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10 Abstract A novel approach is proposed for evaluating

11 regional climate models based on the comparison of

12 empirical relationships among model outcome variables.

13 The approach is actually a quantitative adaptation of the

14 method for evaluating global climate models proposed by

15 Betts (Bull Am Meteorol Soc 85:1673–1688, 2004). Three

16 selected relationships among different magnitudes involved

17 in water and energy land surface budgets are firstly

18 established using daily re-analysis data. The selected

19 relationships are obtained for an area encompassing two

20 river basins in the southern Iberian Peninsula correspond-

21 ing to 2 months, representative of dry and wet seasons. The

22 same corresponding relations are also computed for each of

23 the thirteen regional simulations of the ENSEMBLES

24 project over the same area. The usage of a metric based on

25 the Hellinger coefficient allows a quantitative estimation of

26 how well models are performing in simulating the relations

27 among surface magnitudes. Finally, a series of six rankings

28 of the thirteen regional climate models participating in the

29 ENSEMBLES project is obtained based on their ability to

30 simulate such surface processes.

31

32 Keywords Climate models � Evaluation

331 Introduction

34Climate models are numerical representations of the cli-

35mate system based on the physical, chemical, and biolog-

36ical properties of its components, their interactions and

37feedback processes. Different climate models constitute

38multiple realizations of the climate system based on com-

39puter programs. Climate models differentiate among them

40by the approximations and discretizations used to solve the

41mathematical equations representing its physics, chemistry

42and biology. Although climate models continue to have

43significant limitations which lead to uncertainties in the

44magnitude and timing, as well as regional details, they have

45consistently provided a robust and unambiguous picture of

46the climate system. There is currently a considerable con-

47fidence in the simulations provided by climate models due

48to the fact that model principles are based on well estab-

49lished physical laws, such as conservation of mass, energy

50and momentum. An additional source of confidence is their

51ability to simulate important aspects of the current and past

52climates, as well as their changes (Randall et al. 2007).

53The climate system includes a variety of physical pro-

54cesses, such as cloud processes, radiative processes and

55boundary-layer processes, which interact with each other

56on many temporal and spatial scales. Due to the limited

57resolutions of the models, many of these processes are not

58resolved adequately by the model grid and must therefore

59be parameterized. As confidence in global models decrea-

60ses at smaller scales, higher resolution regional climate

61models (RCMs) provide quantitative value to climate

62simulations. With finer resolution, mesoscale phenomena,

63contributing e.g. to intense precipitation, and coupling

64between regional circulations and convection can be

65resolved. Higher resolution RCMs also include other types

66of scale-dependent variability such as extreme winds and
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A2 J. Ma. Sánchez-Laulhé � C. J. Alonso � J. M. S. Ávila
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67 locally extreme temperature that coarse-resolution global

68 models will smooth. Regional-scale simulations also have

69 phenomenological value, being able to represent processes

70 that global models either cannot resolve or can resolve only

71 poorly (CCSP 2008).

72 As climate models are very complex systems, they have

73 different capabilities and limitations which can be evalu-

74 ated using a variety of methods and approaches. Models

75 can be tested either globally at the system-level or at

76 component-level. Whereas system-level evaluation is

77 focused on the outputs of the full model, component-level

78 evaluation isolates particular components of the model

79 (e.g. atmosphere, ocean, land surface, etc.) or even sub-

80 components (e.g., numerical methods, parameterizations of

81 different physical processes, etc.,) to test them indepen-

82 dently of the complete model. A hybrid approach consists

83 of evaluating the whole system but putting the focus on

84 some specific process or component. For example, we may

85 be interested in exploring how well climate models are able

86 to simulate surface processes or interaction between land

87 and atmosphere (Randall et al. 2007).

88 A number of metrics have been designed to compare

89 quantitatively climate model simulations against past or

90 current observed climates. Although many different met-

91 rics of model reliability have been proposed (see, e.g.,

92 Gleckler et al. 2008) there is at present little consensus on a

93 particular metric to discriminate ‘‘good’’ and ‘‘bad’’

94 models. In fact, the main issue is the virtually infinite

95 number of metrics that can be defined, being each of them

96 appropriate for different purposes (Knutti et al. 2010).

97 Land-surface processes and interaction between land-sur-

98 face and atmosphere are especially relevant for the evalu-

99 ation of climate models simulations as they are very much

100 responsible for precipitation and surface temperature,

101 which traditionally have been used to define local climate.

102 The performance of a climate model when simulating the

103 interaction between land-surface and atmosphere depends

104 critically on the correct coupling between land-surface

105 fluxes and state variables (e.g., evapotranspiration, sensible

106 heat flux, radiative fluxes, soil moisture, etc.). Some

107 researchers (e.g., Betts 2004, 2007; Betts et al. 2006; Jaeger

108 et al. 2009; Santanello et al. 2009; Seneviratne et al. 2010)

109 have pointed out that an alternative way to identify cou-

110 pling between related variables is to derive empirical

111 relationships by displaying the investigated variables as a

112 function of one another. These relationships can only be

113 suggestive of coupling mechanisms at the land–atmosphere

114 interface without pointing to any direction of causality. As

115 these relationships can be derived for both observations

116 and model data, they are also of strong relevance for model

117 evaluation. We extend in this paper the method for eval-

118 uating global climate models proposed by Betts (2004) to

119 RCMs including as main novelties, first, the quantification—

120by introducing the Hellinger distance—of how well dif-

121ferent pairs of empirical relationships are represented by

122models and, second, the usage of such metric to evaluate

123and rank models according to accuracy of their simulation

124of atmosphere/land surface coupling.

125In recent years a large number of RCM simulations have

126been produced for simulating the future European climate

127(e.g. Christensen and Christensen 2007; Déqué et al. 2005,

1282007; van der Linden and Mitchell 2009). As indicated by

129Kjellström and Giorgi (2010), a relevant finding in these

130multi-model experiments is that climate change scenarios

131with different RCMs can differ significantly, even if the

132lateral boundary conditions are taken from the same global

133climate model. Therefore, an additional level of uncertainty

134to the total uncertainty is added by the downscaling process

135associated to regional climate change simulations. In order

136to explore such uncertainties, it is reasonable to make use

137of multi-model ensembles of RCMs for deriving detailed

138climate change information at the regional scale. It can

139even be envisaged the application of some kind of per-

140formance-based weighting schemes in the process of

141combining multi-model results, to increase the reliability of

142the projections (Giorgi and Mearns 2002). In the European

143project ENSEMBLES (van der Linden and Mitchell 2009),

144a work package was devoted to designing and testing a

145weighting system for a multi-model ensemble of RCMs.

