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ABSTRACT 

Coronavirus disease (COVID-19)1 was first identified in Wuhan, China, in 2019, 

and has since become a pandemic. To reduce the risk of COVID-19 infection, most 

countries implemented non-pharmaceutical interventions (NPIs), such as lockdown 

measures, restrictions on various anthropogenic practices, and reduced inter-provincial 

transportation. This resulted in an unintended decrease in air pollution. The primary 

goal of this thesis is to investigate the geographic contextualities of the impact of the 

changes in human activities caused by the NPIs, particularly COVID-19 lockdown 

measure, on air pollution levels in Thailand and other Southeast Asian and South Asian 

countries. 

First, this study examines the impact of the COVID-19 lockdown on air 

pollution and human activity in the Bangkok Metropolitan Region (BMR) in Thailand. 

Ground-based air pollutant data was analyzed to compare pollutant levels during the 

first lockdown period in 2020 with the baseline period of 2017-2019. This study found 

substantial reductions in NO2, SO2, PM10, and PM2.5 concentrations during the 

lockdown period due to a halt in anthropogenic activities such as transportation and 

industrial operations. Only O3 levels rose, possibly due to lowered emissions of its 

precursors. The study identified a strong temporal correlation between the intensity of 

Nighttime Lights (NTL) and NO2 levels in the BMR. In comparison to other measures 

of human activity in the BMR, the NTL has the highest sensitivity to the temporal 

fluctuations of air pollutants. This indicates that monitoring the temporal changes or 

regional differences in NTL intensity is promising to assess temporal or regional 

variations in air pollution level, particularly NO2. 

Second, based on the findings of the above, we used satellite-based NTL intensity 

as an indicator of human activity and expand the study area from the BMR to the entire 

country of Thailand, with a focus on the lockdown period, in order to investigate the 

contextuality of the association between the changes in human activity and air pollution. 

There are few studies on the relationship between NO2 and human activity 

 
1 COVID-19: coronavirus disease, WHO: World Health Organization, NASA: National Aeronautics 
and Space Administration, NO2: nitrogen dioxide, NTL: night-time light, GWR: geographically 
weighted regression, S5P: Sentinel-5 Precursor, GEE: Google Earth Engine, TROPOMI: Tropospheric 
Monitoring Instrument, Suomi-NPP: Suomi National Polar-orbiting Partnership, VIIRS-DNB: Visible 
Infrared Imaging Radiometer Suite Day/Night Band, and BMR: Bangkok Metropolitan Region.  
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measurements in developing countries, owing to the difficulty in identifying changes 

in anthropogenic activity at a high geographical resolution. We focused on satellite-

based NTL as an indicator of anthropogenic activity and investigated the relationship 

between the NTL and NO2 reductions captured by Sentinel-5 Precursor satellite 

observations during Thailand’s first lockdown period in 2020. Using geographically 

weighted regression (GWR), we examined the regional relationship between NTL and 

NO2 changes during the first lockdown because the contributions of NTL to NO2 

concentration in the air may vary over space depending on types of local anthropogenic 

activity. According to the satellite-based percentage changes in NO2 levels during the 

lockdown period in 2020 decreased by 10.36% when compared to the same period in 

2019. Such decreases in NTL were prominent in major urban and built-up areas 

(31.66%). According to the GWR result, the NTL and NO2 have a positive local 

association around the country's central, western, and northern regions, while negative 

associations were found in the peripheral regions. The positive association was most 

salient around the BMR in the central part of Thailand. These findings indicate that 

NTL observations can be used to monitor the NO2 changes caused by the anthropogenic 

activity changes in urban areas. 

Finally, this study broadens the study area to include major cities in South Asia 

(SA) and Southeast Asia (SEA) to examine the contextualized effect of human activity 

changes caused by COVID-19 lockdown measures on changes in NO2 levels in a wider 

international context. The results showed that in most of cities NO2 concentration 

decreased during the lockdown period in 2020 compared to the same period in 2019. 

Comparing detailed element of implemented NPIs between the cities, we found that 

strict restrictions led to substantial reductions in human activity, particularly in the 

transportation and industrial sectors, resulting in lower NO2 emissions. Furthermore, 

variations in NTL intensity during the lockdown period were observed among the cities, 

most likely due to differences in lockdown duration, policies, and economic activity 

within each country. The severity and enforcement of lockdown policies varied across 

the countries studied, resulting in differences in economic activity and energy 

consumption. These variations emphasize the importance of considering regional and 

country-specific factors into account when analyzing the relationship between NTL 

intensity, NO2 concentrations, and the impact of COVID-19 lockdown measures. 

