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ABSTRACT 
 

Generic Multimodal Biometric Fusion 
 

Yash Shah 
 
Biometric systems utilize physiological or behavioral traits to automatically identify 
individuals. A unimodal biometric system utilizes only one source of biometric 
information and suffers from a variety of problems such as noisy data, intra-class 
variations, restricted degrees of freedom, non-universality, spoof attacks and 
unacceptable error rates. Multimodal biometrics refers to a system which utilizes multiple 
biometric information sources and can overcome some of the limitation of unimodal 
system. Biometric information can be combined at 4 different levels: (i) Raw data level; 
(ii) Feature level; (iii) Match-score level; and (iv) Decision level. Match score fusion and 
decision fusion have received significant attention due to convenient information 
representation and raw data fusion is extremely challenging due to large diversity of 
representation. Feature level fusion provides a good trade-off between fusion complexity 
and loss of information due to subsequent processing. This work presents generic feature 
information fusion techniques for fusion of most of the commonly used feature 
representation schemes. A novel concept of Local Distance Kernels is introduced to 
transform the available information into an arbitrary common distance space where they 
can be easily fused together. Also, a new dynamic learnable noise removal scheme based 
on thresholding is used to remove shot noise in the distance vectors. Finally we propose 
the use of AdaBoost and Support Vector Machines for learning the fusion rules to obtain 
highly reliable final matching scores from the transformed local distance vectors. The 
integration of the proposed methods leads to large performance improvement over match-
score or decision level fusion.   
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Chapter 1: Introduction 

1.1 Biometric System 

Our society has out grown the geographical boundaries and computers have facilitated 

this. Human computer interactions (HCI) have become an integral part of modern living. 

Identity management refers to the challenge of providing authorized users with secure 

and desired access to information and services across a variety of networked systems. 

Examples of such applications include physical access control to a secure facility, e-

commerce, access to computer networks and welfare distribution. The primary task in an 

identity management system is the determination of an individual’s identity. Most 

conventional modes of authentication are based on ‘what we know’ (e.g., passwords) 

and/or ‘what we have’ (e.g., ID card). These methods have sufficed for a while in the past 

but today our lives are deeply tied with digital information and we cannot rely completely 

on these surrogate representations of the identity as they can easily be lost, shared or 

stolen. 

The concept of biometrics has existed for over a century, fueled by the diversity and 

randomness in human physiology.  Biometrics offers a natural and reliable solution to the 

problem of identity determination by recognizing individuals based on their physiological 

and/or behavioral characteristics that are inherent to the person. Some popular biometric 

traits are fingerprint, hand-geometry, iris, retina, face, palmprint, ear, DNA, voice, gait, 

signature and keystroke dynamics.  

Biometric Characteristics: Any human physiological and/or behavioral trait can be used 

as a biometric characteristic as long as it satisfies the following requirements [2]:  

 Universality: Every person should possess the biometric characteristic. 
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 Distinctiveness: No two persons should have the same characteristics. 

 Permanence: The biometric characteristic should not change over time that is, it 

should be sufficiently invariant. 

 Collectability: The biometric characteristic should be easily collectable. 

 Performance: The biometric characteristic should give reasonable performance in 

terms of recognition accuracy and speed. 

 Acceptability: The characteristic should be readily acceptable by the people. 

 Circumvention: The characteristic should not be easily spoofed by using 

fraudulent methods.  

Table 1.1 summarizes the different levels of desired individual characteristics of 

commonly used biometric traits [4] 

 

Biometric System: Figure 1.1 shows a generic biometric recognition system [5]. It can 

Table 1.1: Different characteristics of the commonly used biometric traits. [4] 
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be divided into five sub systems: 

 

 Data collection: This subsystem acquires the image of the biometric trait for the 

user. It consists of a sensor that captures the image.                                                                                

 Transmission: This subsystem receives data from the data collection module, 

compresses it and then transmits to the signal processing unit and data storage 

unit. 

 Data Storage: In this subsystem images and templates are stored.  

 Signal Processing: This is the main block of the system. It performs image pre-

processing feature extraction and pattern matching operations. 

 Decision: This subsystem uses the match score to verify the identity claimed by 

the user or to identify the user  

Figure 1.1: High level schematic of a generic biometric system. [5] 
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Biometric System functionality: Based on the information flow and setup shown in 

figure 1.1 different deployment scenarios are established. During enrollment, the true 

identity of the user is associated with his biometric template. Biometric systems can 

provide two main functionalities, namely, (i) verification and (ii) identification. Figure 

1.2 shows a pictorial representation of each scenario. 

A generic biometric verification system utilizes the presented biometric trait to verify the 

claimed identity by the user. The system user claims his/her identity using some form of 

hard or soft identifier e.g. ID card, smart card or PIN. The claimed identity is then 

verified by matching the presented biometric against the stored biometric under that 

identity. Thus, the matching is 1:1 in a verification system. From a pattern recognition 

perspective such biometric systems can be considered as a binary classification problem, 

where an input candidate has to be classified as either ‘genuine user’ or ‘imposter user’ 

using a scalar distance/similarity score. In case of an identification system, the end user 

does not claim any particular identity but instead the system determines his identity 

among the enrolled set of users. The user input is compared against all available database 

entries and the user is assigned the identity of the most similar stored template. This type 

of setup is analogous to a multi-class classification problem being treated with 1-Nearest 

Neighbor classifier.   

1.2 Unimodal Biometric Systems and Their Limitation 

Biometric systems relying on a single source of information for the purpose of 

identification or authentication are termed as unimodal biometric systems. Unimodal 

systems have to contend with many limitations while operating in real world conditions 
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and are not as secure and infallible as they are desired to be. The following drawbacks, as 
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described by Jain et al.  [3], of a unimodal system lay the motivation behind the use of 

multimodal biometrics. 

Noise in input data: Most systems suffer from unavoidable imperfections in the sensed 

data, a fingerprint with a scar and a voice altered by a cold are examples of noisy inputs. 

Noisy data can be a result of anomalies at the user’s end, improper environmental 

conditions or poorly maintained sensing device. The inherent noise in the sensed sample 

trickles its way further into the system and may cause inaccurate matching with templates 

in the database causing errors in the final output decision.  

Intra-class variations: Due to the inherent physiology of different traits one cannot 

expect to acquire exactly similar biometric data at different instances of time. The 

biometric data acquired for authentication may be different from the data obtained during 

enrollment causing errors in the matching process. These variations are primarily caused 

by inconsistent interaction of users with sensing device or due to change in environment 

or the sensor setting itself.  

Inter-class variations: Biometric traits are represented by quantitative feature sets. 

While the biometric trait itself is observed to vary significantly across large populations, 

the feature-sets used to represent them have large similarities. Also, since the feature-set 

is a finite representation, theoretically an upper bound exists on their distinctiveness. 

Non-universality: Every biometric system works under an assumption that the user will 

be able to successfully present their biometric to the sensor. But in real life situations 

there is a percentage of the population for whom is it not possible to acquire reliable 

biometric data. A fingerprint biometric system, for example, may be unable to extract 

features from the fingerprints of certain individuals, due to the poor quality of the ridges.  
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Spoofing: It can be defined as intentionally cheating the system in order to make it accept 

an artificially prepared biometric as a true biometric. For example, video recordings of a 

user’s face can be played on a laptop and presented before a facial recognition camera; 

iris images of very high quality (2400 x 1200) may be used to fool an iris camera; 

artificial fingerprints can be made using gelatin, playdoh, etc. 

Due to these practical problems, the error rates associated with unimodal biometric 

systems are quite high which makes them unacceptable for deployment in security critical 

applications. The state-of-the-art error rates associated with fingerprint, face and voice 

biometric systems are shown in the Table 1.2 [3, 64]. The overall identification 

performance can be improved by using multimodal systems.  

1.3 Multimodal Biometric System 

Identification systems that consolidate information from multiple biometric sources are 

called multimodal biometric systems. The concept of multimodal systems has existed for 

over a decade now, but has attracted a lot of attention in the recent past as these systems 

meet the performance requirements of commercial deployment. The term multimodal 

biometrics refers to very broad class of systems and hence is specified by the type of 

multiple cues used for authentication and the methods used for combining these cues. 

Integrating independent information from multiple sources surpasses the upper bound on 

performance imposed on any given unimodal system. The probability of simultaneous 

successful spoof attacks on all the sources is much lower compared to a unimodal system. 

A number of multimodal systems have been presented in literature that differ from one 

another in terms of there architecture, the number and choice of biometric modalities, the 
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level at which the evidence is accumulated, and the methods used for the integration or 

fusion of information. 

 

1.3.1  Sources of information 

Based on the type of information being combined multimodal systems can be classified 

as the follows [3]  

 Multiple sensors for the same trait: In this case information is fused using 

multiple digital samples belonging to the same trait but from multiple type of 

sensor technology. This setup can address the problem of noisy sensor data. (For 

example, fingerprint data from optical and solid-state fingerprint sensors.) 

 Multiple instances of the same biometric: In this case information is combined 

from biometric samples acquired from the same trait but multiple setting and/or at 

different time instances. (For example, multiple face images of a person obtained 

 Test Test Parameter False Reject Rate False Accept Rate 

FVC 2004 [11 ] 
Exaggerated skin 

distortion, rotation 

2% 

 

 

2% 

  

Fingerprint 

FpVTE 2003 [12 ] 
U.S. government 

operational data 
0.1% 1% 

Face FRVT 2004 [13 ] 
Varied lighting, 

outdoor/indoor 
10% 1% 

Voice NIST 2004 [14 ] 
Test independent, 

multilingual 
5-10% 2-5% 

Table 1.2 Error rates associated with different unimodal biometric systems 
(Fingerprints, Face and Voice). Each system is evaluated under different test 
conditions [3, 64]. 
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under different pose/lighting conditions).  

 Multiple algorithms for the same biometric: Different recognition algorithms 

exploit different discriminatory properties in a given biometric sample. The 

combination of information from different algorithms can aid improving 

performance of an existing database or system. (For example, multiple iris 

matchers like PCA, ICA and Gabor phase information). 

 Multiple units of the same biometric: Multiple physiological units of a single 

individual have been known to be distinctive. Also a recognition system that 

works on multiple units of the same biometric can ensure the presence of a live 

user by asking the user to provide a random subset of biometric measurements. 

(For example, left index finger followed by the right middle finger). 

 Multiple biometric traits: In this case information is derived from different 

biometric traits. This type of fusion has received a lot of attention because a 

system based on multiple traits is more robust to noise, addresses the problem of 

non-universality, improves the matching accuracy and is more difficult to spoof. 

(For example, face, fingerprint and iris based system). 

In the serial architecture, each information source is activated sequentially and the 

result at any stage affects the evoking of the next stage. An example of such a system 

was proposed by Hong and Jain [17], for fusion of face and fingerprint systems.  In 

the parallel architecture, all information sources contribute independently and a 

fusion scheme is devised to combine the input information. This architecture achieves 

lower error rates and hence has been widely used, details about this can be found in 

[16] and [18]. The cascaded system can be more efficient and convenient to the user 
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Fusion 
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Identity 

Figure: Architecture of multimodal biometric systems; (up) serial and (down) Parallel 

but the design such a system is more complex and needs more attention from the 

research community. 