146Kjellström and Giorgi (2010) have described the set of

147metrics derived in the framework of the ENSEMBLES

148project to combine RCMs simulations based on their per-

149formance and aiming at the production of probabilistic

150climate change projections (see also Climate Research,

151Special Issue No 23 2010 on ‘Regional Climate Model

152evaluation and weighting’). Christensen et al. (2010) have

153explored six metrics designed to capture different aspects

154of RCM performance in reproducing large-scale circulation

155patterns, meso-scale signals, daily temperature and pre-

156cipitation distributions and extremes, trends and the annual

157cycle. Most of their explored metrics were based on the

158performance of different aspects of temperature and pre-

159cipitation fields but none of them relied on the correctness

160of physical processes simulations.

161Within this frame our method proposes an evaluation of

162the interaction between land and atmosphere simulated by

163regional climate models as a complement to the above

164described methods to measure the performance of RCMs.

165The method here described characterizes the differences or

166distances of two 2D-scattered plots describing the empiri-

167cal relationship linking pairs of land surface variables by

168making use of the Hellinger coefficient (Cramer 1946). The

169Hellinger coefficient—initially introduced in probability

170and statistics theories to measure the closeness of two

171probability distribution functions—will therefore allow us

172to quantify how close the same empirical relation obtained
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173 from a climate model simulation and from observation are.

174 In order to compare the here proposed method of evalua-

175 tion based on the interaction between land and atmosphere

176 with the six metrics proposed by Christensen et al. (2010),

177 we have computed the Hellinger coefficient for the pair

178 temperature and precipitation (T2m-PP) and also standard

179 scores for temperature and precipitation.

180 ERA-Interim re-analysis (Dee et al. 2011) has been used

181 as a proxy of actual observations for the selected surface

182 magnitudes due to the lack of spatial coverage of obser-

183 vations for most of the fluxes and surface variables con-

184 sidered here. Direct measures of fluxes and surface/soil

185 variables are frequently restricted to a few reference

186 observatories or recent satellite measurements. Data

187 assimilation algorithms provide a full and consistent 3D

188 representation of the atmosphere constrained by the avail-

189 able observations and physical relationships among vari-

190 ables describing the state of the atmosphere, The

191 four-dimensional variational data assimilation used in

192 ERA-Interim includes, apart of the relationships of the

193 forecast model, those of the complex statistical balance

194 between the first guess error variables. We are fully aware

195 that fluxes—and certain variables not directly observed-

196 provided by a re-analysis are very much dependent on the

197 constraints imposed by the data assimilation algorithm and

198 the underlying model. Variables not directly observed are

199 mainly produced by the underlying forecasting model. In

200 fact, it may happen that fluxes and non-analysed soil/sur-

201 face variables show bias attributable to the inaccuracies of

202 the assimilation procedure. Therefore, before using re-

203 analysis data as reference or ground-truth some efforts

204 must be devoted to verify this assumption for the variables,

205 region and seasons selected. Nevertheless, it should be

206 stressed that this paper focuses on the proposed method to

207 evaluate model outputs based on empirical relationship

208 linking pairs of surface relevant magnitudes and not on a

209 comprehensive validation of the reference.

210 Once the selected relationships have been determined

211 for the ERA-Interim re-analysis data, the corresponding

212 relationships are also determined for each of the thirteen

213 regional simulations of the ENSEMBLES project (van der

214 Linden and Mitchell 2009) using daily data over the same

215 area. Finally, a measure of the closeness based on the

216 Hellinger coefficient is applied to produce a ranking of

217 the thirteen regional climate models participating in the

218 ENSEMBLES project focused mainly on their ability to

219 simulate surface processes.

220 The paper is organized as follows. Section 2 describes

221 the data sets used in this study. The ground truth from

222 ERA-Interim re-analysis is evaluated is Sect. 3. The prin-

223 ciples, advantages and limitations of the method are

224 described in Sect. 4. Main results are presented in Sect. 5.

225 Finally, conclusions are summarized in Sect. 6.

2262 Data

227The ERA-Interim re-analysis data (Dee et al. 2011) has

228been used through the whole study as a reference to

229compare with RCMs outputs. Although it can be argued

230that some soil/surface variables and surface fluxes provided

231by a re-analysis are not the ideal reference to be used as an

232accurate representation of the observed atmosphere and/or

233land surface, it is however a practical approach which

234circumvents the problem of the insufficient spatial cover-

235age of in situ data and of the inaccuracy of satellite data for

236certain surface variables. It must be always kept in mind

237that fluxes values correspond to 12 h forecasting and

238therefore they are very much dependent on the underlying

239model.

240The following data have been used for this study:

241(a) Daily analysis (0000, 0600, 1200, 1800 UTC) from

2421989 to 2008 of Skin Temperature (SKT) and 2-meter

243Temperature (T2m) and daily averaged 12 h forecasts

244(0000, 1200 UTC) of Surface Net Thermal Radiation

245(LWnet), Surface Net Solar Radiation (SWnet), Surface

246Sensible Heat Flux (SSHF) and Total Precipitation

247(PP) from the European Centre for Medium-Range

248Weather Forecast (ECMWF) ERA-Interim reanalysis

249(Dee et al. 2011). The ERA-Interim atmospheric

250model is configured with 60 levels in the vertical; a

251T255 spherical-harmonic representation for the basic

252dynamical fields and a reduced Gaussian grid with

253approximately uniform 79 km spacing for surface and

254other grid-point fields.

255(b) Daily fields from 1991 to 2000 of Maximum Soil

256Temperature (Tsmx), Minimum Soil Temperature

257(Tsmn) and 2-m Temperature (T2m), and daily

258averaged fields of Surface Net Thermal Radiation

259(LWnet), Surface Net Solar Radiation (SWnet), Sur-

260face Sensible Heat Flux (SSHF) and Precipitation

261(PP) from the thirteen RCMs participating in the

262Research Theme 3 (RT3) of the ENSEMBLES

263project (van der Linden and Mitchell 2009). All

264regional simulations for the period 1991–2000 were

265driven by ERA-40 reanalysis (Uppala et al. 2005).

