62 research outputs found

    The relationship between genetic risk variants with brain structure and function in bipolar disorder: A systematic review of genetic-neuroimaging studies

    Get PDF
    Genetic-neuroimaging paradigms could provide insights regarding the pathophysiology of bipolar disorder (BD). Nevertheless, findings have been inconsistent across studies. A systematic review of gene-imaging studies involving individuals with BD was conducted across electronic major databases from inception until January 9th, 2017. Forty-four studies met eligibility criteria (N=2122 BD participants). Twenty-six gene variants were investigated across candidate gene studies and 4 studies used a genome-wide association approach. Replicated evidence (i.e. in >2 studies) suggests that individuals with BD carrying the BDNF Val66Met risk allele could have reduced hippocampal volumes compared to non-carriers. This review underscores the potential of gene-neuroimaging paradigms to provide mechanistic insights for BD. However, this systematic review found a single replicated finding. Suggestions to improve the reproducibility of this emerging field are provided, including the adoption of a trans-diagnostic approac

    The Effects of Psychosis Risk Variants on Brain Connectivity: A Review

    Get PDF
    In light of observed changes in connectivity in schizophrenia and the highly heritable nature of the disease, neural connectivity may serve as an important intermediate phenotype for schizophrenia. However, how individual variants confer altered connectivity and which measure of brain connectivity is more proximal to the underlying genetic architecture (i.e., functional or structural) has not been well delineated. In this review we consider these issues and the relative sensitivity of imaging methodologies to schizophrenia-related changes in connectivity. We searched PubMed for studies considering schizophrenia risk genes AND functional or structural connectivity. Where data was available, summary statistics were used to determine an estimate of effect size (i.e., Cohen’s d). A random-effects meta-analysis was used to consider (1) the largest effect and (2) all significant effects between functional and structural studies. Schizophrenia risk variants involved in neurotransmission, neurodevelopment and myelin function were found to be associated with altered neural connectivity. On average, schizophrenia risk genes had a large effect on functional (mean d = 0.76) and structural connectivity (mean d = 1.04). The examination of the largest effect size indicated that the outcomes of functional and structural studies were comparable (Q = 2.17, p > 0.05). Conversely, consideration of effect size estimates for all significant effects suggest that reported effect sizes in structural connectivity studies were more variable than in functional connectivity studies, and that there was a significant lack of homogeneity across the modalities (Q = 6.928, p = 0.008). Given the more variable profile of effect sizes associated with structural connectivity, these data may suggest that structural imaging methods are more sensitive to a wider range of effects, as opposed to functional studies which may only be able to determine large effects. These conclusions are limited by methodological considerations, and require further investigation involving larger samples, multiple genes, and novel analysis techniques for confirmation