Furthermore, this study revealed that NTL is useful for monitoring the impact of a 
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sudden decrease in human activities on air pollution in cities with large populations and 

more advanced economic activities, while NTL does not function well in cities with 

less developed and smaller populations. 
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CHAPTER 1 

INTRODUCTION 

1.1 Air pollution situation before COVID-19 pandemic 

Many global citizens lived in a rapidly industrializing and urbanizing world in the 

years preceding the emergence of the 2019 Coronavirus disease (COVID-19) and the 

period of intense global lockdowns. Obviously, the rate of development varied 

according to each nation’s social, economic, and geopolitical circumstances. 

Regardless of these distinctions, the nature of industrial society encourages daily 

activities that influence global air pollution trends, such as the use of biomass and other 

energy and transportation fuels. Current estimates place the global population at 8 

billion, with an annual increase of more than 33 million (Worldometer, 2023). The 

global population's rapid growth necessitates an increase in the production of food, 

shelter, and other essential services (Helin and Weikard, 2019). As a result, 

anthropogenic activities such as industrial and processing operations face increased 

demand (Subramaniam et al., 2020), posing a substantial threat to the Earth's ecosystem 

long-term viability (Iqbal et al., 2018). Power generation, industry, transportation 

demand, and transport volume have all increased in tandem with population growth. 

The massive anthropogenic emissions from these sectors have caused numerous of 

environmental issues, including detrimental effects on human health (Lelieveld et al, 

2015; Kim et al., 2015), decreased outdoor air quality (Gu et al., 2015), and a changed 

climate system (Ramanathan and Feng, 2009). 

Environmental impacts are one of the most important factors influencing human 

health (Wong et al., 2008). Monitoring air quality is critical for ecosystems and public 

health. Air pollutants like sulfur dioxide (SO2), carbon monoxide (CO), ozone (O3), and 

nitrogen dioxide (NO2), on the other hand, are poisoning the air at previously unheard-

of levels, endangering human health (Chen et al., 2007). Environmental pollution has 

been linked to a variety of acute and terminal illnesses, including lung aging, asthma, 

emphysema, bronchitis, and cancer (Hamra et al., 2015). Air pollution claims a 

significant number of lives each year, with the severity of the problem worsening over 

time. Elevated NO2 and other pollutants level present in the atmosphere are responsible 

for nearly seven million deaths reported by health authorities each year (Khoder, 2002). 
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According to the World Health Organization (WHO), the adverse effects of poor air 

quality are responsible for the death of more than 4.6 million people annually. In 

densely populated areas, urban aerosols and atmospheric NO2 are widely recognized as 

significant and hazardous air pollutants (Cohen et al., 2017). The primary source of 

these pollutants is the combustion of fossil fuels in the industrial, transportation, and 

social sectors (Seinfeld and Pandis, 2016). In recent years, there has been a greater 

emphasis placed on reducing air pollution. Global legislation has seen a concerted effort 

to reduce waste and pollution. Nonetheless, progress in reducing pollution levels has 

been relatively limited. 

There is a notable occurrence of development in South Asia (SA) and Southeast Asia 

(SEA) regions that exacerbates various challenges associated with rapid urbanization 

and pollution, such as vehicular emissions and biomass burning. According to studies 

conducted by Beig et al. (2020) and Conticini et al. (2020), in Asia harbor cities with 

high population densities and substantial levels of pollution, the elevated levels of air 

pollution in urban areas can cause cellular inflammation, severe respiratory problems, 

bronchial hyperresponsiveness, and potentially fatal outcomes (Lippmann and Leikauf, 

2020).  

Exploring SA in more detail, nations such as India, Bangladesh, and Iran are of 

particular interest because they use and consume the most energy in an area where 

regional air pollution is expected to rise steadily. India, being the most densely 

populated country in the region, with notably rapid urbanization and population growth, 

becomes a prime example for investigating the various contributing factors to air 

pollution.  India relies on the combustion of various fuels for the supply of electricity, 

heating, cooking and other industries. In 2017, India was the world’s second largest 

producer, consumer, and importer of coal (IEA, 2018). Coal is the most carbon-

intensive and polluting fossil fuel. According to the Central Electricity Authority (2017), 

coal accounted for 72% of India's electricity generation and 65% of its CO2 emissions. 

