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Abstract: Background: schizophrenia's endophenotipic profile is not only generally complex, but often varies from case 

to case. The perspective of trying to define specific anatomic correlates of the syndrome has led to disappointing results. 

In that context, neurophysiologic hypotheses (e.g. glutamatergic hypothesis) and connectivity hypotheses became promi-

nent. Nevertheless, despite their commitment to the principle of denying 'localist' views and approaching the syndrome's 

endophenotype from a whole brain perspective, efforts to integrate both have not flourished at this moment in time.  

Objectives: This paper aims to introduce a new etiological model that integrates the glutamatergic and the WM (WM)  

hypotheses of schizophrenia’s etiology. This model proposes to serve as a framework in order to relate to patterns of brain 

abnormalities from the onset of the syndrome to stages of advanced chronification.  

Highlights: Neurotransmitter abnormalities forego noticeable WM abnormalities. The former, chiefly represented by 

NMDAR hypo-function and associated molecular cascades, is related to the first signs of cell loss. This process is both  

directly and indirectly integrated to the underpinning of WM structural abnormalities; not only is the excess of glutamate 

toxic to the WM, but its disruption is associated to the expression of known genetic risk factors (e.g., NRG-1). A second 

level of the model develops the idea that abnormal neurotransmission within specific neural populations ('motifs') impair 

particular cognitive abilities, while subsequent WM structural abnormalities impair the integration of brain functions  

and multimodality. As a result of this two-stage dynamic, the affected individual progresses from experiencing specific 

cognitive and psychological deficits, to a condition of cognitive and existential fragmentation, linked to hardly reversible 

decreases in psychosocial functioning.  

Keywords: Schizophrenia, molecular psychiatry, connectivity, glutamate, white matter. 

INTRODUCTION 

 When Kraepelin [1] suggested a role for brain deteriora-
tion in the etiology and the progression of dementia praecox, 
he probably did not have in mind the extent of the debate 
that was about to start around such an issue. More than a 
century later, one may note that the general agreement 
around the existence of biological markers of brain deteriora-
tion from schizophrenia's first episode, to its chronic devel-
opment, does not represent an endpoint to this discussion, as 
the specificity of such brain impairments remains surrounded 
by doubts. 

 Intricacy in this field emerged as a rule, not an exception, 
and one thing that has proved to be true is that variation 
among different cohorts can lead to divergent findings. For 
example, while one meta-analysis, based on general studies 
of gray matter abnormalities, suggested that the manifesta-
tion of schizophrenia is accompanied by gray matter losses 
in the bilateral temporal medial areas [2], another one indi-
cates that this alteration should not be assumed to be rele-
vant, since it was allegedly reported as 'not relevant' by most 
experimental studies [3]; this divergence in conclusion  
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probably relates to the fact that the latter study was solely 
based on first-episode studies, contrary to the other one, 
which had a less restrictive experimental design. A recent 
meta-analysis confirmed this dynamic (and progressive) ten-
dency within experimental frameworks [4]. 

 Likewise, in the field of functional studies, things are not 
so different and suggest caution when reading through pa-
pers that present discrepant conclusions about schizophre-
nia's neural dysfunctions. For example, in relation to cerebral 
blood flow within the prefrontal cortex during task execu-
tion, many studies related schizophrenia to hypofrontal acti-
vation in rest and during task execution [5-9], while others 
found hyperfrontal activation in task execution only [10-14]. 
As stated by some [13], hyperfrontality is related to positive 
symptoms, especially ‘ego pathology’, while others [10] 
relate it to negative symptoms, particularly during task exe-
cution. This matches with the perspective that progression 
(which enhances negativism) might be the key for the  
divergence. 

 Up to a certain extent, this conundrum has to do with 
divergent inclusion criteria, and from that point on, it proba-
bly relates with the general structure of the methodologies 
that are applied to select psychiatric cohorts in general; sub-
jects invited to participate in most psychiatric studies are 
selected by means of the application of diagnostic instru-
ments that hold the assumption that nosographic units can be 
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discriminated by the process of clustering common symp-
toms (in other words, they are 'descriptive', as it applies to 
DSM; [15]), while it might be the case that, among cases 
selected this way, endophenotipic divergence is more of a 
rule than an exception. 

 In the same vein, chronification might be different from 
one case to the other, despite the outward showing of a pat-
tern provided by the process of clustering cases in terms of 
descriptive diagnoses and, in a broader sense, considering 
schizophrenic manifestations in terms of their positive, nega-
tive, and cognitive dimensions. 

