while conventional FTA does not apply to these situations.

4.5.4.3 Previous Applications of DFM

DFM was initiated and designed to solve multi-valued logic and temporal problems, e.g.,

finding coding errors in software. The applicability of DFM has been demonstrated in

analyzing software-controlled systems in nuclear applicationslG ua r961 and aerospace

applications[Yau95], as well as a simple embedded system[G arr95]. It should be noted that all the

applications of DFM in software have occured at late stages of the software development

process, i.e., after the software has been developed.

4.5.4.4 Use of DFM to Find Prime Implicants of Logic Expressions

A new application of DFM is proposed in this dissertation, that is, it is applied in software

requirements analysis where only static, binary logic is needed. The logic expressions in this

section can be viewed as mathematical translations of the software requirements.

Four test cases, to which we know the answers, have been designed to cover a variety of

situations. These test cases are to find the prime implicants

* of top event TOP= -AA (Test Case 1);

* of top event TOP= --AvA (Test Case 2);

* of top event TOP= (AAB)v-A (Test Case 3);

* of top event TOP= (AvB)A--A (Test Case 4).

For test case 1, no prime implicants exist. Two prime implicants exist for each of test cases 2

and 3. Only one prime implicant exists for test case 4. The known answers can be used to

109



check with those obtained from applying the DFM toolset. As summarized in Table 4.5-5, the

examples indicate that DFM can find all the prime implicants of the logic expressions.

4.5.4.5 Application of DFM to Requirements Analysis

In this dissertation, the author will apply DFM to Software Requirements Analysis (SRA),

i.e., to check whether software requirements are consistent or not. The purpose of the

application of DFM in software requirements analysis is two-fold. First, it provides a

mechanical tool for requirements analysis, minimizing reliance on knowledge of formal logic

to simply understanding logic gates (i.e., NOT, AND, OR). Second, it provides an

independent double check of the Tree-Based Graphical Approach (TBGA) introduced in

Section 4.4.2. The output of the DFM tool is a set of prime implicants. If the set is an empty

set, it implies that the software requirements are inconsistent because an empty set of prime

implicants means that no combinations of the basic events will generate the top event. In the

case of SRA, the top event is the conjunction of all requirements. Conversely, if the set is not

empty, the requirements are consistent. Therefore, unlike previous applications of DFM, the

SRA application of DFM uses only binary logic and does not involve temporal effects at all.

The analysis will be discussed in detail with the simple example of top event TOP=

(AvB)A(BoC)A-1 B. As a rule in this thesis, a DFM component (e.g., node, transfer box) is

typed in courier font and a logical variable is typed in italic font.
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Prime Implicants Generated by DFM for Four Test Cases

7 The current version of DFM can not find the prime implicants of a tautology though it can detect the existence
of prime implicants.
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Test Case Logical Expressions Prime Implicants Theoretical Prime
Number Found by DFM Implicants

1 -AAA no not exist

2 ,AvA exist7  A, --,A

3 (AAB)v-A -A, B -A, B

4 (AvB)A--,A -,AAB -AAB

Table 4.5-5



To start the DFM analysis, we first build nodes A, B, and c (bottom circles in Figure 4.5-1)

representing logical variables A, B, and C respectively, whose truth values can either be 0

(false) or 1 (true). Then, we build intermediate nodes NOT_B, R1, and R2 representing

logical expressions -B, AvB and -BvC (or B->C), respectively. The truth values of these

nodes are either 0 (false) or 1 (true). It should be noted that the nodes NOT_B and B can not

take truth values arbitrarily. In fact, the truth value of NOTB must be exactly the opposite of

that of B, and vice versa. This logical negation is reflected by transfer box 1 (marked with -).

The input to the transfer box is node B and the output is node NOT_B. The input-output

relation is determined by the decision table of the transfer box (Table 4.5-6). In Figure 4.5-1,

the logical expressions of AvB and -BvC (or B>C) are represented by transfer boxes 2 and

3, whose decision tables are shown in Tables 4.5-7 and 4.5-8, respectively. Finally, we build

node TOP, whose truth values are 0 (false) or 1 (true), representing the top event. The logical

conjunction is modeled using transfer box 4 (marked with A). The inputs to the transfer box

are nodes R1, R2, and NOTB. The decision table of transfer box 4 is shown in Table 4.5-9.

Once the graphical network of the DFM model is set up, the analysis engine of DFM can be

initiated. In the example, the top event is chosen to be TOP= 1, which stands for requiring the

top event to be true. As expected, the analysis using DFM correctly finds the prime implicant

to be AA-B . The screen dump of the DFM result is illustrated in Figure 4.5-2.
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Simple Example: Decision Table for Transfer Box 1

Table 4.5-7 Simple Example: Decision Table for Transfer Box 2

A B R1

o 0 0
0 1 1
1 0 1

1 1 1

Table 4.5-8 Simple Example: Decision Table for Transfer Box 3

C NOT B R2

o 0 0
0 1 1
1 0 1

I 1 1

Table 4.5-9 Simple Example: Decision Table for Transfer Box 4

R1 NOT B R2 TOP

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1
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Figure 4.5-1 DFM Model for the Example

or the top event:

At time 0 TOP = T (True)

There are 1 prime implicants

Prime Implicant #1
At time 0
At time 0

A= 1
B = 0

.I
iiI~
i%
ii
i:,,

aNo U

Sn _

Figure 4.5-2 DFM Result for the Example (Screen Dump)
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4.5.5 Tree-Based Graphical Approach

The application of the Tree-Based Graphical Approach (TBGA) to this example is shown in

Figure 4.5-3. After expanding the tree, leaf B in the middle branch is pruned (shaded with

lines) since it contradicts the upper left leaf -B, which is required to be true. The fact that the

upper left leaf -B is true leads to pruning leaves -B and C, which are connected via a

disjunctive operation (shaded with dots). As a result, their disjunction is true. Therefore, by

taking the conjunction of the leaves, the original expression can be equivalently simplified to

AA-,B.

Figure 4.5-4 shows the same analysis following a different order of branch selection at

subsequent steps, i.e., BrC is chosen before AvB. Two facts are observed from Figures 4.5-

3 and 4.5-4.

* As expected, the final result is independent of the order of branch selection,

e.g., the original expression is simplified to AA-B in Figure 4.5-4, which is

identical to the result from Figure 4.5-3;

* The order to branch selection does determine the order in which the branches

get pruned, e.g., leaves -B and C are pruned before leaf B in Figure 4.5-4

while they are pruned after leaf B in Figure 4.5-3. As a result, the order will

affect the complexity of the tree structure in the course of the analysis.

4.5.6 Summary

The tree-Based Graphical Approach (TBGA) has been developed for the within-group

analysis of software requirements analysis. The approach is based on graphical representation

of formal logic (Table 4.2-1). Three other approaches are identified and applied for the same

purpose: the Analytical Approach, the Truth-Table Approach, and the DFM Approach. These

approaches can act as an independent double check of the graphical approach. The features of

the four approaches are summarized in Table 4.5-10.
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Figure 4.5-3 Tree-Based Graphical Approach for the Example

Figure 4.5-4 Order-Independence of the Tree-Based Graphical Approach
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Table 4.5-10 Comparison of the Four Approaches in Within-Group Analysis

117

Approaches Features

TBGA straightforward, polynomial time

DFM Approach automatic tool, but exponential time

Truth-Table Approach exponential time

Analytical Approach mathematically-sophisticated
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Chapter 5

Application of the Proposed Approach to a Case Study

5.1 Description of the Case Study

The case study is the MIT-SNL Period-Generated Minimum Time Control Laws taken from

[Bern89]. The ultimate goal of the control laws was to rapidly increase the neutronic power

of a normally dormant space reactor by many orders of magnitude in a few seconds and to

conform to a specified power trajectory. The control laws were extensively and successfully

experimented with on both the MITR-II reactor at MIT and the Annular Core Research

Reactor (ACRR) at Sandia National Laboratories (SNL). The experiments at MITR-II were

for the initial testing of the control laws. ACRR was used as a prototype reactor to

demonstrate that the control laws were indeed feasible to satisfy its ultimate goal.

5.1.1 MIT-SNL Period-Generated Minimum Time Control Laws

A good model describing the neutronic behavior for small to medium size nuclear reactor is

the point kinetics model as shown in Equations (5.1-1) and (5.1-2).

dT(t) p(t) - P N

dt - *. T(t) + 1, -C, (t) (5.1-1)
dt 1 =

dC, (t) 1,
dt - T(t) - A, -C,(t) for i=1, 2, ..., N (5.1-2)

dt I*

where

T(t) is the amplitude function, a weighted integral of all neutrons in the reactor

and roughly proportional to reactor power,
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p(t) is the reactivity,

,8 is the effective delayed neutron fraction,

fl, is the effective fractional yield of the ith group of delayed neutrons,

Ai is the decay constant for the ith precursor group,

Ci(t) is the concentration of the ith precursor group,

l* is the prompt neutron lifetime,

N is the number of groups of delayed neutrons, including photoneutrons.

Usually, N is set to 6.

With the instantaneous reactor period (r=l/o) defined in Equation (5.1-3) and several pages

of algebra, Bernard derived the dynamic period equation[Bern8 9]. The equation is reproduced as

Equation (5.1-4) below.

T(t) = w(t) T(t) (5.1-3)

c-(t) t,(t)
P - p(t) + 1' + CO(t) + /A, (t)- ]

w (t) i, (t)
-(t)= (5.1-4)

p(t) + A t(t) t)+ i (p - p(t))

where

co(t) is the inverse of the specified reactor period,

ch(t) is the rate of change of the inverse of the specified reactor period,

Ae(t) is the standard, effective, multi-group decay constant as defined in

Equation (5.1-5).
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Z1 -C,(t)
ie(t) - 1 (5.1-5)

C, (t)
t=l

Rewriting the dynamic period equation, i.e., solving for p(t) in Equation (5.1-4), yields the

MIT-SNL Period-Generated Minimum Time Control Laws. The standard form of the laws is

given as Equation (5.1-6). The Laws also have an alternate form which is mathematically

equivalent to the standard form. Readers interested in the topic should refer to [Bern89].

P, (t)= 6 - p(O) .CO(t) - (t)P(t) - 0 - p(O-- -)(t)
S(t) (5.1-6)

+ 6t(t)+ [02(t)+ A,,(t)t(t> 'A (t)]
e (t)

where]

l(t)= b(t) + p (t), is the sum of the rate of change of reactivity from

control devices (pc(t)) and feedback (pb(t)) such as fuel Doppler

effect.

The MIT-SNL Control Laws are unique in two aspects. First, compared with other reactor

control laws that use reactivity as the control signal, the MIT-SNL laws use the rate of

change of reactivity as the control signal. This is advantageous when a rapid transient is

desirable, since reactivity is a function of control rod position, which can not be changed

instantaneously, while the rate of reactivity insertion corresponds to the control rod speed,

which can be changed on demand. As a result, controllers designed in terms of the rate of

change of reactivity are very responsive and achieve any desired power profile. Second, they

are closed-form expressions for the time-optimal control of power of reactors which subject

to a limitation on the allowed period.
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5.1.2 Annular Core Research Reactor

The ACRR is a modified TRIGA nuclear reactor that uses UO2-BeO fuel elements with a U-

235 enrichment of 35%. Its annular-shaped core is formed by 236 fuel elements arranged in a

hexagonal pattern around the 23 cm diameter irradiation cavity (Figure 5.1-1). Noted for its

exceptionally large negative reactivity coefficient for the fuel, the reactor is controlled by two

safety rods, six control rods, and three poison transient rods. The safety rods and the control

rods are made of B4C followed by fuel. The transient rods are also made of B4C but followed

by air (a hollow aluminum tube with both ends sealed) Operated as a bank and driven by

variable speed stepping motors, the transient rods were used to conduct the experiments.
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Figure 5.1-1 Isometric View of Annular Core Research Reactor
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5.2 Requirements Collection

The requirements for the MIT-SNL control software are scattered throughout the

documentation. This is because, in this case study, the "customer" and the developer of the

software are the same person and the software itself was developed in an informal way, e.g.,

the developer started writing the code without an explicit set of requirements or specification.

The developer claimed the correctness of the code by (informal) inspection and extensive

testing. As a result, the documents do not contain an explicit list of all the requirements. After

careful reading, extensive searching and frequent discussion with the developer, the author

collected all the requirements in the report (five pages), including two additional

requirements that are not listed in [Bern89] explicitly, but used by default by the developer.

Listed below is the collection of requirements. The first column represents the page number

in the report of the corresponding requirements in the second column.

Page Requirements

4 Principal objective was to develop a robust control technique

that would permit a neutronic power to be raised by five to

seven orders of magnitude both 'in a few seconds and without

significant overshoot.

9 The reactor operates in either a steady-state or a pulsed

mode. For steady-state operation, the maximum allowed power

level is 2 MWt. For pulsed operation, there is no restriction

of the power. Rather there is a limit of 500 MJ total energy

per pulse and one of 18000C on the fuel temperature.

11 The limiting condition for the ACRR is not a specific power

level but rather the total energy produced during the

transient.
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126 The transient rods are normally operated as a bank (gang) and,

as mentioned , can be moved either pneumatically or via

stepper motors. Relative to the first method, nitrogen gas is

used to pressurize each rod's piston chamber and thereby eject

the three rods in times as short as 55 milliseconds. When

operated in this manner, the maximum allowed reactivity

insertion is 3 ...

(127)The alternative means of moving the transient rods is the

"Transient Rod Withdrawal" or TRW method. Using this approach,

the transient rods are raised by fork-shaped devices which are

each connected to variable speed stepper motors via an

electromagnet and a rack and pinion gear. The maximum speed of

withdrawing the transient rods without any chance of magnet

separation is 750 pulses per second. ... If moved from the

"full-in" to "full-out" position, the total reactivity

associated with the transient rods is 4.25, . Transient rod

location on the ACRR is given in "position units" with "full-

in" being 2031 units and "full-out" being 7464 units. Every

pulse delivered to the stepper motors moves the rods 2.661

units.

127 The scram circuit will cause an automatic shutdown to prevent

either the energy release from exceeding 500 MJ or the fuel

temperature from rising above 18000C.

130 Relative to the actual conduct of experiments involving the

MIT-SNL minimum time laws, an upper limit on the allowable

frequency of 1100 Hz was selected. This figure was chosen

because its is the value listed as acceptable for the TRW mode

of operation in the ACRR's Safety Analysis Report and because

the range of frequencies needed for the testing of the MIT-SNL

minimum time laws was approximately 400-600 Hz.
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130-2 Testing of the MIT-SNL Period-Generated Minimum Time Control

Laws on Sandia's ACRR was approved subject to the following:

1) The instrumentation that formed the ACRR's safety system

would not also be used for the controller. The safety system

was to be maintained as a separate, independent entity.

2) Signals form the digital computer would replace those from

the existing eight-step programmable controller. The

hardware and circuitry previously used for control of the

ACRR would be retained.

3) An independent, hard-wired over-speed circuit would be

installed to preclude withdrawal for the transient rod bank

at frequencies in excess of 1100 Hz.

4) A "Loss of Computer Enable" circuit which would result in an

insertion signal to the transient bank should there be a

malfunction of the computer or the associated hardware would

be installed.

5) The following restrictions would be incorporated in the

software:

- Absolute limit on the net reactivity, maximum neutronic

power level, minimum observed reactor period, and fuel

temperature.

- Use of the standard, sufficient reactivity constraint

in a supervisory role.

- Use of the absolute, sufficient energy constraint in a

supervisory role.

6) Specification of a transient duration limit following which

control would revert to manual.

7) A requirement to test both the over-speed trip and the "loss

of enable" circuit prior to each set of runs and

periodically during the runs.
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8) The pneumatic mode of transient rod band withdrawal would be

disabled and officially tagged out so as to preclude its

inadvertent use.

9) Control would never be transferred from manual to automatic

with reactor already on a positive period. The purpose of

this restriction was to limit the excess reactivity to that

inserted by the transient rod bank.

10)Reactor operation would at all times be monitored by

licensed personnel.

140 (ACRR) The design specifications imposed on the interface

controller board were that it be possible to move the stepper

motors over the frequency range of -1000 Hz to +1000 Hz, that

the deviation of the output frequency form the required

frequency not exceed 5% and that the over frequency trip be

set at 1100 Hz. (Note: There was a deadband over the range of

±15.26 Hz ...)

141 ... However, despite its having been designed to accommodate

demanded frequencies of as much as 1000 Hz, the MIT-SNL

experiments were restricted to 400 Hz.

178 ... the program's ultimate goal ... was to raise a reactor's

neutronic power by five-six orders of magnitude both on a

period of several tenths of a second and without overshoot ...

186 ... there was a limit of 0.20 second on the minimum allowed

period ... applied to ... the MIT-SNL laws.

234 The objective of the MIT-SNL Laws is to determine the rate of

change of reactivity (Pc) that will cause a reactor's

neutronic power to vary on a specified period. The decisions
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of these laws are most readily implemented if the differential

dp
reactivity worth ( ) of the associated control device is at a

dx

maximum. ... ...

dp dp dx
PC

c dt dx dt

Clearly, if the control device's differential reactivity

dp
worth, d is large, then the speed at which the control

dx

device must be moved,
dx
t . can be minimized. So doing isdt'

desirable because it will reduce wear on the variable speed

stepper motors. In contrast, if the differential worth is low,

then the stepper motor must be operated at high frequency. Not

only will this accelerate wear but it also risks the

possibility of causing the motor to stall.

236 (Transient Rod Worth, in cents)

2000 4000 6000 8000

Integral Rod Worth

02

dp-dxi
0 1

0I
2000 4000 6000

x
1

Differential Rod worth

247 ... The power peaked ... , well within the permitted 5% band.
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266 It was used as a supervisory routine during all of the ACRR

control experiments to ensure that the reactor's energy output

would not exceed the limiting value of 350 MJ.

Further discussion with the customer (also the developer, in this case) added more

requirements/restrictions to the set of requirements collected from [Bern89].

* MIT-SNL Period-Generated Minimum Time Control Laws should

be used in the control software.

* To control reactor, no super-prompt criticality is

allowed, e.g., p < f. (This requirement was later removed by the

customer.)

* To satisfy Technical Specifications of the ACRR, the

reactor period can not fall below 0.3 second
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5.3 Requirements Grouping

Nine groups were identified, including one group for general information and one for non-

software. Seven other groups were Power Multiplication, Operational Mode, Fuel

Temperature, Reactor Period, Reactivity, Motor Frequency, and Rod Velocity.

5.3.1 General Information

Page Requirements

130-2

5) The following restrictions would be incorporated in the

software:

- Use of the standard, sufficient reactivity constraint

in a supervisory role.

- Use of the absolute, sufficient energy constraint in a

supervisory role.

* MIT-SNL Period-Generated Minimum Time Control Laws should be used

in the control software.

5.3.2 Power Multiplication Group

4 Principal objective was to develop a robust control technique

that would permit a neutronic power to be raised by five to

seven orders of magnitude8 both in a few seconds and without

significant overshoot;

130-2

5) (There will be an) absolute limit on ... the maximum neutronic

power level.

8From an engineer's point of view, this ambiguous, descriptive statement can be tolerated, but from the
requirements' point of view, this ambiguity is unacceptable.
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178 ... the program's ultimate goal ... was to raise a reactor's

neutronic power by five-six orders of magnitude both on a

period of several tenths of a second and without overshoot ...

247 ... The power peaked ... , well within the permitted 5% band.

5.3.3 Operational Mode Group

9 The reactor operates in either a steady-state or a pulsed

mode. For steady-state operation, the maximum allowed power

level is 2 MWt. For pulsed operation, there is no restriction

of the power. Rather, there is a limit of 500 MJ total energy

per pulse ...

11 The limiting condition for the ACRR is not a specific power

level but rather the total energy produced during the

transient.

127 The scram circuit will cause an automatic shutdown to prevent

... energy release from exceeding 500 MJ ...

266 It was used as a supervisory routine during all of the ACRR

control experiments to ensure that the reactor's energy output

would not exceed the limiting value of 350 MJ.

5.3.4 Fuel Temperature Group

9 For pulsed operation, there is a limit ... of 18000C on the fuel

temperature.

127 The scram circuit will cause an automatic shutdown to prevent

.. the fuel temperature from rising above 18000C.
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130-2

5) (There will be an) absolute limit on ... fuel temperature.

5.3.5 Reactor Period Group

130-2

5) (There will be an) absolute limit on ... the minimum observed

reactor period.

186 ... there was a limit of 0.20 second on the minimum allowed

period ... applied to ... the MIT-SNL laws.

To satisfy Technical Specifications of the ACRR, the reactor

period can not fall below 0.3 second.

5.3.6 Reactivity Group

126 The transient rods are normally operated as a bank (gang) and,

as mentioned, can be moved either pneumatically or via stepper

motors. Relative to the first method, nitrogen gas is used to

pressurize each rod's piston chamber and thereby eject the

three rods in times as short as 55 milliseconds. when operated

in this manner, the maximum allowed reactivity insertion is

3,8...

(127) The alternative means of moving the transient rods is the

"Transient Rod Withdrawal" or TRW method. Using this approach,

the transient rods are raised by fork-shaped devices which are

each connected to variable speed stepper motors via an

electromagnet and a rack and pinion gear. The maximum speed of

withdrawing the transient rods without any chance of magnet

separation is 750 pulses per second. ... If moved from the

"full-in" to "full-out" position, the total reactivity

associated with the transient rods is 4.25/ .
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130-2

5) (There will be an) absolute limit on the net reactivity.

8) The pneumatic mode of transient rod band withdrawal would

be disabled and officially tagged out so as to preclude its

inadvertent use.

236 (Transient Rod Worth, in cents)

600 I I 02 I I

400-

P(X) I dpdxi 0 1 -

200

0 0
2000 4000 6000 8000 2000 4000 6000 8000

x. x
I I

(A) Integral Rod Worth (B) Differential Rod worth

Figure 5.2-1 Transient Rod Worth

5.3.7 Motor Frequency Group

(127) The alternative means of moving the transient rods is the

"Transient Rod Withdrawal" or TRW method. Using this approach,

the transient rods are raised by fork-shaped devices which are

each connected to variable speed stepper motors via an

electromagnet and a rack and pinion gear. The maximum speed of

withdrawing the transient rods without any chance of magnet

separation is 750 pulses per second. ... If moved from the

"full-in" to "full-out" position, the total reactivity

associated with the transient rods is 4.258 . Transient rod

location on the ACRR is given in "position units" with "full-

in" being 2031 units and "full-out" being 7464 units. Every
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pulse delivered to the stepper motors moves the rods 2.661

units.

130 Relative to the actual conduct of experiments involving the

MIT-SNL minimum time laws, an upper limit on the allowable

frequency of 1100 Hz was selected. This figure was chosen

because its is the value listed as acceptable for the TRW mode

of operation in the ACRR's Safety Analysis Report and because

the range of frequencies needed for the testing of the MIT-SNL

minimum time laws was approximately 400-600 Hz.