1.3.2  Information Architecture 

 Biometric data goes through several transformations from acquisition till matching. In 

case of multiple information sources, information fusion and processing can either have a 

cascade or parallel architecture (see figure 1.4). 

 

 

 

 

 

 

 

 

The cascade architecture sequentially utilizes additional biometric sources if a reliable 

decision cannot be made with the available information. There is still much to be done in 

structural design of such an arrangement.  The parallel architecture although more 
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exhaustive, provides more robust performance.  

1.3.1. Levels of fusion:  

Fusion in multimodal biometric systems can take place at four major levels [3] (see figure 

1.5) raw data level, feature level, score level and decision level. As seen in figure 1.5, the 

information can be combined at different stages; information versatility reduces after 

every stage of processing. 

 

  Decision Level Fusion: Individual biometric systems, as final output, give out a binary 

Raw Input 
1

Raw Input 
N

Sensor 
 

Level 

Feature Extraction

Template 
1

Template 
N

Feature 
 

Level 

Match-Score 
1

Match-Score 
N

Match Score 
 

Level 

Distance Measure

Decision 
1

Decision 
N

Decision 
 

Level 

Identify / Verify 

Figure 1.5: Different levels of information fusion in multimodal systems
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decision or a rank based decision. Decision level fusion involves integrating the results 

emerging from individual decision modules of each constituent source. Several methods 

exist in the literature to achieve a final decision from multiple outcomes such as, majority 

voting [28], behavior knowledge space [29], and weighted voting based on Dempster-

Shafer theory of evidence [30]. Decision level is the poorest level in terms of available 

information. Thus performance improvement due to fusion that can be achieved, under 

optimal processing, is less than that can be achieved at preceding levels of fusion. 

Match-Score Level Fusion: When the biometric matchers output a set of possible 

matches along with the quality of each match (matching score), fusion can be achieved at 

the match-score or confidence level. This process involves integration of different match 

score, generated from each component modality, into a consolidated match score. Next to 

the feature vectors, the matching scores generated by the matching module contain the 

richest information about the input pattern. Match-score fusion is fairly simple because 

most available systems generate a scalar similarity or dissimilarity score. In the past, 

match-score fusion has received a lot of attention due to ease of fusion and availability of 

matching scores from various commercial biometric products. The fused match-score is 

either generated through (i) rule based approach (ii) or classification based approach.  

Feature Level Fusion:  Feature level fusion refers to consolidating information from 

different feature-sets or templates obtained from participating modalities or information 

sources. Usually, when the feature vectors are in the same space, a single fused template 

is created from multiple input feature-sets. This template is then used as the input to the 

matcher to generate match scores, which is then fed to the decision making module. Since 

the features contain richer information about the input biometric data than the matching 
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score or the decision of a matcher, integration at the feature level should provide better 

recognition results than other levels of integration. The intuition towards better 

performance by feature level fusion faces several practical challenges. Also, most 

commercial biometric products do not make feature sets available to researchers due to 

the proprietary nature of there processing algorithm. Hence very few researchers have 

studied integration at the feature level. 

Sensor Level Fusion: The digital data from the sensors are directly combined in sensor 

level fusion [20]. Although sensor level is the richest information source among all other 

levels, the representation of this information is extremely diverse. Sensor level fusion is, 

in most cases, possible when the same biometric trait is captured at multiple instances or 

setting using highly compatible or same sensors. For example, the face images obtained 

from several cameras can be combined to form a 3D model of the face. Another example 

of sensor level fusion is the mosaicking and super-resolution of multiple fingerprint 

impressions to form a more complete and detailed fingerprint image [21, 22]. Data 

registration and normalization is critical for effective sensor level fusion, unfortunately 

this is a very challenging task. Sensor level fusion may not be possible if the data 

instances are incompatible (e.g., it may not be possible to integrate face images obtained 

from cameras with different resolutions). 

1.4 Thesis Contribution 

A review of the proposed multimodal systems shows extensive research in decision level 

and match-score level fusion. Information fusion at both these levels has shown limited 

improvement in performance. Match-score represents the composite distance/similarity 
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between two arbitrary templates. Based on this information a decision is then made. Due 

to processing there is a significant loss of information which originally existed in the 

templates. In this thesis, we turn towards the feature level fusion and propose the 

following methodology:  

• We propose using a novel transformation on the original feature vectors to 

deal with the problem of incompatible templates. Since feature vectors 

obtained for different information sources/ modalities are heterogeneous, 

normalization is required to transform the feature vector into a common 

domain before combining them. We define local distance kernels for this 

purpose. These kernels can be adjusted to be biometric specific for 

example, processing fingerprint minutia data or Iris binary codes.  

• Noise in input biometric sample leads to anomalies or noisy feature in the 

biometric templates. In this thesis, we propose two new feature selection 

(or noise removal) techniques so that only the most meaningful features 

contribute to the consolidated matching score. 

• In this thesis we use AdaBoost for multimodal fusion. AdaBoost is a 

learning theory based method for feature selection and classifier design, 

which utilizes boosting and large margin theory in order to design a strong 

classifier by linearly combining the best n individual features. Each 

distance feature coupled with a scalar threshold forms a weak classifier. 

AdaBoost then selects the classifiers and there corresponding weights.  

• In order to calculate the most discriminating matching score we propose a 

completely learnable match score calculation technique based on Support 
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Vector Machines (SVM’s). SVM’s rely on the theory of ‘large margin 

analysis’ to obtain an optimal separating hyperplane which directly 

maximizes the minimum distance between the hyperplane and the distance 

vectors. The matching score generated with this method symbolizes the 

confidence generated by the trained classifier. 

 

The recognition performance of all proposed techniques is empirically evaluated for 

verification mode and identification mode. Results are shown to be superior to the match-

score level fusion. 

This thesis is organized in the following manner.  In Chapter 2, we describe the local 

distance transformation and the proposed feature selection scheme. Chapter 3 explains 

the theory behind AdaBoost and our proposed method for fusion. Chapter 4 focuses on 

the application of support vector machines for generating fused matching scores. 

Conclusions and future work are provided in Chapter 5.    
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Chapter 2: Generic Information Fusion at Feature Level 

2.1 Motivation and Challenges 

The feature-set which quantitatively represent a given biometric modality is the richest 

source of information. . With a matching score obtained from fused templates, one may 

expect performance of a MMB system to be improved compared to the system that uses 

unimodal matching scores. While match-score and decision level fusion have been 

extensively studied, feature level fusion is relatively unexplored. In previous feature level 

fusion (FLF) attempts, Kumar et al. [23] fused feature extracted from palmprints and 

hand-geometry by simple concatenation of feature vectors from each modality. Ross and 

Govindarajan [24] further studied in detail FLF for face and hand-geometry features. 

They applied feature normalization and introduced a new thresholded distance metric. In 

their work, improved performance was demonstrated by using a feature selection 

techniques and feedback system in conjunction with match score. But in all previous 

work, FLF has been limited to modalities or algorithms which generate compatible 

feature vector, for example Euclidian features. This limitation, incompatible feature set, 

has limited researchers from extending FLF to all biometric traits, such as fingerprints 

and hand geometry.  

2.2 Generation of Multimodal Database 

In this chapter we will introduce a generic technique to overcome the limitations imposed 

on feature level fusion due to different representative schemes used for different traits.  In 

order to focus on fusion, where ever possible, off-the-shelf feature extraction algorithms 
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were leveraged.  Table 2.1 details the various algorithms and modalities used in our 

work.  

 Algorithm Domain Dimensionality 

PCA Euclidian 25 

ICA Euclidian 25 Face 

Geometric Real 27 

PCA Euclidian First 24 basis vectors 
out of 99 

ICA Euclidian First 24 basis vectors 
out of 99 

Iris 

2D Gabor Filter Binary 34560 

       Fingerprint     Minutia Points Location and 
orientation 

Variable 

 

 

Face: Facial images corresponding to 100 users, 5 samples per user were obtained using 

a CCD camera at West Virginia University. Principle component Analysis (PCA) and 

Independent Component Analysis (ICA) methods were implemented and used to extract 

features from the images [6, 7]. Face Geometry features were manually extracted using a 

Graphical User Interface (GUI) designed by Arun Anthony at West Virginia University. 

Iris: Iris images corresponding to 100 eyes, 5 samples per eye were obtained from the 

publicly available CASIA dataset [8]. The global PCA and ICA encoding methods 

described by Dorairaj and Schmid [9] were implemented and used to extract features 

from the normalized iris images. A 2D Gabor filter based algorithm, our implementation 

of Daughman’s algorithm [10], was implemented to obtain Iris Codes. The details of this 

Table 2.1: Detailed description of the different biometric feature sets used for our 
experiments 
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system are described in the later sections. 

Hand Geometry: It utilizes the geometric and physical characteristics of the hand for 

establishing identity (e.g. length of the fingers, width of the fingers, width of the palm, 

thickness of the hand etc.). Even though individual hand features have been found 

insufficient for identification, a collection of features can be reliably used for the 

verification of an identity. The hand geometry database consist of hand images 

corresponding to 100 users with 5 samples per user, obtained from a commercial off the 

shelf (COTS) hand geometry system installed at West Virginia University. The feature 

set consists of 9 features corresponding to different measurements of the hand biometric. 

Fingerprints: A data base of minutia based fingerprint representation was obtained from 

a COTS system (VeriFinger from Neurotechnologija) for 100 fingers, 5 samples per 

finger. The commercial feature extraction module provided the location and orientation 

of the detected minutia points. Also, using the same COTS system the matching scores 

and translation parameters were obtained between all pairs of fingerprints. The matching 

methodology of minutia sets is explained, in detail, in a later section. 

2.3 Fusion Framework 

By using multimodal systems we desire to obtain highly accurate matching scores 

between the candidate template and database template. With these fused matching scores, 

we can threshold them for verification or rank them for identification. Unfortunately, due 

to wide diversity in information encoding techniques used for different biometric sources, 

a match-score obtained from naïve concatenation of multiple feature vectors, whenever 

possible, does not improve performance beyond match score fusion.  
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For example consider fusion of two information sources with feature vectors in Euclidian 

space, previous methods have fused features by merely concatenating the component 

feature vectors and a consolidated matching score is calculated by simple Euclidian 

distance. This simple feature fusion procedure is diagrammatically shown in the figure 

2.1. The performance of this trivial methodology was evaluated on our dataset (see 

section 2.2). From Receiver operator curves (ROC) in Figures 2.2, 2.3 and 2.4, it appears 

that this technique is sensitive to numerical range of the feature-set and susceptible to 

redundant and noisy feature values.  

 

 

 

 

 

 

 

 

Trivial concatenation for feature level fusion does not result in consistent results. The 

following challenges are associated with feature level fusion [24] 

 Each biometric entity is processed by a principally different algorithm hence the 

relationship between the feature spaces of different systems may not be known. For 

example fingerprints are represented by location and orientation of minutia points and 

iris templates by quantized Gabor phase response. 

 There exists no theoretical method describing the non-linear relationship between 

Iris 

Face 

Feature 
Extraction

Feature 
Extraction

Concatenation 

DataBase 

Euclidian 
distance 
measure 

 

Euclidian 
Features 

Euclidian 
Features 

Classification 

Figure 2.1: Feature Fusion through Simple Concatenation of Euclidian Features 
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feature vectors from multiple sources.  