 We hypothesize that endophenotipic differences among 
subjects diagnosed with schizophrenia also have a role in 
establishing the contention that has been established in rela-
tion to the precise number of dimensions by which the syn-
drome must be approached - and the picture that we find 
today is that some authors argue that schizophrenia should be 
clustered by a two-dimensional diagnosis [16], a three-
dimensional diagnosis [17-20] and a five-dimensional diag-
nosis [21, 22]. 

 As this picture suggests, there is an acute difficulty in 
defining a model capable of integrating different patterns of 
brain abnormalities, from the onset, to more chronic stages 
of the syndrome. It is feasible to assume that this task is one 
of the main challenges in schizophrenia research and that the 
establishment of such an empirically-based model of endo-
phenotipic deterioration would aid not only the understand-
ing of the syndrome's underlying structure, but also solve 
matters related to its nosological and nosographic classifica-
tion. 

 Currently, any attempt to define models as the ones that 
may be included in the above perspective posits a methodo-
logical issue: in opposition to many canonical conceptions of 
the biological basis of schizophrenia, it is becoming clear 
that it is not feasible to grasp a clear picture of what is dy-
namically happening with the brain. When the focus is re-
stricted to information regarding dysfunctions in 'localist' 
brain networks, that is, if the leitmotiv is reduced to the 
analysis of patterns of gray matter abnormalities in regions 
of interest, and as defined in light of the discrimination of 
neural networks/areas as they appear in brain atlases. It is 
becoming clear that a ‘transmission paradigm’ cannot be 
excluded from such global models of endophenotipic  
dysfunction - as Friston and Frith [23] proposed with their 
hypothesis of schizophrenia as a ‘disconnection syndrome’. 

 However, things are not so simple when considering the 
progression from onset to chronification, due to the fact that 
white matter (WM) abnormalities are not usually found at 
the onset of schizophrenic manifestations (usually in early 
adulthood). As we see it, and we will try to endorse this as 
we go along with this paper, anatomical disconnection is an 
important piece in schizophrenia’s endophenotipic puzzle, 
but not a necessary and sufficient variable to explain the 
most basic event: the onset of the syndrome, which precisely 
must be integrated to chronification (in terms of endopheno-
tipic abnormalities) in a more complex model. 

 Remarkably, there is another type of 'connectivity' -from 
cell to cell- which is indeed impaired from the onset of the 

syndrome, and which must be integrated to WM abnormali-
ties in a more omnibus model: schizophrenia is chiefly re-
lated to neurochemical abnormalities that affect cellular sig-
naling at the synaptic level, and that are associated with 
some of the most robust genetic markers of hereditability, 
like Neurogulin-1 (NRG1). As most readers of this Journal 
are probably aware, the domain of the field of molecular 
psychiatry that deals with the psychoses' neurochemical 
bases has endorsed the relatively new schizophrenia's 'glu-
tamatergic hypothesis' with enthusiasm, in opposition to the 
classic dopaminergic hypothesis, which is losing field in 
pace with the expansion of research.  

 In mainstream psychiatric research, these two types of 
'transmission paradigms' are usually treated as separated top-
ics, despite their convergence around the idea of putting for-
ward alternatives to older studies that have tried to reduce 
the emergence and chronification of schizophrenia to the 
presence of a predefined set of regional brain dysfunctions 
('localist' studies). From our standpoint, this assumption of 
independence has to do with the difficulty of integrating both 
types of disconnection in terms of 1. a common leitmotiv; 2. 
a dialectic relation, by which an integrative view is expected 
to emerge. This paper aims to introduce a new etiological 
hypothesis, with the potential to fulfill this gap. 

 This hypothesis is based on the premise that a neuro-
anatomic and a neurophysiologic approach to schizophrenia's 
endophenotype can and should be associated with the estab-
lishment of a more complete and dynamic etiological hy-
pothesis, and that these should be respectively represented by 
the assumption that the syndrome relates to connectivity 
problems (WM dysfunctions) and the premise that there is an 
excess of glutamate in the brain of the affected subjects. 

1. WM Studies: Recent Findings Suggest a Neuron-Glia 

Network  

 The CNS is made of grey matter and WM. The former 
consists of cell bodies, which take a central role in informa-
tion processing through the implementation of the ‘all or 
nothing’ dynamic (rate of firing) of the action potentials; 
glial cells; and capillaries. The latter consists of axons, glia 
and microglia; its core function is to transmit the action po-
tentials from one cell to others. Among the glial cells of the 
CNS, the oligodendrocites are responsible for producing 
myelin. Axons and oligodendrocites are considered the core 
elements of WM. 

