2,149 research outputs found

    A Framework for Verification in Contactless Secure Physical Access Control and Authentication Systems

    Get PDF
    Biometrics is one of the very popular techniques in user identification for accessing institutions and logging into attendance systems. Currently, some of the existing biometric techniques such as the use of fingerprints are unpopular due to COVID-19 challenges. This paper identifies the components of a framework for secure contactless access authentication. The researcher selected 50 journals from Google scholar which were used to analyze the various components used in a secure contactless access authentication framework. The methodology used for research was based on the scientific approach of research methodology that mainly includes data collection from the 50 selected journals, analysis of the data and assessment of results. The following components were identified: database, sensor camera, feature extraction methods, matching and decision algorithm. Out of the considered journals the most used is CASIA database at 40%, CCD Sensor camera with 56%, Gabor feature extraction method at 44%, Hamming distance for matching at 100% and PCA at 100% was used for decision making. These findings will assist the researcher in providing a guide on the best suitable components. Various researchers have proposed an improvement in the current security systems due to integrity and security problems

    New Mobile Phone and Webcam Hand Images Databases for Personal Authentication and Identification

    Get PDF
    AbstractIn this work we created two hand image databases, usingmobile phone cameras and webcams. Themajor goal of these databases is to build upon aperson's authentication/identification using hand biometrics,decreasing the need for expensive hand scanners. Both databases consist of 3000 hand images, 3 sessions x 5 images (per person)x 200 persons, and are available to freely download. The test protocol is defined for both databases; simple experiments were conducted using the same protocol. The results were encouraging for most of the persons (accuracy was greater than 80%), except for those who rotated their hands in an exaggerated manner in all directions

    Generic multimodal biometric fusion

    Get PDF
    Biometric systems utilize physiological or behavioral traits to automatically identify individuals. A unimodal biometric system utilizes only one source of biometric information and suffers from a variety of problems such as noisy data, intra-class variations, restricted degrees of freedom, non-universality, spoof attacks and unacceptable error rates. Multimodal biometrics refers to a system which utilizes multiple biometric information sources and can overcome some of the limitation of unimodal system. Biometric information can be combined at 4 different levels: (i) Raw data level; (ii) Feature level; (iii) Match-score level; and (iv) Decision level. Match score fusion and decision fusion have received significant attention due to convenient information representation and raw data fusion is extremely challenging due to large diversity of representation. Feature level fusion provides a good trade-off between fusion complexity and loss of information due to subsequent processing. This work presents generic feature information fusion techniques for fusion of most of the commonly used feature representation schemes. A novel concept of Local Distance Kernels is introduced to transform the available information into an arbitrary common distance space where they can be easily fused together. Also, a new dynamic learnable noise removal scheme based on thresholding is used to remove shot noise in the distance vectors. Finally we propose the use of AdaBoost and Support Vector Machines for learning the fusion rules to obtain highly reliable final matching scores from the transformed local distance vectors. The integration of the proposed methods leads to large performance improvement over match-score or decision level fusion

    Predictive biometrics: A review and analysis of predicting personal characteristics from biometric data

    Get PDF
    Interest in the exploitation of soft biometrics information has continued to develop over the last decade or so. In comparison with traditional biometrics, which focuses principally on person identification, the idea of soft biometrics processing is to study the utilisation of more general information regarding a system user, which is not necessarily unique. There are increasing indications that this type of data will have great value in providing complementary information for user authentication. However, the authors have also seen a growing interest in broadening the predictive capabilities of biometric data, encompassing both easily definable characteristics such as subject age and, most recently, `higher level' characteristics such as emotional or mental states. This study will present a selective review of the predictive capabilities, in the widest sense, of biometric data processing, providing an analysis of the key issues still adequately to be addressed if this concept of predictive biometrics is to be fully exploited in the future

    Naval Reserve support to information Operations Warfighting

    Get PDF
    Since the mid-1990s, the Fleet Information Warfare Center (FIWC) has led the Navy's Information Operations (IO) support to the Fleet. Within the FIWC manning structure, there are in total 36 officer and 84 enlisted Naval Reserve billets that are manned to approximately 75 percent and located in Norfolk and San Diego Naval Reserve Centers. These Naval Reserve Force personnel could provide support to FIWC far and above what they are now contributing specifically in the areas of Computer Network Operations, Psychological Operations, Military Deception and Civil Affairs. Historically personnel conducting IO were primarily reservists and civilians in uniform with regular military officers being by far the minority. The Naval Reserve Force has the personnel to provide skilled IO operators but the lack of an effective manning document and training plans is hindering their opportunity to enhance FIWC's capabilities in lull spectrum IO. This research investigates the skill requirements of personnel in IO to verify that the Naval Reserve Force has the talent base for IO support and the feasibility of their expanded use in IO.http://archive.org/details/navalreservesupp109451098

