29 research outputs found

    Assessing nutrient and sediment transport for Water Framework Directive purposes using the SWAT model - a case study in SW Finland

    Get PDF
    The ecological status of lake PyhÀjÀrvi, located in south-western Finland, may be classified as moderate due to its elevated nutrient concentrations and algal biomass production. Thus, the YlÀneenjoki river basin, accounting for >50% of the total phosphorus loading to the lake, was chosen as the Finnish test catchment in the Benchmark models for the Water Framework Directive project. One aim of the project was to test the suitability of models like the catchment scale model SWAT for the assessment of nutrient and sediment transport and management options needed to meet the surface water quality requirements

    Assessment of hydrology, sediment and particulate organic carbon yield in a large agricultural catchment using the SWAT model

    Get PDF
    The Soil and Water Assessment Tool (SWAT, 2005) was used to simulate discharge and sediment transport at daily time steps within the intensively farmed Save catchment in south-west France (1110 km2). The SWAT model was applied to evaluate catchment hydrology and sediment and associated particulate organic carbon yield using historical flow and meteorological data for a 10-years (January 1999–March 2009). Daily data on sediment (27 months, January 2007–March 2009) and particular organic carbon (15 months, January 2008–March 2009) were used to calibrate the model. Data on management practices (crop rotation, planting date, fertiliser quantity and irrigation) were included in the model during the simulation period of 10 years. Simulated daily discharge, sediment and particulate carbon values matched the observed values satisfactorily. The model predicted that mean annual catchment precipitation for the total study period (726 mm) was partitioned into evapotranspiration (78.3%), percolation/groundwater recharge (14.1%) and abstraction losses (0.5%), yielding 7.1% surface runoff. Simulated mean total water yield for the whole simulation period amounted to 138 mm, comparable to the observed value of 136 mm. Simulated annual sediment yield ranged from 4.3 t km−2 y−1 to 110 t km−2 y−1 (annual mean of 48 t km−2 y−1). Annual yield of particulate organic carbon ranged from 0.1 t km−2 y−1 to 2.8 t km−2 y−1 (annual mean of 1.2 t km−2 y−1). Thus, the highest annual sediment and particulate carbon yield represented 25 times the minimum annual yield. However, the highest annual water yield represented five times the minimum (222 mm and 51 mm, respectively). An empirical correlation between annual water yield and annual sediment and organic carbon yield was developed for this agricultural catchment. Potential source areas of erosion were also identified with the model. The range of the annual contributing erosive zones varied spatially from 0.1 to 6 t ha−1 according to the slope and agricultural practices at the catchment scale

    From a test case to a trusted tool: Lithuania’s evolving SWAT system for water and agricultural management

    Get PDF
    Lithuania’s development of the river modelling system (RMS) exemplifies an institutional development and application of integrated modelling for water and agricultural management. What started as a test case, continued to develop focusing on environmental compliance with the EU regulations. Currently, the RMS is a part of decision-making. By incorporating the soil and water assessment tool (SWAT) model and comprehensive data sources, the system facilitates in-depth analysis and policy formulation. Applications in water management plans, pollution assessments, and climate change studies demonstrate the reliability of RMS. Despite data quality and skill retention challenges, institutional commitment and collaboration ensure the RMS’s persistence. This experience emphasizes the value of sustained investment in integrated modelling systems for achieving sustainable environmental governance and signifies Lithuania’s shift towards data driven green transition practices

    Assessment of Optional Sediment Transport Functions via the Complex Watershed Simulation Model SWAT

    Get PDF
    The Soil and Water Assessment Tool 2012 (SWAT2012) offers four sediment routing methods as optional alternatives to the default simplified Bagnold method. Previous studies compared only one of these alternative sediment routing methods with the default method. The proposed study evaluated the impacts of all four alternative sediment transport methods on sediment predictions: the modified Bagnold equation, the Kodoatie equation, the Molinas and Wu equation, and the Yang equation. The Arroyo Colorado Watershed, Texas, USA, was first calibrated for daily flow. The sediment parameters were then calibrated to monthly sediment loads, using each of the four sediment routing equations. An automatic calibration tool—Integrated Parameter Estimation and Uncertainty Analysis Tool (IPEAT)—was used to fit model parameters. The four sediment routing equations yielded substantially different sediment sources and sinks. The Yang equation performed best, followed by Kodoatie, Bagnold, and Molinas and Wu equations, according to greater model goodness-of-fit (represented by higher Nash–Sutcliffe Efficiency coefficient and percent bias closer to 0) as well as lower model uncertainty (represented by inclusion of observed data within 95% confidence interval). Since the default method (Bagnold) does not guarantee the best results, modelers should carefully evaluate the selection of alternative methods before conducting relevant studies or engineering projects