266Table 1 provides information of the 13 models

267considered in this study: institution, model, number

268of vertical levels and key references. The fields were

269obtained from the ENSEMBLES RT3/RT2B data

270archive (http://ensemblesrt3.dmi.dk).

271Only the months of July and November corresponding

272to ERA-Interim and RT3-ENSEMBLES data have been

273used. The election is justified by the fact that July is rep-

274resentative of the dry season, whereas November is

275representative of the wet season over Southern Spain.

276ERA-Interim and all 13 RT3-ENSEMBLES regional
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277 models datasets have been interpolated to a common grid

278 (0.25� latitude 9 0.25� longitude) defined by a rectangular

279 area (from 40.5�N to 37.5�N, and from 7.0�W to 2.0�W)

280 covering part of Tagus and Guadiana river basins in

281 southern Iberian Peninsula (see Fig. 1).

282 3 Evaluation of ground-truth ERA-Interim data

283 Although the quality of ERA-Interim is not the subject of

284 this paper, its selection as ground-truth requires of previous

285 discussion and some validation against in situ and satellite

286 observations. In particular, the quality of the ERA-Interim

287 selected fluxes (LWnet, SWnet and SSHF) must be carefully

288 validated—as these quantities are not analyzed—before

289 accepting them as ground-truth reference to compare

290 against the corresponding quantities from regional climate

291 models. The validation of ERA-Interim fluxes implies a

292 certain degree of difficulty as the corresponding observa-

293 tional satellite data, mainly from EUMETSAT Satellite

294 Application Facility on Climate Monitoring (CM SAF)

295 products (see http://www.cmsaf.eu) are available only for

296 recent years and these last data do not overlap in time with

297 RT3-ENSEMBLES regional models simulations.

298 For the evaluation of LWnet and SWnet, we have made

299 use of CM SAF products. The CM SAF data products are

300 categorized in monitoring data sets obtained in near real

301 time and data sets based on carefully inter-sensor calibrated

302 radiances. The homogenous sets of high-quality data are

303 derived from several instruments on-board meteorological

304 operational satellites in geostationary and polar orbit as the

305Meteosat and EUMETSAT Polar System satellites,

306respectively. Surface radiation products are retrieved from

307SEVIRI/GERB instruments on MSG satellite and AVHRR

308instruments on METOP and NOAA satellites. They are

309available as gridded monthly and daily means data at

31015 9 15 km resolution.

311Figure 2 shows the comparison of daily SWnet obtained

312from ERA-Interim and from CM SAF averaged for the

313same area and for the months of July and November cor-

314responding to years 2006, 2007 and 2008. The figure shows

315a remarkable coincidence between ERA-Interim and CM

316SAF values for clear sky days. Cloudy days show a ten-

317dency of ERA-Interim SWnet to have higher values than the

318corresponding CM SAF ones. The mean absolute differ-

319ence (MAD) between both curves is 7.52 and 13.52 Wm-2

320for July and November, respectively (see red lines in

321Fig. 4). The lower value for July is mainly due to the

322predominance of clear sky conditions. Computation of

323MAD between the ENSEMBLES regional models and

324ERA-Interim show clearly larger values (see box plots in

325Fig. 4) and therefore it can be reasonably assumed that

326ERA-Interim SWnet is a good approximation for the

327observed reference. As data available from ENSEMBLES

328RCMs do not cover the period 2006–2008, we have instead

329compared ERA-Interim against each of the ENSEMBLES

330regional models for the months of July and November of

331years 1998, 1999 and 2000 (see Fig. 4).

332Unfortunately, there is no daily data available from CM

333SAF for LWnet. Therefore, the evaluation of ERA-Interim

334LWnet will be based on monthly averages. Figure 3 depicts

335monthly mean LWnet obtained from ERA-Interim and from

336CM SAF averaged for the same area and for years

3372006–2010. The mean absolute difference between both

Fig. 1 Selected area for the study of ERA-Interim re-analysis and

ENSEMBLES datasets

Table 1 List of regional climate models participating in the EU-FP6

ENSEMBLES project

Institution RCM Vertical

levels

Reference

CHMI ALADIN 31 N/A

C4I RCA3 31 Kjellström et al. (2005)

DMI HIRHAM 31 Christensen et al. (2007)

ETHZ CLM 32 Böhm et al. (2006)

HC HadRM3Q0 19 Collins et al. (2006)

HC HadRM3Q3 19 Collins et al. (2006)

HC HadRM3Q16 19 Collins et al. (2006)

KNMI RACMO 40 Van Meijgaard et al.

(2008)

METNO HIRHAM 31 Haugen and Haakensatd

(2006)

MPI REMO 27 Jacob (2001)

SHMI RCA 24 Kjellström et al. (2005)

UCLM PROMES 28 Sánchez et al. (2004)

OURANOS CRCM 29 Plummer et al. (2006)
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338 curves is 4.67 Wm-2 for the whole period. Again, the

339 corresponding computation of MAD between each of the

340 13 RT3-ENSEMBLES regional models and ERA-Interim

341 show clearly larger values (see box plots in Fig. 4), but for

342 the period 1996–2000, and therefore it can be reasonably

343 assumed than ERA-Interim LWnet is a good approximation

344 for the observed reference.

345 For the evaluation of SSHF we have to rely on in situ

346 observations from a number of flux tower networks (Král

347 2011). This evaluation made use of the 2006 data from the

348 FLUXNET LaThuile Synthesis dataset which compiles

349 flux tower eddy-covariance measurements from a number

350 of regional flux tower networks across the globe (Baldocchi

351 et al. 2001). Root mean square error of ERA-Interim SSHF

352 compared against FLUXNET daily data for the whole 2006

353 show values ranging from 20 to 40 Wm-2 for most Wes-

354 tern European towers, values are generally lower than the

355 corresponding rmse of regional models computed with

356 respect to ERA-Interim SSHF. This is an expected result,

357 consequence of the land surface analysis combining syn-

358 optic observations over land with background estimates

359 based on 6-hourly estimates of screen-level temperature

360 and dew point from the latest atmospheric analysis (Dou-

361 ville et al. 1998). The analysis increments for screen-level

362 temperature and humidity are subsequently used to update

363 soil moisture and soil temperature estimates for each of the

364 four layers of the land-surface model, by a simple empir-

365 ical approach (Douville et al. 2000; Mahfouf et al. 2000).