140 (ACRR) The design specifications imposed on the interface

controller board were that it be possible to move the stepper

motors over the frequency range of -1000 Hz to +1000 Hz, that

the deviation of the output frequency form the required

frequency not exceed 5% and that the over frequency trip be

set at 1100 Hz. (Note: There was a deadband over the range of

±15.26 Hz ...)

141 ... However, despite its having been designed to accommodate

demanded frequencies of as much as 1000 Hz, the MIT-SNL

experiments were restricted to 400 Hz.

5.3.8 Rod Velocity Group

127 Transient rod location on the ACRR is given in "position

units" with "full-in" being 2031 units and "full-out" being

7464 units. Every pulse delivered to the stepper motors moves

the rods 2.661 units.

234 The objective of the MIT-SNL Laws is to determine the rate of

change of reactivity (Pc) that will cause a reactor's

neutronic power to vary on a specified period. The decisions
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of these laws are most readily implemented if the differential

dp
reactivity worth ( ) of the associated control device is at a

dx

maximum. ... ...

dp dp dx

P dt dx dt

Clearly, if the control device's differential reactivity

dp
worth, d' is large, then the speed at which the control

dxd

device must be moved, can be minimized. So doing is
dt

desirable because it will reduce wear on the variable speed

stepper motors. In contrast, if the differential worth is low,

then the stepper motor must be operated at high frequency. Not

only will this accelerate wear but it also risks the

possibility of causing the motor to stall.

5.3.9 Hardware and Other non-Software Group

130-2 Testing of the MIT-SNL Period-Generated Minimum Time Control

Laws on Sandia's ACRR was approved subject to the following:

1) The instrumentation that formed the ACRR's safety system

would not also be used for the controller. The safety system

was to be maintained as a separate, independent entity.

2) Signals form the digital computer would replace those from

the existing eight-step programmable controller. The

hardware and circuitry previously used for control of the

ACRR would be retained.

3) An independent, hard-wired over-speed circuit would be

installed to preclude withdrawal for the transient rod bank

at frequencies in excess of 1100 Hz.

4) A "Loss of Computer Enable" circuit which would result in an

insertion signal to the transient bank should there be a
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malfunction of the computer or the associated hardware would

be installed.

5) (This requirement is moved to groups of General Information, Power Multiplication,

Fuel Temperature, Reactor Period, and Reactivity.)

6) Specification of a transient duration limit following which

control would revert to manual.

7) A requirement to test both the over-speed trip and the "loss

of enable" circuit prior to each set of runs and

periodically during the runs.

8) (This requirement is moved Reactivity group.)

9) Control would never be transferred from manual to automatic

with reactor already on a positive period. The purpose of

this restriction was to limit the excess reactivity to that

inserted by the transient rod bank.

10)Reactor operation would at all times be monitored by

licensed personnel.
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5.4 Within-group Analysis

The purpose of the Within-Group Analysis is to determine whether software requirements are

consistent within each individual group. The ambiguity, inconsistency, or incompleteness

identified by the analysis will be underlined.

5.4.1 General Information

130-2

5) The following restrictions would be incorporated in the

software

- Use of the standard, sufficient reactivity constraint

in a supervisory role.

- Use of the absolute, sufficient energy constraint in a

supervisory role

* MIT-SNL Period-Generated Minimum Time Control Law should be used

in the control software.

In this group, no problem is identified as long as the analyst understands such terminology as

sufficient reactivity constraint and sufficient energy constraint.

5.4.2 Power Multiplication Group

4 Principal objective was to develop a robust control technique

that would permit a neutronic power to be raised by five to

seven orders of magnitude both in a few seconds and without

significant overshoot;

130-2

5) (There will be an) absolute limit on the maximum neutronic

power level.
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178 ... the program's ultimate goal ... was to raise a reactor's

neutronic power by five-six orders of magnitude both on a

period of several tenths of a second and without overshoot ...

247 ... The power peaked ... , well within the permitted 5% band.

5.4.2.1 Analysis by Inspection

The following ambiguities were identified. Column one refers to the page number of the

requirement in [Bern89] and column two refers to the corresponding ambiguity.

4 "Principal objective"

4 "a few seconds", "five to seven orders of magnitude", "without

significant overshoot";

178 "five-six orders of magnitude", "a period of several tenths of a

second" "without overshoot";

247 "the permitted 5% band".

The following inconsistencies were identified. Numbers in the parentheses refer to the page

number in [Bern89].

"five to seven orders of magnitude"(4) vs. "five-six orders of

magnitude" (178);

"without significant overshoot" (4), "without overshoot" (178) vs.

"the permitted 5% band" (247).

Whenever ambiguity or inconsistency arises, it must be fed back to the customer

immediately. Discussion with the customer helps clarify the requirements and remove

ambiguities or inconsistencies.
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In this case study, several major sources of ambiguity or inconsistency are identified. The

first source is that different individuals wrote different parts of the report/system

requirements. People with different backgrounds tend to have a different emphasis when

addressing a problem and assume that others will have the same understanding, thus leaving

out relevant information. Second, to meet the deadline of delivery, managers and engineers

tend to be more interested in tangible products, e.g., hardware set up, lines of code developed

daily, than intangible products such as requirements, design documents, users' manuals, etc.

They usually work on the intangibles because they are required by contract, rather than they

realize these documents are as important as the tangibles. The third source is that, sometimes,

no sound set of requirements is developed in advance, or no good house-keeping record is

developed and well maintained. This negligence results in writing final documentation based

on a blurred recollection of the project in the end.

After resolving ambiguities and inconsistencies, the requirements in the Power Multiplication

group are revised as follows.

The objective was to develop a robust control technique

that would permit a neutronic power to be raised by up to

six orders of magnitude in 5 seconds and without

overshooting by 5% of nominal target power level.

5.4.2.2 Lessons Learned

When documenting software requirements, avoid using inherently vague, ambiguous words

such as "a few", "significant". Use exact wording whenever possible.

5.4.3 Operational Mode Group

Page Requirements

9 The reactor operates in either a steady-state or a

pulsed mode. For steady-state operation, the maximum
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allowed power level is 2 MWt. For pulsed operation,

there is no restriction of the power. Rather, there is a

limit of 500 MJ total energy per pulse ...

11 The limiting condition for the ACRR is not a specific

power level but rather the total energy produced during

the transient.

127 The scram circuit will cause an automatic shutdown to

prevent the energy release from exceeding 500 MJ.

266 It was used as a supervisory routine during all of the

ACRR control experiments to ensure that the reactor's

energy output would not exceed the limiting value of 350

MJ.

We start the within-group analysis with inspection. The underlined words indicate ambiguity

or inconsistency identified by inspection. It is ambiguous whether "the transient" is the

same as "pulse", "pulsed mode", or "pulsed operation"; whether "maximum

allowed power level" is the same as "restriction of the power", and "a limit

of 500 MJ" is not consistent with "the limiting value of 350 MJ". Discussions

with the developer clarify that the limit is 500 MJ, "maximum allowed power level" is

the same as "restriction of the power", and "transient" is better rephrased as

"pulse". As a result, requirements on pages 127 and 266 are incorporated into that on page

9, and the requirements in the group are rephrased into two requirements.

Requirement # Requirements

A. The reactor operates in either a steady-state 9 or a

pulsed mode. For steady-state mode, the limiting

power level is 2 MWt. For pulsed mode, there is no

limit of the maximum allowed power level. Rather,

9 Later consultation (May 1998) with the Dr. John Bernard, the developer, indicated that steady-state
operation should be better phrased as low power operation.
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there is a limit of 500 MJ total energy per pulse.

The limiting condition for the reactor is not the

power level but rather the total energy produced

during the pulse.

Requirements A can be split into three requirements named 1, 2, and 3. This split does not

affect the result of the analysis. This is because the requirements specified in A indicate

satisfying the conjunction of the three, which can be explicitly expressed as three

requirements. Requirement B is renamed requirements 4.

Requirement # Requirements

1. The reactor operates in either a steady-state or a

pulsed mode.

2. For steady-state mode, the limiting power level is

2 MWt.

3. For pulsed mode, there is no limit of the maximum

allowed power level. Rather, there is a limit of

500 MJ total energy per pulse.

4. The limiting condition for the reactor is not the

power level but rather the total energy produced

during the pulse.

The next step is to define logical variables in the requirements.

PO = the reactor operates in pulsed mode

SO = the reactor operates in steady-state mode

P = limiting condition is the power level

P2 = the (power) limit is 2 MWt

E = limiting condition is the total energy produced

E500 = the (energy) limit is 500 MJ per pulse
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Once variables are defined above, the natural language requirements can be transformed into

the equivalent propositional expressions. It should be noted that

* the reactor operates in either steady-state mode or pulsed mode, but not both.

Therefore, the logical operation between the two variables should be exclusive

OR, rather than disjunction;

* there are at least three interpretations of requirements 4 as shown below.

This example, as well as many others, indicates the inherent ambiguity of natural language

and its inadequacy in documenting software requirements. After consultation with the

customer, it turned out that interpretation (i) is the only correct interpretation of the

requirement. In this specific situation, interpretations (ii) and (iii) will generate the same

result in this case.

Requirement # Expression # Propositional Expressions.

1 1 SO ve PO

2 2 SO = PAP2

3 3 PO - PAEAE500

4 4 (i) PO -,PAE

(ii) PO A -PAE

(iii) -PAE

The final step is to analyze the logical expressions for consistency. As a comparison, four

approaches will be used to illustrate that the Tree-Based Graphical Approach (TBGA) is

more user-friendly. Through this analysis, it is seen that, in the Analytical Approach, proofs

are performed in a sequential fashion (one-dimensional) and one must be skillful enough to

determine which axioms, theorems, or previously proved identities should be used during the

process of reasoning. Therefore, it requires much more mathematical intuition. The TBGA

Approach, on the other hand, is more mechanical and proofs are performed in a parallel

fashion (two-dimensional), i.e., pushing proofs as far as possible until the basic definitions
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are reached. In the graphical approach, it is preferable to start (and continue) the analysis with

the expression that is the easiest to reason, e.g., the shortest expression, although the order in

which expressions are selected does not affect the final result of the analysis at all (see

Sections 4.5.5 and 5.4.3.5). The Truth-Table Approach is the most mechanical method, but

the size of the table grows exponentially with the number of independent variables. The DFM

Approach uses an automatic tool. However, since it is based on decision table, exponential

time is needed to construct the decision tables.

5.4.3.1 The Analytical Approach

The Analytical Approach is discussed in [Ince88], [Hoar69], [Hoar71], [Lond75]. As

indicated in Table 5.4-1, the proofs are expressed sequentially in a tabular form with three

columns. The first column orders the expressions according to the sequence of the proof, the

second column represents the result obtained from the expressions listed in the third column.

Therefore, the expression numbers contained in the third column of each row must be strictly

less than that in the first column.

Two cases were identified to be necessary in the analysis: a case with SO= true and a case

with PO= true. The result using the Analytical Approach for case 1 shows that the original

set of requirements under steady-state operational mode is consistent (row 14 in Table 5.4-1

(A)) and is equivalent to Expression (5.4-1). The result for case 2 show that the original set of

requirements under pulsed operational mode is consistent (row 18 in Table 5.4-1 (B)) and is

equivalent to Expression (5.4-2).

SO A -PO A PA P2 (5.4-1)

-SO A PO A -P A EA E500 (5.4-2)

The fact that the reactor will not be operated in both the steady-state and the pulsed modes

simultaneously (i.e., explicitly expressed as SOvPO) is equivalently expressed by both

expressions, i.e., SO A -PO in Expression (5.4-1) and -,SO A PO in Expression (5.4-2).
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5.4.3.2 The Truth-Table Approach

As defined in Section 5.4.3, six independent variables are defined within this group (i.e., SO,

PO, P, P2, E, E500). Therefore, to exhaustively enumerate all permutations of the truth value

assigned to these variables, the table contains 26 (=64) rows (see Table 5.4-2.).

In the truth table, only two rows, i.e., six six-tuples (0, 1, 0, 0,1, 1), (0, 1, 0, 1, 1, 1), (1, 0, 1,

1, 0, 0), (1, 0, 1, 1, 0, 1), (1, 0, 1, 1, 1, 0) or (1, 0, 1, 1, 1, 1) for (SO, PO, P, P2, E, E500),

satisfy the logical expression. Therefore, the expression is equivalent to the disjunction of the

corresponding rows.

(SOvePO) A (SO->PAP2) A (PO --PAEAE500) A (PO=>-PAE)

= [(-SOAPOA-iPA -P2AEAE500) v ( -SOAPOA-PAP2AEAE500)]

v[(SOA-7POAPAP2AEAE500) v (SOA-POAPAP2A-EAE500)

v(SOA-,POAPAP2AEA-,E500) v (SOA- POAPAP2AEAE500)]

= [(-SOAPOA-iPA EAE500) A (-P2vP2)]

v[(SOA- 1POAPAP2A--E) A (-,E500vE500)]

v[(SOA-1POAPAP2AE) A (-,E500vE500)]

= (--SOAPOA-PA EAE500) v (SOA--POAPAP2A-iE)

v (SOA- 1POAPAP2AE)

= (-iSOAPOA- PA EAE500) v [(SOA-iPOAPAP2A(-,E vE)]

= (-,SOAPOA-PA EAE500) v (SOA-POAPAP2) (5.4-3)

Expression (5.4-3) is exactly the same as the disjunction of Expressions (5.4-1) and (5.4-2).
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Table 5.4-1 Case Study: the Purely Analytical Approach (Operational Mode Group)

(A) Case 1: SO = true

Expression # Manipulation/Derivation Derived from

1 SOvePO requirement 1

2 SO>PAP2 requirement 2

3 PO=>-,PAEAE500 requirement 3

4 PO>,P A E requirement 4

5 SO case 1

6 (SOA-PO) v (-,SOAPO) (1)

7 -,PO (5, 6)

8 -,POv (-,PAEAE500) (3 or 7)

9 -POv (-PAE) (4 or 7)

10 -SOv (PAP2) (2)

11 PAP2 (5, 10)

12 P (11)

13 P2 (11)

14 SOA-POAPP2 (5, 7, 12, 13)
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Table 5.4-1 Case Study: the Purely Analytical Approach (Operational Mode Group)

(B) Case 2: PO = true

Expression # Manipulation/Derivation Derived from

1 SOvePO requirement 1

2 SO>PAP2 requirement 2

3 PO:-,PAEAE500 requirement 3

4 PO>-P A E requirement 4

5 PO case 2

6 (SOA-PO) v (-SOAPO) (1)

7 -SO (5, 6)

8 -SOv(PAP2) (2 or 7)

9 -POv (-PAEAE500) (3)

10 -PAEAE500 (5, 9)

11 P-, (10)

12 E (10)

13 E500 (10)

14 -,POv (-,PAE) (4)

15 -PAE (5, 14)

16 -IP (15

17 E (15

18 -,SOAPOA- 1PA EAE500 (5, 7, 11, 12 ,13, 16, 17)
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Case Study: Truth-Table Approach (Operational Mode Group)

4

SO PO P P2 E E500 X, X 2  X 3  X4  AX,
t=1

0 0 0 0 0 0 0 1 1 1 0

0 0 0 0 0 1 0 1 1 1 0

0 0 0 0 1 0 0 1 1 1 0

0 0 0 0 1 1 0 1 1 1 0

0 0 0 1 0 0 0 1 1 1 0

0 0 0 1 0 1 0 1 1 1 0

0 0 0 1 1 0 0 1 1 1 0

0 0 0 1 1 1 0 1 1 1 0

0 0 1 0 0 0 0 1 1 1 0

0 0 1 0 0 1 0 1 1 1 0

0 0 1 0 1 0 0 1 1 1 0

0 0 1 0 1 1 0 1 1 1 0

0 0 1 1 0 0 0 1 1 1 0

0 0 1 1 0 1 0 1 1 1 0

0 0 1 1 1 0 0 1 1 1 0

0 0 1 1 1 1 0 1 1 1 0

0 1 0 0 0 0 1 1 0 0 0

0 1 0 0 0 1 1 1 0 0 0

0 1 0 0 1 0 1 1 0 1 0

0 1 0 0 1 1 1 1 1 1 1

0 1 0 0 1 1 0 0 0

0 1 0 1 0 1 1 1 0 0 0

0 1 0 1 1 0 1 1 0 1 0

0 1 0 1 1 1 1 1 1 1 1

0 1 1 0 0 0 1 1 0 0 0

0 1 1 0 0 1 1 1 0 0 0

0 1 1 0 1 0 1 1 0 0 0

0 1 1 0 1 1 1 1 0 0 0

0 1 1 1 0 0 1 1 0 0 0

0 1 1 1 0 1 1 1 0 0 0

0 1 1 1 1 0 1 1 0 0 0

0 1 1 1 1 1 1 1 0 0 0
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Table 5.4-2 Case Study: Truth-Table Approach (Operational Mode Group)
(continued)

4
SO PO P P2 E E500 X, X X X X4 A X

1=l

1 0 0 0 0 0 1 0 1 1 0
1 0 0 0 0 1 1 0 1 1 0
1 0 0 0 1 0 1 0 1 1 0
1 0 0 0 1 1 1 0 1 1 0
1 0 0 1 00 1 1 0

1 0 0 1 0 1 1 0 1 1 0
1 0 0 1 1 0 1 0 1 1 0
1 0 0 1 1 1 1 0 1 1 0

1 0 1 0 0 0 1 0 1 1 0
1 0 1 0 0 1 1 0 1 1 0
1 0 1 0 1 0 1 0 1 1 0
1 0 1 0 1 1 1 1 1 0
1 0 1 1 0 0 1 1 1 1 1
1 0 1 1 0 1 1 1 1 1 1
1 0 1 1 1 0 1 1 1 1 1
1 0 1 1 1 1 1 1 1 1 1

1 1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 1 0 0 0 0 0
1 1 0 0 1 0 0 0 0 1 0
1 1 0 0 1 1 0 0 1 1 0
1 1 0 1 0 0 0 0 0 0 0
1 1 0 1 0 1 0 0 0 0 0
1 1 0 1 1 0 0 0 0 1 0
1 1 0 1 1 1 0 0 1 1 0

1 1 1 0 0 0 0 0 0 0 0
1 1 1 0 0 1 0 0 0 0 0
1 1 1 0 1 0 0 0 0 0 0

1 1 1 0 1 1 0 0 0 0 0
1 1 1 1 0 0 0 1 0 0 0
1 1 1 1 0 1 0 1 0 0 0
1 1 1 1 1 0 0 1 0 0 0
1 1 1 1 1 1 0 1 0 0 0

Note X, = (SO ve PO) X3 = (PO>-,PAEAE500)

X2 = (SO*PAP2) X4 = (POl-,PAE)
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5.4.3.3 The DFM Approach

The requirements of the above group are expressed formally as

(SOve PO) A (SO=> PAP2) A (PO=> -1PAEAE500) A (PO= -PAE) (5.4-4)

The task of finding whether the requirements are consistent is equivalent to finding at least

one set of truth value assignments for the variables in Expression (5.4-4) such that the

expression is evaluated as true. In other words, if this expression is viewed as a top event, the

task is to find all of its prime implicants using the DFM tool. Following the same steps as

described in Section 4.5.4, we construct a DFM network model of the case study as in Figure

5.4-1. Since six logical variables are defined in Section 5.4.3, there are six corresponding

independent variable nodes, as shown at the bottom in Figure 5.4-1, namely, P, P2, SO, PO, E,

and E500. The tool requires intermediate nodes be constructed to express logical operations.

In Figure 5.4-2, eleven intermediate nodes are needed. For example, R1 represents the logical

expression SOve PO, R3 represents the logical expression SO>POAP2, R5 represents the

logical expression PO=-PAEAE500, R6 represents the logical expression (SOvPO) A

(SO-,PAP2) A (PO=>PAEAE500) or requirements 1, 2 and 3, and R8 represents the logical

expression PO-z-,PAE or requirement 4. These intermediate nodes are summarized in Table

5.4-3. Decision tables, as shown in Table 5.4-4, are used to model the logical expressions.

The result of running DFM model in Figure 5.4-1 is shown in Figure 5.4-2. The result

indicates that there are two prime implicants for the top event, "SO=0 AND E500=1 AND

P=0 AND E=1 AND PO=1"and"P2=1 AND SO=1 AND P=1 AND PO=0". These

two prime implicants are logically the same as Expression (5.4-3). As explained in Section

4.5.4.5, the set of requirements is consistent.
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Figure 5.4-1 DFM Model for the Case Study
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Table 5.4-3 Case Study: Intermediate Nodes and the Logical Expressions in Figure 5.4-1

Intermediate Nodes Corresponding Logical Expressions

R1 SOvePO

R2 PAP2

R3 SO=>PAP2 (or --SOvPI\P2)

R4 -,PAEAE500

R5 PO=>-,PAEAE500 (or -POv(--PAEAE500))

R6 (SOvPO) A (SO>PA\P2) A (PO=-,PAEAE500)

R7 PAE

R8 PO->-PAE (or -POv(-,PAE))

NOT P -P

NOT SO -,SO

NOT PO -PO
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Table 5.4-4 Case Study: Decision Table in the DFM Model (Operational Mode Group)

12

0.000000

211

SO NOT SO

0 1

1 0

0.000000

421

P P2 R2

0 0 0

0 1 0

1 0 0

1 1 1

0.000000

421

R2 NOT SO R3

0 0 0

0 1 1

1 0 1

1 1 1

0.000000

831

E E500 NOT P R4

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

0.000000

211

P NOT P

0 1

1 0

0.000000

421

NOT P E R7
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Table 5.4-4 Case Study: Decision Table in the DFM Model (Operational Mode Group)
(continued)

0.000000

831

000000

2 1

TOP

0

0

0

1

0.000000

2 1. 1

NOT PO

1

0

0. 000000

4 2 1

0.000000

4 2 1

R7

0

0

1

1

0. 000000

4 2 1

NOT PO

0

0

1

1

NOT PO

0

1

0

1

R4

0

1

0

1
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For the top event:

At time 0, TOP = T (True)

There are 2 prime implicants

Prime Implicant #1
At time , SO = 0 AND
At time , E500 = 1 AND
At time , P = 0 AND
At time , E = 1 AND
At time , PO = 1

Prime Implicant #2
At time , P2 = 1 AND
At time , SO 1 AND
At time 0 P = 1 AND
At time , PO = 0

Figure 5.4-2 DFM Results for the Case Study (Screen Dump)
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Originally, DFM was developed to analyze problems involving multi-valued logic and

temporal features. A new application of DFM to software requirements analysis was

developed. Results from the four test cases in Chapter 4 and the real case study demonstrate

that DFM can be used in software requirements analysis. This application is a part of the

development of the proposed user-friendly methodology in software requirements analysis.

Minimal training is needed to create truth tables (or decision tables). DFM can be used as an

independent automatic tool in the within-group analysis as well as a double check of the

Tree-Based Graphical Approach (TBGA).