    Aerial thermal infrared imaging and baseflow filtering analysis for river baseflow estimation in Lake PyhÀjÀrvi catchment, SW Finland

    Get PDF
    SĂ€kylĂ€n PyhĂ€jĂ€rven kahden laskujoen, PyhĂ€joen ja YlĂ€neenjoen, pohjavirtaamaa arvioitiin infrapunakuvauksen (TIR) ja Baseflow- analyysin avulla. HeinĂ€kuussa 2011 tehdyssĂ€ helikopteriavusteisessa TIR-kuvauksessa jokisysteemeissĂ€ ja niiden varsilla havaittiin yhteensĂ€ lĂ€hes 200 pohjaveden purkautumiskohtaa. Pohjaveden purkautumiseen liittyvĂ€t lĂ€mpötila-anomaliat jaettiin viiteen eri luokkaan, jotka olivat 1) lĂ€hde/ lĂ€hteiköt, 2) kylmĂ€ sivu-uoma, 3) diffuusi purkaus jokiuomaan, 4) kosteikko/ tihkupinta, 5) tunnistamaton anomalia. Tutkituista joista tehtiin myös lĂ€mpötila-analyysi, jossa havaittiin, ettĂ€ molemmissa jokisysteemeissĂ€ vesi lĂ€mpenee ylĂ€juoksulta alajuoksulle. Pohjavirtaamaan osuutta arvioitiin myös Baseflow- ohjelmiston avulla. Ohjelmisto erottaa joen virtaamasta pohjavirtaaman osuuden signaalin prosessointiin perustuvan silmukoivan filtteröinnin avulla. Vuosien 2010-2013 pohjavirtaaman keskimÀÀrĂ€iseksi osuudeksi saatiin Baseflow- ohjelmistolla 70 % PyhĂ€joelle ja 54 % YlĂ€neenjoelle. Samankaltaisia tutkimustuloksia on esitetty myös aiemmin julkaistuissa PyhĂ€joen ja YlĂ€neenjoen pohjavesiosuuksia kĂ€sittelevissĂ€ tutkimuksissa. Suurempi pohjavirtaama, pienempi jokiveden lĂ€mpötila ja laaja-alaiset pohjaveden purkautumisanomaliat osoittavat, ettĂ€ pohjaveden osuus PyhĂ€joessa on suurempi kuin YlĂ€neenjoessa. TIR- tutkimuksen tuloksia sekĂ€ pohjavirtaamalle laskettuja osuuksia on syytĂ€ tarkastella kriittisesti. TIR- aineistoista saadut tulokset kuvaavat vain hetkellisiĂ€ olosuhteita ja havaitut pohjaveden purkautumispaikat perustuvat kuva-aineiston tulkintaan. TIR- aineistosta tehtyyn lĂ€mpötila-analyysiin ja pohjaveden purkautumispaikkojen havainnointiin liittyy myös paljon epĂ€varmuustekijöitĂ€. Pohjavirtaama-analyysin tuloksia tĂ€ytyy tulkita varoen, sillĂ€ pohjavirtaaman suodattaminen virtaama-aineistosta perustuu puhtaasti signaalien prosessointiin. LĂ€mpökamera-aineiston tulokset ja pohjavirtaaman arvioinnista saadut tulokset osoittavat kuitenkin, ettĂ€ pohjaveden vaikutus on havaittavissa sekĂ€ PyhĂ€joessa ettĂ€ YlĂ€neenjoessa. Pohjaveden vaikutus tutkituissa joissa on erilainen. Pohjaveden suurempi osuus (70 %) PyhĂ€joessa liittyy PyhĂ€joen valuma-alueen karkearakeisempaan maaperÀÀn. Infrapuna-aineiston perusteella pohjaveden osuutta PyhĂ€joessa lisÀÀ erityisesti kaksi suurta ylĂ€juoksun lĂ€hdettĂ€: MyllylĂ€hde ja Kankaanranta, jotka liittyvĂ€t SĂ€kylĂ€-Virttaankankaan harjukompleksiin. YlĂ€neenjoella, missĂ€ pohjaveden osuus oli arvioitu pienemmĂ€ksi (54 %) ja pohjaveden purkautumisanomaliat pistemmĂ€isemmiksi, joen lĂ€hellĂ€ on vain kaksi pienempÀÀ moreenivaltaista pohjavesialuetta. LisĂ€ksi YlĂ€neenjoen maaperĂ€ssĂ€ on enemmĂ€n hienorakeisempia sedimenttejĂ€ kuin PyhĂ€joella.The two input rivers of SĂ€kylÀ’s Lake PyhĂ€jĂ€rvi: PyhĂ€joki and YlĂ€neenjoki, were studied with aerial thermal infrared imaging (TIR) analysis and baseflow program, in order to estimate the baseflow in the two rivers. From the helicopter- assisted TIR survey made in July 2011, almost 200 groundwater discharge sites were located in the two studied rivers. The groundwater discharge anomalies were categorized in 5 different classes: 1) spring/springs, 2) cold channel connected to the main channel, 3) diffuse discharge to river, 4) wetland/ wide seepage, 5) unknown anomaly. In addition, a temperature analysis was performed from the studied rivers. In both rivers, pattern of increasing river water temperature from headwaters towards river outlet were discovered with temperature analysis. The baseflow share estimate was made with baseflow filtering program which uses recursive digital filter for signal processing. Mean baseflow share estimation from four years: 2010-2013, were 70 % for River PyhĂ€joki and 54 %, for River YlĂ€neenjoki. Larger baseflow portion, lower river water temperature and wide diffuse discharge areas of River PyhĂ€joki indicate that PyhĂ€joki is more groundwater contributed than River YlĂ€neenjoki. Previous studies made from the Lake PyhĂ€jĂ€rvi catchment have signs of higher groundwater share in River PyhĂ€joki catchment, as well. However, TIR and baseflow estimation results of this study have to be dealt with caution. TIR results represent momentary circumstances and GWD locations are interpretations. There are also many factors increasing the uncertainty of the temperature analysis and observations of GWD anomalies. The results of baseflow analysis has to be interpreted carefully too because baseflow filtering is pure signal processing. However, this study shows that River PyhĂ€joki and River YlĂ€neenjoki have groundwater contribution. There is a difference in groundwater share in the two studied rivers. In River PyhĂ€joki the larger groundwater share (70 %) is related to coarser grained glacial deposits in the river catchment. In TIR results, the influence of headwaters of the River PyhĂ€joki, fed by two large springs: MyllylĂ€hde and Kankaanranta were emphasized. The two feeding springs are connected to the SĂ€kylĂ€-Virttaankangas esker complex. In River YlĂ€neenjoki catchment, where GW portion was estimated to be smaller (54 %) and GW anomalies where mostly discrete, there are only two little till groundwater areas near the river channel and the catchment is characterized by finer sediments than River PyhĂ€joki catchment