366 Therefore, surface sensible and latent fluxes are con-

367 strained in ERA-Interim by soil moisture and soil tem-

368 perature which in turn are corrected by screen-level

369 temperature and humidity observations.

3704 Methodology

371Atmosphere and land surface are strongly coupled sub-

372systems of the climate system. Surface fluxes (of energy,

373water, momentum, carbon, etc.) enable the coupling of

374both sub-systems. In fact, climate variables, as e.g. surface

375equilibrium temperature, diurnal temperature range, near

376surface air temperature and humidity, are very dependent

377on surface fluxes. Moreover, the entire structure and fea-

378tures of the atmospheric boundary layer are in turn very

379influenced by land-surface and atmosphere coupling

380expressed in the form of surface fluxes (see, e.g., Stensrud

3812007). Whenever we refer in this paper to coupling

382between two variables, we mean that one variable controls

383each other (following Seneviratne et al. (2010)) or even

384better that both are forced to change together in a way

385prescribed by the underlying processes. For example, for

386the particular case of the pair of variables SWnet - LWnet,

387Figure 6 shows that SWnet increases whenever LWnet

388increases (and vice versa) for November days, whereas this

389is only true when SWnet does not reach the maximum value

390(generally reduced by clouds) for July days. This coupling

391does not necessarily mean that the relationship between

392both variables is linear. In fact, in most of the cases, the

393relationship is linear only as a first approximation. The

394level of dispersion shown by 2D-scattered plots indicates—

395without any expression of causality—how tight the rela-

396tionship between pairs of variables is.

397Surface fluxes involved in the surface energy budget are

398especially relevant for land-surface and atmosphere cou-

399pling. The surface energy budget equation can be expressed

400in a simplified form as:

Fig. 2 Daily 12 h mean

Surface Net Solar Radiation

(SWnet) averaged over the

selected area (see Fig. 1) from

ERA-Interim and CM-SAF data

for 3 months of July and

November corresponding to

years 2006–2008
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Rnet ¼ SWnet þ LWnet ¼ SSHFþ SLHFþ G ð1Þ

402402 The net surface radiation, Rnet, is the sum of net shortwave

403 (SWnet) and longwave (LWnet) fluxes; Rnet is balanced by

404 the upward sensible heat flux (SSHF) the upward latent

405heat flux (SLHF) and the storage (G) (neglected on daily

406scales). Both heat fluxes are the important mechanisms to

407turn energy back into the atmosphere from land surface.

408Accuracy and minimal drift in the land-surface climate and

409the surface fluxes impact forecast skill on all timescales

410(Betts 2009; Stensrud 2007).

411The surface LWnet plays a fundamental role in land–

412atmosphere coupling. Although upward and downward LW

413fluxes are strongly dependent functions of temperature,

414however, LWnet is largely determined by humidity and

415cloud cover on daily-mean timescales, due to the strong

416vertical coupling of the atmospheric temperature and

417moisture structure. For example, the depth of the daytime

418adiabatic mixed layer (ML) is a function of relative

419humidity (RH). Outgoing LWnet decreases as near-surface

420RH rises (and mean cloud-base falls), and decreases as

421cloud cover increases. LWnet plays in turn a fundamental

422role in the diurnal cycle over land. For example, a clear dry

423atmosphere gives place to an increased outgoing LWnet

424associated with surface cooling, lower minimum surface

425temperature at night and very stable nocturnal boundary

426layer, NBL. In terms of the daily climate, the strength of

427the NBL is closely related to the diurnal temperature range,

428DTR (defined as DTR = Tmax - Tmin, where Tmax, Tmin

429are the maximum and minimum values of 2-m Tempera-

430ture). In the dry season, both atmospheric water vapour and

431cloud cover reach relatively low values and therefore the

432lifting condensation level (LCL) tends to reach relatively

433higher values, contributing all these factors to an increased

434outgoing LWnet (Betts 2009).

435Surface water budget is also associated to energy bud-

436get, as latent heat flux, caused by evapotranspiration, plays

437an important role in both water and energy budgets. The

438surface water budget can be expressed as:

dS=dt ¼ P� E� R ð2Þ

Fig. 3 Monthly mean Surface

Net Thermal Radiation (LWnet)

averaged over the selected area

(see Fig. 1) from ERA-Interim

and CM-SAF data for years

2006–2010. Months of July and

November are additionally

marked by symbols

Fig. 4 Mean absolute difference of Net Solar Radiation fluxes

averaged over the selected area from CM-SAF data (red) and thirteen

ENSEMBLES RCMs (box plot) with respect to ERA-Interim. Daily

Surface Net Solar Radiation (SWnet) for the months of July (left) and

November (centre) and monthly Surface Net Thermal Radiation

(LWnet) (right) are represented for the periods shown. Box plots

represent the minimum, maximum, median and 10th, 25th, 75th and

90th percentiles
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440440 where S stand for terrestrial water storage, P for total

441 amount of precipitation, E for evapotranspiration and R for

442 total runoff.

443 The relative importance of latent and sensible heat

444 fluxes depends strongly on surface features. In bare, dry

445 soils, the absorbed radiative energy is mostly used to heat

446 the surface, turning back energy to the atmosphere usually

447 as a vigorous, turbulent sensible flux. On the other hand,

448 densely vegetated surfaces with enough water available for

449 evapotranspiration invest most of the radiative energy in

450 extracting subsurface water through the root system. This

451 process of transpiration is mainly controlled by leaves,

452 opening and closing their stomata according to the envi-

453 ronmental conditions and to the available soil wetness.