    Biologically relevant subgroups within the schizophrenia syndrome

    Get PDF
    In the present thesis, we aimed to explore the existence of biological subgroups within schizophrenia patients by using data from structural and functional brain connectivity as well as a genetic information. It includes five articles with sample sizes from 27 to 121 schizophrenia patients and 27 to 144 healthy controls. All patients were diagnosed according to DSM-IV or V criteria and their symptoms were scored using the Positive and Negative Syndrome Scale (PANSS). Structural connectivity was assessed in two different ways. Firstly, using structural magnetic resonance imaging (MRI) we extracted measures of cortical curvature. Secondly, diffusion magnetic resonance imaging (dMRI) was used to obtain values of streamline count and fractional anisotropy in white matter tracts connecting a priori selected regions. Functional connectivity was calculated using electroencephalography (EEG) recordings during the performance of an auditive odd-ball task, in which participants were instructed to respond to infrequent targets while ignoring other stimuli. Then, small-worldness (SWn) index, which quantifies the efficiency of the global electrical network, was calculated at two temporal windows: before and after the target stimulus onset (baseline/pre-stimulus and response window, respectively). We focused our study on the SWn difference between pre-stimulus and response windows as a measure of modulation efficiency.Esta tesis incluye datos procedentes de varias técnicas que estudian los procesos biológicos cerebrales, analizando su relación con la esquizofrenia y las posibles alteraciones biológicas en este trastorno. En otras palabras, mediante un análisis de las alteraciones cerebrales y genéticas en pacientes con esquizofrenia y en comparación con la población sana, se planteó definir patrones de alteración de la conectividad estructural y funcional independientemente del diagnóstico clínico inicial. Para ello, se partió del estudio anatómico del cerebro utilizando imágenes de resonancia magnética (RM) que cuantifican las regiones cerebrales y la integridad de las conexiones estructurales. La idea inicial era la identificación de grupos de pacientes con distintas alteraciones, para lo que se estudió la relación entre medidas corticales y de conectividad estructural y se analizó esa conectividad estructural en los pacientes. Posteriormente, se evaluó la relación entre variantes genéticas relacionadas con un aumento del riesgo de la esquizofrenia e implicadas en funciones relevantes con las alteraciones de las conexiones cerebrales funcionales. Y, por último, se estudió la capacidad de estas variantes genéticas para identificar subgrupos de pacientes con distintas anomalías de la conectividad funcional.Departamento de Pediatría e Inmunología, Obstetricia y Ginecología, Nutrición y Bromatología, Psiquiatría e Historia de la CienciaDoctorado en Investigación Biomédic

    Gene expression of NMDA receptor subunits in the cerebellum of elderly patients with schizophrenia

    Get PDF
    To determine if NMDA receptor alterations are present in the cerebellum in schizophrenia, we measured NMDA receptor binding and gene expression of the NMDA receptor subunits in a post-mortem study of elderly patients with schizophrenia and non-affected subjects. Furthermore, we assessed influence of genetic variation in the candidate gene neuregulin-1 (NRG1) on the expression of the NMDA receptor in an exploratory study. Post-mortem samples from the cerebellar cortex of ten schizophrenic patients were compared with nine normal subjects. We investigated NMDA receptor binding by receptor autoradiography and gene expression of the NMDA receptor subunits NR1, NR2A, NR2B, NR2C and NR2D by in situ hybridization. For the genetic study, we genotyped the NRG1 polymorphism rs35753505 (SNP8NRG221533). Additionally, we treated rats with the antipsychotics haloperidol or clozapine and assessed cerebellar NMDA receptor binding and gene expression of subunits to examine the effects of antipsychotic treatment. Gene expression of the NR2D subunit was increased in the right cerebellum of schizophrenic patients compared to controls. Individuals carrying at least one C allele of rs35753505 (SNP8NRG221533) showed decreased expression of the NR2C subunit in the right cerebellum, compared to individuals homozygous for the T allele. Correlation with medication parameters and the animal model revealed no treatment effects. In conclusion, increased NR2D expression results in a hyperexcitable NMDA receptor suggesting an adaptive effect due to receptor hypofunction. The decreased NR2C expression in NRG1 risk variant may cause a deficit in NMDA receptor function. This supports the hypothesis of an abnormal glutamatergic neurotransmission in the right cerebellum in the pathophysiology of schizophrenia

    Diffusion tensor imaging data reveals GRM3 polymorphism\u27s association with white matter integrity in schizophrenia

    Get PDF
    While the functional disconnectivity hypothesis of schizophrenia has been the subject of much study, very little is known about the contribution of individual genotypes to connectivity between brain regions in either schizophrenia patients or in healthy controls. In this study, we obtained diffusion tensor imaging (DTI) maps and genome-wide SNP data from 74 cases and 87 age- and gender-matched controls. Correlations were performed between loading coefficients obtained from fractional anisotropy (FA) values in networks of regions representing 6 maximally independent components and 134 SNPs in genes that have been found to be important in myelination and/or schizophrenia. By using independent component analysis (ICA) to analyze the FA data we move beyond single voxels (voxel based morphometry) to a source based morphometry. In doing so, we can obtain networks of FA values that covary in a similar way among subjects, and we can study the relationship between these networks and genotype. We report one SNP located in the intronic region of the metabotropic glutamate receptor 3 gene GRM3 that showed a significant correlation with connectivity in patients but not in controls (p\u3c1.0x10-4). This SNP, rs7808623, has not been previously shown to be associated with schizophrenia, although association has been shown with several SNPs in GRM3