    Evaluation of RUSLE and spatial assessment of agricultural soil erosion in Finland

    Get PDF
    Agricultural soil erosion has negative effects on surface water quality and aquatic ecosystems. A major impediment to agricultural erosion management in Finland has been the lack of high-resolution country-scale data on the spatial distribution of erosion. As a result, erosion mitigation measures have been targeted with limited information. Therefore, we evaluated the performance of the widely used RUSLE model against measurements from experimental fields, used the model to produce a two-metre resolution crop and management independent erosion estimate for all agricultural lands of Finland, and analysed erosion over different spatial scales. RUSLE showed skill (R2 = 0.76, NSE = 0.72) in estimating the observed erosion at experimental fields (55–2100 kg ha−1 yr−1) but with large errors (mean: −134 kg ha−1 yr−1, 90% range: −711 and 218 kg ha−1 yr−1). The evaluation, however, suggests that RUSLE performs similarly in Finland as elsewhere. The analysis of the developed country-scale data, in turn, revealed high erosion regions, and it showed how erosion varies between sub-catchment and between and within field parcels. For example, high-erosion areas concentrated in the proximity of water bodies were identified at the sub-catchment and within-field parcel scales. Altogether, the results demonstrate the predictive skill of RUSLE in high-latitude conditions, fill the earlier data gap in country-scale erosion, provide information for targeting erosion mitigation measures, and considerably improve the understanding of the spatial distribution of erosion in Finland