454 Transpiration turns energy back to the atmosphere in form

455 of latent heat flux. Over land the availability of water

456 essentially determines evaporative fraction, EF, (being

457 defined as SLHF/(SLHF ? SSHF)). Soil water has a pri-

458 mary role in the surface energy partition between latent and

459 sensible heat fluxes, and in turn in the diurnal cycle of 2-m

460 Temperature and humidity. The latent and sensible heat

461 fluxes play a different role for the atmosphere. Sensible

462 heat at the bottom means energy immediately available to

463 the atmosphere, and contributes to the heating and/or

464 deepening of the planetary boundary layer. For an entire

465 atmospheric column, the net radiative cooling is balanced

466 by energy involved in phase changes inside the column

467 (condensation of water vapour and evaporation of rain) and

468 sensible heat flux at the surface (see, e.g., Garratt 1992;

469 Stensrud 2007).

470 The three following relationships involving surface

471 fluxes and temperatures were selected in order to evaluate

472 the performance of the RT3-ENSEMBLE regional models

473 when simulating atmosphere land-surface coupling:

474 • SWnet - LWnet,

475 • SWnet - SSHF,

476 • LWnet - (Tsmx - Tsmn).

477 The variables selected are readily available both from

478 ERA-Interim and RT3-ENSEMBLE datasets and, as dis-

479 cussed above, are responsible and descriptive of different

480 aspects related with energy and water budgets and with

481 features of the atmospheric boundary layer.

482 The study area was selected inland of the Iberian Pen-

483 insula to avoid potential influences of the coast. The area

484 encompassing two river basins—Tagus and Guadiana—

485 also shows approximate homogeneity with respect to soil,

486 vegetation and climate being predominantly flat. The

487 selected area belongs to Mediterranean climate type with

488 continental and Atlantic influences.

489 The three selected empirical relationships were derived

490 from ERA-Interim, using daily data for July (representative

491of the dry season) and November (representative of the wet

492season), by displaying the three pairs of variables in

4932D-scattered plots. The reason for the choice of these two

494months resides in the considerable differences appearing in

495the atmosphere-land surface coupling between dry and

496rainy seasons (Betts 2004). The 2D-scattered plots for each

497of the three relationships are represented in the upper left

498plots of Figs. 5, 6 and 7. They show some differences with

499the corresponding plots obtained by Betts (2004) for the

500Madeira (Brazil) river basin. These differences are justified

501by the fact that they are computed not only with different

502re-analysis but geographical location, period, terrain and

503weather conditions are also diverse. The largest differences

504between Madeira (tropical latitude, south of Equator) and

505the Iberian Peninsula (extratropical latitude) are mainly

506associated to minimum values of SWnet. Whereas the

507minimum value of SWnet in Madeira is approximately the

508same in dry and wet seasons, the corresponding minimum

509values show a difference of about 200 Wm-2 in the Iberian

510Peninsula. Also, the number of cloudless days is much

511higher in the Iberian Peninsula than in Madeira restricting

512considerably the SWnet range in the first case.

513The corresponding relations for each of the RT3-

514ENSEMBLES regional simulations are then computed

515following the same procedure. Figures 5, 6 and 7 show

5162D-scattered plots for the ERA-Interim and for the 13

517regional models corresponding to each of the three rela-

518tionships for dry (July) and wet (November) seasons.

519Finally, in order to quantify differences or similarities in

520the empirical relationships between ERA-Interim and each

521one of the 13 regional models, the Hellinger coefficient

522(Hellinger 1909) has been used to measure distances of

523clouds of points in 2D-scattered plots. The Hellinger

524coefficient was originally designed to estimate the prox-

525imity of probability density functions (pdf’s). The Hellin-

526ger coefficient is defined as:

d
ðsÞ
Hell ¼

Z

R

qðxÞspðxÞð1�sÞ
dx; ð3Þ

528528where q(x) and p(x) are two pdf’s to compare, and s is a

529parameter (0\ s\ 1). The calculation was made choosing

530s = 1/2 which yields a symmetric measure with values

531between zero (p and q have disjoint supports) and one (p

532and q are identical). The Hellinger coefficient can be

533thought of as measure of the ‘‘overlap’’ between two dis-

534tributions. Hellinger coefficient yields information about

535differences or similarities in relative position, shape and

536orientation of the pdf’s. The definition given in Eq. (3) is in

537fact a measure of similarity.

538The kind of evaluation here described is in the same

539spirit as those proposed by several authors (Perkins et al.

5402007; Perkins and Pitman 2009; Casado and Pastor 2012)
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Fig. 5 Scattered plots of LWnet

as a function of (Tsmx - Tsmn)

for ERA-Interim and thirteen

ENSEMBLES RCMs over the

selected area. Red circles and

blue crosses correspond to dry

(July) and wet (November)

seasons, respectively
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Fig. 6 The same as Fig. 5, but

for SWnet as a function of LWnet
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Fig. 7 The same as Fig. 5, but

for SWnet as a function SSHF
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541 who considered the great advantage of assessing climate

542 models using metrics derived from pdf’s estimated from

543 daily data.

544 5 Results

545 Figure 5 shows the scattered plot of LWnet as a function of

546 the diurnal range of soil temperature (DTR) for ERA-

547 Interim and for each of the thirteen RT3-ENSEMBLES

548 regional models. Points corresponding to July and

549 November merge in a single quasi-linear distribution for

550 most models. Other months (not shown here) fall in

551 between filling in the same distribution. This behaviour

552 was explained by Betts (2009) that showed that for any

553 latitude DTR & -LWnet (1/(4rT3)), being r the Stefan-

554 Boltzmann constant (r = 5.67 9 10-8 Wm-2K-4). A

555 clear dry atmosphere above causes high values of LWnet

556 and therefore cooling at the surface, leading to lower

557 minimum surface temperature at night, and a ‘stronger’

558 nocturnal boundary layer (NBL). In terms of daily climate,

559 this strength of the NBL is closely related to the diurnal

560 temperature range DTR = Tmax - Tmin. Most of the plots

561 show that the range of DTR is roughly double for

562 November (wet season) as compared to July (dry season).

563 LWnet also shows higher values for the wet season as

564 compared to dry season. The reasons for such higher values

565 of LWnet during the wet season reside principally in the

566 usually greater cloud cover and higher lifting condensation

567 level (LCL). From a daily climate perspective, day-time

568 and night-time boundary layers are a fully coupled system,

569 frequently being a deep residual mixed layer from the

570 previous day. LWnet is usually correlated with the strength

571 of NBL and the thickness of the diurnal boundary layer.