5.4.3.4 The Tree-Based Graphical Approach

The detailed analyses are shown in Figure 5.4-3 (A) and (B) where 1, 2, 3 and 4 represent

Expressions 1, 2, 3, and 4 respectively. The numbers on the edges of the tree indicate the

order of operations.

At the top level, it is required that the conjunction of 1, 2, 3 and 4 be true, which is

equivalent to 1 being true, 2 being true, 3 being true and 4 being true simultaneously.

According to the rules, we start with the simplest one--, in this example. Two cases need to

be discussed separately.

Case 1: SO= true Since SO= true, -SO is false and -SOAPO is false. As a result, they

are pruned from the tree (shaded with lines in Figure 5.4-3 (A)). Since Expression 1 is

required to be true, -PO must be true. The process is continued by selecting Expression 2

next since it contains variable SO which is contained and is true in Expression 1. Expand this

branch and prune leaf -SO since SO is true in Expression 1. But this branch is required to be

true, P and P2 must be true (otherwise, the entire branch is false). For the same reason,

Expression 4 is the next to be selected and expanded. -P is pruned since it contradict true

leaf P in Expression 2. As a result, -PAE is pruned. Note that, -1PO is pruned (shaded with

dots) not because it contradicts any known true branches or leaves, but -PO is true in
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Expression 1. Therefore, the entire branch of Expression 4 can be pruned. Similarly,

Expression 3 is expanded and entirely pruned. Finally, take the conjunction of the leaves left

in the tree. The conjunction of 1, 2, 3 and 4 is equivalent to the conjunction of the leaves or

1A2A3A4= SOA-PO\PA\P2 (5.4-5)

Expression (5.4-5) is the same as the second prime implicant in Section 5.4.3.3.

Case 2: PO= true Since PO= true, -1PO is false and SOA-,PO is false. Therefore, they

are pruned from the tree (shaded with lines in Figure 5.4-3 (B)). Since Expression 1 is

required to be true, -SO must be true. The process is continued by selecting Expression 4

next since it contains variable PO which is contained and is true in Expression 1. Expand this

branch and prune leaf -PO since PO is true in Expression 1. But this branch is required to be

true, -P and E must be true. For the same reason, Expression 2 is selected and expanded

next. P is pruned since it contradict true leaf --P in Expression 4. As a result, PAP2 is pruned.

Note that, --SO is pruned (shaded with dots) not because it contradicts any known true

branches or leaves, but -SO is true in Expression 1. Therefore, the entire branch of

Expression 2 is pruned. Similarly, Expression 3 is expanded and pruned. Finally, take the

conjunction of the leaves left in the tree. The conjunction of 1, 2, 3 and 4 is equivalent to the

conjunction of the leaves or

1A2A3A4= -SOAPOA-,PA EAE500 (5.4-6)

Expression (5.4-6) is the same as the first prime implicant in Section 5.4.3.3.

As expected, the graphical approach generates the same result as the other three approaches.

Translating the above expression back into English, we have a more precise, unambiguous,

and consistent requirement, since irrelevant information has been removed.
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Case 1: SO=true

5

..................

N

N\\

(A) SO = true

Figure 5.4-3 Within-Group Analysis Using the Tree-based Graphical Approach
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(B) PO = true

Figure 5.4-3 Within-Group Analysis Using the Tree-based Graphical Approach
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The reactor operates in steady-state mode, rather than

pulsed mode, and the limiting power level is 2 MWt; or

the reactor operates in pulsed mode, rather than steady

state mode, and there will be a limit of 500 MJ in total

energy generated per pulse rather than power levello.

Note that the shaded boxes in Figure 5.4-3 represent leaves pruned during the analysis and

should be removed from the tree. They are left in this tree simply for the purpose of

illustrating the reasoning process. As a matter of fact, all parts of the tree between the line-

shaded boxes and the next logic OR gate above the boxes (i.e., towards the root) should be

pruned; all parts of the tree between the dot-shaded boxes and the next logic AND gate above

the boxes (i.e., towards the root) should be pruned As experience is gathered, many

intermediate steps in the tree can be bypassed to simplify the process.

5.4.3.5 Order Analysis in the Tree-Based Graphical Approach

Based on formal logic, the within-group requirements analysis using the graphical approach

is a very mechanical process with well defined rules. Starting with the simplest sub-

expression, proceeding next with the sub-expression that contains the same logical variables

(or literals) as in the previously worked sub-expressions, continuing the tree downward

towards the leaves, and pruning any branch that contradicts known true leaves (or branches)

identified earlier in the process or pruning any branch that is the same as a true leaf (or

branch) identified earlier. In practice, it may not be always straightforward as to which sub-

expression is the simplest. In other words, the simplest sub-expression may not be unique,

e.g., two or more sub-expressions might be the simplest ones simultaneously. If this situation

occurs, one can arbitrarily pick one of the sub-expressions to start (and/or continue) the

analysis. The random selection of expressions will not affect the results of the analysis. In

other words, the order on which the reasoning is based does not matter at all. To show this,

we should revisit the above example by exhaustively analyzing all twenty-four permutations

oIn this case study, only pulsed mode was used in the experiment.
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(4!=24) of in the order of selecting expressions in Case 2. The following discussions will be

focused on cases in which PO= true and Expression 1 is the first to be selected, except for

Figure 5.4-9 in which Expression 2 is selected first (Figures 5.4-4 to 5.4-9 as well as Figure

5.4-3 (B)).

The difference between Figures 5.4-4 and 5.4-3 (B) is the order in which sub-expressions

SO>PAP2 and PO=>PAEAE500 are evaluated. Figure 5.4-3 strictly abides by our pre-

defined selection rules. The difference between Figures 5.4-5 and 5.4-6 is the order in which

the sub-expressions PO=>PAEAE500 and PO -iPAE are expanded. The difference

between Figures 5.4-7 and 5.4-8 is the order in which sub-expressions PO=>PAE and

SO>PAP2 are expanded. Figure 5.4-9 represents a scenario in which Expression 2 is

selected first. PAP2 in Expression 2 is not pruned until Expression 4 is expanded and pruned.

-SO is Expression 2 is not pruned until Expressions 3 and 1 are expanded and pruned.

Not surprisingly, it turns out that all the cases end up with the same result.

From this order analysis, it is concluded that the order in which the sub-expressions/branches

are expanded does not affect the final result of the analysis. In other words, the analysis is

order-independent. Therefore, in theory, starting with any sub-expression will guarantee the

same final result. However, in practice, a good sub-expression selection order will simplify

the tree in the process of the analysis. For large expressions, this could be a tremendous

advantage.

5.4.3.6 Lessons Learned

When describing or documenting software requirements, one should use the same phrases

and notation to represent the same events or requirements. Otherwise, confusion, ambiguity,

or inconsistency will arise.
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Case 2: PO=true

5

N

Figure 5.4-4 Order Analysis for the Within-Group Analysis (PO = true, 1/6)
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Figure 5.4-5 Order Analysis for the Within-Group Analysis (PO= true,2/6)
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Case 2: PO=true

3

..............

.. . . .. . . .. . . .

N

Figure 5.4-6 Order Analysis for the Within-Group Analysis (PO= true, 3/6)
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Case 2: PO=true

m

Figure 5.4-7 Order Analysis for the Within-Group Analysis (PO = true, 4/6)
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Case 2: PO=true

...........

m

Figure 5.4-8 Order Analysis for the Within-Group Analysis (PO = true, 5/6)
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Case 2: PO=true

N

N.

......... N

N

K

Figure 5.4-9 Order Analysis for the Within-Group Analysis (PO = true, 6/6)
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5.4.4 Fuel Temperature Group

9 For pulsed operation, there is a limit ... of 18000 C on the

fuel temperature.

127 The scram circuit will cause an automatic shutdown to prevent

... the fuel temperature from rising above 18000C.

130-2

5) (There will be an) absolute limit on ... fuel temperature.

5.4.4.1 Analysis by Inspection

The following incompleteness or ambiguity was identified. It is not stated whether there is a

limit on fuel temperature for steady state operation. After communication with the developer,

this requirement was revised as follows:

For both steady state and transient operation, there is a

limit of 18000 C on the fuel temperature.

5.4.4.2 Lessons Learned

When documenting software requirements, one should always specify the behaviors of the

software under all situations, i.e., the requirements should be complete. Researches indicate

that the majority of errors in requirements are omissions or incompleteness issues.

5.4.5 Reactor Period Group

130-2

5) (There will be an) absolute limit on ... the minimum observed

reactor period.

179 ... there was a limit of 0.20 second on the minimum allowed

period ... applied to the MIT-SNL laws.
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* To satisfy Technical Specifications of the ACRR, the reactor

period can not fall below 0.3 second

The following ambiguity or inconsistency was identified by inspection: "a limit of 0.20

second on the minimum allowed period"(179) vs. "the reactor period can

not fall below 0.3 second".

After communication with the developer, the ambiguity/inconsistency was resolved, resulting

in requirement below:

To satisfy Technical Specifications of the ACRR, the

reactor period can not fall below 0.3 second.

5.4.6 Reactivity Group

126 The transient rods are normally operated as a bank (gang) and,

as mentioned , can be moved either pneumatically or via

stepper motors. Relative to the first method, nitrogen gas is

used to pressurize each rod's piston chamber and thereby eject

the three rods in times as short as 55 milliseconds. When

operated in this manner, the maximum allowed reactivity

insertion is 3,6 ...

(127) The alternative means of moving the transient rods is the

"Transient Rod Withdrawal" or TRW method. Using this approach,

the transient rods are raised by fork-shaped devices which are

each connected to variable speed stepper motors via an

electromagnet and a rack and pinion gear... If moved from the

"full-in" to "full-out" position, the total reactivity

associated with the transient rods is 4.25,6.

130-2
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(There will be an) absolute limit on the net reactivity

The pneumatic mode of transient rod band withdrawal would be

disabled and officially tagged out so as to preclude its

inadvertent use.

236 (Transient Rod Worth, in cents)

2000 4000 6000 8000 2000 4000 6000 8000

(A) Integral Rod Worth (B) Differential Rod worth

5.4.6.1 Analysis by Inspection

Through inspection, one inconsistency was found. On page 127 of [Bern89] it is claimed that

reactivity associated with rod withdrawal "from the full-in to full-out position" is 4.25P,

while the reactivity is 4.400, or 440 cents, according to Figure 11.5.1-1 on page 236 of the

report. Discussion with the developer indicates that 4.40P is the correct value.

5.4.6.2 Analysis by Tree-Based Graphical Approach

Let

Bank

Pneu

Stepper

PneuCons

= Transient rods are normally operated as a bank (gang)

= the transient rods moved pneumatically

the transient rods moved via stepper motor

= nitrogen gas is used to pressurize each rod's piston chamber and

thereby eject the three rods in times as short as 55 milliseconds.

When operated in this manner, the maximum allowed reactivity
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StepperCo

ns

insertion is 3 p ...

the transient rods are raised by fork-shaped devices which are each

connected to variable speed stepper motors via an electromagnet

and a rack and pinion gear. The maximum speed of withdrawing

the transient rods without any chance of magnet separation is 750

pulses per second. ... If moved from the "full-in" to "full-out"

position, the total reactivity associated with the transient rods is

4.40, .

The requirements can be translated into the following propositional expressions.

Expression #

1

2

Propostional Expressions

Bank A (Pneu v, Stepper) A (Pneu > PneuCons) A (Stepper > StepperCons)

-,Pneu

Consistency requires the conjunction of expressions 1 and 2 be true, that is

Bank A (Pneu ve Stepper) A (Pneu => PneuCons) A (Stepper => StepperCons) A -Pneu = true

(5.4-7)

Expression (5.4-7) will be analyzed using the Tree-Based Graphical Approach (TBGA) as

shown in Figure 5.4-10.

Consistency requires the conjunction be true, which is equivalent to requiring all the terms in

the conjunction be true, i.e., expressions at level 2 in the tree be true. We resolve the graph in

further detail, pruning any branch that contradicts any known true branch or any branch that

leads to a tautology conditioned on any true branch (e.g., a branch that leads to a true input to

an OR gate). Using the graphical approach, the conjunction is equivalent to

Bank A (Pneu v, Stepper) A (Pneu > PneuCons) A (Stepper =- StepperCons) A -Pneu

= Bank A -Pneu A Stepper A StepperCons
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Bank ^ (Pneu ve Stepper)A
(Pneu=>PneuCons)A(Stepper=>StepperCons)A-Pneu

I
Pneu ~ Pne'onsNE M INU111111, 'ill

+~:PneuF1 ;- PneuCons

~Y

Figure 5.4-10 Within-Group Analysis Using the Tree-Based Graphical Approach (Reactivity Group)
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Translating the expression back into plain English requirements, we have

The transient rods are normally operated as a bank (gang)

and are moved via stepper motors, rather than

pneumatically. The transient rods are raised by fork-

shaped devices which are each connected to variable speed

stepper motors via an electromagnet and a rack and pinion

gear. If moved from the "full-in" to "full-out" position,

the total reactivity associated with the transient rods

is 4.40,. The rod worth is shown in Figure 5.2-1.

5.4.6.3 Lessons Learned

When documenting requirements, one should bear in mind that no part of the requirements

should contradict other parts.

5.4.7 Motor Frequency Group

(127) The maximum speed of withdrawing the transient rods without

any chance of magnet separation is 750 pulses per second.

130 Relative to the actual conduct of experiments involving the

MIT-SNL minimum time laws, an upper limit on the allowable

frequency of 1100 Hz was selected. This figure was chosen

because its is the value listed as acceptable for the TRW mode

of operation in the ACRR's Safety Analysis Report and because

the range of frequencies needed for the testing of the MIT-SNL

minimum time laws was approximately 400-600 Hz.

140 (ACRR) The design specifications imposed on the interface

controller board were that it be possible to move the stepper

motors over the frequency range of -1000 Hz to +1000 Hz, that

172



the deviation of the output frequency from the required

frequency not exceed 5% and that the over frequency trip be

set at 1100 Hz. (Note: There was a deadband over the range of

±15.26 Hz ... )

141 ... However, despite its having been designed to accommodate

demanded frequencies of as much as 1000 Hz, the MIT-SNL

experiments were restricted to 400 Hz.

5.4.7.1 Analysis by Inspection

By inspecting the requirements in this group, the following ambiguities/inconsistency were

identified. Numbers in the parentheses represent the page numbers in the original report.

Ambiguities.

* It is not clear if"pulses per second" (127) is the synonym of"Hz" (130);

* It is not clear whether the maximum speed of the transient rods without any

chance of magnet separation, "750 pulses per second", is applicable to

rod insertion as well as rod withdrawal (127);

* It is not clear what negative frequency means, e.g., "frequency range of

-1000 Hz to +1000 Hz"(140);

* It is not clear what the "deadband over the range of ±15.26 Hz"

(140) is, e.g., relative deadband around a certain nominal frequency or absolute

deadband centered at zero.

It turns out after discussion with the developer, that, negative frequency such as "-1000Hz"

refers to the fact that the motor rotates in the opposite direction. A "pulse per second" is

identical to Hz, and the deadband is a band in the absolute (not relative) sense, within which

the motor doesn't respond to signals.
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Inconsistency.

* "testing of the MIT-SNL minimum time laws was

approximately 400-600 Hz" (130). vs."the MIT-SNL experiments

were restricted to 400 Hz"(141).

Again, after discussion with the developer, it turns out that the MIT-SNL experiments were

restricted to 400 Hz. So the requirement can be revised as follows.

The maximum frequency of moving the transient rods is

±400 pulses per second and there is a deadband over the

range of [-15.26, 15.26] pulses per second within which

the motor doesn't respond to signals. Negative frequency

represents that motor rotates in the opposite direction.

5.4.8 Rod Velocity Group

(127) Transient rod location on the ACRR is given in "position

units" with "full-in" being 2031 units and "full-out" being

7464 units. Every pulse delivered to the stepper motors moves

the rods 2.661 units.

234 The objective of the MIT-SNL Laws is to determine the rate of

change of reactivity ( p,) that will cause a reactor's

neutronic power to vary on a specified period. The decision of

these laws are most readily implemented if the differential

dp
reactivity worth ( ) of the associated control device is at a

dx

maximum ......

dp dx dp
P, cv .(t)dx dt d

Clearly, if the control device's differential reactivity worth

is large, then the speed at which the control device must be
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moved, can be minimized. So doing is desirable because it will

reduce wear on the variable speed stepper motors. In contrast,

if the differential worth is low, then the stepper motor must

be operated at high frequency. Not only will this accelerate

wear but it also risks the possibility of causing the motor to

stall.

Ambiguity:

It is not specified whether the rod positions (in units) between the "full-in" (2031 units)

and "full-out" (7464 units) positions can be linearly interpolated to obtain its actual

position.

After discussion with the developer, the requirement on Rod Velocity as follows.

Transient rod location on the ACRR is given in "position

units" with "full-in" being 2031 units and "full-out"

being 7464 units. Rod positions in between can be

interpolated to get its actual position. Every pulse (Hz)

delivered to the stepper motor moves the rod 2.661 units.

5.4.9 Hardware and Other non-Software Group

130-2Testing of the MIT-SNL Period-Generated Minimum Time Control

Laws on Sandia's ACRR was approved subject to the following:

1) The instrumentation that formed the ACRR's safety system

would not also be used for the controller. The safety system

was to be maintained as a separate, independent entity.

2) Signals form the digital computer would replace those from

the existing eight-step programmable controller. The

hardware and circuitry previously used for control of the

ACRR would be retained.
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3) An independent, hard-wired over-speed circuit would be

installed to preclude withdrawal for the transient rod bank

at frequencies in excess of 1100 Hz.

4) A "Loss of Computer Enable" circuit which would result in an

insertion signal to the transient bank should there be a

malfunction of the computer or the associated hardware would

be installed.

5) (This requirement is moved to groups of General Information, Power Multiplication,

Fuel Temperature, Reactor Period, and Reactivity.)

6) Specification of a transient duration limit following which

control would revert to manual.

7) A requirement to test both the over-speed trip and the "loss

of enable" circuit prior to each set of runs and

periodically during the runs.

8) (This requirement is moved Reactivity group.)

9) Control would never be transferred from manual to automatic

with reactor already on a positive period. The purpose of

this restriction was to limit the excess reactivity to that

inserted by the transient rod bank.

10)Reactor operation would at all times be monitored by

licensed personnel.

Since the interest of the analysis lies in requirements analysis of software, the analysis for

non-software requirements is not presented here, assuming that this part of the analysis has

been performed by other people.

5.4.10 Revised Requirements after Within-Group Analysis

After the analysis, the software related system requirements were revised as follows.
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General Information

130-2

5) The following restrictions would be incorporated in the

software

- Use of the standard, sufficient reactivity constraint

in a supervisory role.

- Use of the absolute, sufficient energy constraint in a

supervisory role

* MIT-SNL Period-Generated Minimum Time Control Law should be used

in the control software.

Power Multiplication

The objective was to develop a robust control technique

that would permit a neutronic power to be raised by up to

six orders of magnitude in 5 seconds and without

overshooting by 5% of nominal target power level.

Operational Mode

The reactor will operate in transient mode, rather than

the steady state mode, and there is a limit of 500 MJ in

total energy rather than power level generated per

transient.

Fuel Temperature

For both steady state and transient operation, there is a

limit of 1800 0C on the fuel temperature.
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Reactor Period

To satisfy Technical Specifications of the ACRR, the

reactor period can not fall below 0.3 second.

Reactivity

The transient rods are normally operated as a bank (gang)

and are moved via stepper motors rather than

pneumatically. The transient rods are raised by fork-

shaped devices which are each connected to variable speed

stepper motors via an electromagnet and a rack and pinion

gear. If moved from the "full-in" to "full-out" position,

the total reactivity associated with the transient rods

is 4.40g. The rod worth is as shown in Figure 5.4-11.

Motor Frequency

The maximum frequency of moving the transient rods is

±400 pulses per second and there is a deadband over the

range of [-15.26, 15.26] pulses per second within which

motor doesn't response to signals. Negative frequency

represents that motor rotates in the opposite direction.

Rod Velocity

Transient rod location on the ACRR is given in "position

units" with "full-in" being 2031 units and "full-out"

being 7464 units. Rod positions in between are linearly

interpolated to get its actual position. Every pulse

delivered to the stepper motor moves the rods 2.661

units.
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5.5 Between-Group Analysis

Through within-group analysis, we conclude that the requirements are consistent within each

group. However, the analysis does not rule out the possibility of between-group

inconsistencies.

Between-group analysis involves the physics of the system. A Dependency Diagram of the

case study is shown in Figure 5.5-1. In the dependency diagram, seven nodes are identified,

each corresponding to one of the groups of requirements, namely, Power Multiplication,

Energy (Operational Mode), Fuel Temperature, Reactor Period, Reactivity, Rod Velocity,

and Motor Frequency. An intermediate state, Rate of Reactivity, is also included to connect

Reactor Period with Rod Velocity, and Period with Reactivity. We have analyzed all the arcs

in the between-group analyses except Power Multiplication-Fuel Temperature since this one

requires a detailed thermal-hydraulic model, which is unavailable to us.

5.5.1 Power Multiplication-Reactor Period

After the within-group analysis, the requirements for group "Power Multiplication" are

Power Multiplication

The objective was to develop a robust control technique

that would permit a neutronic power to be raised by up to

six orders of magnitude in 5 seconds and without

overshooting by 5% of nominal target power level.

The requirement for group "Reactor Period" is

Reactor Period

To satisfy Technical Specifications of the ACRR, the

reactor period can not fall below 0.3 second.
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Reactor Period is defined as

p(t)t) p(t) (5.5-1)
p -(t) dp(t)

dt

Requirements in the "Power Multiplication" group specify two points on the power plot

(Figure 5.5-2). However, the shape of the power trajectory is not specified. Three types of the

power profile shapes will be taken into account, as identified in Figure 5.5-2. The

relationship between the slopes of the three curves at t=0+ is that the slope of curve III

(concave) is less than that of curve I (linear), which is less than that of curve II (convex).

Starting with the simplest, we will analyze all the three trajectories.

Trajectory I: Linear power shape between two points in the power plot.

For a linear power trace, it should be noted that the rate of change in power (i.e., slope

of the trajectory) is constant at any time. According to Equation (5.5-1), the reactor

period at time 0' is

p(O')

p(t) ,I=o+

p(O)p(O) (5.5-2)
106 -p(0). 1.05- p(0)

5-0
5 x 10- 6 << 0.30sec

Therefore, Trajectory I can not satisfy both requirements in "Power

Multiplication" and "Reactor Period". In other words, if Trajectory I had been

the power shape, the between-group analysis would indicate inconsistency in

the requirements of the two groups, i.e., one or more of the requirements in the

two groups would have been violated. (The allowed overshooting is taken into

account by the factor of 1.05.)
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Trajectory II: Convex power trace

For this power trace, the rate of change in power is continually decreasing and

eventually approaching zero at 5 seconds, which seems very appealing. Using

Equation (5.5-1), we compute the reactor period at time 0+.