    Long-term nutrient load management and lake restoration: Case of SÀkylÀn PyhÀjÀrvi (SW Finland)

    Get PDF
    Eutrophication caused by anthropogenic nutrient pollution has become one of the most severe threats to water bodies. Nutrients enter water bodies from atmospheric precipitation, industrial and domestic wastewaters and surface runoff from agricultural and forest areas. As point pollution has been significantly reduced in developed countries in recent decades, agricultural non-point sources have been increasingly identified as the largest source of nutrient loading in water bodies. In this study, Lake SĂ€kylĂ€n PyhĂ€jĂ€rvi and its catchment are studied as an example of a long-term, voluntary-based, co-operative model of lake and catchment management. Lake PyhĂ€jĂ€rvi is located in the centre of an intensive agricultural area in southwestern Finland. More than 20 professional fishermen operate in the lake area, and the lake is used as a drinking water source and for various recreational activities. Lake PyhĂ€jĂ€rvi is a good example of a large and shallow lake that suffers from eutrophication and is subject to measures to improve this undesired state under changing conditions. Climate change is one of the most important challenges faced by Lake PyhĂ€jĂ€rvi and other water bodies. The results show that climatic variation affects the amounts of runoff and nutrient loading and their timing during the year. The findings from the study area concerning warm winters and their influences on nutrient loading are in accordance with the IPCC scenarios of future climate change. In addition to nutrient reduction measures, the restoration of food chains (biomanipulation) is a key method in water quality management. The food-web structure in Lake PyhĂ€jĂ€rvi has, however, become disturbed due to mild winters, short ice cover and low fish catch. Ice cover that enables winter seining is extremely important to the water quality and ecosystem of Lake PyhĂ€jĂ€rvi, as the vendace stock is one of the key factors affecting the food web and the state of the lake. New methods for the reduction of nutrient loading and the treatment of runoff waters from agriculture, such as sand filters, were tested in field conditions. The results confirm that the filter technique is an applicable method for nutrient reduction, but further development is needed. The ability of sand filters to absorb nutrients can be improved with nutrient binding compounds, such as lime. Long-term hydrological, chemical and biological research and monitoring data on Lake PyhĂ€jĂ€rvi and its catchment provide a basis for water protection measures and improve our understanding of the complicated physical, chemical and biological interactions between the terrestrial and aquatic realms. In addition to measurements carried out in field conditions, Lake PyhĂ€jĂ€rvi and its catchment were studied using various modelling methods. In the calibration and validation of models, long-term and wide-ranging time series data proved to be valuable. Collaboration between researchers, modellers and local water managers further improves the reliability and usefulness of models. Lake PyhĂ€jĂ€rvi and its catchment can also be regarded as a good research laboratory from the point of view of the Baltic Sea. The main problem in both of them is eutrophication caused by excess nutrients, and nutrient loading has to be reduced – especially from agriculture. Mitigation measures are