 In most cases the fused template or the feature vector is of higher dimensionality than 

individual templates leading to the ‘curse of dimensionality’ problem [53].  

 Most commercial systems do not provide access to the feature vectors which they use 

in their product.  
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Figure 2.3: Inter modality ICA and PCA feature fusion between Iris and 
Face respectively. Performance improves even with simple concatenation.   
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Figure 2.4: fusion of cross modality and cross algorithm features-sets. The 
performance is at least as good as the strongest individual source.  
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The next section describes the proposed methodology to overcome these challenges and 

show feature level fusion to be a viable technique. 

2.4 Data Preprocessing 

To exploit the competency of feature level fusion it is critical to bring the information in 

individual feature set to a common platform before fusion. This section explains, in 

detail, the proposed techniques for data pre-processing to overcome some of the cited 

problems. 

2.4.1  Feature Transformation 

In general, we assume that there exists labeled training data available in the form of a 

multimodal database and unlabeled incoming data known as the candidate. As mentioned 

section 2.3, direct concatenation of feature sets in not possible when the features are in 

different space, e.g. fingerprint minutia information and face eigen co-efficient. To 

address this feature incompatibility issue, it is required to map the features in a common 

normalized distance space. We use candidate template and database templates to 

transform and synthesize a normalized distance vector such that it represents the 

multidimensional distance between the two templates. The numerical range of these 

distance vectors needs to be normalized such for fusion. We propose to map features into 

a common domain by applying local distance kernel. For this transformation, in this 

thesis, we assume that features are independent. The local distance kernels transforms 

each dimension independently. Feature vectors from multiple sources can be processed 

through biometric and representation specific kernels and then fused to reside in the 

common transformed space. Formally, denote a feature vectors, { }
m

candidate RX ∈ , 
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submitted for identification from given information source. Denote by, { }
m

candidate RY ∈ , a 

feature vector from the same single source stored in a database. Then the local distance 

kernel, D, between X and Y is defined as a function φ that maps X and Y onto a non-

negative portion of the real line, that is, ( ){ }],...,1[for  ,:1 MiyxRd iii ==∈= + φδδ  

The following local kernels are examples used to obtain a local distances 

vector m
m RdddD +∈= ],...,,[ 21 , where the individual components id  are defined as, 
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2.4.2  Feature Normalization 

Normalization is a common technique utilized to scale data into a common numerical 

range. Jain, Karthik and Ross [64] have used different normalization techniques for 

fusing match-scores and analyzed them in terms of there robustness and efficiency for 

rule based fusion. Direct normalization of feature values is not always possible because 

many feature sets exist in domains other than Euclidian, e.g. fingerprints and binary 

codes. To combine feature information, normalization is embedded in the transformation 

function itself which scales the contribution of each dimensionality to comparable 

numeric range such that the true relationship with the final matching is consistent. The 
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transformation 2 3( ) & ( )φ φ• •  yields local distance vector of the same dimensionality but in a 

new common space and within common numerical range. The above transformation 

functions are directly applicable to features in Euclidian space, but for feature-sets in 

other domains slightly modified transformations are used which are discussed further in 

this chapter. Once the features are transformed to a common domain, they can be fused 

by mere concatenation. 

2.4.3  Special Transformation 

Biometric entities are represented by various processing algorithms which exploit most 

distinctive features of a given modality. One expects these features to be approximately 

similar for different samples of a given individual and not similar for samples obtained 

from other individual. The feature comparison is mathematically achieved by defining a 

distance measure between the two templates. This section explains in detail, the 

techniques used to transform minutia templates and binary iris codes to a normalized 

distance space. Once these features are transformed, fusion with any other transformed 

feature-set can be achieved by mere concatenation.   

Fingerprint Minutia set transformation: A fingerprint refers to the flow of ridge 

patterns in the tip of the finger. The ridge flow exhibits anomalies in the local regions of 

the fingertip, and these are the position and orientation of these anomalies that are used to 

represent and match fingerprints. Each fingerprint is unique due to complex structure of it 

ridges and location of anomalous ridge endings known as minutia points [16]. The 

distribution of minutia points is used to match and establish the similarity between two 

fingerprints [65]. Minutia-based techniques attempt to align two sets of minutiae points 
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and determine the total number of matched minutia [66]. The performances of minutia 

based techniques rely on the accurate detection of minutiae points and the use of 

sophisticated matching techniques to compare two minutia sets. Generally, automatic 

fingerprint recognition is achieved with point pattern matching (minutiae matching) 

instead of appearance based matching or a ridge pattern matching of fingerprint images.  

To compensate for translation and rotation, simple affine transform is used for which 

scale and orientation parameters have to be estimated [66]. More advanced processing is 

applied to compensate for non-linear deformation due to the elastic physiology of 

fingerprints [67]. Once the alignment is achieved, a match score is generated based on the 

number of matching minutia.  

Minutia based systems have several drawbacks [47].  

• Due to the small contact area in new generation fingerprint sensors, sufficient 

minutia information is not captured. Due to this alternate information from 

fingerprints has been augmented to improve performance. 

• Minutia based systems rely on accurate extraction of minutia location through 

advanced image processing. However, a fingerprint minutia extraction system 

cannot work accurately on images from different sensors. 

• As the finger needs to be pressed against a flat sensor surface for imaging, 

nonlinear distortions are introduced with the fingerprint image obtained. 

Appropriate measures need to taken to compensate for this distortion prior to 

matching. 

• Although relative minutia locations do not change over time, it is possible for 

minor cuts and bruises to obscure minutia information in the acquired image. 
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• A section of the user population consistently fails to provide good fingerprint 

images. Minutia based systems will cause inconvenience for such users. 

Hence, multi biometric capability should be available.  

 To apply local distance kernels to fingerprint minutiae templates, candidate minutia 

information is transformed by comparing the input and fingerprint with a database 

fingerprint. After applying all the required preprocessing for minutia matching, minutia 

pairs are defined by nearest neighboring minutia point to the reference minutia. A fixed 

length distance vector is synthesized from best ‘n’ minutiae pairs, each represented by 

their corresponding off-set. In figure 2.5, diagrammatic methodology used to generate 

fingerprint distance vector is shown. In our experiments simple affine transform was 

used.  

 

The choice of ‘n’, number of minutia pairs to consider is empirically determined such 

that minimum probability of error is achieved on the training set.  

• Fingerprint Enhancement 
 
• Minutia Detection 
 
• Minutia Alignment

DataBase 

Minutia based transformation 

dmin(m,n)d 3 d2d1 dmin(m,n)d 3 d2d1

 

 
Figure 2.5: Fingerprint minutia transformation system 
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The emphasis of this transformation scheme is not to propose a minutia based matching 

scheme but only to solve the template incompatibility challenge. The fundamental 

principle is to synthesize a distance vector between input information and the database. 

Current fingerprint systems use more complicated algorithms for minutiae matching, 

which compensate for nonlinear deformation in fingerprints [67]. We have assumed a 

simple model for fingerprint matching because the main focus of this work is on feature 

level fusion and not on individual algorithms.  

Iris Recognition, Representation and Transformation: Of the many biometrics that 

exist, iris recognition is attracting more attention than any other biometric, mainly due to 

its permanence, accuracy, and increasing acceptance. The iris of the human eye is the 

annular part between the pupil and the sclera. It is a complex texture that contains a large 

number of irregular features, including freckles, coronas, stripes, furrows, crypts, etc. 

Furthermore, the spatial distribution of these features in the iris is also complex and can 

be viewed as realization of a complex spatial random biological process. Such randomly 

distributed and irregular features constitute the most distinguishing characteristics of the 

iris. This section explains in detail,  

a. The techniques used to encode iris features using 2D Gabor filters. 

b. Extracting local hamming distance vector from IrisCodes.  

In the early 90’s, Daugman extended his theoretical findings from modeling of primate 

visual cortical cell response to iris recognition [70]. He used 2D Gabor wavelets as 

carrier waves for iris feature extraction by phase demodulation. Daugman’s work was 

motivated by the earlier finding of Oppenheim and Lim [71] who demonstrated the 

importance of phase for the perception of visual features. Daugman’s iris recognition 
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system was patented in 1994. As a result, there are no details provided for accurate 

implementation of the system.  In this thesis, IrisCodes are generated using our own 

implementation of Daugman’s algorithm. Figure 2.6 shows a general block diagram that 

we followed in our implementation. The following steps are involved. 

 

Step 1: Localization of the iris from a close up eye image: Localization is the process 

of segmenting the iris region from a background of pupil, eyelids, eyelashes etc. 

Daugman designed a circular edge detector using an integro-differential operator for 

performing this step [10]. 

Step 2: Normalization: Normalization is a transformation by which a scale and 

translation invariant representation of the localized iris is obtained. Daugman employs a 

doubly dimensionless polar representation by the use of a rubber sheet model. Nearest 

neighbor interpolation is used to extract information from Cartesian coordinate pixel 

system.  In our implementation iris texture is normalized to a standard size of 60-by-360, 

implying 60 concentric radial bands at an angular resolution of 1 degree.  

Step 3: Encoding: Daugman, in his earlier work, proposed 2D Gabor functions. The 2D 

Figure 2.6: Schematic of the modified Daugman algorithm 
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Gabor functions are local spatial bandpass filters that achieve the theoretical limit for 

conjoint resolution of information in the 2D spatial and 2D Fourier domains. This finding 

was applied to iris recognition by using 2D Gabor wavelets as the carrier waves and 

representing iris features using the phase of the response. Encoding is applied to the 

normalized iris region of the image.  The phase information, obtained from demodulation 

by 2D Gabor wavelet demodulation, is coarsely quantized to four levels using binary 

codes. This output from the normalized iris region forms the binary template called 

“IrisCode”. Although this general principle has been published, details of the required 

parameters settings are not made public. In this work, we used the fact that the iris has 

very fine texture near the pupil and the texture gradually becomes coarser as the radius 

increases. The iris textural content cannot be sufficiently described by any one scale and 

frequency choice of Gabor filter scale and frequency. Figure 2.7 shows the difference in 

texture in three different regions of the iris and the different scales of the Gabor filter 

applied in order to encode the different textures of the iris region. 

 

Through empirical evaluation of the iris structure we came up with 3 different scales and 

Multi-Scale Gabor filters are 

convolved with 3 different 

circular bands within iris region 

scale 

Figure 2.7: Diagrammatic representation of the designed iris encoding method 
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an orientation range which best suited our database. The phasor response from each pixel 

quantized to 2 bit representation. The outer annular bands were ignored during template 

generation in order to compensate for the lack of depth-of-focus of the CCD camera. This 

resulted in a 34560 bit template (48-by-720).  

Step 4: Matching: The dissimilarity between the input iris image and the database 

template can be easily determined by finding the Hamming distance between their 

IrisCodes. During this stage the response obtained from noisy iris regions such as eyelids, 

eyelashes and specular reflection is ignored using a binary mask as per the following 

equation  

( )1 2 1 2
1 2

code code mask mask
HD

mask mask
⊕ ∩ ∩

=
∩

 

Where, code 1 and code2 are the IrisCodes of 2 irises. The binary mask (mask 1 and 

mask 2) is a binary vector of the same size as the IrisCodes. Based on the detected 

occlusions in each template, the corresponding mask is synthesized by allocating ones to 

iris pixels and zeros to detected occlusion.  