572 The maximum upward LWnet for ERA-Interim in July

573 reaches a value of about -130 Wm-2. The corresponding

574 RCMs values for these maxima are highly variable,

575 reaching values up to -160 Wm-2 (for HadRM3 model).

576 In the month of November, maximum values of LWnet are

577 of about -100 Wm-2 for all models (including ERA-

578 Interim) except for SMHI-RCA and DMI-HIRHAM where

579 maximum values rise up to -120 Wm-2 (see Fig. 5).

580 These maxima correspond to clear days with low atmo-

581 spheric humidity.

582 Figure 6 depicts the scattered plot of SWnet as a function

583 of LWnet, showing two well differentiated distributions for

584 July and November. The scattered plot corresponding to

585 ERA-Interim suggests that SWnet and LWnet are coupled

586 only in the few cloudy days of the month of July. However,

587 no coupling seems to exist in clear days which are majority

588 in July. None of the RCM seems to properly simulate this

589 behaviour. Differences in the upper limits of SWnet of up to

590 30 Wm-2 between ERA-Interim and some RCMs might be

591due to different surface albedo. In November where clear

592days are infrequent, coupling between SWnet and LWnet is

593not so tight possibly caused by advection of atmospheric

594water vapour. Differences between RCMs and ERA-

595Interim are smaller in November than in July, showing

596several RCMs stronger SWnet - LWnet coupling than for

597ERA-Interim.

598The scattered plot of SWnet as a function of SSHF based

599on ERA-Interim (see Fig. 7) shows almost no coupling

600between SWnet and SSHF for the month of July. The sur-

601face energy budget equation (see Eq. 1) can be conse-

602quently simplified as Rnet = SWnet ? LWnet = SSHF due

603to the lack of available water for evapotranspiration during

604dry season. Therefore, most of the net surface radiation,

605Rnet, will turn back as SSHF to the atmosphere, favouring

606the coupling SSHF - LWnet and preventing the coupling

607SSHF - SWnet. On the other hand, the month of Novem-

608ber (wet season) shows a clear SWnet - SSHF coupling.

609Some RCMs show greater coupling than ERA-Interim in

610cloudy July days. The behaviour of RCMs in November is

611highly variable as compared with ERA-Interim.

612Table 2 summarizes Hellinger distances between ERA-

613Interim and each one of the ENSEMBLES RCMs and for

614each of the three selected relations describing the atmo-

615sphere-land surface coupling for July and November. The

616T2m - PP relationship has also been added for the sake of

617comparison with previous studies (e.g., Christensen et al.

6182010). Hellinger coefficients for July tend to be smaller

619than the corresponding values for November, meaning that

620coupling in dry season is worse simulated than in wet

621season. This effect is particularly clear for the relation

622SWnet - SSHF. Tables 3 and 4 summarize for July and

623November standard skill scores between ERA-Interim and

624each one of the ENSEMBLES RCMs for 2-m Temperature

625and Daily Total Precipitation, respectively.

626There is an overall agreement of temperature skill

627scores—including Hellinger coefficient for T2m – PP—

628discriminating consistently best and worst models (see

629Table 3). For example, KNMI-RACMO model in July is

630ranked respectively as second, first, first, fourth and first

631best model when using the following performance metrics:

632bias, mean absolute error, RMSE, correlation coefficient

633and Hellinger coefficient for T2m – PP. Also, HadRM3Q3

634model in July is ranked as the worst model when using

635bias, mean absolute error and RMSE and the second and

636third worst when using correlation coefficient and Hellin-

637ger coefficient for T2m – PP, respectively.

638Tables 3 and 4 clearly show that models performing

639well in 1 month and for one variable not necessarily they

640do in other months and variables. This fact is well known

641and it is a direct consequence of the predominance of

642certain processes in one or another season affecting more to

643one or another variable. For example, temperature in
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644 summertime is very much related with the correct partition

645 of sensible and latent heat fluxes, which in turn depends on

646 a reasonable simulation of soil water content. This is not

647 the case in wintertime. Finally, Table 5 displays eight

648 different rankings of the 13 ENSEMBLES RCMs accord-

649 ing to the value of the Hellinger coefficient for each of the

650 four considered relationships computed for the months of

651 July and November. It is noticeable that for November

652 there is a high consistency among rankings based on the

653 here considered relationships. This consistency implies that

654 one could use fewer relationships to select the models

655better simulating atmosphere-land surface coupling. How-

656ever, discrepancy among different models rankings—

657depending on the chosen relation—is higher for July,

658possibly due to the different quality of radiation fluxes and

659heat fluxes. It is also noticeable the large differences

660appearing between dry and wet seasons in the rankings. It

661is very significant that some models highly scored for the

662wet season only get poor scores for the dry season and vice

663versa.

664Now, at this point, question arises whether a ranking of

665models based on standard skill scores for 2-m Temperature

Table 2 Values of Hellinger coefficient for the relations LWnet - (Tsmx - Tsmn), SWnet - LWnet, SWnet - SSHF and T2m – PP for the

months of July and November

Institution-model Hellinger coefficient July Hellinger coefficient November

LWnet –

(Tsmx – Tsmn)

SWnet –

LWnet

SWnet –

SSHF

T2m –

PP

LWnet -

(Tsmx – Tsmn)

SWnet –

LWnet

SWnet –

SSHF

T2m –

PP

CHMI-ALADIN 0.86 0.83 0.85 0.84 0.96 0.99 0.93 0.98

C4I-RCA3 0.91 0.58 0.61 0.94 0.94 0.94 0.78 0.96

DMI-HIRHAM 0.39 0.85 0.79 0.93 0.78 0.91 0.85 1.00

ETHZ-CLM 0.88 0.70 0.74 0.86 0.85 0.90 0.76 0.99

METO-HC_HadRM3Q0 0.30 0.59 0.25 0.96 0.95 0.99 0.93 0.98

METO-HC_HadRM3Q3 0.28 0.43 0.28 0.84 0.99 1.00 0.88 0.98

METO-HC_HadRM3Q16 0.55 0.62 0.47 0.92 0.98 1.00 0.89 0.99

KNMI-RACMO 0.86 0.70 0.72 0.99 0.94 0.84 0.77 0.94

METNO-HIRHAM 0.71 0.79 0.51 0.92 0.91 0.93 0.84 0.96

MPI-M-REMO 0.69 0.84 0.81 0.95 0.96 0.95 0.89 0.98

SMHI-RCA 0.92 0.59 0.54 0.89 0.92 0.92 0.78 0.94

OURANOS-CRCM 0.75 0.93 0.77 0.71 0.96 0.97 0.87 0.90

UCLM-PROMES 0.94 0.89 0.40 – 0.86 0.80 0.85 –

The RCM acquiring the highest and the lowest respective value for each relation is indicated

Table 3 Bias, mean absolute error, root mean square error and correlation coefficient for 2-m Temperature

Institution-model 2-m Temperature July 2-m Temperature November

Bias MAE RMSE Corr.