 To grasp a profound sense of WM participation in a 
whole brain information process, it is interesting to approach 
it in light of the concept of 'motif' (close related neuron 
populations) and to bear in mind that information spreads 
both within and between motifs. Not all motifs have the 
same overall importance: integrative/multimodal cellular 
populations represent very important motifs [24] (e.g. PFC). 
In a nut shell, what makes the PFC an important motif is its 
high degree of connectivity; it is a pathway to several less 
connected inputs, in relation to which it represents an impor-
tant pivot - much in the sense that a very popular site repre-
sents a necessary pivot to other, smaller sites, which can  
be drastically affected by the shutdown of the major one. 
Different brain regions have different (and relatively stable) 
patterns of local connectivity and inter-motif connectivity, 
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which can be used to rethink the consequences of local  
abnormalities in terms of a transmission paradigm [25]. WM 
implements small-world principles by two means: 1. connec-
tivity within motifs; 2. connection of different motifs, either 
directly or through higher order neuronal assemblies. 

 In general, the synapses/neuron relation reveals a high 
degree of overall clustering, which has lead some authors to 
assume that the brain represents a ‘small-world’ network [24, 
26-30], with a low degree of separation between any two 
CNS neurons and a scale-free organization (in a nutshell: 
most neurons tend to have a relatively similar impor-
tance/number of incoming and out-coming connections, 
while some have an enormous amount of connections, as it is 
precisely the case for PFC neurons). 

 Furthermore, an important aspect for the current model 
that we are going to propose, is the perspective that  
this higher order of integrative neuronal populations (the 
aforementioned 'pivots', which can also be called ‘hubs’) can 
be divided into two types: the ones that integrate more 
closely related assemblies (provincial hubs) and the ones  
that integrate multimodal networks (connector hubs) [24]; 
damage to provincial hubs decrease small-world indexes, 
while damage to the connectors increase them in local as-
semblies [24]. 

 In terms of WM tracts, this means that abnormalities in 
tracts that integrate different populations of neurons (e.g. 
frontotemporal pathways) may have as a consequence an 
increase in the demands over local networks, and the other 
way around. As we move on to the cognitive level, it is also 
notable that individual differences in WM structure are usu-
ally associated with general neuropsychological traits as 
fluid intelligence, reactional time [31-33] and executive 
functioning [34], which express the principle that overall 
connectivity plays a prominent role as interconnectivity. 

 In terms of the neurophysiological structure of WM, it 
was believed until recently that chemical transmission was 
exclusive to grey matter. This premise was tied to the con-
ception of axons as ‘cables’ - a paradigm also inspired by the 
fact that the fast release of neurotransmitters requires a very 
complex specialization within the synaptic cleft, which 
would only appear at the junction of very complex cells. “A 
complete set of these proteins is concentrated only in a spe-
cialized area of the presynaptic membrane that is directly 
opposed to the neurotransmitter receptor apparatus of the 
postsynaptic density” [35], (p.311). 

 Currently, this paradigm is changing, giving rise to the 
perspective of a neuron-glia network [36]. First, it was dem-
onstrated that there is an existence of synapses between py-
ramidal and oligodendrocyte precursor cells of the hippo-
campus (mature and immature cells) [37]. Further studies 
with rats revealed that glutamate is released along axons in 
the WM [35]. Moreover, it was confirmed that oligodendro-
cytes from the cerebellum and corpus callosum WM could 
be divided into two types, regular ones, and those that could 
fire action potentials [38]. Contrary to older dogmas, it was 
shown that they express NMDA receptors [39, 40]; antibody 
labels associated with blockage techniques (Mg

2+ and ifen-
prodil block) suggested that the target receptors might dis-
play NR1, NR2C and NR3 subunits [41]. Finally, glutamate 

receptors have been revealed in the premature WM of fetus 
[42]. 

2. Functional Studies are Suggesting that WM Abnor-

malities are Associated with Neuropsychological Deficits 

in Schizophrenia 

 In the field of functional studies, WM tracts are studied 
with a special magnetic resonance technique named diffusion 
tensor imaging (DTI), which takes advantage of the fact that 
the tracts are oriented by diffusion direction, and thus that 
(among other features) they can be analyzed in terms of the 
orientation and quantification of the water dispersion (anisot-
ropy). Diffusion rates are positively correlated to the myeli-
nation of the tract; in that sense, DTI is to WM what MRI 
currently represents to functional studies of grey matter. 