    The Integration of the Glutamatergic and the White Matter Hypotheses of Schizophrenia's Etiology

    Get PDF
    Background: schizophrenia's endophenotipic profile is not only generally complex, but often varies from case to case. The perspective of trying to define specific anatomic correlates of the syndrome has led to disappointing results. In that context, neurophysiologic hypotheses (e. g. glutamatergic hypothesis) and connectivity hypotheses became prominent. Nevertheless, despite their commitment to the principle of denying 'localist' views and approaching the syndrome's endophenotype from a whole brain perspective, efforts to integrate both have not flourished at this moment in time. Objectives: This paper aims to introduce a new etiological model that integrates the glutamatergic and the WM (WM) hypotheses of schizophrenia's etiology. This model proposes to serve as a framework in order to relate to patterns of brain abnormalities from the onset of the syndrome to stages of advanced chronification. Highlights: Neurotransmitter abnormalities forego noticeable WM abnormalities. The former, chiefly represented by NMDAR hypo-function and associated molecular cascades, is related to the first signs of cell loss. This process is both directly and indirectly integrated to the underpinning of WM structural abnormalities; not only is the excess of glutamate toxic to the WM, but its disruption is associated to the expression of known genetic risk factors (e. g., NRG-1). A second level of the model develops the idea that abnormal neurotransmission within specific neural populations ('motifs') impair particular cognitive abilities, while subsequent WM structural abnormalities impair the integration of brain functions and multimodality. As a result of this two-stage dynamic, the affected individual progresses from experiencing specific cognitive and psychological deficits, to a condition of cognitive and existential fragmentation, linked to hardly reversible decreases in psychosocial functioning

    Cannabinoid and neuregulin 1 gene interaction as an animal model of increased vulnerability to schizophrenia