Coeff.

Bias MAE RMSE Corr.

Coeff.

CHMI-ALADIN 1.23 1.29 1.63 0.92 2.51 2.59 2.78 0.91

C4I-RCA3 1.15 1.50 1.82 0.87 1.70 1.92 2.28 0.86

DMI-HIRHAM -1.01 1.15 1.38 0.94 0.11 0.73 0.94 0.94

ETHZ-CLM -1.07 1.33 1.52 0.94 0.81 1.14 1.38 0.93

METO-HC_HadRM3Q0 -1.61 2.02 2.51 0.76 1.02 1.60 2.06 0.79

METO-HC_HadRM3Q3 -3.16 3.24 3.96 0.66 0.82 1.43 1.88 0.81

METO-HC_HadRM3Q16 -2.15 2.42 3.08 0.70 0.81 1.47 1.85 0.82

KNMI-RACMO 0.70 0.95 1.26 0.93 1.84 1.95 2.24 0.90

METNO-HIRHAM -1.34 1.73 2.17 0.84 0.25 1.04 1.30 0.89

MPI-M-REMO -1.38 1.53 1.79 0.92 -0.48 0.91 1.21 0.92

SMHI-RCA 1.74 1.77 1.98 0.94 2.08 2.18 2.54 0.88

OURANOS-CRCM 2.47 2.45 2.87 0.87 2.36 2.48 2.73 0.89

UCLM-PROMES 20.25 1.83 2.38 0.64 1.63 1.38 2.38 0.80
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666 and Daily Total Precipitation would be consistent with a

667 ranking based on Hellinger coefficients as it is here pro-

668 posed. And provided that consistency of results holds, what

669 would an evaluation based on Hellinger coefficients add to

670 the more traditional approach based on skill scores for

671 temperature and precipitation? Results summarized in

672 Tables 2, 3, 4 and 5 allow us to conclude that not always

673 models best/worst performing in terms of standard scores

674 for temperature and precipitation show consistent perfor-

675 mance in terms of Hellinger coefficients for the pairs of

676 quantities here selected. As an example, the outstanding

677 performance of KNMI-RACMO model in July for tem-

678 perature (see Table 3) has not counterpart in terms of

679Hellinger coefficients (see Table 5). This can be explained

680by the fact that the overall surface energy budget is rea-

681sonably well captured although individual fluxes might not

682be properly simulated. On the other hand, the deficient

683performance of HadRM3Q3 model in July for temperature

684is also confirmed in terms of Hellinger coefficients. In

685November consistency among standard scores for temper-

686ature and Hellinger coefficients is less clear. This may be

687justified by the fact that local wintertime (heat and radia-

688tion) fluxes are not so strong and consequently 2-m Tem-

689perature is also affected by other non-local factors.

690The comparison of our results with those of Christensen

691et al. (2010) is not straightforward for a number of reasons.

Table 4 The same as Table 3, but for Daily Total Precipitation

Institution-model Daily total precipitation July Daily total precipitation November

Bias MAE RMSE Corr.

Coeff.

Bias MAE RMSE Corr.

Coeff.

CHMI-ALADIN -0.34 0.38 1.10 0.79 -0.51 0.83 1.84 0.94

C4I-RCA3 -0.20 0.31 0.81 0.62 -0.45 1.06 2.19 0.87

DMI-HIRHAM 0.00 0.19 0.74 0.78 -0.07 0.83 1.99 0.90

ETHZ-CLM -0.13 0.26 1.11 0.66 -0.15 0.74 1.66 0.92

METO-HC_HadRM3Q0 -0.08 0.31 0.76 0.37 -0.05 0.92 2.31 0.86

METO-HC_HadRM3Q3 -0.01 0.26 0.73 0.30 -0.25 0.96 2.38 0.88

METO-HC_HadRM3Q16 -0.07 0.32 0.89 0.23 -0.05 0.89 2.24 0.87

KNMI-RACMO 0.05 0.19 0.72 0.50 -0.40 0.84 2.09 0.90

METNO-HIRHAM -0.08 0.22 0.69 0.81 -0.89 1.18 3.17 0.89

MPI-M-REMO -0.17 0.28 0.75 0.57 -0.24 0.82 2.39 0.89

SMHI-RCA -0.14 0.26 0.82 0.76 -0.35 0.85 1.68 0.92

OURANOS-CRCM -0.99 0.98 1.70 0.63 -0.07 1.00 1.87 0.90

Table 5 Rankings of 13 ENSEMBLES RCMs (in numbers) according to Hellinger coefficient based on the proximity of the relationships:

LWnet - (Tsmx - Tsmn), SWnet - LWnet, SWnet - SSHF, and T2m – PP for the months of July and November

Institution-model July November

LWnet –

(Tsmx – Tsmn)

SWnet –

LWnet

SWnet –

SSHF

T2m –

PP

LWnet –

(Tsmx – Tsmn)

SWnet –

LWnet

SWnet –

SSHF

T2m –

PP

CHMI-ALADIN 6 5 1 10 4 4 1 7

C4I-RCA3 3 12 7 4 7 7 10 9

DMI-HIRHAM 11 3 3 5 13 10 7 1

ETHZ-CLM 4 7 5 9 12 11 13 2

HC-HadRM3Q0 12 10 13 2 6 3 2 5

HC-HadRM3Q3 13 13 12 11 1 1 5 6

HC-HadRM3Q16 10 9 10 6 2 2 3 3

KNMI-RACMO 5 8 6 1 8 12 12 10

METNO-HIRHAM 8 6 9 7 10 8 9 8

MPI-REMO 9 4 2 3 5 6 4 4

SMHI-RCA 2 11 8 8 9 9 11 11

OURANOS-CRCM 7 1 4 12 3 5 6 12

UCLM-PROMES 1 2 11 – 11 13 8 –
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692 First, their work was aiming to merge a collection of 6

