2,079 research outputs found

    SM2RAIN–ASCAT (2007–2018): global daily satellite rainfall data from ASCAT soil moisture observations

    Get PDF
    Abstract. Long-term gridded precipitation products are crucial for several applications in hydrology, agriculture and climate sciences. Currently available precipitation products suffer from space and time inconsistency due to the non-uniform density of ground networks and the difficulties in merging multiple satellite sensors. The recent "bottom-up" approach that exploits satellite soil moisture observations for estimating rainfall through the SM2RAIN (Soil Moisture to Rain) algorithm is suited to build a consistent rainfall data record as a single polar orbiting satellite sensor is used. Here we exploit the Advanced SCATterometer (ASCAT) on board three Meteorological Operational (MetOp) satellites, launched in 2006, 2012, and 2018, as part of the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Polar System programme. The continuity of the scatterometer sensor is ensured until the mid-2040s through the MetOp Second Generation Programme. Therefore, by applying the SM2RAIN algorithm to ASCAT soil moisture observations, a long-term rainfall data record will be obtained, starting in 2007 and lasting until the mid-2040s. The paper describes the recent improvements in data pre-processing, SM2RAIN algorithm formulation, and data post-processing for obtaining the SM2RAIN–ASCAT quasi-global (only over land) daily rainfall data record at a 12.5 km spatial sampling from 2007 to 2018. The quality of the SM2RAIN–ASCAT data record is assessed on a regional scale through comparison with high-quality ground networks in Europe, the United States, India, and Australia. Moreover, an assessment on a global scale is provided by using the triple-collocation (TC) technique allowing us also to compare these data with the latest, fifth-generation European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA5), the Early Run version of the Integrated Multi-Satellite Retrievals for Global Precipitation Measurement (IMERG), and the gauge-based Global Precipitation Climatology Centre (GPCC) products. Results show that the SM2RAIN–ASCAT rainfall data record performs relatively well at both a regional and global scale, mainly in terms of root mean square error (RMSE) when compared to other products. Specifically, the SM2RAIN–ASCAT data record provides performance better than IMERG and GPCC in data-scarce regions of the world, such as Africa and South America. In these areas, we expect larger benefits in using SM2RAIN–ASCAT for hydrological and agricultural applications. The limitations of the SM2RAIN–ASCAT data record consist of the underestimation of peak rainfall events and the presence of spurious rainfall events due to high-frequency soil moisture fluctuations that might be corrected in the future with more advanced bias correction techniques. The SM2RAIN–ASCAT data record is freely available at https://doi.org/10.5281/zenodo.3405563 (Brocca et al., 2019) (recently extended to the end of August 2019)

    Precipitation products from the hydrology SAF

    Get PDF
    Abstract. The EUMETSAT Satellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF) was established by the EUMETSAT Council on 3 July 2005, starting activity on 1 September 2005. The Italian Meteorological Service serves as Leading Entity on behalf of twelve European member countries. H-SAF products include precipitation, soil moisture and snow parameters. Some products are based only on satellite observations, while other products are based on the assimilation of satellite measurements/products into numerical models. In addition to product development and generation, H-SAF includes a product validation program and a hydrological validation program that are coordinated, respectively, by the Italian Department of Civil Protection and by the Polish Institute of Meteorology and Water Management. The National Center of Aeronautical Meteorology and Climatology (CNMCA) of the Italian Air Force is responsible for operational product generation and dissemination. In this paper we describe the H-SAF precipitation algorithms and products, which have been developed by the Italian Institute of Atmospheric Sciences and Climate (in collaboration with the international community) and by CNMCA during the Development Phase (DP, 2005–2010) and the first Continuous Development and Operations Phase (CDOP-1, 2010–2012). The precipitation products are based on passive microwave measurements obtained from radiometers onboard different sun-synchronous low-Earth-orbiting satellites (especially, the SSM/I and SSMIS radiometers onboard DMSP satellites and the AMSU-A + AMSU-B/MHS radiometer suites onboard EPS-MetOp and NOAA-POES satellites), as well as on combined infrared/passive microwave measurements in which the passive microwave precipitation estimates are used in conjunction with SEVIRI images from the geostationary MSG satellite. Moreover, the H-SAF product generation and dissemination chain and independent product validation activities are described. Also, the H-SAF program and its associated activities that currently are being carried out or are planned to be performed within the second CDOP phase (CDOP-2, 2012–2017) are presented in some detail. Insofar as CDOP-2 is concerned, it is emphasized that all algorithms and processing schemes will be improved and enhanced so as to extend them to satellites that will be operational within this decade – particularly the geostationary Meteosat Third Generation satellites and the low-Earth-orbiting Core Observatory of the international Global Precipitation Measurement mission. Finally, the role of H-SAF within the international science and operations community is explained.</p