    Get PDF
    Schizophrenia is a severe, chronic and disabling mental disorder with a worldwide prevalence of approximately 1 %. It is a lifelong illness characterized by psychotic symptoms which typically first appear in late adolescence/early adulthood. The symptoms of schizophrenia are usually categorized as positive (hallucinations and delusions), negative (blunted affect and poverty of speech) and cognitive (memory, attention and executive function impairments). Schizophrenia is thought to arise from an interaction between several susceptibility genes and environmental factors, one of them being the use of cannabis, the most widely used illicit drug in the world. Human population studies show that cannabis use is associated with schizophrenia, and it is now well recognised that cannabis use increases the risk of developing schizophrenia by approximately twofold. The reasons for the association between cannabis and schizophrenia remain controversial and different theories have been proposed to explain the nature of this relationship. According to the self-medication hypothesis of schizophrenia, patients with psychotic disorders use cannabis to alleviate aversive symptoms of the disorder or the side effects associated with antipsychotic medications. Other theories posit that cannabis is a component cause contributing to the development of schizophrenia. Supporting this, an increasing body of evidence shows that cannabis use increases the incidence and severity of psychotic symptoms and that cannabis use most frequently precedes the onset of schizophrenia. As a large majority of cannabis users do not develop schizophrenia, a gene-environment interaction appears necessary for the development of the disorder. That is, cannabis use may unmask latent schizophrenia in individuals that have a genetic predisposition to the disorder. Family studies provide strong evidence of a genetic contribution to the aetiology of schizophrenia. Several candidate genes are likely involved in the disorder, but this thesis will specifically focus on the neuregulin 1 (NRG1) gene. NRG1 was first proposed as a schizophrenia susceptibility gene in 2002 and linkage studies have since replicated this association in diverse populations around the world. In addition, changes in expression of Nrg1 isoforms and its receptor ErbB4 have been reported in the brain of schizophrenia patients. NRG1 polymorphism has also been associated with cognitive and behavioural differences in schizophrenia patients compared to healthy individuals. Collectively, NRG1 is now recognized as one of the most promising genes that confer an increased risk of developing schizophrenia. The creation of knockout mice lacking a specific gene offers an exciting new approach in the study of mental disorders. While several mutant mice for Nrg1 and ErbB4 receptor have been developed, this thesis focussed on mice that are heterozygous for the transmembrane domain of the Nrg1 gene (named Nrg1 HET mice). These mice exhibit a schizophrenia-like phenotype including hyperactivity that can be used as a reflection of positive symptoms of schizophrenia. Furthermore, they display impairments in social recognition memory and prepulse inhibition (PPI), a model of attentional deficits observed in schizophrenia patients. In addition, the brains of Nrg1 HET contain fewer functional NMDA receptors and more 5-HT2A receptors than wild type-like (WT) animals which is consistent with the neurotransmitters imbalance observed in schizophrenic patients. The phenotype of Nrg1 HET mice is age-dependent, another aspect that mirror the late adolescent/early adulthood onset of schizophrenia symptoms. The present thesis aimed at developing an animal model of genetic vulnerability to cannabinoid-precipitated schizophrenia by utilising Nrg1 HET mice to observe if these animals show an altered behavioural and neuronal response to cannabinoid exposure. We hypothesise that Nrg1 deficiency will alter the neurobehavioural responses of animals to cannabinoids. The experiments detailed within the first research chapter (Chapter 2) aimed at examining the behavioural effects of an acute exposure to the main psychoactive constituent of cannabis, Δ9-tetrahydrocannabinol (THC), in Nrg1 HET mice using a range of behavioural tests of locomotion, exploration, anxiety and sensorimotor gating. Relative to WT control mice, Nrg1 HET mice were more sensitive to both the locomotor suppressant action of THC, as measured in the open field test, and to the anxiogenic effects of THC in the light-dark test, although the effects in this procedure may be confounded by the drug-free hyperactive phenotype of Nrg1 HET mice. Importantly, Nrg1 HET mice expressed a greater THC-induced enhancement in PPI than WT mice. Taken together, the data presented in Chapter 2 show that a deficiency in a schizophrenia susceptibility gene Nrg1 enhanced the behavioural impact of THC. After having established a link between Nrg1 deficiency and increased sensitivity to the behavioural effects of cannabinoids in Chapter 2, Chapter 3 assessed the neuronal activity underlying the effects of an acute THC exposure on Nrg1 HET mice by using c-Fos immunohistochemistry. In the ventral part of the lateral