Figure 2.8 shows the score distribution and ROC curve when our implementation of 

Daugman’s recognition algorithm is tested the iris images of the CASIA dataset (100 

subjects, 6 samples per subject). 
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Our implementation yielded an equal error rate of 3.15%. The binary templates are 

organized in a matrix format in order to draw correspondence with its parent pseudo polar 

iris texture representation. Both, the real and imaginary components of the response 

contribute to the phase. In our implantation, quantized bits from each component were 

merely concatenated.  

Iris Template Transformation: To map each pair of IrisCodes into a “common feature 

space”, we subdivide each IrisCode into rectangular subblocks of equal size as shown in 

Figure 2.9. We further treat blocks within each IrisCode as being independent. This is 

due to a random structure of the iris, where different subregions within the iris are weakly 

correlated.  

The response of non-overlapping blocks, here of size 24 X 24, is considered as 

independent features of the normalized iris representation. To synthesize a normalized 

transformation vector, Hamming distance between each block is calculated. 

Figure 2.8: Score distributions (left) and ROC curves of the designed algorithm on 
CASIA dataset (right) 
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 This gives a 60 dimensional transformed vector. Intuitively, this represents the 

dissimilarities within different regions of the iris structure.  

With methodology founded for fusing different feature representation of various 

modalities, all further processing can be applied to a common fused vector.  

2.5 Feature Selection 

Consider a long vector of noisy features. Selecting uncorrelated and discriminative 

feature in any pattern recognition system often aids the over all recognition accuracy of 

the system. However, in reality, including new features improves performance initially, 

achieves the best performance point and then starts to degrade again. This phenomenon is 

known as “peaking phenomenon” or “curse of dimensionality”. Feature selection is 

closely related to the more general problem of dimensionality reduction and efficient data 

representation.  

Roughly speaking, supervised feature selection methods are applied in one of two 

 Pre-Processing  
 Localization  
 Normalization  
 2DGabor Encoding  

DataBase 

  Local 
 
  XOR 

Candidate template Database template

d 
min(m,n ) d

3
d

2
d

1
d 

min(m,n ) d
3

d
2

d
1

Trasformed Distance vector
Figure 2.9: schematic representation of the transformation technique applied to the 
binary iris templates  
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conceptual frameworks: the filter model and the wrapper model (Kohavi & John, 1997). 

In the wrapper model the selection method tries to directly optimize the performance of a 

specific predictor generalization performance for the selected feature set in each step. The 

main drawback of this method is its computational deficiency. In the filter model the 

selection is done as a preprocessing, without trying to optimize the performance of any 

specific predictor directly. This is usually achieved though an evaluation function using a 

search method in order to select a set that maximizes this function. 

In this work, we assume that extracted features in feature vector are independent. But 

nonetheless one should expect the presence of noisy features is most datasets. Therefore 

in this context a dynamic dimensionality reduction scheme based on novel feature 

evaluation functions and a simple learnable threshold is proposed.   

Let D  be the distance vector computed as per any of the local kernels defined above. We 

desire to estimate an indicator function for feature selection and seek our solution to be in 

a linear space. An evaluation function determines the quality of the feature and a soft or 

hard threshold removes a feature whose information level is lower than the threshold. An 

indicator function { ( )Aχ } is estimated or learned in order to dynamically select 

features. ( )Aχ , for event A is defined as 

( )
1,  if  is true
0, Otherwise

A
Aχ

⎧ ⎫
= ⎨ ⎬
⎩ ⎭

 

From the concatenated distance vector ( D ), only features those features contribute whose 

information level is above a learned threshold. The following 2 methods are used to 

define conditions (A) to select features. Although the general principle behind these two 

methods is similar, the critical part is in how the information is measured.  
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1

i
iM

i
i

dA
d

τ

=

⎧ ⎫
⎪ ⎪⎪ ⎪= <⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

∑

Method 1:  (Single Parameter Case) 

Irrespective of the type of distance vector, {genuine; imposter}, each feature follows a 

model in the manner in which it contributes to the final score. Noisy features form 

anomalies to this model. Hence, their elimination will result in improved recognition 

performance. We eliminate them by thresholding them out. An indicator function is 

estimated or learned in order to predict the usefulness of a given feature.   Let A be 

defined as 

 

  

 

where M is that total number of kernel distances in the kernel distance vectors and iτ  is a 

threshold, a design parameter, such that, 0 1iτ≤ ≤ , for 1,...,i M=  . 

The thresholds are selected such that they minimize the total probability of error for the 

individual feature when the indicator function is applied. Thresholds are exhaustively 

selected for each feature in the kernel distance vector. 

 Method 2: (Two Parameters Case) 

The information content of a Kernel distance feature can be measured from its margin 

with respect to a scalar boundary. In this thesis, the margin is defined as the distance of 

the datapoint from the optimal scalar boundary (as per minimum classification error). 

Define event A for this case as follows 

{ }A=    i i id κ τ− <  

Where iκ  is the optimal scalar threshold for feature i and iτ  is the optimal feature 
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selection threshold for the ith kernel distance. 

Thus, a simple match-score can be calculated with feature selection incorporated within 

the match-score generation from the following formulation 

( )
1

.
M

i
i

MatchScore d Aχ
=

=∑   

2.6 Training and Testing Procedure 

Figure 2.10 shows the over all testing and training design deployed in our experiments. 

Distance vectors are generated by comparing all 500 samples with each other. The 

proposed fusion and feature selection scheme are empirically evaluated by using the 

‘Leave-one-out’ design. As per this design, each feature sample is considered to be a 

candidate while the remainder of the data is treated as database entries. This process is 

repeated for all samples in the database. This procedure generates 1,000 genuine distance 

vectors 247,500 imposter vector. For estimating our system design parameters, we use all 

1000 genuine distance vectors and randomly sample 10,000 imposter vectors. The same 

numbers of training samples are used in chapter 3 and 4 also. For testing, match scores 

are generated form all 1000 genuine fused distance vectors and all 247,500 imposter 

distance vectors. The results of this process are summarized in the form of a Match Score 

Matrix, where each element in the matrix represents the matching score generated by the 

system between elements indicated by the indices. Verification and identification analysis 

are performed using the Match Score Matrix. 
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2.7 Recognition Performance 

During this cyclic process, matching scores are generated by the methodology explained 

in section 2.7.1. For both feature selection techniques the function parameters (required 

thresholds) are calculated independently for each feature using the training data (1000 

genuine vectors and 10,000 imposter transformed distance vectors). Vectors are randomly 

sampled from the exhaustive set generated by leave-one-out combination of database 

samples.  

2.7.1  Implementation Methodology 

To demonstrate the effect of the transformation function and feature selection on real 

world features and compare performance with normalized match score fusion the 

following procedure are implemented 

For Feature level fusion  

DataBase 
Candidate 

Leave-one-out data scheme  

Transformation 
and 

Fusion 

Feature 
Selection 

Random Sampling 

 Feature evaluation 
 Learning Thresholds 

Match 
Score 

Matrix 

Figure 2.10: Block representation of the performance evaluation strategy 
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Step 1. Feature-sets of 2 input biometric sources, 1 2 and m mP R Q R∈ ∈ , are transformed 

using local distance kernel : 

( ) ( )Candidate Database Candidate Database
Source 1 Source 2,   and  ,  D P P D Q Qφ φ= =  

Step 2. Fusion is achieved by concatenating transformed distance vectors 

1 2
Source 1 Source 2; m m

FusedD D D R +⎡ ⎤= ∈⎣ ⎦    

Step 3. The final matching score, with feature selection, is calculated as 

( )
1 2

1
.

m m

Fused i
i

Scr d Aχ
+

=

= ∑  where ( )Aχ  is learned from training data.  

For Match-score Level fusion  

Step 1. Matching Scores for each of the two biometric sources is calculated using the 

Euclidian distance measure  

( ) ( )
1 2

Candidate Database Candidate Database
Source 1 Source 2

1 1
 and   

m m

i i i i
i i

Scr p p Scr q q
= =

= − = −∑ ∑  

Step 2. Individual matching scores are normalized using min-max normalization 

min( )
max( ) min( )

i
i

s ss
s s
−′ =
−

 

Step 3. The fused matching score is obtained by the sum rule 

Source 1 Source 2FusedScr Scr Scr′ ′= +  

The verification and identification performance of the above scheme is calculated based 

on the match scores generated as per the above formulation.  In this work only bi-modal 

systems are evaluated, i.e. two sources of information. For verification scenario we plot 

ROC curves and calculate the equal error rate (EER) value. Identification performance is 

based on the first best match or also known as the 1-Nearest Neighbor classification. 
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Intra-Modal fusion: Fusion of this category involves combining independent feature 

sets, extracted by applying different encoding algorithms on the same image. This fusion 

scheme aims at improving performance of a biometric system which is based on a single 

physiological trait like face or iris.  

Face: Three face recognition feature sets are extracted for all our experiments. ICA and 

PCA analysis or the better known as “eigen face” method are the most popular algorithms 

for face recognition and are widely used in commercial systems.  

Over a dataset of 500 samples, the individual EERs for PCA and ICA features are 6.7% 

and 10.4% respectively. Additionally, a third feature set is manually collected by 

extracting the inter-pixel distance between predefined landmark points on the same 

frontal face images. We have defined this feature-set as geometric face features. These 

geometric features are principally independent from ICA and PCA features, and exhibit a 

poor equal error rate of 29.63%.  In our experiments we investigate the fusion 

performance obtained when all three combinations of feature-sets are combined. 
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 Equal Error Rate  
(%)  

Identification Error Rate 
(%) 

face PCA 6.9892 4.8 

Face ICA 10.395 6.6 

Fusion + Thresholding-1 10.046 8.8 

Fusion + Thresholding-2 10.69 9.4 

Match Score Fusion 8.0615 4.4 

Table2.2: Performance of Identification and Verification systems 

Figure 2.11: Fusion of face ICA and PCA feature. No significant improvement in 
performance is observed. 
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Equal Error Rate 

 (%) 

Identification Error Rate 

(%) 

Face Geometry 29.63 84 

Face ICA 10.4 6.6 

Fusion + Thresholding-1 6.5 11 

Fusion + Thresholding-2 6.7 4.2 

Match Score Fusion 9.3 9.2 

Table2.3: Performance enumerated for Identification and Verification case 

Figure2.12: Fusion of face Geometry and Face ICA features. The proposed fusion 
framework outperforms match-score fusion  
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Equal Error Rate  

(%) 

Identification Error Rate 

(%) 

Face Geometry 29.63 84 

Face PCA 6.9 4.8 

Fusion + Thresholding-1 6.12 7.4 

Fusion + Thresholding-2 7.11 4 

Match Score Fusion 9.11 14.4 

Table 2.4: Performance enumerated for Identification and Verification case 

Figure2.13: Fusion of face Geometry and Face PCA features. The proposed 
fusion framework outperforms match-score fusion 
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From the ROC curves shown in Figure 2.11, 2.12 and 2.14, we see that feature level 

fusion after normalization and feature selection performs better than match score level 

fusion scheme. In case of combining PCA and Geometric features, feature level fusion 

outperformed match level fusion, but could only marginally improve performance than 

that of the PCA features (best individual biometric). Whereas, adding face geometry 

information to ICA features at the feature level yielded better results for identification 

and verification mode of operation. There was no clear evidence of performance 

improvement when PCA and ICA feature are fused (see Figure 2.11).  Table 2.2, 2.3 and 

2.4 show the EER for verification systems and classification error for identification 

system. 