    Physically based evaluation of climate models over the Iberian Peninsula

    Get PDF
    A novel approach is proposed for evaluating regional climate models based on the comparison of empirical relationships among model outcome variables. The approach is actually a quantitative adaptation of the method for evaluating global climate models proposed by Betts (Bull Am Meteorol Soc 85:1673–1688, 2004). Three selected relationships among different magnitudes involved in water and energy land surface budgets are firstly established using daily re-analysis data. The selected relationships are obtained for an area encompassing two river basins in the southern Iberian Peninsula corresponding to 2 months, representative of dry and wet seasons. The same corresponding relations are also computed for each of the thirteen regional simulations of the ENSEMBLES project over the same area. The usage of a metric based on the Hellinger coefficient allows a quantitative estimation of how well models are performing in simulating the relations among surface magnitudes. Finally, a series of six rankings of the thirteen regional climate models participating in the ENSEMBLES project is obtained based on their ability to simulate such surface processes.The ENSEMBLES data used in this work was funded by the EU FP6 Integrated Project ENSEMBLES (Contract number 505539) whose support is gratefully acknowledged by the authors of the paper, without these data it would have been imposible to write this article

    A solar irradiation GIS as decision support tool for the Province of Salta, Argentina

    Get PDF
    The province of Salta is characterized by its solar energy high potential. The use of solar resource would improve living conditions in the area, diversify the energy matrix, promote more sustainable production systems and reduce greenhouse gases emissions. However, there are only a few studies that describe in high spatial resolution the variability of the solar resource in Argentina. Multidimensional tools, that consider the environment and the socio-economic situation, have to be considered for adequate support decision-making, such as solar collector location assessment and photovoltaic potential. In this sense, a deep evaluation of the solar resource is needed first, as solar irradiation is an essential input variable for the design and evaluation of solar application systems. In this paper, we detail the methodology used to elaborate a GIS tool to support decisions related to renewable energy policies and solar technology design. A comparison between global solar irradiation measurements in situ, empirical models, and data provided by Land Surface Analysis Satellite Applications Facility (LSA-SAF), is performed in daily, monthly and annual basis for a seven-year period. This analysis validates the use of this satellite data for the determination of solar irradiation in the region.Fil: Sarmiento Barbieri, Nilsa Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; ArgentinaFil: Belmonte, Silvina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; ArgentinaFil: Dellicompagni, Pablo Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; ArgentinaFil: Franco, Ada Judith. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; ArgentinaFil: Escalante, Karina Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; ArgentinaFil: Sarmiento Barbieri, Joaquín Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones en Energía no Convencional. Universidad Nacional de Salta. Facultad de Ciencias Exactas. Departamento de Física. Instituto de Investigaciones en Energía no Convencional; Argentin

    Commercial microwave links as a tool for operational rainfall monitoring in Northern Italy

    Get PDF
    open4noThere is a growing interest in emerging opportunistic sensors for precipitation, motivated by the need to improve its quantitative estimates at the ground. The scope of this work is to present a preliminary assessment of the accuracy of commercial microwave link (CML) retrieved rainfall rates in Northern Italy. The CML product, obtained by the open-source RAINLINK software package, is evaluated on different scales (single link, 5kmx5km grid, river basin) against the precipitation products operationally used at Arpae-SIMC, the regional weather service of Emilia-Romagna, in Northern Italy. The results of the 15 min singlelink validation with nearby rain gauges show high variability, which can be caused by the complex physiography and precipitation patterns. Known sources of errors (e.g. the attenuation caused by the wetting of the antennas or random fluctuations in the baseline) are particularly hard to mitigate in these conditions without a specific calibration, which has not been implemented. However, hourly cumulated spatially interpolated CML rainfall maps, validated with respect to the established regional gauge-based reference, show similar performance (R2 of 0.46 and coefficient of variation, CV, of 0.78) to adjusted radar-based precipitation gridded products and better performance than satellite-based ones. Performance improves when basin-scale total precipitation amounts are considered (R2 of 0.83 and CV of 0.48). Avoiding regional-specific calibration therefore does not preclude the algorithm from working but has some limitations in probability of detection (POD) and accuracy. A widespread underestimation is evident at both the grid box scale (mean error of 0:26) and the basin scale (multiplicative bias of 0.7), while the number of false alarms is generally low and becomes even lower as link coverage increases. Also taking into account delays in the availability of the data (latency of 0.33 h for CML against 1 h for the adjusted radar and 24 h for the quality-controlled rain gauges), CML appears as a valuable data source in particular from a local operational framework perspective. Finally, results show complementary strengths for CMLs and radars, encouraging joint exploitation.openGiacomo Roversi, Pier Paolo Alberoni, Anna Fornasiero, Federico PorcùGiacomo Roversi, Pier Paolo Alberoni, Anna Fornasiero, Federico Porc