Bangladesh like the rest of the region yields similar results. Vehicular and industrial 

emissions and biomass burning release the highest amounts of pollutants into the air. 

SEA countries contribute similarly to air pollution as SA countries do. SEA has a 

large area of tropical forests and other fire-prone biomes, in addition to a growing 
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demand for pollutant-causing resources resulting from rapid urbanization, particularly, 

the burning of Indonesian peatlands and forests, contribute significantly to global CO2 

emissions (Jaenicke et al., 2008). Other Southeast Asian countries, including Vietnam, 

Laos, Thailand, Cambodia, Myanmar, and Malaysia, have up to 50% of their land 

covered by forests, peatlands, and other undeveloped environments that are vulnerable 

to fire (Fujisaka et al., 1996). To summarize, these countries are impacted by both 

natural and man-made pollution sources. 

1.2 COVID-19 lockdown and air pollution  

Coronavirus disease 2019 (COVID-19) was first identified in Wuhan, China, and 

has since spread to many countries worldwide (Cucinotta and Vanelli, 2020). 

According to the World Health Organization (WHO), there have been 394,381,395 

confirmed cases and 5,735,179 deaths of COVID-19 worldwide as of February 7, 2022 

(WHO, 2020). Most countries have implemented non-pharmaceutical interventions, 

including lockdowns, to reduce the risk of disease spread and save human lives (Hong 

et al., 2021).  Since the early stages of the pandemic outbreak, the implementation of 

lockdown measures had profound effects on individuals and industries, leading to a 

notable reduction in atmospheric pollutant concentrations (Wang et al., 2020).  

The global response to the COVID-19 pandemic has had far-reaching consequences 

for the global economy and human mobility, causing widespread disruption and chaos. 

The global pandemic outbreak has had a substantial impact on global economic 

development (Rajput et al., 2020). According to an International Monetary Fund (IMF) 

report, the outbreak of the COVID-19 pandemic caused a global economic recession in 

2020, resulting in a four percentage point reduction in economic growth (ABD, 2020).  

At the same time, many studies have been conducted to investigate the impact of the 

COVID-19 outbreak on changes in air quality improvement due to the emission 

reduction (Mahato et al., 2020; Sharma et al., 2020; Tobías et al., 2020; Chauhan and 

Singh, 2020). As a result, air pollution levels have been significantly reduced in over 

34 countries globally (Venter et al., 2021). According to Patel (2020), NASA Earth 

Observatory data show a 10–30% decrease in NO2 concentration in eastern and central 

China in 2020 compared to 2019. Pacheco et al. (2020) identified a significant 

improvement in Ecuador’s air quality during the lockdown, as evidenced by a 23% 
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reduction in NO2 levels. Similarly, Lokhandwala and Gautam (2020) found the 

improvements of the air quality index in a heavily polluted urban area in India. 

Similarly, several countries experienced a substantial decrease in atmospheric pollution 

during the pandemic (Doi et al., 2022; Kanniah et al., 2020). Sicad et al. (2020) 

investigated how NO2 and O3 concentrations changed during lockdowns in four 

European cities and Wuhan. They reported a significant improvement in air quality and 

an increase in O3 production in cities under consideration. Furthermore, Kanniah et al. 

(2020) reported a 27–34% decrease in aerosol optical depth and NO2 concentration in 

Malaysian urban areas that was unaffected by seasonal biomass burning. Sharma et al. 

(2020) reported that PM2.5, PM10, CO, and NO2 emission levels decreased in 22 Indian 

cities, resulting in improved air quality. Similarly, Velásquez and Lara (2020) 

employed a Gaussian Process Regression to ascertain the probability and association 

between case of COVID-19 and the concentration of NO2 in Lima. In their study, Roy 

et al. (2021) conducted an observation of NO2 concentration reductions in several cities 

in SA during the lockdown period in 2020, specifically in Dhaka, Kathmandu, Jakarta, 

and Hanoi. The researchers found that these cities exhibited the highest reductions, 