 Another technique that can be associated with it is the 
magnetization transfer ratio (MTR), which selectively meas-
ures the state of some macromolecules and is especially sen-
sible to myelin protein alterations; the association of MTR 
and DTI has amplified the detection of connectivity abnor-
malities [43, 44]. A DTI study with normal subjects con-
cluded that WM in the right posterior inferior longitudinal 
fasciculus is associated with cognitive capacity (defined by 
intelligence tests, years of study and reading abilities) among 
adults [45], children [46] and the elderly [47]. Another  
study concluded that with quantities of metabolite N-
acetylaspartate on the left occipito-parietal, WM predicted 
intellectual performance [48], suggesting a complex multi-
modal structure of general intelligence, associated with WM 
transmission; many studies suggested that myelination de-
creases with aging, and that this might be related to a de-
crease in cognitive capacities. 

 Full blown myelination is a process that occurs in late 
adolescence. Examining the Yakovlev Collection of normal 
brains, Benes [49] showed that associative (multimodal) cor-
tical areas gain robust myelination only by the second decade 
of life, precisely the period of a higher risk in the develop-
ment of schizophrenia. The first WM study of the brain in 
schizophrenic patients was delivered in 1998 [50]. The 
authors used diffusion anisotropy, associated with PETscan, 
to analyze fronto-striatal connectivity and found that it was 
impaired in relation to controls. More recently, studies have 
confirmed parietal and fronto-parietal alterations [51-53], 
temporal, hippocampal and fronto-temporal [53-60], occipi-
tal and fronto-occipital [43, 57, 59], frontal and generally 
wide-spread alterations [43, 61, 62]. In accordance with 
those findings, it was revealed that small-world indexes are 
reduced in schizophrenia [63-67], particularly within frontal, 
temporal and parietal cortex; although a recent study, that 
applied graph theoretical tools associated with the MRI data 
of 203 patients and 259 healthy controls, suggested that this 
difference might be moderated [68].  

 It is not easy to define the neuropsychological signifi-
cance of the findings, and thus studies diverge about their 
core features. One thing that is important to have in mind is 
that reduced fractional anisotropy can have at least two 
meanings. A reduced number of axons and reduced myelina-
tion, and that currently, it is not possible to distinguish  
between the two using DTI [69]. In both senses, decreased 
connectivity is associated with a plethora of sensorial and 



The Integration of the Glutamatergic and the White Matter Hypotheses Current Neuropharmacology, 2012, Vol. 10, No. 1    5 

cognitive dysfunctions (e.g. specific visual deficits [70]); 
temporal WM and fronto-temporal WM abnormalities are 
associated with episodic memory deficits [34, 71, 72]; voice 
hallucinations (VHs) might also be related to fronto-temporal 
abnormalities [58] and/or to fronto-parietal and corpus callo-
sum tract abnormalities [73]; temporal and occipital WM 
abnormalities might be associated with visual hallucinations 
[59], and more general abnormalities (within fiber originat-
ing from thalamus, cingulate gyrus, and cortical association 
areas), might relate to selective attention and executive func-
tioning [34, 72]. 

3. The Glutamate Hypothesis of Schizophrenia’s Etiology 

is Becoming Paradigmatic 

 The canonical neurophysiological paradigm about 
schizophrenia’s etiology was, to recent times, that the disor-
der was due to a dopaminergic imbalance. Experimentally, it 
was supported by findings showing that excesses of sub-
cortical dopamine (mainly D2) are associated with positive 
symptoms, while negative and cognitive symptoms are re-
lated to diminished dopamine release in different cortical 
sites [74, 75] (particularly with the frontal, temporal and 
parietal lobes). In broader clinical terms, its main support 
was an understanding of the mechanism or action of antipsy-
chotic medication [76], in so much as drugs like ampheta-
mines can exacerbate psychotic symptoms in schizophrenic 
patients. 

 Nevertheless, in much the same sense as to what hap-
pened in relation to the consolidation of white-grey matter 
models of schizophrenia (implicit within Kraepelin’s con-
ceptions), a relative old idea (from the eighties [77]) has 
gained power and is driving a change in the basic neuro-
chemical paradigms in the direction of a broader conception. 
Pragmatically supported by the disappointment of the dopa-
minergic paradigm, as the medications (typical and atypical 
antipsychotics) do not adequately control negative and  
cognitive symptoms, thus they are not as effective as it 
would be supposed in the case that schizophrenia was purely 
the expression of a dopaminergic imbalance. 