TH(O) p(O')

p(0')

p(t) I,=0+ (5.5-3)

p(O)
106 p(0) -1.05- p(O)

5-0

5 x 10-6 <<0.30 sec

Therefore, just like Trajectory I, Trajectory II can not satisfy the between-

group analysis of power-period requirements.

Trajectory III: Concave power trace

Since Trajectoies I and II can not satisfy the requirements of both groups, the

only possible power profile shape is Trajectory III. Integrating the Equation

p(t)(5.5-1), r(t)= t)yields
p(t)

j -dt

p(t) = p(O) eo (t) (5.5-4)

or

r (t)dt = InP t)(5.5-5)

Substituting the requirements of group Power Multiplication into Equation (5.5-5)

yields
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-1 dt 106 p(O) = 13.86 (5.5-6)
r(t P(O)

Equation (5.5-7) expresses the requirements in group Power Multiplication. To satisfy the

requirement in group Reactor Period, 4(t) is lower bounded by 0.30 second or 1/r(t) is upper

bounded by 3.33 second- .

r(t) 2 0.30 (5.5-7)

In theory, 1/r(t), can be of any shape as long as it satisfies both Equations (5.5-6) and (5.5-7),

i.e.., the curve in Figure 5.5-3. In practice, to simplify the process, it is determined to choose

an exponential power shape, a shape with constant period o0 (i.e., the horizontal line in Figure

5.5.-3). Solving Equation (5.5-6) for constant -0, we have ro= 0 .3 6 1, which surely satisfies

Equation (5.5-7). Therefore, the requirements are consistent between groups "Power

Multiplication" and "Reactor Period" if the power shape is exponential. With the missing

requirement underlined, the requirements can be rephrased as

Power Multiplication

The objective was to develop a robust control technique

that would permit a neutronic power to be raised

exponentially by up to six orders of magnitude in 5

seconds and without overshooting by 5% of nominal target

power level.

Reactor Period

To satisfy Technical Specifications of the ACRR, the

reactor period can not fall below 0.3 second.
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From the analysis, it is indicated that the between-group analysis will not only check whether

the requirements of the two groups under consideration are consistent, but it will also make

the requirements more complete.

5.5.2 Power Multiplication-Operational Mode

The requirements for the group "Power Multiplication" are

The objective was to develop a robust control technique

that would permit a neutronic power to be raised

exponentially by up to six orders of magnitude in 5

seconds and without overshooting by 5% of nominal target

power level.

Also, the requirements for the group "Energy (Operational Mode)" include

The reactor will operate in pulsed mode, rather than the

steady state mode, and there will be a limit of 500 MJ in

total energy generated per pulse.

This specifies that the total energy generated in the transient should not exceed 500 MJ.

Mathematically, the two requirements lead to

p(t') -dt'x1.05 < Emax = 500MJ (5.5-8)

where

t end is the time when the reactor

small thereafter;

1.05 is a factor reflecting the

allowed.

is shutdown and its power is negligibly

fact that a power overshoot of 5% is
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Now, we realize that some important information is missing in the first group when we try to

integrate the left-hand side of Equation (5.5-8). Namely, the time during which the power is

maintained at the target level (t2) and the time at which the reactor is shutdown and its power

becomes negligible (tend). Rewriting Equation (5.5-8) yields

5 12 lend

( p(O) -e '  dt'+ p(O). -06 dt'+ fp(t') dt') x 1.05 Emax = 500MJ (5.5-9)
0 5 12

The first term on the left-hand side of the equation represents the energy generated during the

first 5 seconds of the transient when the reactor power increases exponentially. The second

term represents the energy generated when the power is maintained at the target level. The

third term refers to the energy generated (i.e., decay heat) after the reactor is shut down.

Neglecting the third term" and solving for an upper bound of the initial power level,

Equation (5.5-9) can be rewritten as

500
p(O) = (5.5-10)

(t2 -5 + ) x 1.05

where

- is the reactor period (=0.361 second) during the first five seconds of

the transient

Thus, the between-group analysis leads to a new constraint mathematically described by

Equation (5.5-10) and graphically shown in Figure 5.5-4. Not specified in the initial set of

requirements, the new requirement is the direct result of the between-group analysis. Since

the third term in Equation (5.5-9) is neglected, the actual constraint on the initial power level

should be slightly smaller than the corresponding value in Equation (5.5-10) or Figure 5.5-4.

The figure indicates that the longer the power is maintained at the target level, the lower the

1" Personal communication with Dr. John Bernard (1998) indicated that the term is usually negligibly small.
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initial power level is allowed. The figure sets an upper limit for the initial power. For

example, if the target power is maintained for 5 seconds after reaching the target power (i.e.,

t2 = 10 seconds), the maximum allowable initial power is 88.8 watts. Therefore, the between-

group analysis has revealed omissions in the requirements of one group, i.e., the constraint on

the initial power level should be added.

After the between-group analysis, the requirements for each group can be revised as

Power Multiplication

The objective was to develop a robust control technique

that would permit a neutronic power to be raised

exponentially by up to six orders of magnitude in 5

seconds and without overshooting by 5% of nominal target

power level. And for power to be maintained at the target

power level until t 2 seconds (i.e., t,>5), the initial

reactor power level is upper bounded by the corresponding

value in Figure 5.5-4.

Operational Mode

The reactor will operate in transient mode, rather than

steady state mode, and there will be a limit of 500 MJ in

total energy, rather than power generated per transient.

Through the between group analysis, an important goal is achieved. Namely, the

between-group analysis has revealed incompleteness or omissions in the requirements

of one group, i.e., it identified a constraint on the initial power level that needed to be

added. Omission is the most common cause of errors in software requirements, as

identified by other independent studies[Rush96]
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Figure 5.5-4 A New Requirement on the Initial Power Levels
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5.5.3 Reactor Period-Rod Velocity

The requirements for group "Reactor Period" is

To satisfy Technical Specifications of the ACRR, the

reactor period can not fall below 0.3 second.

The requirements for group "Rod Velocity" is

Transient rod location on the ACRR is given in "position

units" with "full-in" being 2031 units and "full-out"

being 7464 units. Rod positions in between are linearly

interpolated to get its actual position. Every pulse

delivered to the stepper motor moves the rods 2.661

units.

The two groups are not related with each other directly. However, they are related by an

intermediate group, "Rate of Reactivity", which is not a member of the original set of groups.

Therefore, the analysis is split into two between-group analyses, Reactor Period-Rate of

Reactivity and Rate ofReactivity-Rod Velocity.

5.5.3.1 Reactor Period-Rate of Reactivity

The between-group analysis makes use of group "General Information", which requires use

of the MIT-SNL Period-Generated Minimum Time Control Laws. The control laws

physically relate Reactor Period and Rod Velocity. The control laws differ from other nuclear

reactor control theories in that the control laws use the rate of change of reactivity as the

means of reactor control, rather than reactivity itself. To maintain a reactor period of 0.361

second, the resultant rate of change of reactivity, calculated from the MIT-SNL Minimum

Time Control Laws, is shown in Figure 5.5-5. A detailed analysis is provided in Appendix

10. Note that, for simplicity, the Doppler effect in the fuel is not taken into account.

190



5.5.3.2 Rate of Reactivity-Rod Velocity

The required rate of reactivity is achieved by the movement of the transient rods, which are

implemented by signaling the electric motor to rotate. The two quantities are related by the

dp
differential rod worth, , which is a function of transient rod position, x.

dp dp dx dp
v- - .(t) (5.5-1)

dt dx dt dx

or

v(t) = x (5.5-2)

Substituting into this equation the differential rod worth (Figure 5.4-11), the initial rod

position x0, and the rate of change of reactivity in Figure 5.5-5, we calculate the transient rod

velocity as a function of time. The result of the calculation is shown in Figure 5.5-6. Details

of the analysis are given in Appendix 10.

Figure 5.5-5 shows that the rate of reactivity addition is largest at the onset of the transient.

Correspondingly, the rod velocity is at its maximum at the onset of the transient (Figure 5.5-

6). This maximum rod velocity is orders of magnitude larger than the rod velocity a few

seconds afterwards. Minimizing the maximum rod velocity will, in return, minimize the

torque required from the motor, thus minimizing the chance of motor stall and mechanical

wear-out. Since the differential rod worth is maximized at the middle of the reactor core (see

Figure 5.4-11), minimizing the maximum rod velocity can be achieved with an initial rod

position between 4,000 and 5,000 units.

This relationship between the maximum rod velocity and the initial transient rod position is

shown in Figure 5.5-7. Each dot in the figure corresponds to one run in part 4 of Appendix

10. Each run generates a figure similar to Figure 5.5-6 whose maximum speed is represented

by a dot in Figure 5.5-7. From Figure 5.5-7, we get the minimum value of the maximum rod

speeds in order to achieve the required rate of change of reactivity. The minimum value is

2133.7 units/sec when the control rod is initially positioned at 4562 units.
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5.5.4 Rod velocity-Motor Frequency

Motor Frequency

The maximum frequency of moving the transient rods is

±400 pulses per second and there is a deadband over the

range of [-15.26, 15.26] pulses per second within which

motor doesn't response to signals. Negative frequency

represents that motor rotates in the opposite direction.

Velocity of Rod

Transient rod location on the ACRR is given in "position

units" with "full-in" being 2031 units and "full-out"

being 7464 units. Rod positions in between are linearly

interpolated to get its actual position. Every pulse

delivered to the stepper motor moves the rods 2.661

units.

The maximum allowed control rod speed is

2.66 lunits / pulse x (±400pulses / sec) = 1064.4units / sec < 2133.7units / sec

This value is only half of the minimum value required. This fact implies that the

requirements are not consistent. The minimum required maximum frequency of moving the

transient rods is

2133.7units / sec+ 2.66 1 units / pulse = 802pulses / sec
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The revised requirements should be rephrased as

Motor Frequency

The maximum frequency of moving the transient rods is

±802 pulses per second and there is a deadband over the

range of [-15.26, 15.26] pulses per second within which

motor doesn't response to signals. Negative frequency

represents that motor rotates in the opposite direction.

Velocity of Rod

Transient rod location on the ACRR is given in "position

units" with "full-in" being 2031 units and "full-out"

being 7464 units. Rod positions in between are linearly

interpolated to get its actual position. Every pulse

delivered to the stepper motor moves the rods 2.661

units.

5.5.5 Operational Mode-Fuel Temperature

The analysis between the groups requires a detailed thermal-hydraulic analysis. A thermal-

hydraulic tool, with the detailed thermal-hydraulical, geometrical, and physical data was

unavailable, so the analysis is not further discussed here.

5.5.6 Reactor Period-Reactivity

Although constraint on reactivity was removed (i.e., p</P was not required), this analysis is

still necessary. This is because, there should be enough reserved reactivity during the

transient to compensate for the needed reactivity. In fact, this is indeed the case, i.e., Pneeded

(figures in parts 3 and 5 of Appendix 10) < Preserved (Figure 5.2-1). Therefore, the between-

group analysis is consistent.
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5.5.7 Revised Requirements after the Between-Group Analysis

Through the analysis in this chapter, it has been demonstrated that Requirements Analysis

will detect inconsistencies (both logical and physical), remove irrelevant information, and

help achieve a more complete set of requirements. The application of the graphical

requirements analysis approach developed to the case study demonstrates not only its

effectiveness as a requirements analysis tool, but a user-friendly one. The initial set of

requirements in the case study was reduced by half after the two-step analysis. The final set

of requirements is listed as below.

General Information

130-2

5) The following restrictions would be incorporated in the

software

- Use of the standard, sufficient reactivity constraint in

a supervisory role.

- Use of the absolute, sufficient energy constraint in a

supervisory role

* MIT-SNL Period-Generated Minimum Time Control Law should be used

in the control software.

Power Multiplication

The objective was to develop a robust control technique

that would permit a neutronic power to be raised

exponentially by up to six orders of magnitude in 5

seconds and without overshooting by 5% of nominal target

power level. And for power to be maintained at the target

power level until t 2 seconds (i.e., t2>5), the initial
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reactor power level is upper bounded by the corresponding

value in Figure 5.5-8.

Operational Mode/Energy

The reactor will operate in transient mode, rather than

steady state mode, and there will be a limit of 500 MJ in

total energy, rather than power generated per transient.

Fuel Temperature

There is a limit of 18000C on the fuel temperature.

Reactor Period

To satisfy Technical Specifications of the ACRR, the

reactor period can not fall below 0.3 second.

Reactivity

The transient rods are normally operated as a bank (gang)

and are moved via stepper motors rather than

pneumatically. The transient rods are raised by fork-

shaped devices which are each connected to variable speed

stepper motors via an electromagnet and a rack and pinion

gear. If moved from the "full-in" to "full-out" position,

the total reactivity associated with the transient rods

is 4.40/8. The control rod worth is Figure 5.5-9.
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Motor Frequency

The maximum frequency of moving the transient rods is

±802 pulses per second and there is a deadband over the

range of [-15.26, 15.26] pulses per second within which

motor doesn't response to signals. Negative frequency

represents that motor rotates in the opposite direction.

Velocity of Rod

Transient rod location on the ACRR is given in "position

units" with "full-in" being 2031 units and "full-out"

being 7464 units. Rod positions in between are linearly

interpolated to get its actual position. Every pulse

delivered to the stepper motor moves the rods 2.661

units.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions and Findings

A new graphical approach has been developed for software requirements analysis. The

approach consists of three distinct steps: requirements collection, requirements grouping, the

within-group analysis and the between-group analysis. The purpose of this analysis is to

detect inconsistencies, to remove all irrelevant information, and to achieve completeness in

the requirements.

The tree-based graphical method for the within-group requirements analysis is syntactically

very similar to fault tree analysis. This is important, since fault tree analysis is a familiar

teclmique for system engineers. Based on discrete mathematics, the graphical method is a

more mechanical means of performing logical analyses. Compared with the pure analytical

method, which works sequentially, the graphical method works in parallel, is more

informative, and easier to understand for engineers. As a by-product, this method can be

applied to prove logical identities (Appendix 6).

Two additional approaches were identified for the within-group analysis: the truth-table

approach and the DFM approach. The advantage of the truth-table approach is that it is

mechanical and one can simply enumerate all of the permutations of the truth value

assignments to the variables in the logical expressions. Unfortunately, for a logical

expression involving n independent variables, there are 2" rows in the truth table. The DFM

approach is a computerized tool, allowing the search for prime implicants to be done

automatically by computer. However, decision tables have to be manually supplied. The

decision tables are essentially truth tables. Therefore, the method is also an exponential
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approach. Nevertheless, the two approaches can act as independent checks of the graphical

approach.

Through the within-group analysis, it is concluded whether the requirements within each

individual group are consistent and unambiguous. However, the analysis doesn't rule out the

possibility of inconsistency between groups. The between-group analysis is performed using

dependency diagrams.

Several benefits were identified in the case study. First, the concept of "divide-and-conquer"

helps solve a complex problem by splitting it into sub-problems. Solving these smaller

problems collectively solves the complex problem. Second, the within-group analysis

removes ambiguity and inconsistency within a group. Third, the between-group analysis

removes inconsistency between groups, and reduces ambiguity and incompleteness. It was

demonstrated that logic analysis alone is not sufficient in software requirements analysis,

other analyses involving knowledge of the system, e.g., physical laws, are necessary.

Application of the graphical approach to the case study involving the MIT-SNL Period-

Generated, Minimum Time Control Laws reveals several ambiguities, one inconsistency, and

two omissions in the requirements collected. The case study illustrates that consistency

requires that each entity has exactly one name. Otherwise, ambiguity will arise.
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6.2 Future Work

Currently, the tree-based graphical method for the within-group analysis is a manual process.

Although the manual analysis may give analyst insight into the source of inconsistencies and

how to resolve them, the process can be error-prone because humans may make mistakes.

Therefore, future work should be focused on either developing a specific tool to automate the

within-group analysis or using existing automated fault tree analysis tools which have the

capability to handle non-coherent trees.

Experience with the application of the DFM tool to the within-group analysis indicates that

DF M can be such a candidate. However, several problems with the current version of the tool

need to be solved so as to make it user-friendly. The problems include the following

* All user files (e.g., model representation) must be in the /DFM directory. This

makes the directory structure confusing and unwieldly;

* A label can not be placed on a transfer box. This makes the model less

informative and communicative. Even more severe, if two transfer boxes

happen to have the same name, the structure of the model will become

unpredictable;

* DFM is not robust enough to handle errors. For example, deleting an

unselected connection will crash the program;

* DFM does not support model modification well. For example, when building a

new model based on an existing one, the original logic relations do not get

overwritten in the table file (i.e., file postfixed with . tbl) even if the decision

tables are changed appropriately;

* On the "File" menu bar, the "Save" command does not seem to work

properly. As a result, "Save as" is used to save changes committed to the

model. On the "Edit" menu bar, the "Cut" command works only for

"Hotspot" and not for "Connection", and the opposite is true for

"Delete" command.
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The application of another graphical method, developed in Appendix 7, is recommended.

Section 2.3.1.4 shows its advantages over the tabular notation.

Another area of future work is the selection of "good" programming language for mission-

critical application such as nuclear reactor control. A presently (and perhaps permanently)

unfulfilled dream in computer science is the development a universal programming language

that is suited to all programs written by all programmers, working on all platforms. In past

years, people have tried to create such a language. Algol-60 was one of these attempts.

Ironically, its greatest success was resulting in dozens of new languages. Later attempts

included PL/1, backed by IBM, and Ada, sponsored by U.S. Department of Defense. None of

them has made the dream come true, however. Nowadays, there exist many programming

languages, among which are Ada, C, C++, Fortran, and Pascal. More recently, research[INEL95]

has indicated that programming languages do strongly affect the readability and

maintainability of software. Although no programming language will solve the problems

caused by a poor design, the implementation of a good system design can be hampered by a

programming language with limited expressive power[Be8 7]. Therefore, the selection of a good

programming language can be crucial in developing safety-critical software. In a contract

with the U.S. Air Force to upgrade its Improved Many-On-Many (IMOM) electronic combat

model, INEL([INEL95]) studied the role of programming languages in developing and

supporting a well-structured software implementation. It was concluded that the Ada

programming languages is superior to Fortran and C in terms of abstraction, information

hiding, encapsulation, modularization, and time needed to complete the project. Ada also

provides the benefits of better object-oriented programming design techniques. Methods such

as the Analytic Hierarchy Process might be applicable to the selection of a "good"

programming language[Paul][Zio]
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Appendix 1

Differences between Digital Systems and

Analog/Mechanical Systems

With the introduction of digital technology to I&C of nuclear power plants, new concerns

arise. Digital systems are essentially different from analog counterparts in a number of ways.

Here is a list of the major discrepancies between them.

A1.1 Different Complexities

Compared with digital systems, analog/mechanical systems are relatively simple, well

studied, and well understood. As a result, "exhaustive output versus input functional testing

and cycle-to-failure testing are commonly used" in mechanical systems[NRC95]. However, such

exhaustive testing for a piece of application size software is usually impractical, if not

impossible. Davis presents an estimation of the possible number of paths of an unstructured

piece of software, and it turns out that a program as small as 100 lines of code can have up to

10"8 possible paths[Davi93].

A1.1.1 Software Complexity Measures

Two of the most commonly used complexity measures of software are the Halstead's Metric

and the McCabe Metric. First introduced in [Hals77], Halstead's program length (called

Halstead Length in [Beiz90]) is defined as

H= n, log 2 n + n2 log2 n2  (Al-1)

where

H is the Halstead's metric or Halstead Length, not lines of code (LOC),
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n, is the number of distinct operators (e.g., keywords) in the

program. Paired operators (e.g., IF... THEN... ELSE,

BEGIN...END, DO... UNTIL) should be counted as one

operator. An n-branch case statement should be counted as (n-

1), and

n2 is the number of distinct operands (e.g., variables, data objects)

in the program.

In the 1970s, software companies had difficulty determining how to modularize the software

they were developing. Many of them had modularized their software based on the length-of-

code metric, which was irrational since some programs are logically more complex than

others of the same or even larger length. Based on graph theory, McCabe defined an

alternative complexity measure[Mca 761 of a graph G(V E) as

V(G) = e - n + 2p (Al-2)

where

V(G) is the McCabe's Cyclomatic Complexity Measure of a graph G(VK E),

n is the number of vertices in G(V, E),

e is the number of edges in G(VK E), and

p is the number of connected components in G(V, E).

For a strongly connected graph, McCabe's Cyclomatic Complexity Measure equals to the

maximum number of linearly independent paths (e.g., paths not obtainable by linear

combination of other paths) in the graph.

A1.1.2 Software Maintainability Index

Software Maintainability Index (SMI)[man921 reflects the degree of how easy a program is

maintained and is defined as follows.

SMI = 171 - 3.42 x ln(aveE) - 0.23 x ave V(G) - 16.2 x ln(aveLOC) (A1-3)
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where

aveE is the average Halstead effort/module,

ave V(G) is the average extended McCabe cyclomatic

complexity/module (a measure of the number of paths through

source code)' and

aveLOC is the average LOC/module.

Upper bounded by 171, the SMI of a piece of software will decrease as the software becomes

more and more complex, e.g., aveE, aveV(G), aveLOC increasing. Therefore, the smaller the

SMI of software, the more difficult its maintenance. Based on experience from Hewlett-

Packard [Cole92], any software with an SMI less 65 is considered difficult to maintain.

INELlNEL95] and many other studies show the negative correlation between software

functionality and SMI, e.g., as more and more functionality is added to the existing software

to meet the growing functional requirements under new application, software maintainability

becomes worse and worse. Figure Al-i shows, as more and more functionality added, an

accelerated decline in maintainability index is observed in software written in FORTRAN

and C while similar deterioration is not noticed in software programmed in Ada.

A1.2 Different Behaviors and Mathematical Modeling

Most traditional, physical systems can be described using differential equations under

reasonable and defensible assumptions. The outputs are usually continuous functions of their

input parameters, and state transitions are usually smooth, e.g., the enthalpy of liquid water at

a specified pressure is a continuous function of its temperature, hence we can interpolate (in

some cases, even extrapolate) the unknown enthalpy at a certain temperature from the known

enthalpies of water at other temperatures. By contrast, the outputs from the digital systems

are discretized functions of inputs and transitions are usually abrupt. As a result, we can not

expect the properties of an unknown case, e.g., output of a code or command from a digital
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control system, from the known cases by interpolation or extrapolation. Hence, instead of

differential equations, discrete mathematics is used to describe the digital systems.

A1.3 Different Data Manipulation Processes

For an analog system, data are collected continuously and each measurement, function, or

command is transmitted continuously over dedicated metal wire. By contrast, data are

collected either periodically or via event-driven discrete sampling, and multiple

measurements, functions, or commands are transmitted over shared metal wire or optical

fiber for a digital system.

A1.4 Different Production Processes

When mechanical device is built, human creativity is ultimately transformed into a physical

entity. Modem manufacturing is in the form of mass production. This process generates

enough samples for applying well developed statistical methods to understand, describe,

predict, and update the properties (e.g., mean lifetime, standard deviation, failure rate) of the

products using Bayes Theorem.