Intra-Modal fusion For Iris: Three feature-sets are extracted for iris recognition. As 

explained before, binary iris codes are generated using a domestic ‘Daugman like’ 

algorithm. These binary codes represent the local iris texture captured by the phase 

response of two dimensional Gabor filters. Also, 2 feature sets are extracted by applying 

the ICA and PCA principles. It is worthwhile to keep in mind that all feature sets are 

obtained from the same original source, i.e. the image, but by applying different encoding 

techniques. We analyze the performance achieved by fusing these IrisCodes with the 

feature vectors obtained from ICA and PCA algorithms. The raw features cannot be 

directly concatenated as they exist in incompatible domains, i.e. binary and Euclidian. 

We use the proposed special local distance kernels to transform them into common 

arbitrary distance space. The fusion is achieved by concatenating the transformed 

distance vectors.  
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Equal Error Rate 

(%) 

Identification Error Rate 

(%) 

Iris Codes 5.94 1.5 

Iris PCA 17.3 22 

Fusion + Thresholding-1 7.17 8.6 

Fusion + Thresholding-2 16.9 31.0 

Match Score Fusion 9.4 5.4 

Table 2.5: Performance enumerated for Verification and Identification case 

Figure 2.14: Fusion of IrisCodes and PCA feature. Feature fusion performs slightly 
lower than IrisCodes   
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 Equal Error Rate   (%) 
Identification Error Rate 

(%) 

Iris Codes 5.94 1.5 

Iris ICA 17.73 22 

Fusion + Thresholding-1 6.79 8.0 

Fusion + Thresholding-2 15.63 31.2 

Match Score Fusion 9.96 5.4 

 

Table 2.6: Performance enumerated for Verification and Identification case 

Figure 2.15: Fusion of IrisCodes and ICA feature. Feature fusion performs slightly 
lower than IrisCodes   
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 Equal Error Rate   (%) Identification Error Rate 
(%) 

iris PCA 17.349 22 

iris ICA 17.731 22.8 

Fusion + Thresholding-1 19.395 44.6 

Fusion + Thresholding-2 19.039 54.8 

Match Score Fusion 17.584 22.6 

 

 

Table 2.7: Performance enumerated for Verification and Identification case 
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Figure 2.16: Fusion of iris ICA and PCA feature. No significant improvement in 
performance is observed. 
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As shown in figure 2.14, 2.15 and 2.16, the ROC curves for intra-modal fusion of Iris 

codes with ICA and PCA information shows that, performance of the match-score fusion 

degrades. Applying the proposed fusion and thresholding techniques, at the feature level, 

does not improve performance. The resulting ROC curve is as good as the ROC curve for 

the strongest biometric (IrisCodes).  

A similar trend as that of face ICA and PCA features is observed when similar type of 

fusion is performed for Iris. There was no evident improvement in performance when 

these two feature sets were fused. Learned feature selection by thresholding led to lack of 

generalization and resulted in mildly degraded performance. Match-score fusion also did 

not make any significant improvement in performance over the best individual source.   

Table 2.5, 2.6 and 2.7, show the equal error rate, for intra modal fusion of Iris, in a 

verification system and classification error rate in a identification system.  

Inter-Modal Fusion: This type of fusion refers to combining information from different 

modalities. In this case, the information sources, i.e., raw image, are drastically different 

and are considered independent. Although the processing algorithm can be based on the 

same principle, e.g. ICA or PCA features, but as the originating image is different the 

feature-sets contain more independence. 

Face and Iris: The combination from face and iris is very lucrative. As the iris is an 

inherent part of the face, with a high resolution imaging setup and appropriate eye finding 

software, we can acquire both face and iris images at the same time. We analyze the 

performance when different Face feature-sets are fused with iris codes.   

From the obtained results (Figure 2.17, 2.18 and 2.19), it is evident that fusion with 

thresholding improves performance over individual feature-sets and also over match-
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score fusion. Match-level fusion of Iris codes with ICA and Geometric feature-sets from  

 

 Equal Error Rate Identification Error Rate 

Iris Codes 5.94% 1.4% 

Face ICA 10.39% 6.6% 

Fusion + Thresholding-1 3.94% 1.6% 

Fusion + Thresholding-2 11.21% 12.6% 

Match Score Fusion 5.25% 1.6% 

 

Table 2.7: Performance enumerated for Verification and Identification case 

Figure 2.17: Fusion of IrisCodes and face ICA feature. Feature Level fusion 
outperforms match-score fusion.  
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 Equal Error Rate Identification Error Rate 

Iris Codes 5.94% 1.4% 

Face PCA 6.9% 4.8% 

Fusion + Thresholding-1 3.6% 1.0% 

Fusion + Thresholding-2 10.31% 12.8% 

Match Score Fusion 2.3% 0.4% 

Table 2.8: Performance enumerated for Verification and Identification case 

Figure2.18: Fusion of IrisCodes and face PCA feature. Match-score fusion 
outperforms feature level fusion.  

0 20 40 60 80 100
0

20

40

60

80

100

False Accept Rate(%)

Fa
ls

e 
R

ej
ec

t R
at

e(
%

)

IRIS Codes + FACE PCA

Thresholding-1
Thresholding-2
Match Level Fusion
Iris Codes
Face PCA



 

 
50 
 
 
 

 

 Equal Error Rate Identification Error Rate 

Iris Codes 5.94% 1.4% 

Face Geometry 29.63% 84% 

Fusion + Thresholding-1 4.99% 5.6% 

Fusion + Thresholding-2 10.31% 21.8% 

Match Score Fusion 15.57% 8.4% 

 

 

 

Table 2.9: Performance enumerated for Verification and Identification case 

Figure 2.19: Fusion of IrisCodes and face Geometric feature. Feature level fusion 
outperforms match-score fusion. 
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 Equal Error Rate Identification Error Rate 

Iris Codes 5.94% 1.4% 

Fingerprints 5.37% 2.6% 

Fusion + Thresholding-1 13.37% 32.0% 

Fusion + Thresholding-2 20.0% 40.8% 

Match Score Fusion 1.02% 0.2% 

 

 

Table 2.10: Performance enumerated for Identification and Verification case 

Figure 2.20: Fusion of IrisCodes and fingerprint minutia features. Feature level 
fusion performs poorly. 
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face, results in performance worse than the best individual modality. In the same case, 

feature fusion with thresholding gives the best results. Table 2.8, 2.9 and 2.10, enumerate 

the equal error rate for verification system and classification error rate for identification 

when face feature are fused with IrisCodes. 

Fingerprint Minutiae and Iris codes:  Fusion of Iris and Fingerprint is much desired as 

they exhibit exceptional accuracy. Fingerprint recognition technology has existed for 

over three decades, resulting in numerous matching techniques. The matching scores for 

out fingerprint data were obtained using a commercial system and hence show excellent 

performance. Not knowing the involved matching algorithm, we worked directly with the 

minutiae information given by the same system. For each minutia-set pair, the alignment 

was achieved using a simple affine transform. The Euclidian distance of the best 15 

nearest neighbor pairs constituted the fingerprint distance vector (described in section 

2.4.3). All procedures for Iris data-set were unchanged.  

The above results are contrary to expectations with fusing two good biometric (Iris and 

Fingerprints). Match-level fusion shows exceptional performance as the generated iris 

codes exhibit good matching scores and the fingerprint matching score were obtained 

from a commercial system (who’s processing techniques are not known). Feature level 

fusion heavily degrades performance because of the simplistic representation of 

fingerprint distance.  

2.8 Summary  

Feature level fusion has greater potential than match-score or decision level fusion and 

with good fusion schemes it can significantly improve performance. We have examined 
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different multiple modalities and proposed representation, transformation and matching 

schemes for different feature representations. We have demonstrated that with our fusion 

scheme, most current feature representations can be combined to give performance 

superior to the performance of individual information sources. We have also proposed 

dynamic feature selection or noise removal algorithms which demonstrate superior 

performance when compared with match-score fusion in most cases. We have shown that 

match-score fusion of a weak biometric with a strong biometric, sum rule fusion, leads to 

degradation of overall fused performance. The use of thresholding scheme helps to 

remove noisy features and hence is most successful fusion procedure.  

Specific to Iris recognition, we have developed a complete system from open source 

literature and demonstrated performance on CASIA datasets. Intra-modal fusion of 

IrisCodes with ICA and PCA features, lead to only limited success. This is mainly due to 

the fact that the participating feature set, although in a common distance domain,   have 

drastically different relationships. Due to this a simple local distance summation does not 

give better matching scores.  

Feature Level fusion of geometric face features with PCA and ICA face features 

improves performance, even though geometric feature exhibit extremely poor 

performance independently.  Fusion of face features (PCA, ICA and Geometric) with 

IrisCodes, at the feature level, resulted in performance better than match-score fusion if 

not equal.  

In spite of promising results, the simple match-score calculation from fused features can 

be improved. As observed in some cases, direct match-score calculation from the 

transformed vectors does more harm than good. In the next two chapters we describe, two 
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approaches for performance improvement by introducing a learnable null hypothesis. 

The new match-score is then calculated by measuring the confidence of a transformed 

distance vector with respect to the null hypothesis.  
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Chapter 3: Boosting Biometric Features 

3.1 Motivation and Challenges 

Most biometric systems are designed as a derivative of more general pattern recognition 

and machine learning concepts. Machine learning deals with adaptive techniques capable 

of making accurate prediction based on a finite amount of partially characterized data. In 

our context, biometric systems are trained on labeled training data, with the goal to find a 

strategy which can generate accurate matching scores on the new test samples are trained 

on labeled training with the  to make accurate predictions based on past observations. In 

our context, biometric systems have available labeled training data from which we need 

to design a strategy which can generate accurate matching scores on new test samples.  

Building a highly accurate prediction rule is a difficult task, especially when most 

biometric features exist in high dimensional space and are not known to follow any 

particular family of distribution. With respect to feature level fusion this problem is 

further complicated by different feature representation schemes. In order to overcome the 

challenge of combining information across different feature representation scheme, we 

follow the local distance transformation detailed in Chapter 2. After the original features 

are transformed in to a filtered form by local distance kernel representation, the match-

score or confidence measure needs to be calculated by combining useful information and 

ignoring noise. This chapter details our “boosting” approach to feature selection and 

confidence measure generation. 

3.2 Learning Boosted Function for Match-Score Generation 

Boosting, a machine-learning method, is utilized to learn “match-score generation rules”. 
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To apply the boosting approach, we start with the transformed and fused 

multidimensional local distance vectors. Consider two feature-sets, having m1 and m2 

features respectively. After transformation and concatenation the fused-set has M = [m1 

+ m2] features. Our hypothesis, supported by experimental observations, is that a sub-set 

of these features can be linearly combined to give an effective matching score. The 

challenge is to find the sub-set of features and their respective combination rules.  

In general, the boosting algorithm repeatedly calls different feature subsets from the 

original data, each time feeding it a different distribution or weighting over the training 

examples. Each time it is called, the base learning algorithm generates a new weak 

prediction rule, and after many rounds, the boosting algorithm combines the weak rules 

into a single prediction. To make this approach work, there are two fundamental 

questions that must be answered: first, how should each distribution be chosen on each 

round, and second, how should the weak rules be combined into a single rule?  