ranging from approximately 40–47%, in comparison to the corresponding period in 

2019. Pei et al. (2020) found that major air pollutants decreased significantly in three 

Chinese cities: Beijing, Wuhan, and Guangzhou. Krecl et al. (2020) investigated the 

impact of COVID-19 policy measures on the megacity of Sao Paulo during a period of 

closure. A notable reduction in the levels of nitrogen oxides (NOx) in urban areas was 

documented. The primary sources of NOx are combustion-related activities, such as 

vehicle emissions, residential heating, power plants, and industrial processes (Dumka 

et al., 2019). These compounds, which are initially released as nitrogen monoxide (NO), 

endure rapid oxidation reactions, resulting in the formation of NO2. It should be noted 

that NO2 is a widely recognized indicator of human-caused combustion and a precursor 

to the formation of nitrate aerosols and ozone (Zhang et al., 2020).  

Zhang et al. (2020b) and Bauwens et al. (2020) suggested that the unprecedented 

reduction in human activity caused by lockdown measures had a significant impact on 

the reduction of global air pollutants. Stringent restrictions led to significant reductions 

in human activity, particularly in the transportation and industrial sectors. This 

reduction had a significant impact on many aspects of society, including transportation, 

manufacturing, commercial operations, institutions, and households (Venter et al., 
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2020). Prior to the COVID-19 pandemic, the majority of countries identified these 

sectors as significant contributors to air pollution (Klimont et al., 2017). Pata (2020) 

investigated the impact of the COVID-19 pandemic on environmental pollution in eight 

different locations across the United States and found that the ongoing pandemic 

reduced PM2.5 emissions in the US. Furthermore, Agarwal et al. (2020) investigated the 

impact of closure measures on air pollution in six Indian megacities and six Chinese 

cities, concluding that air pollution decreased dramatically in the cities studied. Due to 

severe restrictions on air travel, air quality in 44 cities in northern China improved 

during the initial phase of the lockdown (Bao and Zhang, 2020).  

1.3 Nighttime light remote sensing 

During the 20th century, the development of electric lighting and the rapid expansion 

of human habitation, transportation infrastructure, and economic activity resulted in the 

illumination of large portions of the globe at night by artificial light. In contrast to 

daytime remote sensing, which typically focuses on the physical attributes of land cover, 

nighttime light (NTL) remote sensing provides a distinct and direct perspective on 

human activities, particularly those related to artificial light during the night. The use 

of nighttime light remote sensing has become common in many disciplines including 

human geography, demography, economics, sociology, fisheries, ecology, light 

pollution, and human rights. 

The Defense Meteorological Satellite Program's Operational Line Scan System 

(DMSP-OLS) and the Visible Infrared Imaging Radiometer Suite (VIIRS) Day-Night 

Band (DNB) aboard the Suomi National Polar-orbiting Partnership (S-NPP) satellite 

are two of the most common NTL data sources. Since the early 1970s, DMSP-OLS has 

been acquiring NTL imagery. Nevertheless, the system has certain drawbacks such as 

low spatial resolution, coarse radiometric accuracy, lack of onboard calibration, and a 

restricted dynamic range (Elvidge, 2007). The latest generation of NPP-VIIRS DNB 

data provides unprecedented capabilities for observing NTL, surpassing some of the 

limitations of DMSP-OLS images (Elvidge, 2017). The use of the artificial light 

distribution depicted in these images has been used as a substitute measure for variety 

of factors including electric power consumption (Elvidge et al., 2001), economic 

activity (Ghosh et al., 2010; Chen and Nordhaus, 2011), population density (Amaral et 
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al., 2006), urbanization (Sutton, 2003), armed conflict (Agnew, 2008), natural disaster 

(Zhao et al., 2018) and the evaluation of the geographical scope of light pollution (Butt, 

2012).  

Human activity analysis includes a variety of data sources, such as mobility data, 

which can provide valuable insights into the relationship between anthropogenic 

activities and air pollution. However, it should be noted that these data sources do not 

provide comprehensive coverage across all regions, particularly in developing and 

underdeveloped countries such as Thailand, as well as other countries within SA and 

SEA countries. Thus, while mobility data presents a potential avenue for assessing 

levels of human activity, its applicability is limited in the current context. As a result, 

this study chose to rely on NTL data instead. This method can be applied to other 

countries by employing the same methodology with NTL data.  