Software, on the other hand, is a logical and mental product, rather than a physical entity

produced by the developer. Compared with mechanical hardware which is usually assembled

from standard industry parts, no such standard part warehouse exists for software. Each

software is a unique, (usually) manually developed intellectual property rather than from the

mass production lines unless an exact copy of some existing software is made. Hence, the

statistical methods do not work properly.
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A1.5 Different Failure Modes

Analog systems unavoidably experience aging and failure mode is usually random failure.

Analog systems are affected by physical environment, e.g., temperature, pressure, moisture,

smoke, radiation. During their life time, analog components experience "bathtub-shaped"

failure curve with high infancy failure rate due to manufacturing flaws and high "end-of-life"

failure rate due to aging (Figure A1-2 (A)). Traditional statistical method works well in

estimating random failure rate, e.g., through measuring mean-time-to-failure (MTTF)

analysis, fault tree analysis and/or event tree analysis. On the other hand, software does not

experience aging12 at all. Software failures are fundamentally human-made design errors.

Software does not exhibit such bathtub behavior, although many researchers tend to agree

that the initial failure rate is higher for software, then the failure rate decreases as the system

is debugged (Figure A1-2 (B)). The spikes in the actual curve represent the fact that new

faults are introduced when software is modified. As a rule of thumb, on average, a new error

is introduced while correcting every six errors. Unfortunately, there are no universally

accepted methods to quantify the failure rate. Even worse, it is still controversial within the

software engineering community whether software fails randomly, whether its failure rate

exists.[NRC9 7], [Sing95]. Many researchers tend to believe that software is either correct (i.e.,

satisfying its specification which could be inappropriate or incomplete) or not correct. The

point is that we do not know, in advance, whether the software is correct or not with 100%

confidence.

The software system crashes by the presence of malicious virus while the mechanical system

does not have such failure mode.

A1.6 Different Failure Manifestation Patterns

Failures in mechanical system can be easily detected, e.g., failure of a pump can be detected

immediately if redundant sensors experience sudden reduction in flowrate simultaneously.

12 In [Parn94a], Parnas discusses software "aging" under different context, i.e., software fails to meet its
changing environment, or obsolescence.
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Meanwhile, software error does not manifest itself until the very portion of the software

containing the error is executed. Therefore, software errors are more difficult to be detected

or revealed.

A1.7 Different Consequences

Mechanical failures is usually local with limited consequencesl[Gas80]. However, failure of a

software system for control purpose can cripple the entire system. Bell reports that, during a

U.S. space program in which an unmanned vehicle was sent to study the planet Venus, the

vehicle turned to a wrong course and was lost forever simply due to a tiny coding error in a

Fortran-"do" statement[Be118 7]: DO 3 I = 1 . 3 should have been DO 3 I = 1, 3.

Leveson reports that the software errors caused Therac-25 accident[Leve95] which overdosed six

people through the computer-controlled radiation therapy between June 1985 and January

1987. Software errors in the telephone switch systems disabled half of the continental U.S.

telecommunication network for hours. As a result, software errors are more costly to correct.

For an example, the notorious Year 2000 problem will cost $600 billion, half of which will

be spent by the U.S. government and private companies [c ong97]. (Year 2000 problem is a

software bug that can not distinguish Year 2000 from Year 1900 and will therefore cause

software chaos in Year 2000.)

A1.8 Different Weightings in Cost Structure

In the 50's and early 60's, software accounted for 10-20% of the total budget (i.e., 90-80%

for hardware). In the late 80's, The cost structure reversed with software accounting for about

80-90% of the budget[Fran83]. The trend of increasing software cost in budget is believed to

continue.
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A1.9 Different Destinies

When an analog device fails, it is replaced by a spare part that satisfies the same technical

specification. For software, however, there are no such corresponding "spare parts".

Although some efforts had been tried to develop such inventory, results turned out to be

disappointing. If software is found to be faulty, it is usually debugged and corrected rather

than abandoned.
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Appendix 2

A Survey on Software Development Cycle Models

The primary functions of a software process model are to determine the order of the stages

(or phases) in software development and to establish the transition criteria for progressing

from one stage to the next. These include completion criteria for the current stage as well as

choice criteria and entrance criteria for the next stage.

A2.1 The Code-and-Fix Model

The Code-and-Fix Model was used in the earliest days of software development and it

contained two basic steps:

* write a code;

* fix the problems in the code.

The order of work in this model is coding first, followed by thinking about the requirements,

specification, design, testing, and maintenance. There are several problems with this naY ve

model:

* This model does not reflect the fact that coding is usually preceded by

activities such as requirements, specification, design;

* After a number of fixes, the code usually becomes so ill-structured that

subsequent modifications are very difficult as well as expensive,

implying the need for design prior to coding;

* Very often, even well-designed software deviates what the customer is

expecting, implying a requirements/specification phase prior to design;

* Code is expensive to fix due to poor preparation for testing and

modification;
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* Acceptance testing is difficult without explicit requirements

documentation.

A2.2 The Waterfall Model

In [Boeh88], Boehm reports that, as early as 1956, experience on large scale software project

such as Semi-Automated Ground Environment (SAGE) led to the development of a

stagewise model, which divides software development project into several successive stages,

e.g., operational plan, operational specification, coding specifications, coding, parameter

testing, assembly testing, system evaluation.

As a refinement model of the stagewise model in the 1970s, the Waterfall Model provided

two primary enhancements over its predecessor.

* Recognition and addition of feedback between stages/phases, and a

guideline to confine the feedback to minimize the costly rework

involved in feedback across many stages;

* An initial incorporation of prototyping in the software life cycle, via a

"build it twice" step running in parallel with requirements analysis and

design.

A typical Waterfall Model of software development process consists of seven distinct stages:

planning activities, software requirements analysis, software design, software

implementation, software verification and validation (V&V, e.g., testing), software

installation, and operation and maintenance (Figure 1.3-1). It should be noted that feedback

exists between stages. Once errors are detected originating from a previous stage, it must be

fed back to that stage such that modifications can be made.

A2.2.1 Planning Activities

Work begins with establishing requirements at the system level and allocating some subset of

these requirements to software. The managerial decision and system view is essential when
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software must interface with other elements of the system, i.e., hardware, humanware, and

databases.

A2.2.2 Software Requirements Analysis

The requirements are collected specifically for the software. The purpose of this stage is to

analyze customer's requirements defined for the software such that the requirements are

consistent, complete, and unambiguous. The product of this stage is software requirements

specification (SRS). The SRS is the basis for software V&V and should be reviewed by the

customer.

A2.2.3 Software Design

Software design is a multi-step process, e.g., the preliminary design and the detailed design.

The purpose of this stage is to translate SRS into a representation of the software that can be

assessed for quality before actual coding begins and to divide the complex problem into

functional less complex modules. Like the SRS, the design is documented and becomes part

of the software configuration.

A2.2.4. Software Implementation (or Coding)

This stage translates design documents into computer readable code in programming

languages. The code is a prime product of the project. If design is performed in a detailed

manner, coding can be accomplished automatically using tools. However, the majority of

coding currently implemented are generated by human programmer.

A2.2.5 Software Testing

As the most widely used software V&V method in industry, software testing is a "process of

executing a program on a set of test cases and comparing the actual results with the expected

results" defined by software requirements specification ([Lisk86]). The purpose of testing is

to detect or reveal the existence of errors. Usually two kinds of testing are performed, unit
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testing to reveal any errors at module level and integration testing to reveal errors of the

software as a whole.

A2.2.6 Software Installation

Installation is a process to mount the software developed onto the target hardware frame. At

this stage, an acceptance testing is usually required by the customer.

A2.2.7 Operation and Maintenance

Operation of software will usually detect errors not revealed by the testing and software will

undoubtedly undergo changes after it is delivered to the customer from the developer. The

changes may be due to changes in the external environment (e.g., context) or the customer's

new needs on functional or performance enhancement.

As a document-driven approach, the Waterfall Model has become the basis for many

software acquisition standards, and is continuing to be the most widely used model in

software engineering. The Waterfall Model emphasizes on fully elaborated documents as

completion of criteria for early requirements and design phases. Complaints from the cons of

this model include that the model does not work well for many classes of software, e.g.,

interactive end-user applications and, in areas supported by fourth-generation languages

(spreadsheet or small business application), it is clearly not necessary to write elaborate

specification for one's application before implementing it[Boeh8 8]. But it is strongly believed

that, for safety- and mission- critical application, the Waterfall Model is the most effective

model to proceed.

A2.3 The Evolutionary Development Model

In the Evolutionary Development Model, software development stages consist of expanding

increments of an operational software product, with the directions of evolution being

determined by operational experience. This model is most suitable for fourth-generation

language application. The problems with this model are obvious.

240



* This model has the flavor of the Code-and-Fix Model, e.g., code-

driven;

* It is based on the unrealistic assumption that the user's operational

system will be flexible enough to accommodate unplanned changes.

A2.4 The Transform Model

The Transform Model assumes automatic transforming a formal specification into a software

product satisfying the specification. The steps of this model include

* a formal specification developed to reflect the best initial understanding

of the desired product;

* automatic transformation of the formal specification into code;

* when necessary, an iterative loop is developed to improve the

performance of the code through optimizing the transformation;

* exercise the software product;

* an outer iterative loop to adjust the specification based on operational

experience, and to reoptimize, exercise the software product.

Through modifying and optimizing the specification, this model bypasses the dilemma of

making the code unstructured and eliminates additional rework in the intermediate stages

such as design. The downsides of the model are

* a formal specification must be in existence at the beginning of applying

the model;

* a formal specification also implies extra training in formal language is

required;

* automatic transformation capabilities (e.g., automatic tools) must be

available to transform specification into code. In practice, such tools are

not always satisfactory;

* like the Evolutionary Development Model, customer's operational

system must be flexible enough to support unplanned modification.

241



A2.5 The Spiral Model

As a risk-driven approach, the Spiral Model is more universal and can accommodate most

previous models as special casesBo eh88 , p.69]. Pictorially, the Spiral Model resembles a polar

coordinate system, whose radial dimension represents the cumulative cost in accomplishing

the steps to date, whose angular dimension represents the progress made in completing each

cycle of the spiral. As its name implies, the Spiral Model is comprised of several cycles,

reflecting the underlying assumption that each cycle involves a progression of same sequence

of steps.

A2.5.1 A Typical Cycle of the Spiral

A typical cycle of the spiral begins with the identification of the objectives of the product

being elaborated, the alternative means of implementing the objective (e.g., buy or reuse),

and constraints imposed on the alternatives.

The next step is to evaluate the alternatives relative to the objectives and constraints by

means of identifying uncertainty/risk, formulating a cost-effective strategy for resolving the

risk.

When the risks are evaluated, the relative remaining risks determine the following step,

which can be the Evolutionary Development Model if user-interface dominates, or the

Waterfall Model if program development or interface-control risks dominate.

Similar to most other models, each cycle in the Spiral Model is completed by a review

involving the people or organizations interested in the product.

A2.5.2 Initiating and Terminating the Spiral

In both software development and maintenance, the spiral is triggered by a hypothesis that a

particular mission can be improved by software. Then, the spiral process starts a test of the
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hypothesis. If the test fails (e.g., a superior commercial product available), the spiral

terminates. Otherwise, it terminates with the installation of new or modified software.

Usually, experience with the operational mission leads to further hypothesis about software

improvements, a new hypothesis test to form iterations.

A2.5.3 Advantages and Disadvantages of the Spiral Model

The advantages of the Spiral Model includes the following

* it pays early attention to the options involving evaluation of

alternatives, e.g., reuse of existing software;

* it emphasizes on eliminating errors and unattractive alternatives early;

* it takes into account life cycle evolution, changes of software product;

* it incorporates software development and software maintenance into

one approach;

The Spiral Model is not a perfect model yet in software engineering. The problems identifies

with the model include

* many issues must be addressed and resolved before it becomes a

mature, universal model;

* the model currently works well on internal software development,

further work is required to make it match the world of contract software

acquisition;

* unlike conventional, document-driven approach, the Spiral Model

requires risk-assessment expertise;

* the Spiral Model is not yet as fully elaborated as other models.
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Appendix 3

Recommended Practices to Improve Software Quality

A3.1 Testing

As the most widely used software verification and validation (V&V) technique in industry,

testing is defined as a dynamic process of executing a program on a set of test cases and

comparing the actual results with the expected results. Testing is used to show that the

functional requirements of the code has been satisfied and is used to detect the errors in the

code (but unlike debugging, testing does not need to pinpoint or correct the errors). To

convince an independent party by testing alone, we must show a software works on the set of

inputs exhaustively by running each input once. However, the exhaustive testing works

effectively only if the input space is small, e.g., small and simple codes. For large and

complex software, this approach is extremely expensive and sometimes impossible.

A3.1.1 Black Box Testing and White Box Testing

According to how test cases are generated, there are two types of testing techniques: Black

Box Testing and White Box Testing. In Black Box Testing (which is sometimes referred to as

Functional Testing), test cases are generated by simply studying the specification alone

regardless of the internal structure of implementation of the software being tested. The

general procedure of Black Box Testing is studying the specification, preparing the test data

and desired output, running the software, and comparing software output with desired one.

The advantages of this testing strategy include:

Black Box Testing can be done and test results can be interpreted by people

unfamiliar with the internal structures of the software being tested;
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Black Box Testing is robust with regard to changes in the implementation of

the software since it does not care about the implementation detail in the

software.

However, Block Box Testing can not tell how much coverage of paths in the software one

will get from a set of blackly-generated test cases. As a supplemental means to test a

program, White Box Testing (also known as Glass Box Testing or Structural Testing) is

designed to test different paths in the program by simply studying the internal structure of the

source program. The purpose of this type of testing is to generate a path-complete test set

that covers each path at least once to ensure that all paths are implemented correctly.

However,

path-completeness in White Box Testing is not a sufficient condition to detect

all the errors. As a counterexample, consider the following code in written in

programming language C.

/*

the function is supposed to find the minimum

of three integers

*/
int minimum of three (int x, int y, int z)

if (x>y) return z;

if (x<=y) return z;

If the test cases happen to be the triples of (3, 2, 1) and (2, 3, 1) for (x, y, z),

which are path-complete for the function, use of the test data will mislead us to

believing that the function is correct when it is actually wrong. The

incorrectness will be identified if an alternative triple of (1, 2, 3) is used for

(x, y, z);
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* White Box Testing focuses on the internal structure of a software, e.g., what is

implemented in the software or what the "software is actually implemented to

do", rather than what the "software is supposed to do";

* based on path-complete testing strategy, White Box Testing might need an

exponential number of test cases even for a small program (see Section 1.2.1).

A3.1.2 Unit Testing, Integration Testing, System Testing and Acceptance Testing

According to the phases that tests are done during software development cycle, there are four

kinds of tests: Unit Testing, Integration Testing and Acceptance Testing (or Installation

Testing).

Unit Testing is to execute a module and is used to detect errors at the module level. The

purpose of Unit Testing is to ensure that the modules behave as expected individually.

Integration Testing is used to detect errors in the program as a whole when all modules are

integrated. Unit Testing is usually much easier than Integration Testing since there usually

exists well-defined specification for the modules. System Testing is carried out once

Integration Testing is passed. The purpose of System Testing is to detect discrepancies in the

interaction between hardware and software by exercising the entire system against the SRS

and the system specification. It is the first time the entire system is tested against the software

requirements. Acceptance Testing is a form of demonstrative testing by mounting the

software onto the customer's facility. The purpose of the testing is to ensure the system can

be installed, properly configured, and executed in the customer's environment. The testing

includes user documentation such as user guides, reference manuals.

A3.1.3 Boundary Condition Testing

Boundary Condition Testing (or Stress Testing) chooses test data lying along the

"boundaries" or extreme values of input domain, e.g., maximum or minimum values of the

variables, upper and lower indices of an array, trivial cases of data structures such as empty
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tree or linked list with zero or one element. The purpose of Boundary Condition Testing is to

ensure that even out-of-range data do not result in unintended behaviors.

A3.1.4 Drawbacks of Testing

Even though testing is currently the most widely used software V&V method, it is by no

means a perfect method since

* testing requires execution of the software, so it can only occur at the late stage

of software development cycle;

* testing can only reveal the errors in the software being tested, it can not claim

that the software is error-free without exhaustive testing (which is not always

feasible);

* one can not extrapolate from a test case to another, e.g., tester can only claim

that the software is correct with regard to its specification under the tested

cases, he can not make any assertion to the untested cases;

* testing can never reveal errors such as extraneous segment of code (see

Appendix 8);

* testing is usually very expensive. As a rule of thumb, testing takes as high as

50% of software budget (Table A3-1).
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Cost of Software Testing (% of software budget unless otherwise stated)
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Project Name Cost of Testing

Sage[Deut82] 47%

Naval Tactical Data System[Deut82] 50%

Gemini[Deut82] 47%

Saturn I[Deut82] 44%

Apollo ProjectDeut82] -80% of project cost

Darlington Nuclear Generation Station[Vol95] 20%

Table A3-1



A3.2 Design Diversity

Design Diversity refers to use of separate design/implementation teams to produce multiple

versions of software from the same specification. Via threshold voters (rather than exact-

match voters), it is expected to mask out the effect of design errors in one of the versions

while tolerating minor variations among different versions. The underlying assumption of the

method is that different teams will deliver errors independently so that the probability of

delivering same error by different teams at the same time is extremely small. Unfortunately,

the independence assumption has been rejected at 99% confidence level in several

experiments [Knig86]. Studies find that developers are inclined to make similar mistakes. Hence,

Design Diversity tends to create a deceptive "illusion" of ultrahigh reliability without

actually achieving it. Typical design diversity techniques are software fault-tolerance, N-

version programming.
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A3.3 Commercial Off-the-Shelf (COTS) Software

Current policy in the US Department of Defense (DOD) requires the use of commercial off-

the-shelf (COTS) software products that can satisfy DOD needs([INEL95]). Generally

speaking, COTS software products are more cost-effective, easier to maintain and upgrade,

less machine-dependent, and not installed on a "non-open" hardware platform. As the

maintainability of the software packages increases, their support cost decreases, and the

reliability of the system improves. However, as Stewart points out, one of the downsides in

using COTS software is that software vendors will not sell their source code to the utility,

making software essentially a black box to the utility. Another downside is that the volatility

in the software industry due to fierce competition will inevitably push some commercial

venders out of business, making it difficult to trace back to the venders if software problems

are detected sometime in the future[stew 97]
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A3.4 Reusable Software Modules

One concept associated with the structured programming is to deal with complexity of large

software systems in terms of modularity. The complexity of a complex software system can

be controlled if the system is decomposed into small, understandable, and manageable

modules, each of which accomplishes a particular task. As recommended in [Urba84], the

lengths of these modules should be limited to one or two pages of high-level language code.

A3.4.1 Benefits from Reusable Modules

The benefits of modularity is three-fold. First, it reduces the complexity through "divide-and-

conquer" technique, that is, splitting a complex problem into functionally related, smaller,

and simpler subproblems. Secondly, the "divide-and-conquer" technique makes it possible to

reuse existing modules. Reusable software modules tend to be smaller and less complex since

each of these modules accomplishes a specific, well-defined task. Hence, the implementation

is easy to verify, e.g., through formal verification or possibly exhaustive unit testing. Once

they are verified, they can be invoked by other modules wherever their specifications are

satisfied. The process reduces the effort of integration testing and eliminates the possibility of

introducing potential new errors in developing new software. Together with other techniques,

reusable software modules save the baseline Improved Many-On-Many (IMOM) code by

3 6 %[IN E L
95]. Third, reusable software modules will help reduce "time to market", reduce

software costs, increase productivity, and improve software reliability. INEL claims an

saving of 10 times of manpower using Reusable Software Modules in their IMOM

reengineering project. They spent 5-6 man months to implement each additional IMOM

model using Ada. In contrast, it is estimated that more than 70 man months would have been

needed if each model had been reengineered from the scratch. However, one should bear in

mind that, "if the existing software is a commercial product, the system developer is not

likely to be able to obtain a guarantee of vendor support, over a long period of time, for a

particular version" of the software[I AEA94]
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A3.4.2 Guidelines on Software Modularization

As measures of maintainability and modifiability, coupling and cohesion provide means of

measuring the degree of mutual dependence of modules in software. Coupling is a measure to

indicate the degree of interaction between modules while cohesion measures the interactions

within a module. The essence of modularization is to divide program in such a way that there

is a minimum of interaction between modules (low coupling) and a high degree of interaction

within a module (high cohesion). The former has a direct impact on maintenance since more

coupling implies more dependency between modules. Therefore, the higher the degree of

coupling, the more difficult it is to modify a module without the knowledge of or making

corresponding changes to others. Table A3-2 indicates the relationship between the types of

couplings and their measures. The larger the value, the stronger the coupling. The scope of

cohesiveness ranges from accidental (low end), logical, temporal, communicative, sequential,

to functional (high end). For example, functional cohesiveness represents that all the

components of a module are required to perform the single function of that module.
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Coupling and Software Maintenance (form [Lano94])
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Coupling Types Typical Descriptions
Values

Content 0.95 Direct reference from one module to the

contents of another

Common 0.7 Reference to a shared global data structure

(e.g., COMMON blocks in FORTRAN)

External 0.6 Reference to named external data items

Control 0.5 Use of parameters dedicating the control flow

in the called module

Stamp 0.35 Reference to a shared data structure passed as

a parameter

Data 0.2 All references are to local data or to

individual data values passed as parameters

Table A3-2



A3.5 Object-Oriented Programming (OOP)

Objected-oriented paradigm was first introduced in the late 1960s with the language

Simula67. In the 1970s, it was further developed with the language Smalltalk-80[Davi93]. In

contrast to the traditional procedure-oriented design which focuses on the decomposition of

the software into various functional components (e.g., structured or procedural programming

techniques which focus on functions rather than data), the object-oriented design (OOD) is

currently a prevalent software design technique that places emphasis on organizing software

into discrete objects or data-types (or data type hierarchies) that contain both the states (i.e.,

variables or parameters) and operations (i.e., method). Object-oriented programming (OOP)

is the implementation of the object-oriented design.

A3.5.1 Characteristics of Object-Oriented Paradigm

The object-oriented paradigm is characterized by the properties of data abstraction,

encapsulation, inheritance, and polymorphism.

Data Abstraction refers to the ability to build a data structure to define and use an object

within a program without having to pay attention to its internal implementation details. Data

abstraction simplifies the programmer's task by reducing the level of details to be dealt with

at a given time. As a result, it facilities team work and cooperation in software development.

As a means of structuring software, Data Encapsulation (or Information Hiding) provides the

enforcement necessary to make sure that only functions (or methods) immediately associated

with the data structure are allowed to access its internal details. Therefore, it requires that, for

each object, its data structure and operations (i.e., how to access and modify the structure) be

part of a single module (usually called a class). Each class will only be allowed access to

objects which are required to implement its function. Access to other objects, not needed by

the class, are prohibited by using the scope rules to conceal these objects. In C++, for

example, there are three types of data encapsulation: private, protected, and public members.

