1,922 research outputs found

    Application of DMSP/OLS nighttime light images : a meta-analysis and a systematic literature review

    Get PDF
    © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Remote Sensing 6 (2014): 6844-6866, doi:10.3390/rs6086844.Since the release of the digital archives of Defense Meteorological Satellite Program Operational Line Scanner (DMSP/OLS) nighttime light data in 1992, a variety of datasets based on this database have been produced and applied to monitor and analyze human activities and natural phenomena. However, differences among these datasets and how they have been applied may potentially confuse researchers working with these data. In this paper, we review the ways in which data from DMSP/OLS nighttime light images have been applied over the past two decades, focusing on differences in data processing, research trends, and the methods used among the different application areas. Five main datasets extracted from this database have led to many studies in various research areas over the last 20 years, and each dataset has its own strengths and limitations. The number of publications based on this database and the diversity of authors and institutions involved have shown promising growth. In addition, researchers have accumulated vast experience retrieving data on the spatial and temporal dynamics of settlement, demographics, and socioeconomic parameters, which are “hotspot” applications in this field. Researchers continue to develop novel ways to extract more information from the DMSP/OLS database and apply the data to interdisciplinary research topics. We believe that DMSP/OLS nighttime light data will play an important role in monitoring and analyzing human activities and natural phenomena from space in the future, particularly over the long term. A transparent platform that encourages data sharing, communication, and discussion of extraction methods and synthesis activities will benefit researchers as well as public and political stakeholders.This work is supported by the 111 project “Hazard and Risk Science Base at Beijing Normal University” under Grant B08008 (Ministry of Education and State Administration of Foreign Experts Affairs, PRC), the State Key Laboratory of Earth Surface Processes and Resource Ecology of Beijing Normal University (No. 2013-RC-03), and the Fundamental Research Funds for the Central Universities (Grant No. 201413037)

    Causally Aware Generative Adversarial Networks for Light Pollution Control

    Full text link
    Artificial light plays an integral role in modern cities, significantly enhancing human productivity and the efficiency of civilization. However, excessive illumination can lead to light pollution, posing non-negligible threats to economic burdens, ecosystems, and human health. Despite its critical importance, the exploration of its causes remains relatively limited within the field of artificial intelligence, leaving an incomplete understanding of the factors contributing to light pollution and sustainable illumination planning distant. To address this gap, we introduce a novel framework named Causally Aware Generative Adversarial Networks (CAGAN). This innovative approach aims to uncover the fundamental drivers of light pollution within cities and offer intelligent solutions for optimal illumination resource allocation in the context of sustainable urban development. We commence by examining light pollution across 33,593 residential areas in seven global metropolises. Our findings reveal substantial influences on light pollution levels from various building types, notably grasslands, commercial centers and residential buildings as significant contributors. These discovered causal relationships are seamlessly integrated into the generative modeling framework, guiding the process of generating light pollution maps for diverse residential areas. Extensive experiments showcase CAGAN's potential to inform and guide the implementation of effective strategies to mitigate light pollution. Our code and data are publicly available at https://github.com/zhangyuuao/Light_Pollution_CAGAN.Comment: 9pages, 9figures, accepted by AAAI2024, AI for Social Impact (Special Track

    Aladdin\u27s Magic Lamp: Developing Methods for Calibration and Geolocation Accuracy Assessment of the DMSP OLS

    Get PDF
    Nighttime satellite imagery from the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) has a unique capability to observe nocturnal light emissions from sources including cities, wild fires, and gas flares. Data from the DMSP OLS is used in a wide range of studies including mapping urban areas, estimating informal economies, and estimating urban populations. Given the extensive and increasing list of applications a repeatable method for assessing geolocation accuracy, performing inter-calibration, and defining the minimum detectable brightness would be beneficial. An array of portable lights was designed and taken to multiple field sites known to have no other light sources. The lights were operated during nighttime overpasses by the DMSP OLS and observed in the imagery. A first estimate of the minimum detectable brightness is presented based on the field experiments conducted. An assessment of the geolocation accuracy was performed by measuring the distance between the GPS measured location of the lights and the observed location in the imagery. A systematic shift was observed and the mean distance was measured at 2.9km. A method for in situ radiance calibration of the DMSP OLS using a ground based light source as an active target is presented. The wattage of light used by the active target strongly correlates with the signal measured by the DMSP OLS. This approach can be used to enhance our ability to make inter-temporal and inter-satellite comparisons of DMSP OLS imagery. Exploring the possibility of establishing a permanent active target for the calibration of nocturnal imaging systems is recommended. The methods used to assess the minimum detectable brightness, assess the geolocation accuracy, and build inter-calibration models lay the ground work for assessing the energy expended on light emitted into the sky at night. An estimate of the total energy consumed to light the night sky globally is presented

    Spatiotemporal Variations of City-Level Carbon Emissions in China during 2000–2017 Using Nighttime Light Data