So far, few studies have been conducted on the relationship between changes in air 

pollution and NTL caused by COVID-19 lockdown, owing to the difficulty in 

identifying changes in anthropogenic activities at a high geographical resolution. Hence, 

the primary objective of this study is to examine the impact of NTL change from the 

COVID-19 lockdown on air pollution. It should be also mentioned that previous studies 

have primarily focused on analyzing changes in NTL in a small number of cities within 

a single country, with no international comparisons. To overcome this limitation, this 

study focuses on different geographical scales of analysis, including the city-wide scale 

of the Bangkok Metropolitan Region (BMR), the national scale of Thailand, and an 

international scale composing of a selection of 18 major cities within SA and SEA.  

A comprehensive description and outline of the objectives of this thesis will be 

presented in the subsequent section. 

1.4 Objectives of the Study 

 The overall objective of this thesis is to investigate the geographic 

contextualities of the impact of the changes in human activities caused by the NPIs, 

particularly COVID-19 lockdown measure, on air pollution levels in Thailand and other 

South Asian and Southeast Asian countries. First, this study compares the changes of 

air pollutants and human activities in the BMR during COVID-19 compared to the same 

period in 2017 through 2020 to investigate the relationship between human activities 
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and air pollutants in the BMR area. The study at this scale also intends to ascertain if 

NTL is a sensitive indicator to be related to changes in air pollution by comparing to 

other indicators of human activity for subsequent chapters’ investigation of the effect 

of human activity on air pollution change caused by the COVID-19 lockdown. 

 Second, this study examines local associations between changes in human 

activity (i.e. NTL) and air pollution (NO2) around the first lockdown period in entire 

Thailand in 2020 by using geographically weighted regression (GWR). It should be 

noted that there are few studies on such local association between NO2 levels and human 

activity, owing to the difficulty of identifying changes in anthropogenic activities at a 

high geographical resolution. The GWR-based approach may highlight the importance 

of geographically contextualized relationship between changes in human activity and 

air pollution, meaning that the relationship may change depending on different local 

condition such as population, industry, and transportation. 

 Thirdly and lastly, the lockdown or similar policy implementation period, hereafter 

referred to as the "lockdown period". This study broadens the study area to include 

major cities in SA and SEA to examine the effect of human activity caused by COVID-

19 lockdown resulting in changes in NO2 levels to consider the contextualized 

relationship in a wider international context. 

1.5 Chapter Overview 

Figure 1.1 illustrates the dissertation's structure. This thesis is organized as follows: 

 In chapter 1 (Introduction), a concise introduction of the air pollution situation 

before the pandemic, COVID-19 lockdown and air pollution and NTL, the research gap, 

and the objective of the study are presented.   
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Figure 1.1 Structure of this thesis 

 Chapter 2 details the COVID-19 observations of changes in air pollutants and 

human activities in the BMR. The data on ground-based air pollutant concentrations 

(NO2, SO2, CO, O3, PM2.5, and PM10) and human activities (expressway traffic volume, 

public transportation ridership and NTL) were used to conduct the comparative analysis. 

In order to determine which air pollutants have a stronger correlation with measure of 

human activities, it is necessary to provide insight into the potential connections 

between measure of human activity and pollutants. Thus, the relationship between 

measure of human activities and various air pollutants were investigated. Furthermore, 

this chapter intends to validate the use of NTL by confirming if NTL is a sensitive 

indicator by comparing to other indicators of human activity to be related to variations 

in air pollutants during the COVID-19 lockdown for investigating the effect of human 

activity on air pollution change caused by the COVID-19 lockdown in the subsequent 

chapters.  

Chapter 3 examines the regionally varying association between human activity 

changes and air pollution changes in Thailand. The Sentinel-5 Precursor (S5P) satellite 

provided the NO2 information is utilized in this chapter. Observations by the Suomi-

NPP satellite provided the NTL intensity data. In addition, the land cover data used in 
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this analysis are obtained from the SERVIR-Mekong-managed land-cover portal 

website. This chapter uses GWR to investigate the contextuality of association between 

the changes in NTL and NO2 around the first lockdown period in Thailand in 2020. 

Chapter 4 to examine the relationship between the changes in NO2 levels and NTL 

intensity observed during the COVID-19 lockdown in 18 cities across SA and SEA 

regions by using the same data source for Chapter 3. This chapter investigates how city 

attributes are related to the different NO2 and NTL percentage change experiences 

among the study cities during the first wave of the pandemic. 