 This new perspective attributes a prominent role to glu-
tamatergic molecular cascades and especially to N-methyl-
D-aspartate receptors (NMDAR)

1. These are a type of 
ionotropic receptor acutely implicated in the generation of 
slow post-synaptic excitatory potentials (EPSPs), and thus 
fundamental to the global process of information processing/ 
transmission related to complex cognition and the acquisition 
of higher order cognitive abilities. 

 The foundations of this perspective go back to the find-
ings that phencyclidine (which is a street drug commonly 
called PCP) mimics the main symptoms of schizophrenia, by 
interfering in the glutamatergic transmission. Animal models 
of schizophrenia based on PCP administration (in rats)  
have lead to the hypothesis that mesocorticolimbic dopa-
minergic deregulations could be due to NMDAR dysfunc-
tions [78].  

                                                
1More recently interest has also been driven to the metabotropic G-protein coupled 

receptors (GLU). 

 Additionally, it was discovered that ketamine produces 
the same effects, by also blocking the NMDAR function. 
Recent computerized analysis of the speech of normal sub-
jects under the effect of ketamine and that of the speech of 
individuals with schizophrenia revealed significant similari-
ties [79]. Olney and collaborators proposed that the block of 
the NMDAR receptors at glutamatergic metabotropic trans-
mission sites led to an excessive release of acetylcholine that 
could also participate in a toxic cascade over the cortical 
cells [80]. 

 The NMDA receptors act over negative feedback loops 
within inter-neurons and thus their hypofunction overstresses 
the pyramidal cells [81]. Precisely as Holcomb and collabo-
rators had emphasized [82], the receptor’s hypofunction 
leads to a GABAergic hypofunction (GABA is the major 
inhibitory neurotransmitter), and thus to a subsequent exces-
sive glutamatergic activity in wide spread brain sites due to 
the suppression of the inhibitory GABAergic cascades.  

 Preclinical attempts to enhance the activity of glutama-
tergic receptors have produced promising effects (specially 
targeting the G-protein coupled Glu receptors) [83].  
Currently, there is at least one drug created to block NMDA 
receptors under development which is surrounded by great 
expectancy (LY2140023, from Lilly Laboratories [84]). 

 Much in the same way as happens in WM studies, it is 
not easy to grasp a precise picture of neuropsychological 
correlates to NMDAR dysfunction. Glutamate is the main 
excitatory neurotransmitter in the brain, and thus participates 
in innumerous processes, in terms of which, we can point to 
innumerous findings in all the domains of the affec-
tive/cognitive spectrum. Just to point out a few in terms of 
sensorial abnormalities, the glutamatergic hypothesis has 
been linked to specific visual deficits (e.g. reduced contrast), 
and has also been associated with abnormal magnocellular 
evoked potentials in the early-stages of visual processing 
[70]. Another study replicated this finding and suggested that 
it might also be related to working memory deficits [85]. 
Verbal learning [86] and sustained attention deficits [87] 
have been linked to prefrontal NMDA hypoactivity; finally, 
an excess of glutamate in the hippocampus was associated to 
dysfunctional executive function (measure with the Wisconsin 
Card Sorting Test -WCST). 

4. Glutamatergic and Connectivity WM Hypotheses Are 
Intrinsically Associated 

 The main studies tying WM and glutamate are relative to 
periventricular leukomalacia (PVL), which is an injury to 
WM that affects the developing oligodendrocites of some 
newborns and leads to abnormal myelination. This condition 
is highly associated with hypoxic-ischemic brain injuries 
associated with premature deliver (before 32 weeks of gesta-
tion), which leads to a high concentration of glutamate 
within the immature brain [42]. A recent study showed that 
memantine, a NMDAR non-competitive antagonist, attenu-
ates the death of oligodendrocites in WM [88]. 

 In the field of schizophrenia research, it is well estab-
lished that proneness to schizophrenia can be due to multiple 
risk factors, genetic, epigenic and developmental, either iso-
lated or in association. Thus, genetic risks can interact with 
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contingent risk factors, like obstetric complications, among 
which the main variable is represented by hypoxic events 
[89-91]. In that sense, there might be a significant relation 
between developmental risks for schizophrenia and for PVL 
(although studies are needed to confirm this), suggestively 
relating to structural abnormalities among WM precursors 
oligodendrocites and affected by excessive glutamatergic 
exocytose due to obstetric injuries. This is in line with stud-
ies that suggest that glial asthenia predisposes to schizophre-
nia [92, 93], and, even further, with a genetic study that 
found an association between genes regulated by hypoxia 
and vascular brain functions, obstetric complications, and the 
onset of schizophrenia [94]. 