septum (LSV), THC selectively increased c-Fos expression in Nrg1 HET mice with no corresponding effect being observed in WT mice. In addition, a non-significant trend for THC to promote a greater increase in c-Fos expression in Nrg1 HET mice than WT mice was observed in the central nucleus of the amygdala, the bed nucleus of the stria terminalis and the paraventricular nucleus of the hypothalamus. Consistent with Nrg1 HET mice exhibiting a schizophrenia-related phenotype, these mice expressed greater drug-free levels of c-Fos in the shell of the nucleus accumbens and the LSV. Interestingly, the effects of genotype on c-Fos expression, drug-free or following THC exposure, were only observed when animals experienced behavioural testing prior to perfusion. This suggests that an interaction with stress was necessary for the promotion of these effects. As the risk of developing psychosis in vulnerable individuals increases with the frequency of cannabis use, Chapter 4 assessed the effects of repeated exposure to cannabinoids on Nrg1 HET mice. As THC was not available at the time, the synthetic analogue of THC, CP 55,940, was used in this experiment. Behavioural testing showed that tolerance to CP 55,940-induced hypothermia and locomotor suppression developed more rapidly in Nrg1 HET mice compared to WT mice. On the contrary, tolerance to the anxiogenic-like effect of CP 55,940 in the light-dark test was observed in WT mice, however no such tolerance occurred to this effect in Nrg1 HET mice. Similarly, no tolerance developed to CP 55,940-induced thigmotaxis in Nrg1 HET mice as measured in the open field. For PPI, on the first day of exposure opposite effects were observed, with CP 55,940 treatment facilitating PPI in Nrg1 HET mice and decreasing it in WT mice. However, the differential effect of CP 55,940 on PPI was not maintained with repeated testing as both genotypes became tolerant to the effects of the cannabinoid on sensorimotor gating. In addition, a selective increase in Fos B/ΔFos B expression, a marker of longer-term neuronal changes, was observed in the LSV of Nrg1 HET mice following chronic CP 55,940 exposure, with no corresponding effect seen in WT mice. These results collectively demonstrate that the neuregulin system is involved in the neuroadaptive response to repeated cannabinoid exposure. One of the main schizophrenia endophenotypes observed in human studies are cognitive impairments of higher executive functions. Thus Chapter 5 aimed to develop a procedure to allow evaluation of cannabis-induced working memory deficits in mice. Few studies have investigated the effects of chronic cannabinoid exposure on memory performance and whether tolerance occurs to cannabinoidinduced memory impairment. Here we studied the effects of repeated exposure to THC on spatial memory and the expression of the immediate early gene zif268 in mice. One group of animals were not pre-treated with THC while another group was given 13 daily injections of THC prior to memory training and testing in the Morris water maze. Both groups were administered THC throughout the memory training and testing phases of the experiment. THC decreased spatial memory and reversal learning, even in animals that received the THC pre-treatment and were tolerant to the locomotor suppressant effects of the drug. Zif268 immunoreactivity was reduced in the CA3 of the hippocampus and in the prefrontal cortex only in non pre-treated animals, indicating that while tolerance to the effects of cannabinoids on neuronal activity arose, cannabinoid-promoted memory impairment in these animals persisted even after 24 days of exposure. Taken together these data demonstrate that the spatial memory impairing effects of THC are resistant to tolerance following extended administration of the drug. Such a model could be applied to Nrg1 HET mice in future studies to observe if cannabinoid-induced working memory impairments and the development of tolerance to this effect are altered relative to WT mice. In conclusion, this thesis provides the first evidence that partial deletion of the schizophrenia susceptibility gene Nrg1 modulates the neurobehavioural actions of acutely and chronically administered cannabinoids. Nrg1 HET mice appear more sensitive to the acute neurobehavioural effects of cannabinoids. Notably, acutely administered THC facilitated attentional function by increasing PPI in Nrg1 HET mice. However, with repeated cannabinoid administration this acute benefit was lost. The Nrg1 HET mice displayed a long-lasting anxiogenic profile that was resistant to tolerance. Conversely, Nrg1 HET mice developed tolerance to the locomotor suppressant and hypothermic effects of cannabinoids more rapidly than WT mice, indicating a distorted neuroadaptive response in these animals. Another major finding of this thesis is that the lateral septum appears to be an important brain region dysregulated by cannabinoids in Nrg1 HET mice. Cumulatively, this research highlights the fact that neuregulin 1 and cannabinoid systems appear to interact in the central nervous system. This may ultimately enhance our understanding of how gene-environment interactions are responsible for cannabis-induced development of schizophrenia