 Finally, Chapter 5 summarizes of the findings of this study based on previous 

chapters and draws the conclusions of this study with its implications and 

recommendation for future studies. 
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CHAPTER 2 

Examining the change in air pollutants during COVID-19 lockdown in Bangkok 

Metropolitan Region, Thailand 

The next three chapters, including the current one, are series of research findings on the 

impact of changes in human activities caused by COVID-19 lockdown on air pollution 

levels across diverse geographical scales. This chapter will first demonstrate how air 

pollutants and human activities changed in the Bangkok Metropolitan Region during  

the COVID-19 period. Furthermore, this study will demonstrate the sensitivity of 

indicators of human activity to variations in air pollution levels. 

2.1 Introduction  

Prior to the COVID-19 pandemic, air pollution in the BMR area was a major social 

concern as in the cases of many other Asian big cities. Rapidly growing metropolitan 

areas frequently have a significantly higher prevalence of vehicular traffic congestion 

than their counterparts. The inefficient combustion of fossil fuels is the primary source 

of air pollution. Numerous studies have been conducted to assess the potential health 

consequences of the rising number of fossil fuel-powered vehicles and traffic 

congestion worldwide. These studies have found a link between polluted urban air and 

adverse health effects (Janssen et al., 2003; Van Vliet et al., 1997). Air pollution has 

been a problem in Bangkok and surrounding provinces for decades, with hazardous 

levels of pollutants affecting air quality and posing health risks. Bangkok suffers from 

severe air pollution as a result of its rapid economic growth and urbanization. Vehicle 

emissions are the largest contributor to PM10 in the BMR, accounting for more than 

30% (Chuersuwan et al., 2008). Vehicle emissions also produce additional gaseous 

pollutants such as NO2, SO2, and CO. 

The emergence of the COVID-19 pandemic in early 2020 prompted unprecedented 

global responses, including lockdown measures and the implementation of social 

distancing as integral COVID-19 pandemic response strategies aimed at mitigating 

virus transmission. Thailand’s government implemented a nationwide curfew 

beginning in mid-March 2020, as part of a comprehensive COVID-19 prevention plan. 

Consequently, these measures had an immediate impact on people’s daily routines and 

lifestyle, leading to a paradigm shift towards remote working arrangements (including 



 11 

working from home), the adoption of takeout-only policies for restaurants, and a 

transition to online learning in educational institutions. Moreover, there was a notable 

surge in online shopping and delivery services during this time period. Many studies 

have found that air pollution levels dropped during the lockdown. Compared to 2019, 

Wetchayint (2021) observed a substantial improvement in air quality in 2020, with 

reductions of 31.7% (PM10), 15.8% (PM2.5), 7.1% (O3), and 8% (CO) during lockdown 

in Bangkok.   

We compared the temporal variations in air pollutants and human activities in the 

BMR from March through June, 2020, compared to the same period from 2017 to 2019. 

Then, this study investigated which measure of human activity is most sensitive to air 

pollution reduction in order to select a measure of human activity for the subsequent 

chapters’ investigation of the contextual nature of the association between changes in 

human activity and air pollution in larger areas.  

2.2 Materials and methods 

2.2.1 Study area 

The BMR is an important geographical area located centrally in Thailand, 

encompassing the Bangkok Metropolitan Administration along with five neighboring 

provinces, namely Pathum Thani, Nonthaburi, Samut Prakarn, Samut Sakhon, and 

Nakhon Pathom. This region, depicted in Figure 2.1, covers a total land area of 7,762 

square kilometers and is home to an estimated population of approximately 15.6 million 

people. The population of the BMR is made up of 10.8 million registered residents and 

4.8 million unregistered residents. Consequently, the region has a high population 

density of approximately 2,009.79 people per square kilometer. The BMR encompasses 

a wide range of economic sectors, including urban, industrial, agricultural, and tourism 

activities, with Bangkok serving as a vital economic hub for the national economy. The 

BMR has significant traffic issues, ranking among the top ten most congested cities 

globally (Fuchs et al., 1994). Figure 2.2 presents the population density by subarea in 

the BMR. 
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Figure 2.1 The Bangkok Metropolitan Region map and COVID-19 case per 1,000 people during the 1st lockdo
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Figure 3.2 The Bangkok Metropolitan Region’s population density (per square 

kilometer) 

2.2.2 Data collection 

The air pollution data for the period between 2017– 2020 were obtained from the 

Pollution Control Department (PCD), Ministry of Natural Resources and Environment 

of Thailand. The concentrations of air pollutants including NO2, SO2, CO, O3, PM2.5, 

and PM10 were measured hourly at 24 air pollution monitoring stations in the BMR. 