also similar in both cases.Ihmisen aiheuttamasta ravinnekuormituksesta johtuva rehevöityminen on yksi pahimmista vesistöjĂ€ uhkaavista ilmiöistĂ€. Ravinteet kulkeutuvat vesiin ilmalaskeumana, teollisuuden ja yhdyskuntien jĂ€tevesissĂ€ sekĂ€ maatalous- ja metsĂ€alueilta tulevissa valumavesissĂ€. KehittyneissĂ€ maissa pistekuormitus on merkittĂ€vĂ€sti vĂ€hentynyt viime vuosikymmeninĂ€, ja hajakuormituksen, erityisesti maatalouden, on todettu olevan merkittĂ€vin vesistöjen ravinnekuormittaja. TĂ€ssĂ€ tutkimuksessa SĂ€kylĂ€n PyhĂ€jĂ€rveĂ€ ja sen valuma-aluetta kĂ€ytetÀÀn esimerkkinĂ€ pitkĂ€jĂ€nteisestĂ€, vapaaehtoisuuteen perustuvasta yhteistyömallista jĂ€rven ja valuma-alueen vesien tilan parantamiseksi. PyhĂ€jĂ€rvi sijaitsee Lounais-Suomen intensiivisesti viljellyllĂ€ alueella. JĂ€rvellĂ€ toimii yli 20 ammattikalastajaa, sen vettĂ€ kĂ€ytetÀÀn raakavetenĂ€ ja myös virkistyskĂ€yttö on monipuolista ja intensiivistĂ€. PyhĂ€jĂ€rvi on erinomainen esimerkki isosta, matalasta rehevöitymisen oireista kĂ€rsivĂ€stĂ€ jĂ€rvestĂ€, jonka tilaa pyritÀÀn mÀÀrĂ€tietoisesti parantamaan muuttuvissa olosuhteissa. Ilmastonmuutos on yksi suurimmista vesiensuojelun haasteista niin PyhĂ€jĂ€rvellĂ€ kuin muissakin vesistöissĂ€. Tulokset osoittavat, ettĂ€ ilmastollinen vaihtelu vaikuttaa valunnan ja ravinnekuormituksen mÀÀriin sekĂ€ niiden vuodenaikaisuuksiin. Havainnot tutkimusalueelta koskien lĂ€mpimien talvien vaikutusta ravinnekuormitukseen ovat linjassa IPCC:n ilmastonmuutosskenaarioiden kanssa. Paitsi ravinnekuormituksen vĂ€hentĂ€minen, myös ravintoketjukunnostus (biomanipulaatio) on keskeinen keino veden laadun hallinnassa. Ravintoketjun rakenne on kuitenkin hĂ€iriintynyt leutojen talvien, lyhyen jÀÀpeiteajan ja vĂ€hĂ€isen kalansaaliin vuoksi. Talvinuottauksen mahdollistavalla jÀÀpeitteellĂ€ ja sen pituudella on suuri merkitys PyhĂ€jĂ€rven veden laadun ja ekosysteemin kannalta, sillĂ€ muikkukanta on yksi ravintoketjua ja jĂ€rven tilaa sÀÀtelevistĂ€ tekijöistĂ€. Ravinnekuormituksen vĂ€hentĂ€miseksi ja maatalouden valumavesien kĂ€sittelemiseksi kehitettyjĂ€ uusia menetelmiĂ€, esimerkiksi hiekkasuodattimia, on testattu kenttĂ€olosuhteissa. Suodatintekniikka osoittautui kĂ€yttökelpoiseksi menetelmĂ€ksi ravinteiden vĂ€hentĂ€miseksi, mutta kehitystyötĂ€ on edelleen jatkettava. Hiekkasuodattimien ravinteiden poistoa voidaan tehostaa erilaisilla ravinteita sitovilla yhdisteillĂ€, esimerkiksi kalkkipohjaisilla materiaaleilla. PyhĂ€jĂ€rven ja sen valuma-alueen pitkĂ€kestoiset hydrologiset, kemialliset ja biologiset seuranta- ja tutkimusaikasarjat ovat vesiensuojelun perusta ja niiden avulla lisĂ€tÀÀn ymmĂ€rrystĂ€ monimutkaisista jĂ€rven ja valuma-alueen fysikaalisista, kemiallisista ja ekologisista vuorovaikutussuhteista. KenttĂ€olosuhteissa tehtyjen mittausten lisĂ€ksi PyhĂ€jĂ€rveĂ€ ja sen valuma-aluetta on tutkittu erilaisilla mallinnusmenetelmillĂ€. Mallien kalibroinnissa ja validoinnissa pitkĂ€t ja monipuoliset aikasarjat osoittautuivat arvokkaiksi. Mallintajien, tutkijoiden ja kĂ€ytĂ€nnön vesiensuojelun toteuttajien yhteistyöllĂ€ voidaan edelleen parantaa mallien luotettavuutta ja hyödynnettĂ€vyyttĂ€. PyhĂ€jĂ€rveĂ€ valuma-alueineen voidaan tarkastella myös ItĂ€meren kaltaisena luonnonlaboratoriona. YlimÀÀrĂ€isten ravinteiden aiheuttama rehevöityminen on molempien ongelma, ja ravinnekuormitusta on molemmissa tapauksissa vĂ€hennettĂ€vĂ€ – erityisesti maataloudesta. VĂ€hentĂ€mismenetelmĂ€t ovat niin ikÀÀn samoja.Siirretty Doriast
    corecore