693 performance metrics into an aggregated model weight with

694 the purpose of combining climate change information from

695 the range of RCMs. They proposed 3 different ways of

696 combining the 6 performance metrics showing a relatively

697 high degree of coincidence for the final weight. Second, the

698 purpose of their work was to get a single valued model

699 weight describing the overall performance of each RCM

700 for the whole domain, for all seasons and for all considered

701 variables. Contrary, our work does not intend to generate

702 an overall performance score. We have instead attempted

703 to propose some scores based on the Hellinger coefficient

704 determining how well atmosphere-land surface coupling is

705 simulated by models. Furthermore, this evaluation scores

706 may help to detect problems which may be behind a poor

707 model performance in terms of temperature and precipi-

708 tation. Nevertheless, some coincidences appear in the

709 results based on both approaches.

710 Therefore, we have preferred not to merge the obtained

711 eight rankings into just one ranking in order to highlight

712 how differences among rankings depend strongly on season

713 and to a lesser extent on the particular relationship

714 expressing the atmosphere-land surface coupling. We

715 confirm with our results that model rankings are highly

716 dependent on region, variables, seasons and metrics

717 selected for the evaluation in full agreement with other

718 authors (e.g., Knutti et al. 2010; Casado and Pastor 2012).

719 6 Conclusions

720 An original approach has been proposed for evaluating

721 regional climate models based on the comparison of

722 empirical relationships among model outcome variables.

723 The proposed method provides tools to identify which

724 processes related to the atmosphere-land surface coupling

725 are not properly simulated by models. Contrary to more

726 classical methods essentially focused on traditional climate

727 variables—like air temperature and precipitation—here the

728 focus is put on fluxes which are in the end terms appearing

729 in the budget equations determining temperature and soil

730 moisture. Soil moisture is responsible for the right partition

731 of surface energy between latent and sensible heat fluxes,

732 and in turn of the structure of boundary layer in terms of

733 temperature and humidity. The approach provides a

734 quantitative evaluation of models and therefore allows the

735 establishment of model rankings focusing on the ability to

736 properly simulate the interaction between atmosphere and

737 land surface. Thirteen RCMs participating in the

738 ENSEMBLES project were selected by the availability of

739 daily data for the period 1991–2000 of the variables LWnet,

740 SWnet, SSHF, Tsmax and Tsmin. Three pairs of relations

741 among surface energy variables and fluxes relevant to the

742energy and water budget were obtained for an area cov-

743ering part of two river basins within southern Iberian

744Peninsula and for 2 months representative of the dry and

745wet seasons, respectively. The truth to compare with model

746simulations was ERA-Interim re-analysis. As it was

747already mentioned in Sect. 1, the comparison of RCMs

748against ERA-Interim may have certain flaws mainly when

749comparing variables not directly observed, as it is the case

750for the fluxes. However, comparison of ERA-Interim fluxes

751against satellite estimations allow us to conclude that ERA-

752Interim fluxes have a reasonable quality to be used as

753ground truth reference. Our main aim, however, was to

754illustrate the value of comparing magnitudes representative

755of certain processes in order to quantify how well models

756are capturing them. Besides, significant deviation of some

757models for certain magnitudes and seasons can help to

758identify problems when simulating processes as complex as

759those responsible for the atmosphere-land surface coupling.

760The Hellinger coefficient was the metric selected to

761quantify the distance between each of the regional models

762and the reference represented by ERA-Interim.

763The comparison of the relationships here obtained for

764southern Iberian Peninsula with those obtained by Betts

765(2004) for the Madeira basin (Brazil) confirms that such

766comparison is highly dependent on season, region and cli-

767mate conditions. In that sense, this approach is very adequate

768to quantify the regional performance of climate models.

769The proximity of modelled and reference scattered plots

770depends very much on the season. The generally higher

771value of Hellinger coefficient (lower distance) for the wet

772season is indicative of difficulties associated with the

773simulation of atmosphere-land surface coupling during the

774dry season. Moreover, the high coincidence of the four

775rankings for the wet season suggests that only one relation

776may be enough to discriminate the ‘‘best’’ and ‘‘worst’’

777models at that time of the year. This is not the case for the

778dry season, where more relations seem to be needed to

779quantify the radiative and water aspects of modelled sur-

780face coupling. The range of Hellinger coefficient values

781tends to be narrower in the wet season showing a high

782degree of agreement among different model simulations in

783coincidence with results by Betts et al. (2006).

784We would like to point out that most methods for

785evaluating climate models frequently put the focus on

786outcome variables (usually precipitation and temperature)

787disregarding important aspects related to the coupling

788between subsystems of the climate system. We are con-

789vinced of the importance of evaluation studies focusing on

790physical processes, and in particular on the features of

791interface between subsystems. In this line, our approach

792aims directly at the performance of models in connection

793with the atmosphere-land surface interaction which is in

794the end highly responsible for a realistic simulation of
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795 variables more commonly described in climate studies,

796 such as precipitation and temperature.

797 We may conclude by saying that the here proposed

798 method of evaluating RCMs does not only intend to present

799 an additional set of performance-based metrics aiming to

800 rank models or to weight them within an ensemble of

801 RCMs as it was proposed by other authors (e.g., Chris-

802 tensen et al. 2010). Our proposal goes mainly in the

803 direction of exploring and quantifying how well coupling

804 between atmosphere-land surface is simulated by different

805 RCMs. As we mentioned in the introduction, climate

806 models are based on sound and well established physical

807 laws and their success in simulating the climate system

808 depends on an accurate representation of the climate rele-

809 vant processes. Consequently, our proposal of evaluation

810 heavily relies on physical processes—and in this particular

811 case on interaction between subsystems—instead of the

812 more traditional methods which are more focused on the

813 behaviour of climate variables such as temperature and

814 precipitation. Additionally, the analysis of the simulated

815 coupling between subsystems could help to diagnose

816 modelling deficiencies which may be behind a poor per-

817 formance in terms of climate variables.
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