In our system a variant of the AdaBoost (used by Viola and Jones [63]) is used both to 

select the features and to train the classifier [72]. In its original form, the AdaBoost 

learning algorithm is used to boost the classification performance of a simple learning 

algorithm (e.g. it might be used to boost the performance of a simple perceptron). It does 

this by combining a collection of weak classification function to form a stronger 

classifier. So, for example, the perceptron learning algorithm searches over the set of 

possible perceptron and returns the perceptron with the lowest classification error. The 

learner is called weak learner because no one expects even the best classification function 

to classify the training data well. In order for the weak learner to be boosted, it is called 

upon to solve a sequence of learning problems. After the first round of learning, the 
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examples are re-weighted in order to emphasize those which were incorrectly classified 

by the previous weak classifier. The final strong classifier takes the form of a perceptron, 

a weighted combination of weak classifiers followed by a threshold.  

Several researchers have applied boosting in different machine learning applications and 

have reported excellent results [76]. Freund and Schapire [76] proved, using theory of 

margins, that the proposed boosting algorithm does not cause over-fitting when more 

simple classifiers are added to the final strong classification rule. They derived the 

training error to exponentially approach zero after each round. More importantly a 

number of results were later proved about generalization performance [73]. The 

generalization performance has a strong relationship with the margin of the samples and 

the AdaBoost algorithm is known to rapidly achieve large margins with each round of 

boosting.  

With respect to our proposed multi-modal feature fusion framework, the challenge is to 

associate a large weight with each good classification function and a smaller weight with 

poor functions. One practical method for completing this analogy is to restrict the weak 

learner to the set of classification functions each of which depends on a single feature. In 

support of this goal, the weak learning algorithm is designed to select the single local 

distance feature which best separated the genuine and imposter examples. For each 

distance dimension, the weak learner determines the optimal threshold classification 

function, such that minimum examples are misclassified. A weak classifier ( )( )jh d  thus 

consists of a distance dimension ( )jd , a threshold ( )jθ  and a parity ( )jp  indicating the 

direction of the inequality sign:      ( )
1         if   

0         otherw ise
j j j j

j

p d p
h d

θ<⎧
= ⎨
⎩
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• Given training data ( ) ( )1 1, ,..., ,n nD y D y  where mD∈ and 0,1iy =  for 

genuine and imposter distance vectors respectively. 

• Initialize weights 1,
1 1,  for 0,1

2 2i iw y
p q

= =  respectively, where p and q 

are the number of imposter and genuine training vectors respectively. 

• For t = 1,…,T: 

1. Normalize the weights, 
,

,

,
1

t i
t i n

t l
l

w
w

w
=

=

∑
, so that wt is a 

probability distribution  

 

2. For each feature, j, train the classifier which is restricted to using 

a single feature. The error is evaluated with respect to wt 

( )1

n
j i j i ii

w h x yε
=

= −∑ . 

 

3. Choose the classifier, ht, with the lowest error tε . 

 

4. Update the weights: 
1

1, ,
ie

t i t i tw w β −
+ =  

Where 0ie = if example ix  is classified correctly, 1ie =  otherwise, and 

1
t

t
t

εβ
ε

=
−

. 

• The Final Matching Score is : ( )1

T
t tt

MatchScore h dα
=

=∑ , where 

1logt t
α

β
=  
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3.3 Training and Testing Architecture 

 For improving recognition performance via feature fusion, we apply the above described 

AdaBoost learning algorithm to select feature and calculate weights to be associated with 

each feature. Randomly sampled training data is used to formulate match-score 

generation rules. Each feature of the input vector independently contributes, according to 

the transformation function and the database entries, to a local distance feature. During 

training, the weak learner calculates the optimal scalar threshold for each distance 

feature. Each distance feature, d, when associated with a threshold (θ) and the respective 

polarity (p) constitutes a weak classifier.  During each round, t, of boosting the best 

classifier (feature, threshold and polarity) is selected based on minimum classification 

error for the current distribution (Wt). A weight is associated with the selected classifier, 

αt, which is inversely proportional to the empirical error rate. 

 

Leave-
One- 
Out- 
Data-
Base 

Sample 

( , )S xD x yφ=  

Match 
Score 

Generation 

AdaBoost  
Learning  

Testing  

Training 

Figure 3.1: High level lay out of training and testing procedure 

( , )S xD x yφ=  

Random Sampling  
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In our experiments, 1000 genuine distance vector and 10,000 imposter distance vectors 

were used for learning. In the Testing stage, all-to-all comparisons are computed based 

on the learned rules. We have restricted our-selves to bi-modal fusion, i.e. information 

from two sources only. Within this paradigm, results have been demonstrated for Intra-

modal and Inter-modal fusion. Datasets from the Iris, Face and Fingerprint domain were 

combined and there verification and identification performance is reported. Identification 

is based on the 1-Nearest Neighbor classification procedure.    

3.3.1  Intramodal Fusion 

Intra-modal fusion is a very attractive means of improving the performance of a 

biometric system based on a single trait. This process involves combining independent 

features-sets, extracted by using different encoding algorithms. In our experiments we 

perform bi-modal fusion among iris and face feature-sets. Face: Three different 

processing algorithms were used for feature extraction, i.e. PCA, ICA and Geometric 

features. PCA and ICA features are correlated due to similar fundamental principles of 

feature extraction. The geometric features represent, manually extracted, inter pixel 

distances between predefined landmark points on a frontal face image. Geometric 

features are not strongly correlated with ICA/PCA features, but exhibit poor performance 

individually.  Figure 3.2 and Table 3.2 shows the ROC curve and enumerates verification 

and Identification performance respectively, for feature level fusion of face ICA and PCA 

feature. There was no performance improvement observed. AdaBoost based feature 

selection and classification led to mixed results when compared to match-score fusion. 

Although an improvement over the direct fusion strategy described in Chapter 2, when  
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 Equal Error Rate 
(%) 

Identification Error Rate 
(%) 

face PCA 6.9892 4.8 

face ICA 10.395 6.6 

Boost Fusion 10.883 15.2 

Match Score Fusion 8.0615 4.4 

Table 3.2: Performance enumerated for Verification and Identification case 

Figure 3.2: Fusion of face PCA and ICA features. Match Level Fusion and Feature 
Level Fusion fail to improve performance. 
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 Equal Error Rate 
(%) 

Identification Error Rate 
(%) 

face GEO 29.638 84 

face ICA 10.395 6.6 

Boost Fusion 7.3573 10.4 

Match Score Fusion 9.3322 9.2 

Table 3.3: Performance enumerated for Verification and Identification case 

Figure 3.3: Fusion of face Geometric and ICA features. Feature level fusion 
outperforms Match score fusion 
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 Equal Error Rate 
(%) 

Identification Error Rate 
(%) 

face GEO 29.638 84 

face PCA 6.9892 4.8 

Boost Fusion 6.156 8.4 

Match Score Fusion 9.8188 14.4 

Table 3.4: Performance enumerated for Verification and Identification case 

Figure 3.4: Fusion of face Geometric and ICA features. Feature level fusion 
outperforms Match score fusion 
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compared with SVM based fusion proposed in Chapter 4, boosting does not yield similar 

outstanding results. SVM based feature fusion has better recognition performance, with 

every combination of feature-sets. Figure 3.3 shows the ROC curve and Table 3.3 shows 

the equal error rate for verification system and classification error rate for identification 

system when Geometric and ICA features are fused. Feature level fusion, using boosting, 

out performs match level fusion. Figure 3.4 shows the ROC curve and Table 3.4 shows 

the equal error rate for verification system and classification error rate for identification 

system when Geometric and PCA features are fused. Feature level fusion, using boosting, 

out performs match level fusion.  

As seen from Figure 3.3 and 3.4, boosting performs well only when weak or poor feature 

sets are combined with strong or good feature sets. The fusion of ICA and PCA face 

features results in degraded fused performance. This degradation is possibly due to the 

lack of generalization of the selected features and inherent correlation among features. As 

AdaBoost is designed to “boost” the performance by combining weak classifiers, the 

fusion with geometric face features resulted in good overall performance. 

Iris: Three processing algorithms were used to extract features from pseudo-polar iris 

images, i.e. ICA, PCA and Gabor Phase. Different transformation techniques were used 

to bring Iris codes and ICA/PCA features to common arbitrary space, after which fusion 

was achieved by simple concatenation. In our experiments, AdaBoost learning selected a 

small subset of features and there corresponding weights. But we observed, it lacked 

generalization capabilities when subjected to test data. The intra-modal iris fusion 

performance encountered only limited success. Figure 3.5, shows the ROC curve 

obtained when ICA and PCA feature of iris are fused. Table 3.5 shows the equal error 
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rate of a verification system and classification error rate of an identification system. The 

feature level fusion performance in this case was poorer than the both ICA and PCA 

features. As ICA and PCA encoding schemes are inherently based on dimensionality 

reduction principles, further feature selection by AdaBoost results in poor generalization 

capability.  

Figure 3.6 shows the ROC curve and Table 3.6 shows the equal error rate for verification 

system and classification error rate for identification system when IrisCodes and ICA 

features are fused. Feature level fusion, using boosting, performs only performs as well as 

IrisCodes.  

Figure 3.7 shows the ROC curve and Table 3.7 shows the equal error rate for verification 

system and classification error rate for identification system when IrisCodes and PCA 

features are fused. Feature level fusion, using boosting, only performs as well as 

IrisCodes. Individually, Iris codes perform better than ICA/PCA features. When fused 

with ICA and PCA features, the subset of selected features consisted mostly of 

transformed features from IrisCodes due to the high performance of transformed 

IrisCodes. Match-score fusion of Iris codes and ICA/PCA feature did not result in 

improved performance. The fusion of iris ICA and PCA features showed similar 

degradation as in the case of face. Typical to this work, when ICA and PCA (iris or face) 

features are fused there is no significant performance improvement at feature level and 

match-score level. 
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 Equal Error Rate 
(%) 

Identification Error Rate   
(%) 

Iris gabor 5.9407 1.4 

iris ICA 17.731 22.8 

Boost Fusion 7.759 5.8 

Match Score Fusion 9.9673 5.4 

Figure 3.5: Fusion of IrisCodes and ICA features. Feature level fusion performs only 
as well as IrisCodes. 
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 Equal Error Rate 
(%) 

Identification Error Rate 
(%) 

iris gabor 5.9407 1.4 

iris PCA 17.349 22 

Boost Fusion 7.7876 5.6 

Match Score Fusion 9.4528 5.4 

Table 3.6: Performance enumerated for Verification and Identification case 

Figure 3.6: Fusion of IrisCodes and PCA features. Feature level fusion performs only 
as well as IrisCodes. 
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 Equal Error Rate 
(%) 

Identification Error Rate 
(%) 

iris ICA 17.731 22.8 

iris PCA 17.349 22 

Boost Fusion 20.061 40.4 

Match Score Fusion 17.584 22.6 

Table 3.7: Performance enumerated for Verification and Identification case 

Figure 3.7: Fusion of iris ICA and PCA features. Match score fusion and Feature 
level fusion do not improve performance 
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After the transformation into arbitrary distance domain, the features are concatenated. 