The daily value of air pollution is determined by calculating the mean of the values 

observed from the monitoring stations. As shown in Table 2.1, these stations were 

distributed as follows: thirteen in Bangkok, one in Nakhon Pathom, two in Nonthaburi, 

one in Pathum Thani, five in Samut Prakan, and two in Samut Sakhon provinces. Figure 

2.3 depicts the geographical locations of these stations. 

 In this study, we considered three measures of human activities available in the 

study area: expressway traffic volume, public transportation ridership, and the intensity 

of NTL. Data on average monthly expressway traffic volume and public transportation 

ridership from 2017–2020 were obtained from the website of Bangkok Expressway and 

Metro Public Company Limited (BEM), which is a public transportation company in 
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charge of the operation and management of the mass transit systems in Bangkok, 

including the Mass Rapid Transit (MRT) system and expressways 

(https://investor.bemplc.co.th/). These transportation systems are critical in connecting 

the provinces of the BMR. It should be noted that the average public transportation 

ridership considered in this study is specific to MRT systems, whereas the expressway 

traffic volume data is specific to the daily expressway usage in Bangkok in order to link 

air pollution with people movements. 

Suomi-NPP satellite observations were used to collect the NTL intensity data. The 

Suomi-NPP satellite’s Visible Infrared Imaging Radiometer Suite (VIIRS), which is 

operated by NASA and the National Oceanic and Atmospheric Administration, 

includes a day/night band (DNB). This DNB permits the collection of multitemporal 

NTL data and facilitates near-real-time monitoring due to its high repetition frequency 

(Elvidge et al., 2013). The VIIRS sensor collects data while in a polar orbit, between 

midnight and one a.m., which is the best time to observe Thailand. We used the VIIRS 

Nighttime Day/Night Band Composites Version 1 in this study, which contains monthly 

averaged radiance composite images. We obtained monthly average stable composite 

data from the VIIRS-DNB data from 2017–2020 by using the Google Earth Engine 

(GEE) median reducer to remove the maximum value of NTL. From the composite 

VIIRS-DNB data, the average DNB radiance value within the BMR extent was selected 

for this study. 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.3 Spatial distribution of air pollution monitoring sites located in the 

Bangkok Metropolitan Region 
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Table 2.1 Descriptive of air pollution monitoring sites in the Bangkok Metropolitan 

Region 

Province District Latitude Longitude Station name 

Bangkok Phaya Thai 13.78 100.54 

The Public Relations 

Department 

Bangkok Thon Buri 13.73 100.49 

Bansomdejchaopraya 

Rajabhat University 

Bangkok Bang Khun Thian 13.64 100.41 National Route 3902 

Bangkok Bangna 13.67 100.61 

Thai Meteorological 

Department 

Bangkok Wang Thonglang 13.77 100.62 

Bodindecha (Sing 

Singhaseni) School 

Bangkok Bangkapi 13.78 100.65 Klongjun NHA 

Bangkok Din Daeng 13.78 100.57 Huaykwang NHA  

Bangkok Yan Nawa 13.71 100.55 

Nonsi Witthaya 

School 

Bangkok Pathum Wan 13.73 100.54 

King Chulalongkorn 

Memorial Hospital 

Bangkok Thon Buri 13.79 100.59 

Metropolitan 

Electricity Authority 

Substation Thon 

Buri 

Bangkok Wang Thonglang 13.73 100.49 

Chok Chai Police 

Station 

Bangkok Din Daeng 13.76 100.55 

National Housing 

Authority Public 

Community Din 

Daeng 

Samut 

Prakan Phra Pradaeng 13.66 100.54 

Vocational 

Rehabilitation Center 

Samut 

Prakan 

Mueang Samut 

Prakan 13.62 100.56 

South Bangkok 

Power Plant 
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Province District Latitude Longitude Station name 