From private to protected to public members, the level of security is decreasing. Inheritance

allows the programmer to describe new objects (i.e., derived class or subclass) in terms of an
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existing objects (known as base class or superclass). It is a means of sharing data and

functions among classes based on a hierarchical relationship. This serves two purposes. First,

it saves effort because it prevents repeating same task multiple times. Second, inheritance

relationship between subclass and base class is inexpressible in purely structured languages.

Polymorphism refers to a means same function may behave differently on different objects.

Polymorphism works by binding methods or functions of objects at run time rather than at

compile time.

A3.5.2 Benefits of OOP

The idea will achieve four main goals:

* Changeability

If design decisions are changed, consequent changes are limited locally,

e.g., a few classes (preferably one).

* Independent Development

Industry-size software is being developed by a group of programmers,

interface between the modules should be as simple as possible, and

interface should be by means of calls on subroutines/functions rather than

by means of shared data and file structure. Hence, there is no way that the

hidden information may be corrupted by a module which is not supposed to

deal with that information.

* Comprehensibility

To the ease of testing and maintenance, it facilitates understanding

individual modules independently of others.

* Code Sharing and Reusability

OOP makes it possible and easy to share and reuse code between classes,

e.g., via inheritance.
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A3.6 Fault Avoidance

By contrast to fault removal, the idea of fault avoidance is to impose more stringent control

on the software development process such that errors are not introduced into the product. One

of the fault avoidance techniques is the use of formal methods. More detailed discussion on

formal methods will be in Section 2.1 as well as Appendix 4.
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Appendix 4

A Survey on Formal Methods

The purpose of presenting the survey on formal methods here, rather than in Chapter 2, is due

to the fact that Chapter 2 is more focused on Software Requirements Specification (SRS).

A4.1 Vienna Development Method (VDM)

As one of the most widely used formal methods, Vienna Development Method (VDM) was

developed by Dines Bjqmer, Cliff Jones, and co-workers at the IBM Vienna Laboratory

during the 1970s ([Bloo86]). VDM is based on denotational semantics, in which each objects

denotes, directly or indirectly, a mathematical object already understood. VDM makes use of

discrete mathematics (e.g., set theory, predicate calculus) and has three components[Harr 96]:

* a notation to express software specification;

* an inference system to construct proofs of correctness;

* a methodological framework to develop software from a specification in a

formally verifiable way through a process know as "reification".

A4.1.1 Components of a VDM Specification

According to [Jone90b], the VDM specification of a program includes two major parts: states

and operations. A state defines a class or set of valid states, e.g., data object. Operations are

specified in the form of single-state pre-condition predicates (i.e., predicates on a single

initial state) and two-state post-condition predicates (i.e., predicates on both the initial and

final states). This type of specification is called implicit specification in that it intends to

describe the properties required of a program without specifying the details how they are

achieved. A typical format of Implicit Function Specification in VDM (Figure A4-1) has

three sections: a type clause, a pre-condition, and a post-condition. The type clause defines
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the data types of the domain variables and the range variables. The pre-condition restricts the

domain of the arguments and indicates what must be true for the result of an operation to be

defined before the operation is taken while the post-condition relates the domain values and

the range values and asserts what must be true after the operation has completed. The post-

condition holds only if the pre-condition is satisfied. Otherwise, the result of the operation is

undefined. By convention, a true pre-condition is usually omitted. In Figure A4-1, D and R

represent the data types of the domain and range (e.g., real, boolean, etc.) of a function

respectively, d and r represent domain and range arguments respectively. For a complete set

of syntax of VDM specification, readers are recommended to study Appendix F of [Jone90a]

or Chapter 5 of [Harr96].

A4.1.2 The Weakest Pre-Condition

Working backwards, the general concept of the weakest pre-condition13 is to find the least

restrictive pre-condition such that the post-condition holds true and the weakest pre-condition

is the consequence of the pre-condition in the problem. The advantage of working backwards

is that the reasoning is goal-directed. At each step, knowing that we wish to be true at the

conclusion of some part of the program, we compute what exactly needs to be true prior to

that part. When we reach the beginning of the program, we end up with the weakest pre-

condition sufficient to imply the desired post-condition. Reasoning is completed by showing

that the given pre-condition implies the weakest pre-condition. As a result, it is concluded

that the given pre-condition implies the given post-condition. In other words, the program

satisfies its specification. Interested readers should refer to [Cohe90] and [Gann94] for more

profound discussions.

13 Pre-condition is the "weakest" in the sense that any other sufficient pre-condition implies it ([List86]). One
can also work forward and reach the "strongest" post-condition which implies the given post-condition.
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Three-part specification:

function: D -- R

A

pre-function (d) ...

A
post-function (d, r) =...

(type clause)

(pre-condition)

(post-condition)

pre-function: D -- Bool

post-function: D, R -* Bool

or equivalently

d G D A pre-function (d) = post-function (d, function (d))

Figure A4-1 Implicit Function Specification (after [Jone80])

261

where



A4.1.3 An Example in VDM

The specification in DVM notation for the average value of three real numbers is given,

together with an implementation of the specification. The purpose of the example is to use

the Weakest Pre-Condition Approach to prove or disprove that the implementation satisfies

the specification.

avg: RXR XR -> R

A
pre-avg(a, b, c) = true

A
post-avg(a, b, c, r) = 3*r= a +b +c

Disprove that the following Program P satisfies the specification.

r: = a+1;

r: = r+b;

r: = r+c;

r: = r/3;

It is equivalent to prove the following logic is not true.

pre-avg(a, b, c) =>post-avg(a, b, c, r)

where

or

true

r = Program P

post-avg(a, b, c,

<=post-avg(a,b,c, (r

[(r:=a+l; r:=r+b;

[(r:=a+l; r:=r+b;

[(r:=a+l; r:=r+b;

[(r:=a+l;), r=a]

(a=a+l)

false

P)

:=a+l;r:=r+b;r:=r+c;r:=r/3;))

r:=r+c; r:=r/3;), 3*r=a+b+c]

r:=r+c;), r=a+b+c]

), r=a+b]
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Since "true = false" is logically false (Table 4.2-4). Therefore program P does not

satisfy its specification.

From the formal proving, we not only conclude mathematically that the program P does not

satisfy its specification, but locate where the error is in the program. After fixing the error,

the program becomes

r: = a;

r: = r+b;

r: = r+c;

r: = r/3;

and we name the new program P' to distinguish it from the original program. Now let us

prove program P' satisfies the specification. It is equivalent to prove the following is true.

pre-avg(a,b,c) = post-avg(a, b, c,r)

where

r = Program P'

With similar step, we get "true =*true" which is logically true. Therefore, it is

concluded that Program P ' does satisfy its specification.

Interested readers should refer to [Bloo86] and [Jone90b]. [Bloo86] provides detailed case

study using VDM to formally specify a prototype nuclear reactor protection system and

Prolog to animate the formal specification. More case studies can be found in [Jone90b].

A4.1.4 Recent Developments in VDM

As a model-based method in which models are described in terms of a state and the

operations performed on it, current version of VDM is most suited for specifying sequential

processes, rather than concurrent or temporal ones. Although a substantial amount of

syntactic sugar (i.e., elements unnecessary to the syntax that help make the language more
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readable) has been added so as to enhance the readability of VDM specifications, it requires

specific "mathematical training and experience" for non-experts, as Williams addresses[w Ill94]

Another shortcoming of VDM is its lack of modularity.

Since conventional VDM makes use of mathematical notations that are not easily

understandable by the non-specialist, a visual presentation named "VDM through Pictures"

(or VtP) is introduced in VDM specification [Dick91] to overcome this barrier to the

industrialization of VDM. The VtP tool consists of a diagram editor, a VDM editor and type-

checker, and a set of transformations between diagrams and VDM. Two sorts of diagram are

employed:

* Type-Structure Diagrams-portraying VDM type definitions.

* Operation-State Diagrams-portraying VDM operation definitions in terms of

their pre- and post- conditions.

According to [Wi1194], a standard VDM notation, known as VDM Specification Language

(VDM-SL) is being developed under the auspices of the International Standards Organization

and the British Standards Institution.

More recently, VDM++, an objected-oriented extension of VDM, has been developed.

VDM++ provides a wide range of constructs so that the users can formally specify

concurrent, real-time systems in an objected-oriented fashion[FAD97]. Tool has developed to

transform VDM++ specification (constructs) into C++ by its code generator[Lori 97]

Readers interested in VDM and its descendants should refer to [Lars96], whose more than

600 entries represent perhaps the most comprehensive coverage of bibliography on the VDM

family, ranging from newcomer level to tool support.
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A4.2 Z

Z, a model-based specification language, was pioneered by Jean-Raymond Abrial[Abri81] at

Oxford University in the late 1970s and has been developed in the Programming Research

Group at the university and elsewhere.

A4.2.1 The Z Notation

The basic building block of Z is a schema, which consists of a signature part and a predicate

part. The schema is typically enclosed in box structure with its name typed on the top of the

box and a short line delimiting the signature from the predicate. The signature (or declaration

part) declares all the variables and their types, including those predefined ones. The

relationships that must be maintained among the variables are declared as predicates in the

predicate part. Inputs to a schema are expressed by terminating them with a question mark. If

the definition of a schema is applicable to all types, then a T surrounded by a pair of square

brackets, i.e., [T], is placed above the definition. For a complete set of the syntax of Z

specification, readers should consult Chapter 6 and Appendices of [Harr96] or Part III and

Appendix of [Ince88].

Z specifications deals with three types of entities, namely, states, observations, and events. A

state is the mathematical structure which models a system. It is a collection of observations.

An event is an occurrence which is of interest to the specifier. An observation is a set of

theoretic variable whose pre- and post- event values can be examined. By convention, the

post-event value of a variable is indicated by appending a prime (') to its pre-event

counterpart.

A Z specification intends to reflect two kinds of properties: the static properties and the

dynamic properties. The former are also known as invariants, or predicates that hold true over

the course of time regardless of what event occurs. The name of the invariant schema is

conventionally preceded by the symbol A. The latter characterize the names of observations

made before an event occurs, those made after the event, and a predicate that relates them.
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A4.2.2 Z and VDM

Z is a formal specification language that is based on the concepts and notations of typed first-

order logic and set theory. Therefore, sets, relations, functions, and predicate logic are

extensively used in the specification. But one should not be deceived by the similarity

between the Z and VDM specifications. Z is better structured than VDM. Z was invented to

model abstract systems in terms of mathematics whilst VDM could be better describe as an

attempt to abstract programming, e.g., purports to derive programs from specifications.

Hence, VDM contains many low-level as well as high-level constructs. Focused on

describing the properties of a system rather than the algorithms used by the implementers to

achieve these properties, Z specifically eliminated the low-level constructs. The effect of

inclusion low-level constructs is two-fold. On one hand, they makes it easier to translate a

specification into a program. On the other hand, they can be abused and result in operational

bias where the specification is too prescriptive and restricts the implementers' freedom.

According to [Harr96], Z is more popular in academic circles than VDM and is more

powerful. Currently, both VDM and Z are used at "an equal amount in the commercial world,

but this seems to be changing with Z gaining dominance". As VDM, Z is best suitable for

stand-alone process, rather than protocol and distributed system since neither of them has

explicit support for concurrency and time.

A4.2.3 An Example in Z

For readers interested in the application of Z specification language, [Deli90] and [Nara90]

are recommended. The former presents a case study of the formal specification of an

electronic instrument whilst the latter describes that of the look manager in dialog system,

who deals with the presentation of visual aspects of objects and the editing of the visual

aspects. Here, a simple example of a segment of a natural language specification for a file

system is given as follows.
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Table A4-1 A Full List of Symbols Used to Distinguish Types of Relations in Z[i ce881

267

Symbol Relation to Represent

+-> a relation

a partial function*

Sa total function

>- - a partial injection

a total injection

* This should not be confused with ->, the ordered pair

operator, e.g., {1 2 }is the same as (1, 2).



"... Of the file system, there will never be more than 500 users who currently

own files. No user will be allowed to own more than 300 files and no file can

will be allowed to be more than 2000 blocks... "

In order to develop its corresponding formal specification using Z notation, we need to make

some definitions first. The relation ownership is used to define the fact that a user may have

more than one file (hence a function is inappropriate) while the function file space is defined

to relate files and the disc space (expressed in natural numbers) they take. File space is a

function since a file will correspond to a unique natural number at a time (Figure A4-2).

Recent development in Z specification language includes extending Z to Z++, an object-

oriented extension of Z. The extension makes explicit the known object-oriented features of

Z and allows more complex forms of inheritance of specifications, as well as multilevel

specifications[Lano9 0], e.g., from user interface through the specification of high-level

operations down to the specification of low-level operations. The benefit of the extension is

that modification can be made to each of the levels independently of and invisibly to other

levels. Readers interested in the most recently application of Z notation are recommended to

[Fran97].

Like VDM, the Z notations are very mathematical and not feasibly understood by non-

specialist. To illustrate the idea that formal languages are not necessarily harder to

understand, Randell showed the bi-directional translation between graphical Data Flow

Diagrams (DFD) and the Z specification through a simplified credit card management

system[Rand90]. He claims that it is "easier to show the diagrams to others to gain approval" and

that "generating a diagram from a Z specification is a useful way of helping to validate the

specification". But he also admits that further work needs to be done to specify rules for

generating new diagrams, e.g., diagrams other than DFD.

268



filesystem

ownership: user names <-> file names

file_ space: file_ names -- N

# dom ownership < 500

Vname: dom ownership- (ownershipl {name} ) 300

Vfile: domfile_ space (file space {file})) < 2000

Figure A4-2 An Example of Specification in Z
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A4.3 Development Before The Fact (DBTF) and the 001 System

The Development Before The Fact methodology was developed and marketed by Hamilton

Technology Inc.. According to [Ouya95], DBTF has been used in many industrial

applications successfully. Currently, DBTF is supported by an integrated CASE Tool Suite

called the 001 System.

The 001 AXES specification language has two, major components: Functional Maps

(FMaps) and Data Type Maps (TMaps). The former specifies functional hierarchies that

show interlocking and interconnecting functions at all levels of control while the latter

defines all the primitive and abstract data types of the system objects. Objects which are

elements of the TMaps are materialized as Objects Maps (OMaps) and an execution of a

system that is an instance of a FMap is materialized as Execution Map (EMap). The 001

Tool Suite is comprised of the following components:

* the 001 AXES Specifier; an OMap Editor for defining FMaps and TMaps in

either graphical form or textual form;

* an Analyzer to check the format of functions in the FMaps and data type

specifications TMaps during the definition of a model to ensure the rules are

followed correctly. The Analyzer acts as a compiler or an interpreter in a

conventional programming environment;

* an Executor to execute or simulate (prototype) the behavior of a system before

the programming to observe characteristics such as timing;

* a Generator to generate source code in programming language C

automatically.

Despite the major advantages claimed by its advocators, the 001 Tool Suite is by no means a

perfect tool before the following problems are overcome.

* By virtually eliminating the design stage (Figures 2.2 and 3.4 of [Ouya95]),

001 eliminates the possibility of uncovering specification errors before

implementation. Hence, a perfect specification is required;
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* "The DBTF technique and 001 tool together provide four stages of

verification in order to eliminate internal system defects, internal semantic

defects, and external semantic defects." The fourth stage of verification

technique (Section 3.2.2 of [Ouya95]) doesn't seem to be optimized since, as

described in Section 3.4.3 [Ouya95], "it is at the fourth stage that defects of

external semantics of the specifications are to be sought. This action is

equivalent to the validation of the specification. It tries to answer this question:

are we developing the correct specifications with respect to the requirements?".

Obviously, this stage should have been done in the first place since if the

answer to the posed question is "No", then we have wasted time and resources

on solving a wrong problem before we even realize it at stage 4, and we have

to spend extra resources to correct it;

* One of major advantages claimed by its developer is its ability to automatically

generate C code based on its specification. But the code generated by the Suite

may not be optimal without the active participation of human programmer. To

understand this, consider the optimality of a code directly written in low level

assembly language or machine language and a code in high level languages

achieving the same function. The former is usually more optimal, more

efficient in terms of time and space than the machine language code translated

from the latter. This issue could be crucial in real-time control software where

timing and code execution speed are essential to the control systems.

Decreased participation of experienced programmer may also imply decreased

understanding to the code;

* This tool system can only generate C code which can directly access memory

through pointer arithmetic'sl4, but C is a programming language that does not

have the capability of automatic garbage collection. If a C program

dynamically allocates memory to a data structure, it must remember to release

or free the memory space once the structure is no longer used. Otherwise, the

14 Hoare arguesHoar75] that the pointer type of data structures is very analogous to the "goto" statement[D 'J k6 8] for
control structures.
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entire computer memory can be clogged with garbage. This kind of errors will

not be caught at compilation time, but will be in effect at running time.

Therefore, C may not be a good programming language in safety-critical

application. In fact, as suggested in Chapter 6 of [Grov94], for the development

of safety-critical software, it may be necessary to use a "safe subset" of a

programming language, e.g., use only static data structure and avoid recursive

technique. More explicitly in [UKMoD91], it is required that the

implementation practice for safety-critical software avoid techniques which are

difficult to analyze (e.g., excluding the use of dynamic memory allocation,

recursion and floating point arithmetic) and implementation language be block

and strongly typed. As illustrated in [INEL95], software developed in C

becomes less and less maintainable when more functionality is added to the

software;

* The code automatically generated is usually not commented. A non-

commented code will hamper user's understanding of the code and will make it

difficult for the developers (or others) to upgrade or modify the code.

Therefore, it is becoming a standard training and requirement for human

programmers to comment their codes so as to facilitate understanding,

communication, and peer review;

* The code generated is not well-indented. Indentation helps to modularize a

code which helps user to use and understand the code;

* The Suite can not be used to reverse-engineer a code, e.g., can't be used to

study an existing code. From the practical experience of Darlington Nuclear

Generation Station, it is sometimes necessary to generate software design

document (SDD) from existing code to better understand, verify or upgrade the

code;

* Using the Suite requires ad hoc training, e.g., training materials are tens of

centimeters thick.
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A4.4 Symbolic Model Verifier (SMV)

According to [Rush96], in the 1970s, formal methods were focused on proofs of program

correctness which is not only a very expensive and difficult task, but also of little value since

traditional methods of code review and testing are highly effective in detecting coding errors.

In the 1980s, attention of formal methods shifted from program verification to the use of

formalism in specifications while, in the 1990s, with the advent of efficient techniques for

model checking, attention is paid to the important properties of a system rather than the full

functionality of the system, model checking is generally focused on incorrectness, e.g.,

finding errors, rather than on trying to establish correctness.

According to [Sree96], model checking is an effective technique for verifying properties of a

finite specification. A model checker accepts a specification and a property of the

specification, then searches the reachable states to determine whether the property is a

theorem of the specification or not. Model checking is a more thorough validation technique

than testing executable specifications since it checks every reachable state of the

specification.

A4.4.1 The SMV Notation

A typical specification written in Symbol Model Verifier (SMV) has four major sections: the

VAR section, the ASSIGN section, the TRANS section, and the SPEC section.

Environment conditions (e.g., a set of predicates on environmental variables), mode classes

and modes are defined as SMV variables declared in the VAR section. Most conditions are

expressed as boolean variables while others are represented as variables of enumerated types,

e.g., in terms of set, if these variables are related in such a way that exactly one condition is

true at all times.

In the ASSIGN section, one expects to find the system's initial state in the initO statement

and transition relation in the next0 statement that specifies the next value of the mode class
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variable. NextO statement usually employs a case expression whose final branch beginning

with "1" indicates the else clause. "!"is the SMV not operator, "&" is the SMV and operator,

"I" is the SMV or operator, and "->" is the SMV implication operator.

Environmental assumptions, e.g., conditions imposed either by laws of the nature or by other

mode classes in the system, are invariant constraints that hold in all reachable states of the

specification graph and are expressed in the form of DNF assertions declared in the TRANS

section. DNF represents Disjunctive Normal Form, which is defined to be the disjunction of

clauses, each of which is the conjunction of one or more literals, which are logical variables

or their negations.

The properties to be verified with respect to an SMV specification are declared in the SPEC

section. The SMV model checker verifies the properties expressed in the form of

computational tree logic (CTL) branching-time temporal logic. The details of the syntax and

semantics for CTL formulas can be found in [Clar86]. A summary is provided below.

1. Every propositional variable is a CTL formula,

2. If 0 and p are CTL formulas, so are: ! ,&p, p, AX , EX , EF , AG~, where

! is the not operator, & is the and operator, I is the or operator,

X is the next-state operator, E is the operator for existential quantifier,

A is the operator for universal quantifier, e.g., AXb is true in state si if and only if

(iff) formula b is true in every successor state of si in the reachability graph,

F is the future operator, e.g., EF is true in state si iff along some path from si

there exists a future state in which formula b is true,

G is the global operator, e.g., AGb is true in state si iff q holds in every state along

every path stemming from si.

A4.4.2 An Example in SMV

Figure A4-3 is a specification of a thermostat that regulates the temperature of a room in

SMV notation.
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MODULE main

VAR
Thermostat: {Off, Inactive, Heat, AC);
Enuml: {TooCold, TempOk, TooHot);
SwitchlsOn: boolean;

ASSIGN
init(Thermostat): =Off;
init(SwitchlsOn):=0;

next(Thermostat): =case
Thermostat =Off & !SwitchlsOn & next(SwitchlsOn) & Enuml=TooCold: Heat;
Thermostat =Off & !SwitchlsOn & next(SwitchlsOn) & Enuml=TempOk: Inactive;
Thermostat =Off & !SwitchlsOn & next(SwitchlsOn) & Enuml=TooHot: AC;
Thermostat =Inactive & SwitchlsOn & next(!SwitchlsOn): Off;
Thermostat =Inactive & SwitchlsOn & !Enuml =TooCold & next(Enuml =TooCold): Heat;
Thermostat =Inactive & SwitchisOn & !Enuml =TooHot & next(Enuml=TooHot): Heat;
Thermostat =Heat & SwitchlsOn & next(!SwitchlsOn): Off;
Thermostat =Heat & SwitchlsOn & !Enuml=TempOk & next(Enuml=TempOk): Inactive;
Thermostat =AC & SwitchlsOn & next(!SwitchlsOn): Off;
Thermostat =AC & SwitchlsOn & !Enuml=TempOk & next(Enuml=TempOk): Inactive;
1: Thermostat

esac;

TRANS
(Enuml=TempOk & !next(Enuml=TempOk) & !Enuml=TooHot & next(Enuml=TooHot)) I
(!Enuml =TempOk & next(Enuml =TempOk) & Enuml=TooHot & !next(Enuml =TooHot)) I
(Enuml=TooCold & !next(Enuml =TooCold) & !Enuml=TempOk & next(Enuml=TempOk)) I
(!Enuml =TooCold & next(Enuml =TooCold) & Enuml=TempOk & !next(Enuml =TempOk)) I
(Enuml= next(Enuml))

TRANS
(!(Enuml=next(Enuml)) & (SwitchisOn =next(SwitchlsOn))) I
((Enuml=next(Enuml)) & !(SwitchisOn =next(SwitchlsOn))) I
((Enuml=next(Enuml)) & (SwitchlsOn =next(SwitchlsOn)))

SPEC
AG((Thermostat =Off -> !SwitchlsOn)
AG((Thermostat =Inactive -> (SwitchlsOn & Enuml=TempOk))
AG((Thermostat =Heat -> SwitchisOn & Enuml=TooCold))
AG((Thermostat =AC -> (SwitchlsOn & Enuml=TooHot))

Figure A4-3 The SMV Specification for a Thermostat (from [Sree96])
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Appendix 5

Software Safety Analysis Methodologies

A5.1 Software Fault Tree Analysis (SFTA)

Originally developed in 1961 at Bell Labs to evaluate the Miniteman Launch Control System

for the possibility of an inadvertent missile launch, Fault Tree Analysis (FTA) is a widely

used safety analysis method in the aerospace, electronics, and nuclear industries [USNRC75].