    Innovation Issues in Water, Agriculture and Food

    Get PDF
    In a worldwide context of ever-growing competition for water and land, climate change, droughts and man-made water scarcity, and less-participatory water governance, agriculture faces the great challenge of producing enough food for a continually increasing population. In this line, this book provides a broad overview of innovation issues in the complex water–agriculture–food nexus, thus also relative to their interconnections and dependences. Issues refer to different spatial scales, from the field or the farm to the irrigation system or the river basin. Multidisciplinary approaches are used when analyzing the relationships between water, agriculture, and food security. The covered issues are quite diverse and include: innovation in crop evapotranspiration, crop coefficients and modeling; updates in research relative to crop water use and saving; irrigation scheduling and systems design; simulation models to support water and agricultural decisions; issues to cope with water scarcity and climate change; advances in water resource quality and sustainable uses; new tools for mapping and use of remote sensing information; and fostering a participative and inclusive governance of water for food security and population welfare. This book brings together a variety of contributions by leading international experts, professionals, and scholars in those diverse fields. It represents a major synthesis and state-of-the-art on various subjects, thus providing a valuable and updated resource for all researchers, professionals, policymakers, and post-graduate students interested in the complex world of the water–agriculture–food nexus

    SM2RAIN-ASCAT (2007–2018): global daily satellite rainfallfrom ASCAT soil moisture

    Get PDF
    Abstract. Long-term gridded precipitation products are crucial for several applications in hydrology, agriculture and climate sciences. Currently available precipitation products obtained from rain gauges, remote sensing and meteorological modelling suffer from space and time inconsistency due to non-uniform density of ground networks and the difficulties in merging multiple satellite sensors. The recent bottom up approach that uses satellite soil moisture observations for estimating rainfall through the SM2RAIN algorithm is suited to build long-term and consistent rainfall data record as a single polar orbiting satellite sensor is used. We exploit here the Advanced SCATterometer (ASCAT) on board three Metop satellites, launched in 2006, 2012 and 2018. The continuity of the scatterometer sensor on European operational weather satellites is ensured until mid-2040s through the Metop Second Generation Programme. By applying SM2RAIN algorithm to ASCAT soil moisture observations a long-term rainfall data record can be obtained, also operationally available in near real time. The paper describes the recent improvements in data pre-processing, SM2RAIN algorithm formulation, and data post-processing for obtaining the SM2RAIN-ASCAT global daily rainfall dataset at 12.5 km sampling (2007–2018). The quality of SM2RAIN-ASCAT dataset is assessed on a regional scale through the comparison with high-quality ground networks in Europe, United States, India and Australia. Moreover, an assessment on a global scale is provided by using the Triple Collocation technique allowing us also the comparison with other global products such as the latest European Centre for Medium-Range Weather Forecasts reanalysis (ERA5), the Global Precipitation Measurement (GPM) mission, and the gauge-based Global Precipitation Climatology Centre (GPCC) product. Results show that the SM2RAIN-ASCAT rainfall dataset performs relatively well both at regional and global scale, mainly in terms of root mean square error when compared to other datasets. Specifically, SM2RAIN-ASCAT dataset provides better performance better than GPM and GPCC in the data scarce regions of the world, such as Africa and South America. In these areas we expect the larger benefits in using SM2RAIN-ASCAT for hydrological and agricultural applications.The SM2RAIN-ASCAT dataset is freely available at https://doi.org/10.5281/zenodo.2591215

    GEWEX water vapor assessment (G-VAP): final report

    Get PDF
    Este es un informe dentro del Programa para la Investigación del Clima Mundial (World Climate Research Programme, WCRP) cuya misión es facilitar el análisis y la predicción de la variabilidad de la Tierra para proporcionar un valor añadido a la sociedad a nivel práctica. La WCRP tiene varios proyectos centrales, de los cuales el de Intercambio Global de Energía y Agua (Global Energy and Water Exchanges, GEWEX) es uno de ellos. Este proyecto se centra en estudiar el ciclo hidrológico global y regional, así como sus interacciones a través de la radiación y energía y sus implicaciones en el cambio global. Dentro de GEWEX existe el proyecto de Evaluación del Vapor de Agua (VAP, Water Vapour Assessment) que estudia las medidas de concentraciones de vapor de agua en la atmósfera, sus interacciones radiativas y su repercusión en el cambio climático global.El vapor de agua es, de largo, el gas invernadero más importante que reside en la atmósfera. Es, potencialmente, la causa principal de la amplificación del efecto invernadero causado por emisiones de origen humano (principalmente el CO2). Las medidas precisas de su concentración en la atmósfera son determinantes para cuantificar este efecto de retroalimentación positivo al cambio climático. Actualmente, se está lejos de tener medidas de concentraciones de vapor de agua suficientemente precisas para sacar conclusiones significativas de dicho efecto. El informe del WCRP titulado "GEWEX water vapor assessment. Final Report" detalla el estado actual de las medidas de las concentraciones de vapor de agua en la atmósfera. AEMET ha colaborado en la generación de este informe y tiene a unos de sus miembros, Xavier Calbet, como co-autor de este informe
    corecore