The transformed and fused features are randomly sampled for training. AdaBoost treats 

the fused features as a pool of classifiers, from which a subset of features is selected and 

their weighting coefficients are formulated.  IrisCodes are combined with different 

feature sets from face and with minutia information from finger. Performance results of 

other fusion combinations are shown in the Appendix.  

Iris Codes and Face Features:  All face feature sets (PCA, ICA and Geometric feature) 

exist in Euclidian domain and the IrisCodes are in binary domain. Figure 3.8, shows the 

ROC curves for the fusion IrisCodes and face PCA features. Table 3.9 shows the equal 

error rate of a verification system and classification error rate of an identification system. 

There is no significant improvement observed. In Figure 3.9, similar results are observed 

when face ICA features are fused with IrisCodes. Table 3.9, shows the verification and 

identification error rates.  Applying AdaBoost for fusion of PCA and ICA face feature 

with IrisCodes, no significant increase in performance was achieved. Once again, like in 

intra-modal fusion, boosting helps improve performance when weak feature set, like 

geometric face, is fused with a strong feature set. Figure 3.10, further confirms this 

hypothesis as fusion of poor geometric features with the strong IrisCodes results in 

improved performance for feature level fusion. 

Iris Codes and Fingerprints: Minutia information and iris binary bits are transformed 

by applying their corresponding distance kernels. From Chapter 2 we know that trivial 

match score calculation does not perform well. But, boosting gives comparable results to 

match-score fusion. As a note, the fingerprint matching scores were generated from a 

COTS system. Figure 3.11, shows the ROC curves for the fusion of fingerprints and  
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 Equal Error Rate 
(%) 

Identification Error Rate 
(%) 

iris gabor 5.9407 1.4 

face PCA 6.9892 4.8 

Boost Fusion 5.4801 4.4 

Match Score Fusion 2.3859 0.4 

Table 3.8: Performance enumerated for Verification and Identification case 

Figure 3.8: fusion of IrisCodes and face PCA Features 
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 Equal Error Rate 
(%) 

Identification Error Rate 
(%) 

iris gabor 5.9407 1.4 

face  ICA 10.395 6.6 

Boost Fusion 5.6965 5.8 

Match Score Fusion 5.253 1.6 

Table 3.9: Performance enumerated for Verification and Identification case 

Figure 3.9: Fusion of IrisCodes and face ICA features. No significant improvement in 
performance is observed 
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 Equal Error Rate 
(%) 

Identification Error Rate 
(%) 

iris gabor 5.9407 1.4 

face  GEO 29.638 84 

Boost Fusion 5.221 4.8 

Match Score Fusion 15.573 8.4 

Table 3.10: Performance enumerated for Verification and Identification case 

Figure 3.10: Fusion of IrisCodes and face Geometric features. Feature level fusion 
outperforms match-score fusion 
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 Equal Error Rate 
(%) 

Identification Error Rate 
(%) 

finger minutia 5.5327 2.6 

iris gabor 5.9407 1.4 

Boost Fusion 5.9866 7.6 

Match Score Fusion 1.021 0.2 

Table 3.11: Performance enumerated for Verification and Identification case 

Figure 3.11: Fusion of IrisCodes and fingerprint minutia features. Match score fusion 
outperforms feature level fusion. 
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Chapter 4: Support Vector Machines for Fusion 

4.1 Motivation and Challenges 

The major challenge with feature level fusion is the lack of knowledge of the underlying 

multidimensional distributions of the feature-sets from different sources.  The 

transformed vectors exist in a multidimensional space. The best match score can be 

calculated by projecting these vectors on an optimal separating hyperplane. In this 

chapter we justify this phenomenon by using both “toy data” and real world biometric 

data. The optimal hyperplane is learned by using support vector (SV) theory. Finally, a 

complete training and testing system architecture is proposed and results are shown on 

multiple datasets. 

4.2 Learning with Support Vector Machines 

In the previous chapters, techniques to transform feature vectors to a common distance 

domain have been explained. After the transformation, feature information is combined 

to obtain a fused matching score. Until now a match score is calculated from direct 

summation of these distance vector after eliminating noisy contributions. Match score 

thus calculated are inefficient as the summation is equivalent to simplistically projecting 

the distance vectors to a constant diagonal hyperplane in order to generate a matching 

score. 

Match Score ,   [1,1,...,1]W D where W′= =    

Consider a two class problem, Class 1 and Class 2. 
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As seen from the figure 4.1, when the data is linearly separable, there can be infinite 

optimal decision boundaries with zero classification error. But not all boundaries will 

have good generalization capabilities.  

We believe that since the distance vectors reside in a multi-dimensional space, one can 

extract a better matching score by measuring the confidence of each vector with respect 

to a separating hyperplane. The theory of learning a separating hyperplane via Support 

Vector learning is applied to generate confidence scores.    

The principle of SVMs relies on a linear separation in a high dimensional feature space 

where the data have been previously mapped, in order to take into account the eventual 

non-linearties of the problem. In order to achieve a good level of generalization 

capability, the margin between the separator hyperplane and the data is maximized.  

The margin can be loosely defined as the width that the boundary could be increased by 

before hitting a datapoint. The decision boundary should be as far away from the data of 

both classes as possible. The choice of best decision boundary is mostly determined by 

datapoints that lie closer to the boundary itself. These datapoints are called support 

vectors. 

Figure 3.1: A two class, linearly separable classification problem. Infinite 
decision boundaries can generate. All decision boundaries are equally good. 

Class 1 

Class 2 

Class 1

Class 2
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Formally, the training set 1{ }l m
i iS x R== ∈ , where l is the number of training vectors, is 

labeled with two-class targets{ } 1

l
i i

y
=

, where { }1,1iy ∈ − . : mR FΦ →  maps the data into a 

feature space F. Vapnik [62] has proved that maximizing the minimum distance in space 

F between ( )SΦ  and the separating hyperplane ( ) { }, | , 0
F

H w b f F w f b= ∈ + = , 

(where , F< ⋅ ⋅ >  denotes inner product in space F), is a good means of reducing a bound 

on the generalization risk. Vapnik also proved that the optimal hyperplane can be 

obtained solving the convex quadratic programming (QP) problem: 

( )( ) ( )

2

1

i

1M inimize        
2

with the constraints          , 1    1, ...,                                  1

                                        0                                     

l

i
i

i i iF

w C

y w x b i l

ξ

ξ

ξ

=

+

Φ + ≥ − =

≥

∑

 1, ...,
   

i l=

  

 

Class 1 

Class 2

m

Figure 4.2: Geometric representation of the large margin principle. 
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Where constant C and the slack variable iξ  are introduced because of the eventual non-

separability of  ( )SΦ  in space F. Applying the Karush-Kuhn-Tucker conditions to the 

problem in  (1), the following sparse expression is obtained for the optimal hyperplane 

( )* *, :H w b  

( ) ( )*                       2i i i
i S V

w y xα
∈

= Φ∑  

Where, { }| 0iSV i α= >  is the set of support vectors. Taking into account that the 

decision function S that classifies a test pattern Tx  is: 

( ) ( ){ } ( ),                 3T T FD x sign w x b∗ ∗= < Φ > +  

defining ( ) ( )( , ) ,i j i j F
K x x x x= Φ Φ  as the kernel function and using (2) leads to  

( ) ( ) ( ),                    4T i i i T
i SV

D x sign y K x x bα ∗

∈

⎧ ⎫
= +⎨ ⎬

⎩ ⎭
∑  

Problem (1) is solved for ( ) 1

l
i i

a
=

 and b∗  in its dual form with a standard quadratic 

programming solver which, together with decision function (4), avoids manipulating 

directly the elements of F and starting the design of the SVM for classification directly 

from the kernel function. The choice for K has been in this case a Radial Basis Function 

(RBF): 

( ) ( ) ( )2 2, exp 2                5

w here  is the variance of the kernel

i j i jK x x x x σ

σ

= − −  

To obtain the final classifier score, the proximity of the test pattern to the separating 

surface is proposed here. The combined score Scr R∈  of the input test pattern 

mp R∈ with respect to the database entry mq R∈  is calculated as: 
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( ) ( )( ) ( ), , ,                   6i i i
i SV

Scr p q y K d p q bα φ ∗

∈

= +∑  

Following this approach, the verification threshold parameter can be adjusted to reach 

different operational points. The before described feature selection scheme can be easily 

incorporated into the SVM based score calculation 

( ) ( )( ) ( ) , , ,                   7i i i feature selection
i SV

Scr x y K d x bµ α φ µ ∗

∈

= +∑  

4.3 Architecture of SVM Based Information Fusion 

Information is represented in the form of feature-sets for each biometric. These feature 

sets are independently extracted and transformed to common arbitrary distance space, so 

that information can be meaningfully fused. Chapter 2 explains various techniques used 

for such transformation. From this point the task is to calculate an efficient matching 

score utilizing fused information. As explained above the theory of SVM’s is justified to 

learn a hyperplane on which the distance vectors are projected to get matching scores.  

This system design involves two stages: training and testing. During the training stage we 

use a random subset of transformed and fused vectors to learn required parameters. In the 

testing stage, each sample is classified assuming remaining samples to be the database.  

The high level design of the system for training and testing is shown in Figure 4.3. All 

available biometric databases have 100 unique classes, 5 samples per class. 

Corresponding features from each modality are calculated by different algorithms as 

explained before. All-to-All combination of the database templates generates 1000 

genuine comparisons and 247,500 imposter comparisons. To evaluate the performance of 

a SVM based fusion scheme, a SVM based hyperplane is learned using 1000 genuine and 
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10,000 imposter distance vectors. OSU-SVM software package was used in this work to 

estimate the hyperplane and evaluate fusion performance [74].   

 

4.3 Performance of SVM Fusion Scheme 

Bi-modal fusion was performed according the above stated procedure. The recognition 

performance was evaluated under verification and identification scenarios. Based on the 

participating information sources the results have been reported for Intra modal fusion 

and Inter modal fusion. Intra modal fusion refers to combining information obtained from 

different algorithms but from the same trait (e.g. PCA and ICA vector for face images). 

Inter modal fusion refers to combining information from different biometric traits 

irrespective of the processing algorithm.   