With successful applications in hardware hazard analysis, FTA uses a backward analysis

strategy, e.g., starts with a hazardous state of the system and uses Boolean logic to determine

what the next level of conditions or events can lead to an upper level event, the process

continues until we reach the basic events or minimum cut set, e.g., those we understand

pretty well.

The idea in hardware fault tree analysis (HFTA) was borrowed by Leveson to analyze

software errors [Leve83]. Software Fault Tree Analysis (SFTA) proceeds in a similar manner

to HFTA and uses a subset of symbols in HFTA, e.g., AND gate and OR gate. The Software

Fault Tree Analysis is a fault avoidance technique in that it can be used to identify where

needs special attention. As discussed in [Leve95], FTA contains four basic steps.

(1) System Definition

This step determines the top events, initiating events, boundary conditions,

existing events, and impossible events. This step is crucial in that FTA is not

comprehensive until the fault trees are developed for all possible, significant

top events.

(2) Fault Tree Construction

Once step 1 is finished, analyst can start constructing fault tree based on casual

events related with the top events and logical relations between them.
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(3) Qualitative Analysis

After fault tree is constructed, one can reduce the tree to an equivalent logic

expression using only AND, OR, and/or NOT gates. By manipulating Boolean

algebra, Minimum Cut Set (MCS) can be obtained from the logic expression.

Therefore, analyst know qualitatively what combinations of basic events can

lead to the top event. This analysis can help identify the weakness of a system,

e.g., by identifying and modifying single event MCS.

(4) Quantitative Analysis

From Boolean manipulation in step 3, the top event can be expressed as the logic

OR of all independent MCSs.

n

top event = uMCS,
=l

where

U is the notation for union (e.g., logic OR) operation,

n is the total number of MCSs.

If the probabilities of MCSs are known, we can compute probability of the top event.

(Strictly speaking, we can only obtain an upper bound of the probability of top event.)

Applying probability to the above equality yields

Pr (top event) = Pr (u MCS,)
11

Applying Boole' Inequality and mathematical induction (Appendix 5.1.1), we get an upper

bound for the probability of the top event.

Pr (top event) = Pr (u MCS,) < ,Pr(MCS,)

Information from the SFTA can be used to identify minimum cut sets (MCS) that lead to

software failure or hazardous configuration, thus measures can be taken to avoid such MCSs

from occurring, e.g., through modifying/fixing the software being analyzed.
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A5.1.1 An Upper Bound for the Probability of Top Event

From Set Theory([Rose95]), it is obvious that, for any sets A and B (Figure A5-1), the

following inclusion-exclusion principle holds.

Theorem A5.1

(A5-1)

where

[X] represents the cardinality of set X, i.e., number of elements in set X.

From probability theory, for any events A and B, there exists a similar theorem, i.e., dividing

both sides of Theorem A5.1 by the cardinality of the sample space yields Theorem A5.2.

Theorem A5.2

Pr(A u B) = Pr(A) + Pr(B) - Pr(A n B) (A5-2)

where

Pr(X) represents the probability of event X.

Proof

Let set S be the sample space.

Dividing both side of Equation (A5-1) by the cardinality of set S, IS|, yields

|AuBI IAI B IAnBI

Isl Islthat, by definition of Isl Iwe have

Note that, by definition of probability, we have

Pr(AuB)- = , Pr(A) ,

Therefore, Equation (A5-2) holds.

B ) dAnB
Pr(B) = I, and Pr(AnB) = I

ISI AIS
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(A5-3)

IAuBJ BI= IAI +IBI-IAn B



A^ B

B

zd

A

Au B = A + B -IABI

Figure A5-1 Union of Sets A and B-Cardinality
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Corollary A5.3 (Boole's Inequality)

Pr(A u B) Pr(A) + Pr(B)

Proof

Since Pr(A n B) > 0, Corollary is obvious from Theorem A5.2.

More interesting case is that Boole's Inequality can be extended to n events, which is given

as Theorem A5.4.

Theorem A5.4

For all n 2 1 and any events Al, A2, ..., An, , we have

Pr(UA,) !Ir(A,) (A5-5)
i=1 t=l

Proof

We prove it by induction number of events n.

Base case of n = 1, we have Pr(AI ) Pr(A ) which is trivially true.

Induction step. Assume that the theorem holds for n-1 events, that is,

n-1 n-1

Pr(U)A,) -Pr(A)
1=1 1=1

Now what we want to show is that the theorem holds for n events.

n n-1

Pr(UA,) = Pr[(U)A,) u A,,]

(A5-6)

(A5-7)

n-i

Applying Corollary A5.3 with A = U A,, B = An to the right hand side of the above
=lequality, we get

equality, we get

(A5-8)Pr[(U A, ) u A,, ] Pr(U A,) + Pr(A,, )
1=1 1=1
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Using induction hypothesis to the above inequality, we have

n n-1

Pr(UA,) Pr(UA,) + Pr(A,) < -Pr(A,) (A5-9)
i=1 1= 1=l

Therefore, it is true for n events, and, by induction, Theorem A5.4 holds.

Theorem A5.4 gives an upper bound of the probability of the union of n events in terms of

each individual n events. In the Fault Tree Analysis, the n events can be Minimum Cut Sets

and the union of the n events can be the top event. By using Theorem A5.4, an upper bound

of the top event can be evaluated.

A5.1.2 Applications of SFTA and Tool Support

Ovstedal applied SFTA technique to software development process at a high level[vst 91],

rather than at code level as Leveson did [LeveS3]

Tools of SFTA have been developed to analyze Software Requirements Specification

[Rata96]. However, SFTA is not an panacea, its shortcomings are obvious.

* Fault Tree Analysis is primarily a means to analyze the causes of hazards, not

to identify hazards. Hence, other methods must be used prior to FTA to

identify the hazards;

* For SFTA to be useful, all possible software failure modes must be identified

and analyzed to ensure complete coverage. This task is usually too demanding

for real life software. Hence it implies that SFTA is practical only when there

is a small number of critical failures exist;

* HFTA usually generates the probability of the top event being analyzed

through calculating probabilities of the basic events, e.g., determine the failure
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probability of a system through computing those of pumps and valves.

However such probability may be meaningless in software since software has

its distinguishable characteristics from hardware, e.g., hardware usually fails

independently while software component failures may be correlated, hardware

fails by aging while mean time to failure (MTTF) or mean time between failure

(MTBF) may be meaningless in software. Academic people are still debating if

software failure probability does exist [Sing95]

SFTA is used for verification purpose, hence, code must have already been

developed to generate fault tree for the code.

SFTA has been used in Darlington Nuclear Power Generation Station in Canada to examine

hazardous failure modes[BowW]
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A5.2 Dynamic Flowgraph Methodology (DFM)

Combining discrete transition models with Logic Flowgraph Methodology (LFM) [Guar84],

DFM is a new approach for embedded system safety analysis. This methodology integrates

the modeling and analysis of the hardware and software components of the embedded

system. Normally, DFM works in a deductive fashion, i.e., use reverse causality backtracking

of a top event to find the prime implicants. Prime Implicants are the unique failure modes of

non-coherent systems, which contain other than simple fault modes connected by AND-OR

logic gates[Henl 92]

A DFM model integrates three types of networks: Time-Transition network to describe the

sequence in which software modules (e.g., subroutines) are executed, Casuality Network

showing the functional relationships among key hardware and software parameters, and

Conditioning Network modeling discrete software behavior caused by conditional branching

or discontinuous hardware performance due to component failure.

The building blocks of these networks include Process Variable Nodes, Condition Nodes,

Causality Edges, Condition Edges, and Transfer/Transition Boxes and their associated

decision tables. Process Variable Nodes are used to represent essential physical or hardware

variables of the digital control system. Like process variable nodes, Condition Nodes

represent physical or software parameters that identify component failure, changes of process

operation regimes and modes, or software conditional branching. Condition Nodes can be

associated with Transition for this purpose. Causality Edges are employed to connect process

variable nodes which has a cause-and-effect relationship between the variables. Condition

Edges are used to model true discrete behavior of the system. They link parameter nodes to

transfer boxes, showing the possibility of using a different transfer function to map input

variable in output variable states. A Transfer Box models a transfer function between process

variable nodes. In spite of indicating cause-and-effect relationship similar to Transfer Box, a

Transition Box is different from transfer box in that a time delay for the transition is assumed

to exist between the time when the input variable states become true and the time when the

284



corresponding output variable states are reached. Decision As extension of Truth Tables,

Decision Tables allow each variable to be represented by any number of states instead of just

0 (false) and 1 (true). They are constructed from empirical knowledge, physical equations,

software, or pseudo code.

The advantages of DFM over Software Fault Tree Analysis (SFTA) include multi-state logic

(instead of 0-1 logic) and time-dependent dynamic nature. In other words, DFM provides a

timed fault tree which can be viewed as a series of snapshots of convention fault trees

[Garr95]. In the conventional fault tree, only the probabilities of occurrence of events may be

time-dependent while the events themselves are also time-dependent in the DFM model.

However, current version of DFM does not solve all the problems. It needs to be improved in

several areas.

* DFM works in a deductive fashion, i.e., reverse causality backtracking of a top

event [Yau95]. So current version of DFM can not analyze whether a given set

of initial condition will lead to a failure state;

* The effectiveness of DFM depends on the selection of top events, e.g., to

enumerate and analyze all the possible top events. This completeness of top

events is difficult to achieve for a complex software system;

* Since DFM depends on software modules to generate input/output relations, it

can't be used to detect such software errors as logically inaccessible portion of

a module;

* DFM lacks of degree of hierarchy, e.g., simulating hardware and software in

one single model. Hence, even if DFM works well on simple examples, it will

encounter difficulty when applied to real life problems;

* The prime idea embedded in DFM is to discretize a process variable which is

usually continuous in range (e.g., pressure in a tank) into a finite number of

states, the reason for the discretization is to simplify the description of the

relations between different variables. However the "discretization" and
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"simplification" could distort the (continuous) world in which we are interested

(since there is no solid mathematical basis preventing the distortion from

occurring). For example, a deviation of 2% from nominal flowrate of the

continuous world may not imply an unacceptable state, but it could be

unacceptable in the discretized model if the discretized threshold is set at 101%

(or 99%) of nominal flowrate since the deviation would result in a different

state.
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A5.3 HAZards and OPerability Analysis (HAZOP)

Initially developed at Imperial Chemical Industries (ICI) in England in the early 1960s,

HAZOP was improved and published by the Chemical Industries Association in London.

Currently, about half of the chemical process industries are using HAZOP in their new

facilities. According to [Broo96], a HAZAP process is comprised of six stages, HAZOP 1-

HAZOP 6, spanning from the conceptual stage of a project to the commissioning stage.

As a qualitative method, HAZOP is used to identify all possible deviations from the design's

expected operation and all hazards associated with these deviations. It can not only identify

hazards in the existing design, but also elicit hazards in the new designs or hazards that have

not been considered previously. The method requires creative thinking about all the possible

ways in which hazards or operational problems may arise. To reduce the chance of missing

anything, HAZOP is performed systematically, taking into account every process unit in the

plant and every hazard in turn.

The differences between HAZOP and Failure Modes and Effects Analysis (FMEA) can be

found in [Redm96] and is summarized here. First, a HAZOP is a team exercise to identify

hazards by examining the interactions between components while an FMEA examines the

possible failures of the components themselves and can be performed by an individual.

Second, a HAZOP starts with searching for possible deviations from design. The study is bi-

directional once a deviation is found: it can backtrack the possible causes of the deviation as

well as deduce the likely hazardous consequences. An FMEA, however, is unidirectional:

after identifying a possible component failure, it proceeds to investigate the likely

consequences on the system as a whole. Problems with HAZOP include

* it is difficult for HAZOP to uncover all hazards completely;

* HAZOP only provide qualitative results, not quantitative analysis;

* HAZOP relies strongly on the judgment, experience and competence of the

engineers performing the assessment;
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HAZOP is a time- and labor-intensive team work [Re dm96] requiring intensive

cooperation between individuals in the team.

In addition to application in hardware equipment, Reese devised an automated variant of

HAZOP, Software Deviation Analysis (SDA), to analyze Software Requirements

Specification ([Rees96]). An overview[Rees97] of the procedure is summarized as follows.

The SDA is a forward search procedure, i.e., it starts with a deviation in the input

environment of a software and attempts to find paths that lead to hazardous software outputs.

The analyst provides a formal software requirements specification, which will be

automatically translated into causality diagram. Then SDA uses deviation formulas, which

define how deviations are related. With this information incorporated into causality diagram,

an augmented causality diagram is generated. Next, qualitative mathematics is used on the

augmented causality diagram to evaluate deviations. (see Figure A5-2) The forward and

backward definite functions are used to construct a chain of states representing the path

which will definitely be stemmed from the initial state. The chain terminates either with a

safety-critical deviation or no deviation at all. In parallel, SDA can continue the search by

constraining the software state using the forward assumptive function with constraints added

to the initial state or every state in the chain. Then forward and backward functions are used

to the additional constraints to create another chain of states. In a breadth-first fashion, SDA

creates a tree of state chains when further constraints are added to the states. The height of a

leaf in the tree corresponds to the additional assumptions made to reach that leaf. The

procedure stops when it either runs out of constraints that can be made or the height reaches

some predefined limit. Problems with SDA include

* a formal software requirements specification must exist prior to the Software

Deviation Analysis-which does not alleviate the burden of an analyst at all;

* For a novel analyst, it may not be an easy task to determine what assumption is

appropriate in the forward assumptive function;

* To stop the analysis when a height reaches the predefined limit is likely to

neglect hazardous state, e.g., the hazardous state could occur at the next stage.
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Figure A5-2 An Overview of the SDA Procedure (after [Rees97])
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Appendix 6

Application of TBGA to Prove Logic Identity

The tree-based graphical approach developed in Section 4.4.2 can be used to prove identity of

certain logical expressions. The benefit of the method is that an analyst is not required to

have a strong background in logical operations, nor is it necessary for him to remember many

formulas.

Example A6-1: Show that A A (-A v B) is identical to A A B.

Method 1-Conventional approach

A A(-A v B)

= (A -A) v(AA B)

= AAB

Method 2-Graphical approach

Taking the conjunction of the leaves in Figure A6-1 yields AA (--A v B) =

AAB.

Example A6-2: Show that (A -> B) A (B => C) is equivalent to (--A B) v (B A C).

Method 1- Conventional approach

(A => B)A(B > C)

= (-A v B) A (-B v C) (A6-1)
= (-- A-,B) v (BA- B) v (-AA C) v (BA C)

= (-A A -,B) v (B A C) v (- A C).

Method 2-Graphical approach (see Figure A6-2))

Use of Shannon's expansion theorem of logical expression

Vl < i < n,

f (x,X 2,.. ., Xn) = (-X, A f x, =false) v (X i A f x, =true) (A6-2)
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and expanding Figure A6-2 on B yields

f(A, B, C) = (-B A -A) v (B A C) (A6-3)

where

f B=false = -A and f B=true = C are obtained from Figure A6-2.

That expressions (A6-1) and (A6-3) are equivalent can be shown by the consensus

method[QUin 55]
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Appendix 7

Another Graphical Method Developed to Document

Software Requirements Specification

Another graphical method has been developed to target practitioners. The method is also a

tree-based approach. Used widely in computer science (e.g., in data structure, search, sorting,

optimal file coding, file management), a tree is a connected, undirected graph with no simple

circuit[Rose95]. A tree is comprised of a root vertex (or root node), internal vertices, leaves

(vertices without children), and edges (connecting vertices). The height of a tree is the

maximum of the levels of vertices. An m-ary tree is a tree, each of whose internal vertex has

at most m children. An m-ary tree with m= 2 is called a binary tree.

In this graphical method, the internal vertices in the m-ary tree represent the logic variables of

interest while the edges represent the logic expressions (e.g., expressions in predicate

calculus). These logic expressions partition the domain of the logic variables and are overlaid

on the edges of the tree. Each leaf represents action to be taken when the conditions on the

path from root to the parent of the leaf are satisfied, e.g., conjunction of the predicates on the

path is logically true. The height of the m-ary tree equals to the number of logic variables

involved in the problem.

This method facilitates communication among not only theoretical computer scientists, but,

more importantly, among practitioners such as domain experts whose interests lie in solving

engineering problems with the help of computer.
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A7.1 A M-ary Tree-Based Graphical Method and An Example

The graphical method is intended to be used in both the development and verification of the

software. When the method is used to develop mission-critical software, a forward process is

used, i.e., from customer's Software Requirements (SR), we develop SRS (the first formal

document), from which we develop the Software Design Description (SDD), which is then

used by the programmer to develop software. When the method is used to verify mission-

critical software, a reverse-engineering process is used, i.e., from the software, we back out

its SDD, from which we obtain the SRS which will be compared with the original SRS to

check their consistency and completeness. The following reverse-engineering example

reproduced in Figure 2.3-1 will show that the graphical method is superior to the tabular

method.

Stepl Find all logic variables that determine the height of the tree

Find all logic variables, e.g., variables in guard part of the if statement, in

the code of interest. Discovering all these variables is important, since they

represent the height of the tree and the complexity of the tree structure. In

this example, three variables were identified: signal, setpoint, and

trip_state. Therefore, the tree to be developed is of height three.

Step2 Partition15 the input domains of the all logic variables found in Step 1

The way to partition the domain of a variable is usually based on the

threshold values of the variable in the code. These values result in different

control commands/actions to be taken. For example, the domains of

signal, setpoint, and trip state are partitioned respectively as

follows:

15 A partition of a set S is a collection of pair-wise disjoint non-empty subsets whose union is set S.
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signal E(-oo, sig_min)U [sig_min, setpoint db] u

(setpoint-db, setpoint)u [setpoint, sig_max]u

(sig_max, + oo)16

setpoint e(-oo, setpt_min) U [setpt_min, setpt_max]U

(setpt_max, +oo)

trip_state E {tripped, not_tripped}

The partition corresponds to the edges of a node in the tree build in Step 3.

Step 3 Build the balanced m-ary tree top-down and left-right

The height of the m-ary tree represents the number of variables found in

Step 1. Non-leaf nodes at a level represent a logic variable. Each leaf node

represents the action or consequence when the conditions on the path from

the root of the tree to the parent of the leaf are satisfied. For example, in

Figure A7-1, the shadowed leaf represents the status (or action statement)

of new trip_state if the setpoint is between setpt_min and

setpt_max inclusive, signal is between setpoint-db and setpoint

inclusive, and the current trip_state is tripped. The edges are

organized in such a way that, if the partitioned sub-domain is a range of

values, the sub-domains with smaller values are located from left to right.

The edges immediately below an internal node represent the partition of the

corresponding logic variable in Step 2. If an edge is not labeled with the

partition, it is defaulted as the "otherwise" case, e.g., the sub-domain other

than any of those labeled on the edges of the same node. As a result, to

eliminate confusion, ambiguity, and inconsistency there is at most one

unlabeled edge for each internal node. Each level of the internal nodes in

the tree represents a logic variable while the leaves in the tree represent the

16 - 00 and + oo are used to indicate completeness of the partition. They should be taken as the most negative

and positive values expressible on a target machine.
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results of code, corresponding to the "ACTION STATEMENTS" in tabular

notation in Section 2.3.1. The internal nodes are represented in circles

while the leaves in rectangles.

In this example, we can first assign "tripped" to all the rectangular

boxes of the leaves with height 3, then, overwrite those boxes specified in

the if statements in the code (Figure A7-1 with slight modifications).

Step 4 Transform the balanced tree into a simplified, unbalanced tree

Collapse paths from root (or its descendants other than the leaves) to leaves

of the same "ACTION" as much as possible, e.g., by pass all logic

variables along the paths that the action doesn't depend on (e.g., the don 't-

care variables) and replace the edges (along each path) originating from

these internal nodes in the tree by dashed edges (Figure A7-2). Unlike other

application of trees in computer science (e.g., search and sorting) in which

a balanced tree is desirable, an unbalanced tree is preferred in the proposed

method since it will simplify the tree.

Step 5 Further prune the edges of the unbalanced tree

When traversing the tree from root to leaves, if we encounter a dashed

edge, we can eliminate the internal node from which the dashed edge

originates. This is because, each dashed edge represent that fact the

"ACTION STATEMENT" does not depend on the node. Therefore, it can

be pruned. The simplified tree is shown in Figure A7-3. For example, the

left most node trip_state is pruned from Figure A7-2.

A7.2 Advantages of the Graphical Method

By comparing Figure A7-3 with Table 2.3-1, it is concluded that:
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* the tabular method is good when no more than two variables are involved

because table is usually two-dimensional. However, the tree-based graphical

method is not limited to two logic variables. For each additional logic variable,

we simple increase the height of tree by one. Please be noted that Table 2.3-1

contains less information than Figure A7-3;

* the tree-based graphical method is similar to event tree in system reliability

analysis if the tree is rotated anti-clockwise by 90'. However, there are

fundamental differences. In this method, there is no temporal dependence of a

node downstream (i.e., away from the root of the tree) on nodes upstream (i.e.,

towards the root). In other words, the tree is not unique. In event tree analysis,

event downstream is usually dependent on the events upstream. Second,

domain of an event is partitioned into at most two values, i.e., success or

failure, in event tree analysis. In the graphical approach, the partition is a

variable is not limited to two sub-domains;

* in developing mission-critical software, the graphical and the tabular methods

can be used ot double check each other for completeness and consistency of

SRS and SDD.