 Moreover, it is worth considering the following picture: 
over the last few decades, many genes were assumed as pos-
sible risk factors for the disorder and then disconfirmed by 
independent studies. This might not be misleading, but rather 
express the fact that each of these genes in question increase 
the chances of schizophrenia only by a little, and make the 
subject more suitable to the effect of other risk factors (e.g. 
hormonal imbalance, chronic stress, use of drugs), which are 
not necessarily present in every case. In the same sense, rare 
structural genetic variants, represented by novel deletions 
and duplications of genes are increased (by three fold) 
among the individuals suffering with schizophrenia [95], and 
sporadic schizophrenia might be associated with rare de novo 
copy number (CN) mutations [96]. 

 This means that it is not correct to assume that specific 
genes lead to schizophrenia. Nevertheless, one thing that we 
actually do know is that some genetic risk factors are more 
strongly related to the syndrome than most of the others. 

 One of these important genes is Neuregulin-1 [97-104], 
which is located in the chromosome 8p13 and drives the 
production of one of the four proteins of the Neuregulin fam-
ily (abbreviated by NGR-1). It might be the most important 
one that is related to the endophenotype of the disorder 
[105]. With a focus on the molecular interactions that in-
volve Neuregulin-1 (and its ERB receptors), it is possible to 
demonstrate a strong association between the glutamatergic 
hypothesis and WM abnormalities, which remain remarkably 
unexplored in the literature on the matter. 

 A well known post-mortem study [106], associated 
NRG-1-ERB signaling to NMDA hypofunction (they high-
lighted the possible role of ERB-4); notably, the levels of 
NRG-1 and ERB4 were normal. In the same sense, the team 
from deCODE company, which had previously suggested 
Neuregulin-1 as a candidate gene for the syndrome, proposed 
that Neuregulin-1 would participate in the phosphorylation 
of one of the subunits (NR2B) of the NMDAR receptors 
[107]. Also supporting the assumption that Neuregulin-1 is 
chiefly associated with the glutamatergic hypothesis, a fa-
mous study conducted by Stefansson and collaborators [102] 
concluded that, among rats, the NR-1 hypomorphs have 
fewer functional NMDA receptors than controls. 

 On the WM side, one study with rats suggested that 
NRG-1 is necessary to the survival of oligodendrocytes 
[108], while another [109] (also with rats) confirmed that 
Neuregulin-1 is associated with oligodendrocites integrity, 
and extended this perspective to the associated WM thick-

ness and thus the speed of information transmission (also by 
the signalization of the NRG-1 receptor erbB4). The authors 
also suggested that this would cause increased levels of do-
paminergic function. That is, they indirectly assumed an hi-
erarchy of neurophysiological abnormalities based on ge-
netic findings, whereas the glutamate cascades should be 
posited in a higher level of importance, in relation to the do-
paminergic cascades. 

 Even more remarkable with the association that we are 
proposing was the recent discovery that the haplotype 
SNP8NRG221533 of the Neuregulin-1 gene carries out its 
effects over the medial frontal WM in humans [97]. As the 
authors emphasize: “Our findings add additional support to 
the notion that NRG1 contributes to myelination and neuro-
development and that genetic variations in the gene may 
contribute to disturbed myelination during neurodevelop-
ment in schizophrenia” ([97], p. 716).  

 In relation to the studies attempting to define endopheno-
typic markers of the syndrome, a striking finding was that 
the Neuregulin-1 gene relates to the P300 wave latency 
[110], associated with the velocity of neural transmission. 
This finding led the authors to suggest that the P300 effect 
could be due to a disruption in WM’s integrity. 

 In essence, the Neuregulin-1 gene and the molecular cas-
cade NRG-1-ERB are assuming a central role among the 
variables that participate in the consolidation of schizophre-
nia’s endophenotype, while being independently related to 
the glutamatergic and the connectivity WM hypothesis. In 
terms of the latter, it is prominent that, besides the fact that 
excessive glutamate exocytose is toxic to the axonal tracts, 
Neurogulin-1 participates in myelination and, probably, in 
the firing of WM action potentials. 