  

Leave-
One- 
Out- 
Data-
Base 

Sample 

( , )S xD x yφ=  

Match 
Score 

Generation

Hyperplane 
learning from 

SVM

Testing  

Training 

Figure 4.3: High level lay out of training and testing procedure 

( , )S xD x yφ=  

Random Sampling  
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Equal Error Rate 

 (%) 

Identification Error Rate   

(%) 

face PCA 6.9892 4.8 

Face ICA 10.395 6.6 

SVM Fusion 2.1348 1 

Match Score Fusion 8.0615 4.4 

Figure 4.4: Fusion of face PCA and face ICA features. Feature level fusion clearly 
outperforms match-score fusion 
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Equal Error Rate  

(%) 

Identification Error Rate     

(%) 

face GEO 29.638 84 

Face ICA 10.395 6.6 

SVM Fusion 1.2474 0.2 

Match Score Fusion 9.3322 9.2 

Table 4.2: Performance enumerated for Identification and Verification case 

Figure 4.5: Fusion of face Geometry and face ICA features. Feature level fusion 
clearly outperforms match-score fusion 
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Equal Error Rate  

(%) 

Identification Error Rate  

(%) 

face GEO 29.638 84 

face PCA 6.9892 4.8 

SVM Fusion 0.99545 0 

Match Score Fusion 9.8188 14.4 

Table 4.3: Performance enumerated for Identification and Verification case 

Figure 4.6: Fusion of face Geometry and face ICA features. Feature level fusion 
clearly outperforms match-score fusion 
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4.3.1  Intramodal Fusion 

Face: As per the results from the Chapter 2 and 3, fusing information from different 

facial feature-sets resulted in improvement over match-score fusion but did not improve 

performance beyond the best individual information source. Figure 4.4, shows the ROC 

curve when face ICA and PCA features are fused. Table 4.1 enumerates the equal error 

rate and classification error rate. Feature level fusion gives extremely good results and 

performs better than match score fusion. When poor geometric feature are combined with 

ICA and PCA fetures, the improvement in overall performance, see Figure 4.5 and 4.6, is 

extremely significant when compared to match score fusion. In all three bimodal fusion 

attempts, the proposed fusion scheme led to gain in performance much higher than 

match-score fusion. Match-score fusion was ineffective, if not derogatory, when a very 

poor (error > 25%) feature-set of geometric face information was fused with PCA and 

ICA features. SVM based feature fusion performed extremely well even when very poor 

features are combined with strong features.  

Iris: In the chapters 2 we discussed the fusion of iris codes and with PCA and ICA iris 

features. Iris codes individually, demonstrated good performance (~95%) and any direct 

fusion, at match-score and feature level, met with limited success. When feature level 

fusion is carried out using SVM, intra modal fusion of any two feature sets leads to a 

dramatic improvement in performance. Figure 4.7 and 4.8, shows the fusion ROC curves 

when iris ICA and PCA feature combined with IrisCodes. There is a sharp improvement 

in performance with feature level fusion when compared to match score fusion. From 
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Table 4.6 and Figure 4.9, it is seen that when PCA and ICA iris information is combined 

it leads to an improvement in EER by 7%. But the identification performance did not 

improve, this can be explained by the inherent correlation between ICA and PCA feature 

sets.  

By applying the proposed SVM based fusion scheme, performance of an iris based 

system can be improved immensely by combining information from any two feature sets 

extracted by different algorithms but from the same image set. 

Iris codes are very discriminative local features. When they are combined with ICA and 

PCA information using the before explained transformation scheme, almost perfect 

(~0%) recognition performance is achieved (Table 4.4 and 4.5). 

Intra modal fusion, for iris and face, shows high potential of improving a system which is 

based only on one modality. An interesting observation is the exceptional improvement 

in performance observed when local features, like Iris codes or Face geometry, are 

combined with ICA and PCA feature of each trait respectively. In spite of the learned 

optimal hyperplane, the inherent correlation between PCA and ICA feature hampers the 

over fused performance.  

The results show that even if one utilized the same image sample (iris or face) and if 2 or 

more sets of independent feature vectors can be extracted from it, then the proposed 

scheme of feature level fusion yields improved performance. This implies capability of 

achieving much higher performance from existing systems at no additional hardware 

costs.   
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Equal Error Rate 

 (%) 

Identification Error Rate 

(%) 

Iris PCA 17.349 22 

Iris ICA 17.731 22.8 

SVM Fusion 10.061 22.6 

Match Score Fusion 17.584 22.6 

Table 4.4: Performance enumerated for Identification and Verification case 

Figure 4.7: Fusion of IrisCodes and PCA features. Feature level fusion 
outperforms match score fusion 
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Equal Error Rate    

    (%) 

Identification Error Rate 

(%) 

iris gabor 5.9407 1.4 

Iris ICA 17.731 22.8 

SVM Fusion 1.8267 0.2 

Match Score Fusion 9.9673 5.4 

Table 4.5: Performance enumerated for Identification and Verification case 

Figure 4.8: Fusion of IrisCodes and ICA features. Feature level fusion outperforms 
match score fusion. 
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4.3.2  Intermodal Fusion 

In chapter 2, face and fingerprint feature sets were fused with iris codes. The match 

scores generated from direct summation of transformed and fused feature vectors 

demonstrated limited success. We will now demonstrate the effectiveness of the proposed 

feature fusion scheme when feature-sets from different biometric traits are combined.  

Figures 4.10, 4.11 and 4.12 demonstrate the ROC curves when face PCA, ICA and 

Geometric features are, respectively, fused with IrisCodes. Table 4.7, 4.8 and 4.9, 

enumerate the equal error rate and classification error rates.  

Using the proposed techniques when Iris codes and any face feature-set (ICA, PCA and 

GEOMETRIC extracted from facial images) leads to verification error (equal error rate) 

of less than 1% and 0% identification error. It is encouraging to see that the even the 

combination of very poor geometric face feature set and IrisCodes yielded high 

performance but it should be noted that our system was not trained on mutually exclusive 

training and testing data.  

Figures 4.13 demonstrate the ROC curves when fingerprint minutia information is fused 

with IrisCodes. Table 4.10; enumerate the equal error rate (Verification Error Rate) and 

classification error rates.  

Fingerprint minutia information is transformed and is combined with transformed iris 

codes as explained in the previous chapter. The fused match score is calculated as per the 

learned SVM hyperplane.     
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Equal Error Rate      

    (%) 

Identification Error Rate      

(%) 

iris gabor 5.9407 1.4 

face PCA 6.9892 4.8 

SVM Fusion 0.65505 0 

Match Score Fusion 2.3859 0.4 

Table 4.7: Performance enumerated for Identification and Verification case 

Figure 4.10: Fusion of IrisCodes with face PCA features. Feature level fusion 
outperforms match score fusion. 

0 20 40 60 80 100
0

20

40

60

80

100

False Accept Rate(%)

Fa
ls

e 
R

ej
ec

t R
at

e(
%

)
iris gabor + face PCA

SVM Fusion
Match Level Fusion
iris gabor
face PCA



 

 
89 
 
 
 

 

 

 
Equal Error Rate  

      (%) 

Identification Error Rate 

(%) 

iris gabor 5.9407 1.4 

face ICA 10.395 6.6 

SVM Fusion 0.85313 0 

Match Score Fusion 5.253 1.6 

Table 4.8: Performance enumerated for Identification and Verification case 

Figure 4.11: Fusion of IrisCodes with face ICA features. Feature level fusion 
outperforms match score fusion. 
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Equal Error Rate 

(%) 

Identification Error Rate 

(%) 

Iris gabor 5.9407 1.4 

face GEO 29.638 84 

SVM Fusion 1.2082 0.2 

Match Score Fusion 15.573 8.4 

Table 4.9: Performance enumerated for Identification and Verification case 

Figure 4.12: Fusion of IrisCodes with face Geometric features. Feature level fusion 
outperforms match score fusion. 
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Equal Error Rate 

 (%) 

Identification Error Rate 

 (%) 

finger minutia 5.5327 2.6 

iris gabor 5.9407 1.4 

SVM Fusion 1.8369 0.4 

Match Score Fusion 1.021 0.2 

Table 4.10: Performance enumerated for Identification and Verification case 

Figure 4.13: Fusion of IrisCodes with fingerprint minutia features. Feature level 
fusion and match score fusion perform equally well. 
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4.4 Summary 

The objective of this chapter is to demonstrate that feature level fusion can be 

consistently more effective than match-score fusion. To achieve this goal we have 

developed a Support Vector Machine based fusion framework that can combine 

information from any two biometric sources. We have developed further on our concept 

of local distance kernels and proposed the use of support vector theory to learn an 

optimal separating hyperplane. An effective and simple method to compute fused match-

score is introduced by projecting the distance vector on the learned hyperplane.  

We conducted extensive experiments and demonstrated the effectiveness of our proposed 

method for identification and verification scenario. Feature sets from various modalities 

and different algorithms were combined using techniques detailed in chapter 2. 

The results showed drastic improvement in performance when any combinations of 

features were selected for fusion. It is very worthwhile to mention about the fusion results 

achieved for the following two generic cases 

• Fusion of 2 strong biometric feature-sets. 

• Fusion of weak features with strong features. 

We assume a strong biometric feature sets to be the one less than 5% equal error rate. 

Two such combinations are the fusion of Iris codes with face PCA features and Minutia 

based fingerprints. While face PCA features are extracted from using domestically 

developed algorithm, fingerprint images were completely processed using the VeriFinger 

SDK. In both cases, feature level fusion performed extremely well and clearly 

outperformed the match-score fusion.  

When a poor feature set, one with equal error rate more than 25%, is combined with 
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strong feature set more often than not the over all fusion performance degrades. This 

phenomenon was consistently observed for match-score fusion but not for the proposed 

feature fusion framework. Geometric face features form a classical example for observing 

this in our experiments. When geometric face features were combined with any other 

biometric source we saw match-score fusion degraded performance, but when fusion was 

performed at the feature level there was always a gain in performance. 
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Chapter 5: Summary and Future Work 
 
Biometrics is becoming an integral part of our networked society but current systems do 

not have 100% accuracy. The research community is putting a lot of efforts in 

investigation the field of multimodal biometrics. Extensive research work has been done 

to identify efficient methods to combine the information obtained from multiple sources. 

Match level fusion and decision level fusion have been extensively studied in the 

literature. Feature level fusion is more complex but is capable of delivering better results. 

The following contributions are made by this thesis: 

Generic feature fusion framework: In the past feature fusion was carried out by direct 

concatenation of homogenous feature vector. We have established a generic feature 

transformation scheme using local distance kernels. The transformed data reside in a 

common space where they can be fused.  

Local Distance Transformation kernels: In this thesis, a new concept of local distance 

vectors is introduced and a methodology to achieve this mapping for different feature 

representation is developed. 

Feature Selection: Another important contribution of this thesis is a new feature selection 

techniques based on thresholding. Two feature evaluation functions are defined which 

operate on the transformed local distance kernel vectors. These feature selection scheme, 

dynamically remove noise from the input feature vector hence making feature level 

fusion very robust. 

AdaBoost: A novel application of boosting is proposed to learn a linear function to 

formulate reliable matching scores. It was shown by experiments that AdaBoost gives 

good performance, especially when poor biometric feature sets are involved. 
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SVM: Another important contribution of this thesis is the use of SVM to learn an optimal 

separating hyperplane. The match scores are synthesized by projecting the transformed 

local distance kernels vectors onto this separating hyperplane. It is important to note that 

due to the lack of sufficient, same data was used for training and testing and that may 

have resulted in feature level fused matching scores outperforming ruled based match 

score fusion. 

All the proposed methods require a larger set of training data. As mentioned before, in 

our experiments, all genuine distance vectors were used for training and testing was also 

performed using the same data. The performance of our framework is still to be 

established on larger dataset where training and testing data are mutually exclusive.  

Al last, we conclude this thesis with a short list of research questions for the future work 

that may help further enhance the system. The research questions are as follows 

1. Verify the potential of the proposed methods to larger dataset. Training and testing 

data should be mutually exclusive to verify generalization capability. 

2. Compare the obtained system with all existing match score fusion methods, where the 

match scores are obtained from commercial vendors. 

3. Extend the current parallel architecture of multimodal fusion to a cascade or 

hierarchical architecture. 

4. Design more efficient local distance transformation scheme. 

5. Investigate better feature evaluation schemes in order to remove noise. 

6. The experiments must be performed using a larger data set. 
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