    Get PDF
    China is one of the largest carbon emitting countries in the world. Numerous strategies have been considered by the Chinese government to mitigate carbon emissions in recent years. Accurate and timely estimation of spatiotemporal variations of city-level carbon emissions is of vital importance for planning of low-carbon strategies. For an assessment of the spatiotemporal variations of city-level carbon emissions in China during the periods 2000–2017, we used nighttime light data as a proxy from two sources: Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS) data and the Suomi National Polar-orbiting Partnership satellite’s Visible Infrared Imaging Radiometer Suite (NPP-VIIRS). The results show that cities with low carbon emissions are located in the western and central parts of China. In contrast, cities with high carbon emissions are mainly located in the Beijing-Tianjin-Hebei region (BTH) and Yangtze River Delta (YRD). Half of the cities of China have been making eorts to reduce carbon emissions since 2012, and regional disparities among cities are steadily decreasing. Two clusters of high-emission cities located in the BTH and YRD followed two dierent paths of carbon emissions owing to the diverse political status and pillar industries. We conclude that carbon emissions in China have undergone a transformation to decline, but a very slow balancing between the spatial pattern of high-emission versus low-emission regions in China can be presumed

    Ghost city extraction and rate estimation in China based on NPP-VIIRS night-time light data

    Get PDF
    The ghost city phenomenon is a serious problem resulting from the rapid urbanization process in China. Estimation of the ghost city rate (GCR) can provide information about vacant dwellings. This paper developed a methodology to quantitatively evaluate GCR values at the national scale using multi-resource remote sensing data. The Suomi National Polar-Orbiting Partnership–Visible Infrared Imaging Radiometer (NPP-VIIRS) night-time light data and moderate resolution imaging spectroradiometer (MODIS) land cover data were used in the evaluation of the GCR values in China. The average ghost city rate (AGCR) was 35.1% in China in 2013. Shanghai had the smallest AGCR of 21.7%, while Jilin has the largest AGCR of 47.27%. There is a significant negative correlation between both the provincial AGCR and the per capita disposable income of urban households (R

    Delving into Geospatial Data Services: Monitoring Earth for Covid-19 Impact Measure and Decision Making

    Get PDF
    Geospatial technologies are crucial for many applications and can facilitate decision-making to benefit society.  When the Covid-19 pandemic restricted most of the services, geospatial technologies like satellite remote sensing, geographical information systems, and other allied technologies were found essential.  They speed up many critical decision-making processes in the fight against the pandemic.  This paper explores the significant contributions from the geospatial aspects throughout the pandemic in various research domains.  The potential applications of geospatial technology to assist humanity during the pandemic are thoroughly examined.  We categorized the entire study into i) environmental monitoring services, ii) disease control and management services, and iii) forecasting and decision-making services.  Many valuable findings are derived based on the systematic review of some remarkable works.  The outcome helps us understand how decision-making and forecasting are essential in the fight against the pandemic, with profound implications for future multidisciplinary research using geospatial technology

    Nighttime Lights as a Proxy for Economic Performance of Regions

    Get PDF
    Studying and managing regional economic development in the current globalization era demands prompt, reliable, and comparable estimates for a region’s economic performance. Night-time lights (NTL) emitted from residential areas, entertainment places, industrial facilities, etc., and captured by satellites have become an increasingly recognized proxy for on-ground human activities. Compared to traditional indicators supplied by statistical offices, NTLs may have several advantages. First, NTL data are available all over the world, providing researchers and official bodies with the opportunity to obtain estimates even for regions with extremely poor reporting practices. Second, in contrast to non-standardized traditional reporting procedures, the unified NTL data remove the problem of inter-regional comparability. Finally, NTL data are currently globally available on a daily basis, which makes it possible to obtain these estimates promptly. In this book, we provide the reader with the contributions demonstrating the potential and efficiency of using NTL data as a proxy for the performance of regions

    Exploration of eco-environment and urbanization changes in coastal zones: A case study in China over the past 20 years

    Get PDF
    Abstract With the rapid development of urbanization and population migration, since the 20th century, the natural and eco-environment of coastal areas have been under tremendous pressure due to the strong interference of human response. To objectively evaluate the coastal eco-environment condition and explore the impact from the urbanization process, this paper, by integrating daytime remote sensing and nighttime remote sensing, carried out a quantitative assessment of the coastal zone of China in 2000–2019 based on Remote Sensing Ecological Index (RSEI) and Comprehensive Nighttime Light Index (CNLI) respectively. The results showed that: 1) the overall eco-environmental conditions in China's coastal zone have shown a trend of improvement, but regional differences still exist; 2) during the study period, the urbanization process of cities continued to advance, especially in seaside cities and prefecture-level cities in Jiangsu and Shandong, which were much higher than the average growth rate; 3) the Coupling Coordination Degree (CCD) between the urbanization and eco-environment in coastal cities is constantly increasing, but the main contribution of environmental improvement comes from non-urbanized areas, and the eco-environment pressure in urbanized areas is still not optimistic. As a large-scale, long-term series of eco-environment and urbanization process change analysis, this study can provide theoretical support for mesoscale development planning, eco-environment condition monitoring and environmental protection policies from decision-makers
    corecore