5. Epistemological Basis of a Unified Neurobiological 

Model of Schizophrenia: Two Levels of the Information 

Processing Paradigm  

 The aforementioned findings suggest that the same risk 
factors underlie events that occur within the synapses and the 
transmission of the action potentials across (and within) the 
WM, which integrates not only nearby cells, but separated 
networks. In this sense, the integration of the connectivity 
WM approach with the glutamatergic hypothesis is natural. 
Moreover, it becomes specifically relevant, as we consider 
that oligodendrocites-related genes like the 2',3'-cyclic nu-
cleotide 3'-phosphodiesterase (CNP) and the oligodendro-
cyte-lineage transcription factor 2 (OLIG2) were found to 
have a similar expressions within schizophrenic patients and 
controls [111], and thus might not be directly implicated in 
the syndrome’s etiology. 

 Nevertheless, this association is insufficient to advance a 
strong correlation between neurophysiology and neuroanat-
omy, as we had proposed ourselves to deliver. To achieve 
this, we need to define the aforementioned ‘dialectic  
relation’. 

 Although it is not canonical in the field of theoretical 
psychopathology, the integration of neuroanatomy and neu-
rochemistry is self-evident; just to mention an example, we 
can notice that long term exposition to some neurotrans- 
mitters and other natural compounds can produce different 
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levels of damage to the cells and even cell death (either by 
intoxication or by apoptosis). The effects are progressive and 
can lead to common anatomical abnormalities found in the 
syndrome (ventricle enlargement, loss of global grey matter 
volume, etc.). In the opposite direction, a decreased number 
of specific cells, determined by any other reason can gener-
ate a neurochemical imbalance. This explains the fact that, 
although most of the neurons that are lost are not replaced, 
drugs can have some stabilizing effect. Thus, one could 
think: why is this approach not common? Why aren’t the 
anatomical (represented by cell death) and the neurochemical 
approaches unified to better characterize the leitmotiv  
of schizophrenia’s onset and progression? The answer is 
simple: because depending on the paradigm that we are  
using, there is no theoretical gain in that perspective. 

 To define the essence of the epistemological problem that 
we are facing and to extract a theoretical advantage, we 
should have in mind the fact that schizophrenia is a disorder 
that in the first instance affects more acutely localist specific 
networks. That is, neuronal assemblies that are close related, 
whereas ‘small-worldness’ becomes moderately impaired (in 
association with at-risk and onset abnormalities) by means of 
neurotransmission dysfunction. In a second moment, more 
pronounced WM abnormalities emerge, leading to an acute 
decrease in transmission power among neurons from differ-
ent motifs. 

6. The Integration of the Glutamatergic Hypothesis with 

the Disconnection Hypothesis 

 The brain exhibits a characteristic known as cognitive 
reserve, which is sometimes defined as an overload of CNS 
neurons in relation to those that would be indispensable in 
youth, and sometimes represented by neuropsychological 
measures of higher cognitive achievement in youth, which 
are associated with a better prognosis in case of senile  
brain disorders. Among the elderly, cognitive reserve was 
demonstrated to be protective of Alzheimer and Dementia 
[112-115]. 

 In our field of interest, it has been shown that cognitive 
reserve is smaller in schizophrenia, both as a neuropsy-
chological measure [116] and a physiological measure (brain 
and intracranial sizes; no reduction was found in extracranial 
size) [117]. This suggests that the loss of neurons could have 
a particularly acute effect over those subjects at risk of de-
veloping the syndrome. Moreover, this perspective probably 
relates to the endophenotypes of the on-risk group, and to the 
fact that some types of cognitive deficits that accompany the 
syndrome precede its onset. 

 Remarkably, the extent of grey matter loss among first 
episode non-medicated patients correlates with measures of 
glutamatergic metabolites in specific sites of the brain [118]. 
This finding correlates with the perspective that glu-
tamine/glutamine levels were increased in the medial tempo-
ral areas of a cohort of adolescents at a high risk of develop-
ing the syndrome [119]. 

 As the above picture suggests, glutamate and associated 
neurotransmitter cascades become impaired before the onset 
of the syndrome, and that associated variables (e.g. high lev-
els of stress, hormonal changes) accompany the onset and 

the structural abnormality (a death) of a substantial number 
of neurons in local sites of the brain, what turns out to  
be specially severe considering that the cognitive reserve is 
reduced. 

 This situation moderately diminishes small-world in-
dexes in the firstly affected neuronal populations, as we can 
grasp from a study that showed that increased neuron-neuron 
connectivity (among rat hippocampus cells) is determined by 
NDMAR activity, and that NMDAR blockers (ketamine) 
diminished local connectivity [120]. Thus, it is suggested 
that this condition over emphasizes the importance (func-
tionality) of network integration, much in the same sense that 
someone who cannot solve a problem using one strategy, 
intuitively grasps another. This integrative capacity is only 
possible due to the availability of functional connectors. 
“(…) Abnormal experience-dependent plasticity, leading to 
changes in synaptic density or dendritic arborization, could 
be reflected by abnormal inter-regional covariation of gray 
matter volume, even in the absence of macroscopic abnor-
malities of WM tracts (…)” ([121], p. 9246). 