    Neurogenetic Effects on Cognition in Aging Brains: A Window of Opportunity for Intervention?

    Get PDF
    Knowledge of genetic influences on cognitive aging can constrain and guide interventions aimed at limiting age-related cognitive decline in older adults. Progress in understanding the neural basis of cognitive aging also requires a better understanding of the neurogenetics of cognition. This selective review article describes studies aimed at deriving specific neurogenetic information from three parallel and interrelated phenotype-based approaches: psychometric constructs, cognitive neuroscience-based processing measures, and brain imaging morphometric data. Developments in newer genetic analysis tools, including genome wide association, are also described. In particular, we focus on models for establishing genotype–phenotype associations within an explanatory framework linking molecular, brain, and cognitive levels of analysis. Such multiple-phenotype approaches indicate that individual variation in genes central to maintaining synaptic integrity, neurotransmitter function, and synaptic plasticity are important in affecting age-related changes in brain structure and cognition. Investigating phenotypes at multiple levels is recommended as a means to advance understanding of the neural impact of genetic variants relevant to cognitive aging. Further knowledge regarding the mechanisms of interaction between genetic and preventative procedures will in turn help in understanding the ameliorative effect of various experiential and lifestyle factors on age-related cognitive decline

    Genetic determinants of white matter integrity in bipolar disorder

    Get PDF
    Bipolar disorder is a heritable psychiatric disorder, and several of the genes associated with bipolar disorder and related psychotic disorders are involved in the development and maintenance of white matter in the brain. Patients with bipolar disorder have an increased incidence of white matter hyper-intensities, and quantitative brain imaging studies collectively indicate subtle decreases in white matter density and integrity in bipolar patients. This suggests that genetic vulnerability to psychosis may manifest itself as reduced white matter integrity, and that white matter integrity is an endophenotype of bipolar disorder. This thesis comprises a series of studies designed to test the role of white matter in genetic risk to bipolar disorder by analysis of diffusion tensor imaging (DTI) data in the Bipolar Family Study. Various established analysis methods for DTI, including whole-brain voxel-based statistics, tract-based spatial statistics (TBSS) and probabilistic neighbourhood tractography, were applied with fractional anisotropy (FA) as the outcome measure. Widespread but subtle white matter integrity reductions were found in unaffected relatives of patients with bipolar disorder, whilst more localised reductions were associated with cyclothymic temperament. Next, the relation of white matter to four of the most prominent psychosis candidate genes, NRG1, ErbB4, DISC1 and ZNF804A, was investigated. A core haplotype in NRG1, and three of the four key single nucleotide polymorphisms (SNPs) within it, showed an association with FA in the anterior thalamic radiations and the uncinate fasciculi. For the three SNPs considered in ErbB4, results were inconclusive, but this was consistent with the background literature. Most notable however, was a clear association of a non-synonymous DISC1 SNP, Ser704Cys, with FA extending over most of the white matter in the TBSS and voxel-based analyses. Finally, FA was not associated with a genome-wide supported risk SNP in ZNF804A, a finding which could not be attributed to a lack of statistical power, and which contradicts a strong, but previously untested hypothesis. Whilst the above results need corroboration from independent studies, other studies are needed to address the cellular and molecular basis of these findings. Overall, this work provides strong support for the role of white matter integrity in genetic vulnerability to bipolar disorder and the wider psychosis spectrum and encourages its future use as an endophenotype

    BDNF Val66Met Polymorphism Influences Age Differences in Microstructure of the Corpus Callosum

    Get PDF
    Brain-derived neurotrophic factor (BDNF) plays an important role in neuroplasticity and promotes axonal growth, but its secretion, regulated by a BDNF gene, declines with age. The low-activity (met) allele of common polymorphism BDNF val66met is associated with reduced production of BDNF. We examined whether age-related reduction in the integrity of cerebral white matter (WM) depends on the BDNF val66met genotype. Forty-one middle-aged and older adults participated in the study. Regional WM integrity was assessed by fractional anisotropy (FA) computed from manually drawn regions of interest in the genu and splenium of the corpus callosum on diffusion tensor imaging scans. After controlling for effects of sex and hypertension, we found that only the BDNF 66met carriers displayed age-related declines in the splenium FA, whereas no age-related declines were shown by BDNF val homozygotes. No genotype-related differences were observed in the genu of the corpus callosum. This finding is consistent with a view that genetic risk for reduced BDNF affects posterior regions that otherwise are considered relatively insensitive to normal aging. Those individuals with a genetic predisposition for decreased BDNF expression may not be able to fully benefit from BDNF-based plasticity and repair mechanisms
    corecore