A7.3 Findings

Application of the graphical method to the MIT-SNL Control Laws[Bern8 9] reveals that, in

function REACTR(P), a portion of the code is inaccessible. The error was first found using

flow chart as explained in Appendix 8.
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setpoint

<setptmin otherwise

fatal_error 91

setpt_max

fatal_error 91
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fatal_error 90 <=setp

not-tripped tripped

trip_state' not_tripped not_tripped

oint-db <setpoint

trip_
state

not_
tripped tripped

trippripped

tripped (ii not_

>sig_ma

>=setpoint fatalerror 90 height=3

trip
state

nottrippectripp
tripped

ipped tripped tripped

Figure A7-1 M-ary Tree Developed at Step 3 of the Example
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setpoint

[setp_min, setp_max] otherwise

3nal fatalerror 91

[sig_min,
setpoint-db] setpoint)

trip
state

\

'otherwise
[setpoint,
sig_max] fatal error 90

not
tripped

not_tripped tripped

Figure A7-2 Simplified M-ary Tree Developed at Step 4 of the Example
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setpoint

[setp_min, setp_max] otherwise

signal fatalerror 91

otherwise
[sig_min, (setpoint-db, [setpoint,

setpoint-db] po sigmax]
seint-db] int sigmax fatal_error 90

trip
not_tripped state tripped

tripped not
tripped

tripped not_tripped

Figure A7-3 Final M-ary Tree Developed at Step 5 of the Example
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Appendix 8

Application of Flowchart in Code Analysis

A8.1 The Flowchart

The flowchart can be used in code logic analysis. The advantages of this method become

appreciate when it is applied to situation in which code review or "mental" execution of the

code becomes difficult to track due to complex logic involved. For example, if many

"if...then...else..." statements are in tandem, such mental execution can easily make

reviewers strayed. This is one of the reasons that the complexity of codes can not be

determined simply by the number of lines of code (LOC) in them. It is these statements,

together with jump statements such as "go to" in the codes, that reduce the readability of

the codes. However, the flowchart makes use of the fact that even though a series of such

statements combined are entangling and misleading, each of them is very easy to handle

since it has at most two branches, the "then" part and the optional "else" part.

A8.2 Application of Flowchart

The flowchart has been applied to analyzing a function in the MIT-SNL Control Laws listed

in Appendix A8.3. The flowchart of Function REACTR (P) is shown in Figure A8-2. Using

flowchart, we easily claim and prove that the last branch (marked with *) of the function in

Figure A8-2 is an extraneous one which will is inaccessible under any circumstances. To

prove this claim, a generic case based on Figure A8-1 will be proved first.

Theorem A8-1:

If code execution reaches "check" in Figure A8-1, then variable x e [a,b] provided that a < b.
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Proof

Initially, there is no constraints on variable x. When it is input, it can any real number

x e (-o,+o) = (-oo,a) u [a,b]u (b,+oo)

where

a<b is assumed;

- oo should be considered to be the most negative real number expressible

by a specific computer, not mathematically negative infinite;

+ oo should be considered to be the most positive real number expressible

by a specific computer, not mathematically positive infinite.

We will prove the theorem case by case:

Case 1: x (-oo,a)

> CI.Yes

:: x: = a

:::> x = a

- C2.No

> check.x = a

Case 2: x e [a,b]

-> C1.No

a C2.No

> check. x c [a,b]

Case 3: x e (b,+oo)

- C .No

> C2.Yes

("then" branching when x<a)

(assignment of x, read as "a is assigned to variable x")

(valuation of x, read as "the value of variable x is a")

("else" branching when x=a (<b))

(value of x at check is a)

("else" branching when x-a)

("else" branching when xib)

(range of x at check since x is not changed)

("else" branching when x>b(>a))

("then" branching when x>b)
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-> x:= b

> x = b

=> check.x = b

(assignment of x)

(valuation of x)

(value of x at check)

Therefore, combining three cases, it is concluded that at check, x e [a,b] provided that a < b.

M

Applying Theorem A8-1 to Function REACTR(P) in Figure A8-2 (1/2) where a = 2031 and

b = 7406, we have, just before the third branching (i.e., P<2700?),

P [2031,7406]

That is to say, unless otherwise changed later in the code (which is not the case here), the

value of P will be limited within the above range. Therefore, the last "else" branching (i.e.,

P> 7500) in Figure A8-2 (2/2) will never be executed.

GOT0705

705 REACTR=-0.00333*P+30.0

RETURN

This analysis shows the benefit of flowchart in code analysis especially in tracing code and

detecting logical errors in segments containing branching.
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C01 x -N-

Y

x:= a

C2 x> b? N-

Y

x:=b

check (x=

Figure A8-1 At "check" point, x is confined to [a, b] if a<b.
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Figure A8.2 Code Analysis Using Flowchart (1/2)
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* It can be mathematically proved that this branch will never be executed under

any circumstances. Hence using flowchart, we find that the code contains an

extraneous branch which will never be reached by code testing.

Figure A8-2 Code Analysis Using Flowchart (2/2)
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A8.3 Code Listing of Function REACTR(P)

FUNCTION REACTR(P)

C A FUNCTION WHICH RETURNS ACRR TRANSIENT ROD BANK WORTH IN CENTS

C GIVEN BANK POSITION IN POSITION UNITS.

C DATA FROM ACRR CURVES DATED 3 NOV.81

IF(P .LT. 2031.) P=2031.

IF(P .GT. 7460.) P=7460.

IF(P .LE. 2700.) GO TO 600

IF(P .LE. 3100.) GO TO 605

IF(P .LE. 3300.) GO TO 610

IF(P .LE. 3500.) GO TO 615

IF(P .LE. 3700.) GO TO 620

IF(P.LE.3900.)GOT625

IF(P.LE.4100. ) GOT630

IF(P.LE.4300.) GOT635

IF(P.LE.4500.) GOT640

IF(P.LE.4700.)GOT645

IF(P.LE.4900.)GOT0650

IF(P.LE.5100.)GOT655

IF(P.LE.5300. )GOT0660

IF(P.LE.5500.)GOT665

IF(P.LE.5700.)GOT0670

IF(P.LE.5900.)GOT675

IF(P.LE.6100.)GOT680

IF(P.LE.6300.)GOT685

IF(P.LE.6700.)GOT690

IF(P.LE.7100.)GOT0695

IF(P.LE.7500.)GOTO700

GOTO705

600 REACTR=-0.016143*P+472.985693

RETURN

605 REACTR=-0.049250*P+562.375
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RETURN

610 REACTR=-0.0765*P+646.85

RETURN

615 REACTR=-0.091*P+694.7

RETURN

620 REACTR=-0.1005*P+727.9

RETURN

625 REACTR=-0.1085*P+757.5

RETURN

630 REACTR=-0.1225*P+812.15

RETURN

635 REACTR=-0.125*P+822.4

RETURN

640 REACTR=-0.1305*P+846.05

RETURN

645 REACTR=-0.1295*P+841.55

RETURN

650 REACTR=-0.1295*P+841.55

RETURN

655 REACTR=-0.122*P+804.8

RETURN

660 REACTR=-0.120*P+794.6

RETURN

665 REACTR=-0.110*P+741.6

RETURN

670 REACTR=-0.1065*P+722.35

RETURN

675 REACTR=-0.0965*P+665.35

RETURN

680 REACTR=-0.097*P+668.3

RETURN

685 REACTR=-0.076*P+540.2
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RETURN

690 REACTR=-0.06575*P+475.625

RETURN

695 REACTR=-0.04725*P+351.675

RETURN

700 REACTR=-0.028*P+215.0

RETURN

705 REACTR=-0.00333*P+30.0

RETURN

END
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Appendix 9

Proofs of Theorems in Section 3.2.5

The majority of propositional logic theorems can be proved by using the truth tables.

However, the truth tables are not always the best proof method. The method becomes tedious

and may be error-prone when three or more logical variables are involved in a problem. The

theorems listed here are either the author's original contribution or from other literature. All

the proofs provided here are contributed by the author.

Theorem 3.2-1A:

P = P v Q is a tautology.

Proof:

P =: P v Q is equivalent to -P v (P v Q), which is equivalent to

(-P v P) v Q or true. Hence, P => P v Q is a tautology.

Theorem 3.2-1B:

PA Q => P is a tautology.

Proof:

P A Q P is equivalent to -(P A Q) v P, which is equivalent to

(-P v -Q) v P or -P v P v Q which is true. Hence, P A Q = P is a tautology.

0

Corollary 3.2-1:

PA Q => P v Q is a tautology.

Proof:
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It follows from Theorems 3.2-1A and 3.2-1B using Theorem 3.2-3

which is proved independently by truth table.

The two theorems and the corollary indicates that PAQ is a sufficient condition for P (or Q),

which is a sufficient condition for PvQ.

Theorem 3.2-2A:

IfP = Q, then PAR - QAR.

Proof:

P =Q < -,Pv Q

PAR => QAR - (P,

<= -,Pv

= -,Pv

(Definition of ->)

A R) v (Q A R) (Definition of >)

-R v (Q A R) (De Morgan' s Law)

[-R v (QA R)] (Associative Law)

-R v Q (Distributive Law)

According to Corollary 3.2-2B,

P A R = Q A R < (P v Q) v -R

Applying Theorem 3.2.-1A to Equations (3.2-1) and (3.2-2), i.e.,

substituting -,Pv Q for P and -,R for Q in the theorem

respectively, yields (3.2-1) - (3.2-2). Hence, Theorem 3.2-2A is

true.

Theorem 3.2-2B:

If P => Q, then P v R => Q v R.

Proof:

P = --P v Q (Definition of >)
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-,(Pv R) v (Q v R)

-(P A --,R) v (Q v R)

P (PA -R) v RQ

= -PvRvQ

(Definition of ->)

(De Morgan' s Law)

(Commutative Law)

(Distributive Law)

According to Corollary 3.2-2B

PvR = QvR < (-,Pv Q) v R

Applying Theorem 3.2-1A to Equations (3.2-3) and (3.2-4), i.e.,

substituting -P v Q for P and R for Q in the theorem respectively,

yields (3.2-3)> (3.2-4). Hence, Theorem 3.2-2B is true.

Theorem 3.2-3 (Syllogism):

If P -> Q and Q > R, then P > R.

Proof by truth table:

P QA (P QAQ R)P Q R PRQ Q R PQA PR (P
Q => R => (P => R)

TTT T T T T T

TTF T F F F T

TF T F T F T T

T F F F T F F T

FTT T T T T T

FTF T F F T T

FFT T T T T T

FFF T T T T T
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Corollary 3.2-2A: (Theorem 3.2-3 can be extended to n propositions.)

If Pl=P 2 A P 2 =P3 A P 3 =P 4 A ... A Pn-]>Pn, then PIjPn.

Corollary 3.2-2B:

If P Q A Q * R, then Po R.

Proof:

(P Q A Q < R) a [(P Q Q > R) A (R =- QA Q > P)]

~(P = RAR => P)

- (P < R)

(Definition of <*)

(Theorem 3.2 - 3)

(Definition of <->)

Theorem 3.2-4A:

IfP ~ Qand S T, thenPAS ~QAT.

Proof:

Applying Theorem 3.2-2A to P => Q and S > T yields, respectively

PAS :> QAS

QAS> QAT

(3.2-5)

(3.2-6)

Applying Theorem 3.2-3 to Equations (3.2-5) and (3.2-6) yields

PAS-QAT

Theorem 3.2-4B:

IfP = Q and S = T, then PvS = Q v T.

Proof:

Applying Theorem 3.2-2B to P = Q and S z> T yields, respectively

PvS=>QvS

QvS QvT

Applying Theorem 3.2-3 to Equations (3.2-7) and (3.2-8) yields

(3.2-7)

(3.2-8)
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PvS=QvT

Theorem 3.2-5:

P z P A Q is equivalent to P = Q. Mathematically,

(P= Q) (P => PA Q).

Proof:

(P = PA Q) -Pv (PA Q)

<: (-P v P) A ( P

< trueA (-P v Q)

- P v Q
SP v Q

(Definition of >)

v Q) (Distributive Law)

(Completeness Law)

(Identity Law)

(Definition of 4)

Theorem 3.2-6A:

PA(PvQ)<> P

Proof by truth table:

Theorem 3.2-6B:

P v (P A Q)o < P

Proof:

P v (PAQ) < (PAtrue) v (PAQ)

: P A (truevQ)

(Identity Law)

(Distribution Law)
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(Domination Law)

(Identity Law)

Theorem 3.2-7A:

(P > QA R)< (P > QAP > R).

Proof:

(P = Q A R) < -P v (QA R)

* (P v Q) A (-P v R)

< (P => Q) A (P > R)

(Definition of =)

(Distributive Law)

(Definition of =)

Applying Corollary 3.2-2B yields

(P > QA R) < (P > QAP > R).

Theorem 3.2-7B:

(P> Q v R) <(P> Qv P R).

Proof:

SPv (QvR)

S-,Pv-,Pv QvR

<> Pv Q v -P vR

S(-,Pv Q) v (P vR)

=>(P >Q v P=>R)

(Definition of >)

(Idempotent Law)

(Commutative Law)

(Associative Law)

(Definition of >)

Theorem 3.2-7C:

(PA Q => R) (P = Rv Q > R).

Proof:
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(P A Q > R) - (P A Q) v R

-,P v -Qv R

SPv Qv Rv R

P v R v Q v R

(-P v R) v ( Q v R)

= (P R v Q => R).

(Definition of >)

(De Morgan' s Law)

(Idempotent Law)

(Commutative Law)

(Associative Law)

(Definition of =)

Theorem 3.2-7D:

(Pv Q = R) < (P = RA Q = R).

Proof:

(Pv Q=> R) > (Pv Q) v R

<* (P A Q) v R

S(-P v R) A ( Q v R)

S(P - RA Q =: R)

(Definition of -)

(De Morgan' s Law)

(Distributive Law)

(Definition of =).

Theorem 3.2-8:

(P = RA Q > R) -=(PA Q =: R).

Proof:

It follows directly from Theorem 3.2-4A.

Caveat: The converse of Theorem 3.2-8 or (P A Q = R) > (P = RA Q => R) is not

true. As counterexamples, consider the triples (P, Q, R)= (true, false, false)

or (P, Q, R) = (false, true, false).

Theorem 3.2-9: (Elimination of the Consensus")

(P A Q) v (-P A R) v (Q A R) < (P A Q) v (-P A R).

17 This theorem is taken from [Quin55] in which no proof is given. Here, a proof is provided by the author
independently.
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Proof:

(P

a :

¢=

a :

o::

<:::

Theorem 3.2-10:

PA Q = (P > Q).

Proof by truth table:

Corollary 3.2-3:

PA Q => (P < Q).

Proof:

(Identity Law)

(Completeness Law)

(Distributive Law)

(Commutative Law)

(Associative Law)

(Theorem 3.2 - 6B)

PAQ = (P>Q)

PAQ => (Q=>P)

PAQ = [(P=>Q) A (QwP)]

PAQ = (P->Q)

(Theorem 3.2-10)

(Theorem 3.2-10)

(Theorem 3.2-4A)

(Definition of <*)
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Lemma 3.2-1:

P = (true>Q) < P=>Q

Proof:

(Definition of =)

(Identity Law)

Theorem 3.2-11:

(P=Q) A (-,P=R) = (QvR)

Proof:

[(P=>Q) A (-P=>R)] => [(Pv-P) = (QvR)] (Theorem 3.2-4B)

[(P=>Q) A (-P=>R)] =: [true = (QvR)]

(P=Q) A (-P-R) = (QvR)

(Completeness Law)

(Lemma 3.2-1)

Theorem 3.2-12:

Proof:

(P<>Q) (P=>Q A Q=>P)

: (-1Q=>-P) A (-P =>IQ)

a (-Po- Q)

(Definition of >)

(Contrapositive)

(Definition of >)

Theorem 3.2-13:

(P-oQ A Q>R A RP) < (PQ A Qe<R)

Proof:

" ,,

(P=>Q A QR A R=P)

< (P=>Q A Q=R A R=>P A Q=>R A R=PA P-Q) (Idempotent Law)
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< P=>Q A (Q->R A RP) A Q=R A (R=PAP=>Q) (Associative Law)

< (P=>Q A Q =P) A (Q=R A R>Q) (Theorem 3.2-3)

-> (P>QAQ<R) (Definition of <)

(P>rQAQ<R)

< (P=>Q A Q =>P) A (QR A R=>Q)

< (p>Q A Q >RA R->Q A Q->P)

< P=>Q A Q >R A (RoQ A Q=>P)

< (P=>Q A Q - R A RA>P)

(Definition of <=>)

(Commutative Law)

(Associative Law)

(Theorem 3.2-3)

Theorem 3.2-13:

If P=>Q AQ 2 and -Q 1, then -P.

Proof:

(P=>QAQ2) A Q

a< [--P v (Q 1AQ2)] A -iQ 1

< (-PA-Q,) v [(Q1AQ2) A Q,]

S(PA--iQ,) v [(QAQ,)AQ2]

< ( PA ,Q,) v (falseAQl)

<* ( PA -iQ,) v false

<* (- PA Qi)
-> -P

(Definition of >)

(Distributive Law)

(Commutative Law)

(Inconsistency Law)

(Identity Law)

(Identity Law)

(Theorem 3.2-B)
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Appendix 10

A Between-Group Analysis:

Reactor Period-Rod Velocity

The following between-group analysis is the cut-and-paste result from running a program in

MathCAD.

Transient Rod Worth (based on Appendix A8.3)

x - 2000,2001.. 8000

p0(x) = -0.016143-x + 472.985693

pl(x) = iIx<2031,pO(2031),pO(x))

p2(x) = ilx<2700,pl(x),-0.049250-x 562.375)

p3(x) = iIx<3100,p2(x),-0.0765x + 646.85)

p4(x) = il(x<3300,p3(x),- 0.091x + 694.7)

p5(x) = iI(x<3500,p4(x),-0.1005-x 727.9)

p6(x) = il(x<3700, p5(x),- 0.1085-x 757.5)

p7(x) = iIx<3900,p6(x),-0.1225-x + 812.15)

p8(x) = iI(x<4100,p7(x),-0.125-x + 822.4)

p9(x) = iIx<4300,p8(x),- 0.1305-x + 846.05)

plO(x) = ifx<4500,p9(x),- 0.1295x + 841.55)

pll(x) = il(x<4700,plO(x),- 0.1295-x + 841.55)

pl2(x) = il(x<4900,p11(x), 0.122.x + 804.8)

p13(x) = iI(x<5100,p12(x),-0.120-x + 794.6)

pl4(x) = iK(x<5300,p13(x),- 0.110-x + 741.6)

p15(x) = i(x<5500,p14(x),-0.1065-x + 722.35)
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p16(x) = iKx<5700,p15(x),-0.0965.x + 665.35)

p17(x) = iIx<5900,p16(x), 0.097-x + 668.3)

p18(x) = il(x<6100,pl7(x), 0.076-x - 540.2)

pl9(x) = iI(x<6300,p18(x), 0.06575.x + 4 75.6 2 5)

p20(x) = ilx<6700,p19(x),-0.04725.x + 351.675)

p21(x) = ifx<7100,p20(x),-0.028.x - 215.0)

p(x) =if(x<7460,p21(x),p21(7460))

n = 23

x min = 2000

x max = 8000

i 1,2..n

x max- x min
dx--

n

x. = x min+ i-dx
1 -
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Integral Rod Worth, in cents

p(x)

2000 3000 4000 5000 6000 7000 8000

X.

Differential rod worth, in cents/unit

d(p(xi) p(x- 1))
dp_dx =

dx

0.2 1

0 15

dp_dx 0.1 -

0.05

2000 3000 4000 5000 6000 7000 8000

x
I
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1. Find asymptotic reactor period that raises reactor power by 106

in 5 seconds. (1.05 is a correcting factor dealing with overshoot)

T, = 5.0 seconds is the duration of power increase

TI  5.0

Power ratio = 106

f() =() ln( Power ratio)

Initial guess of period, seconds

t = .00250

Solve for specified (or required) period, seconds

r= root(f(r), T)

1

r =0.36

o = 2.76

T2 = 10.0 seconds is the end of the duration the power is maintained at target level

T2 =10.0

N =2000

i = O..N

3 =0.0078

o2 =0.0
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2. Find maximum allowed initial power

Initial guess, watts

PO = 10.0

Solving for maximum allowed initial power, watts

P(PO,t)- PO-i t<Tl,exp(olt),exp(OTexp Ol)expco2 (t - T1)1

E(PO) - P(PO,t) dt

0

PO = root(E(PO)-1.05 - 500-106,PO)

PO0 = 88.79
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3. Solve for normalized reactivity, rate of change of reactivity, and

inverse of reactor period (MIT-SNL Control Laws)

Initial conditions

o 0.
PO 0.
Po O.

0.

Pratio 1.0

Differential Equations

- Decay constant X is obtained by curve fitting of Figure 5.3-1 of [Bern89]

- To simplify the computation, terms involving prompt neutron lifetime or rate

of decay constant in Equation (5.1-4) of the dissertation are ignored.

0.079997*exp 1.8334- P)

it 1

Pi, p, "t<- N , 01 )2 _Xii
ti At.(i + 1)

P ratio i i<N, exp lti),exp 1.t).exp 2. t tN

Transient reactor power ratio

1 107 1 I

1.106

1*105

1*104
P_ratio
- 1.103

100

10

0 2 4 6 8 10
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Normalized reactivity, in $

(The transient rods have enough reactivity to compensate.)

0 2 4 6 8

Rate of change of reactivity, in $/second

P+B 1- Pi
p dot. 1 At

p doti

P

0 2 4 6 8
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Corresponding inverse of reactor period backed from the power profile, in seconcd

j =1.. N-1

P ratia
- J l1
P ratia

o backout -

J At

I I

2 -

S_backout

0I I I I
0 2 4 6 8 10
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4. Find required transient rod velocity and position

Initial condition: x_init=4062 units is a initial rod position

x init= 4062

x. + v. At
1 1

( p-doti

V 1 i1
i if/xi>8000,.00001,dp_dx 

x - 20311
ceil dx

dx

Dynamic rod velocity, in units/second

2500

2000

1500

vi 1000

0 2 4 6 8
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Dynamic transient rod position, in units

4800 I I 1 I

4600

x, 4400 -

4200

4000I I I I

0 2 4 6 8 10
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5. Find adjusted parameters with motor frequency limited to 400 Hz

Adjusted rod velocity (upper bounded by 400x2.661=1064.4 units/second)

vadjl = ifvi> 1064.4, 1064.4, v)

v_adj i

0 2 4 6 8

Adjusted rod position and rate of change of reactivity

xadjo

p_dotadj
0

x_adji 1

p_dot_adji +

xinit
0

x adji + v adjiAt

P
100

dp_dx x _adj
ceil -

d

-203 lvadj

x
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Adjusted rod position (x_adj,) is smaller than unadjusted rod position (xi), in units

4800

4600

xadji 4400

4200

4000
0 2 4 6 8

Adjusted rate of change of reactivity, in $/second

15

1

p_dot_adj i
- 05

0 2 4 6 8
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Adjusted reactivity (p_adj) is smaller than corresponding required reactivity (p), in $

p_adjo 0

p_adji 1 = padji - pdotadji-At

08

06

p_adj1
04

02

0
0 2 4 6 8

Adjusted inverse of reactor period (seconct)-it is impossible to maintain the

required reactor period.

p_dotadj i + i-p_adji
(oadji

- p_adj

-adji

0 2 4 6 8
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