 Furthermore, as Price revealed, connectivity (measured 
over the corpus callosum) is normal at the onset of the syn-
drome [122]. A recent study that used, as regions of interest, 
not only the corpus callosum, but several other pathways, 
also reached the conclusion that WM is not severely  
impaired at the moment of onset, but becomes impaired  
in association with chronicity [123]. While another recent 
study [124] has shown that WM’s fractional anisotropy 
within fronto-temporal tracts decreases with age after  
the onset of schizophrenia, while remaining stable among 
controls.  

 But, as we have seen, this neurochemical imbalance that 
affects grey matter starts to tackle the structure of the WM, 
not only due to a toxic over exposure to glutamate, but in 
face of the fact that NRG-1 cascades become impaired all 
over the brain.  

 This ‘circulatory problem’ entraps the individual’s fit-
ness, as it produces a neuropsychological situation in which 
the brain’s motifs, which were previously and selectively 
impaired, also become gradually disintegrated. That is  
the most striking counterpart of the finding that the severity 
of the topological abnormalities within small-worldness  
correlate with the duration of the syndrome [125]. 

 By that means, there is a subtle decrease in the function-
ing level (cognitive, social and subjective), while the experi-
ence of the self also becomes acutely unstructured, leading to 
feelings of depersonalizations and other signs of personality 
disintegration. Thus, what could be a transient decompensa-
tion turns out to be the first-episode of a chronic disorder, 
whereby cognitive, positive symptoms and negative symp-
toms express the fact that small-world indexes are reduced to 
some extent within specific motifs, and the plasticity to use 
and integrate different motifs is increasingly obstructed. In 
the end, it is this last aspect that underpins chronicity and 
determines its severity, as it equates different levels of net-
work impairments in a net fragmentation, which is beyond 
any level of reduced small-worldness and well-defined cog-
nitive impairments. 
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CONCLUSION 

 Information processing in the human brain can be di-
vided into primary information processes, defined by the rate 
of firing of action potentials and information transmission, 
defined by the relation between each two cells and  
from brain motifs to brain motifs. Neurotransmitters/ 
neuroreceptors can be considered as part of the information 
transmission domain, much as WM, while it is also true that 
excessive exocytose of neurotransmitters can be toxic and 
lead to cell death, and thus, to abnormal primary information 
processing. 

 Schizophrenia is a syndrome characterized by the fact 
that neurotransmitter abnormalities forego noticeable WM 
abnormalities. The former, chiefly represented by NMDAR 
hypofunction and associated molecular cascades, are related 
to the first signs of structural neuronal abnormalities and  
cell death, within specific brain motifs. The reason for this 
motif/neuroreceptor association is not totally understood, 
while the net cost of this situation is a decrease in small-
world indexes in related brain areas. 

 This process is both directly and indirectly integrated to 
the underpinning of WM structural abnormalities; not only is 
the excess glutamate toxic to WM, but its disruption is asso-
ciated with at least one common genetic risk: Neurogulin-1. 
That represents the first level relation between WM and  
glutamatergic hypotheses. 

 Considering the existence of glutamatergic chemical  
synapses in WM and other aforementioned findings, we can 
hypothesize that WM abnormalities might be triggered by 
NMDA hypofunction, which introduces a state of excessive 
levels of free glutamate - which is toxic to the cells - there-
fore creating the basis for acute WM abnormalities. 

 Across the whole brain, WM connectivity is displayed in 
different manners: as localist indexes of small-world relation 
within specific brain motifs; connecting directly some of 
those motifs; and connecting integrative neuronal assem-
blies. The diminishing small-world indexes within localist 
networks assigns the importance of overlying different mo-
tifs and integrative assemblies, as this is represented to the 
affected individual, the possibility to overcome the dangers 
of a drastic disability, maintaining himself/herself to be  
attached to paradigms of a normal life. 

 As WM integrity also becomes significantly impaired, 
this possibility is denied. As a result, the affected individual 
starts to face a situation of increasing chronicity, whereas 
his/her condition evolves from specific cognitive deficits 
associated with psychological reactivity, to general disinte-
gration of cognitive abilities and personality. 
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