    Optimized Hand Geometry-Based Biometric Recognition System

    Get PDF
    In an era characterized by digital interactions and security needs, biometric systems, especially hand geometry-based recognition, offer an advantageous solution. Biometric identification through hand geometry is ideal for low-security applications due to its non-invasive nature and user-friendly features. This research discusses personal identification leveraging hand geometry features, notably without the use of pegs. Such features encompass finger length and width, palm dimensions, deviations, and angles. Image capturing was conducted without pegs. The study contrasts the use of 12 versus 21 hand geometry features. Identification was achieved using the Euclidean distance measure. The outcomes were validated on both a local and a standard database

    Comparative analysis and fusion of spatiotemporal information for footstep recognition

    Full text link
    Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. R. Vera-Rodriguez, J. S. D. Mason, J. Fierrez, and J. Ortega-Garcia, "Comparative analysis and fusion of spatiotemporal information for footstep recognition", Pattern Analysis and Machine Intelligence, IEEE Transaction, vol. 35, no. 4, pp. 823-834, August 2012Footstep recognition is a relatively new biometric which aims to discriminate people using walking characteristics extracted from floor-based sensors. This paper reports for the first time a comparative assessment of the spatiotemporal information contained in the footstep signals for person recognition. Experiments are carried out on the largest footstep database collected to date, with almost 20,000 valid footstep signals and more than 120 people. Results show very similar performance for both spatial and temporal approaches (5 to 15 percent EER depending on the experimental setup), and a significant improvement is achieved for their fusion (2.5 to 10 percent EER). The assessment protocol is focused on the influence of the quantity of data used in the reference models, which serves to simulate conditions of different potential applications such as smart homes or security access scenarios.Ruben Vera-Rodriguez, Julian Fierrez and Javier Ortega Garcia are supported by projects Contexts (S2009/TIC-1485), Bio-Challenge (TEC2009-11186), TeraSense (CSD2008-00068) and ‘Catedra UAM-Telefonica’

    Biometric Systems

    Get PDF
    Because of the accelerating progress in biometrics research and the latest nation-state threats to security, this book's publication is not only timely but also much needed. This volume contains seventeen peer-reviewed chapters reporting the state of the art in biometrics research: security issues, signature verification, fingerprint identification, wrist vascular biometrics, ear detection, face detection and identification (including a new survey of face recognition), person re-identification, electrocardiogram (ECT) recognition, and several multi-modal systems. This book will be a valuable resource for graduate students, engineers, and researchers interested in understanding and investigating this important field of study

    An investigation of matching symmetry in the human pinnae with possible implications for 3D ear recognition and sound localization

    Get PDF
    The human external ears, or pinnae, have an intriguing shape and, like most parts of the human external body, bilateral symmetry is observed between left and right. It is a well-known part of our auditory sensory system and mediates the spatial localization of incoming sounds in 3D from monaural cues due to its shape-specific filtering as well as binaural cues due to the paired bilateral locations of the left and right ears. Another less broadly appreciated aspect of the human pinna shape is its uniqueness from one individual to another, which is on the level of what is seen in fingerprints and facial features. This makes pinnae very useful in human identification, which is of great interest in biometrics and forensics. Anatomically, the type of symmetry observed is known as matching symmetry, with structures present as separate mirror copies on both sides of the body, and in this work we report the first such investigation of the human pinna in 3D. Within the framework of geometric morphometrics, we started by partitioning ear shape, represented in a spatially dense way, into patterns of symmetry and asymmetry, following a two-factor anova design. Matching symmetry was measured in all substructures of the pinna anatomy. However, substructures that stick out' such as the helix, tragus, and lobule also contained a fair degree of asymmetry. In contrast, substructures such as the conchae, antitragus, and antihelix expressed relatively stronger degrees of symmetric variation in relation to their levels of asymmetry. Insights gained from this study were injected into an accompanying identification setup exploiting matching symmetry where improved performance is demonstrated. Finally, possible implications of the results in the context of ear recognition as well as sound localization are discussed
    corecore