Samut 

Prakan Phra Pradaeng 13.65 100.53 

Residence for Dept 

of Primary Industries 

and mines 

Samut 

Prakan 

Mueang Samut 

Prakan 13.60 100.60 

Samut Prakan 

Provincial Hall 

Samut 

Prakan Bangplee 13.57 100.79 Bangplee NHA 

Nonthaburi Bangkruai 13.81 100.54 EGAT 

Nonthaburi 

Mueang 

Nonthaburi 13.85 100.53 

Department of 

Disease Control 

Nonthaburi Pak Kret 13.91 100.54 

Sukhothai 

Thammathirat Open 

University 

Samut 

Sakhon Krathum Bean 13.71 100.32 

Samut Sakhon 

Highway District of 

Highway 

Samut 

Sakhon 

Mueang Samut 

Sakhon 13.55 100.27 

Samut Sakhon 

Wittayalai School  

Pathum 

Thani Khlong Luang 14.04 100.61 

 Bangkok University 

(Rangsit) 

Nakhon 

Pathom 

Mueang Nakhon 

Pathom 13.83 100.06 

Prapa Nakhon 

Reservoir  

 

2.2.3 Statistical Analysis 

Data on ground-based air pollution concentrations and human activities (expressway 

traffic volume, public transportation ridership and NTL) were examined for a 

comparative analysis from 2017–2020. The primary focus was on comparing changes 

in air pollutant concentrations from March through June, 2020 lockdown period to the 

same period observed from 2017–2019.  
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To investigate the change in air pollutants and human activities between the baseline 

years of 2017–2019 and 2020, specifically during the first lockdown period, an analysis 

of percentage change from the baseline was performed. This analysis involved 

calculating the percentage change in each air pollutants and human activities during the 

first lockdown period of 2020, compared to the baseline years of 2017–2019. For 

example, the percentage change in NO2 concentrations was calculated using the 

following formula (2.1): 

 

𝑃𝐶!"! = $%𝑁𝑂#!"!" − 𝑁𝑂#!"#$%!"#&) ÷ 𝑁𝑂#!"#$%!"#&+ × 100  (2.1) 

 

where 𝑁𝑂#!"!"  represents the monthly average NO2 concentration during the first 

lockdown period in year 2020. 𝑁𝑂#!"#$%!"#& represents the average of NO2 

concentration same period before pandemic in years 2017– 2019. 

In this study, Pearson's correlation coefficient was used to investigate the 

relationship between measures of human activities and various air pollutants for 

monthly data of generally from 2017–2020. Specifically, we intended to identify which 

air pollutants have a stronger correlation with human activities, providing insights into 

the potential links between human activity and pollutants in the BMR. The estimation 

equation for Pearson's correlation coefficient was calculated using the following 

formula (2.2): 

 

𝑟 = $%∑ ''(')*(∑'')(∑ (')

-.$/''!*(∑'')
!0.$/('!*(∑(')

!0
										                                                        	(2.2) 

 

In equation (2.2), n represents the number of observations. 𝑥1 represents the monthly 

values of measures of human activity being examined of month t. 𝑦1  represents the 
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monthly values of the air pollutant being examined of month t. ∑𝑥1𝑦1 is the sum of the 

product of each paired observation of human activities and the air pollutant being 

examined. ∑𝑥1and ∑𝑦1	 represent the sums of the human activities values and the air 

pollutant values, respectively. Σ𝑥1# and Σ𝑦1# denote the sums of the squared 𝑥1 and 𝑦1 

values, respectively.  

In addition, we intended to look into how sensitive the measures of human activities, 

specifically expressway traffic volume, public transportation ridership and NTL, are to 

changes in air pollutants, specifically NO2, SO2, CO, O3, PM10 and PM2.5 levels during 

the lockdown period in the BMR. We used multiple regression analysis to understand 

the associations between these variables from general 2017–2020. To account for the 

impact of the lockdown period on the relationship between human activities and air 

pollutants levels, we included an indicator variable, which took a value of 1 during the 

lockdown period and 0 otherwise. This allowed us to compare the sensitivity of human 

activities to air pollutants during the lockdown to non-lockdown periods. The 

estimation equation for Multiple regression was calculated using the following formula 

(2.3): 

																																			𝑦1 = 𝑏2 + 𝑏3𝑥1 + 𝑐𝐼1 + 𝜀1																																																          (2.3)                                                           

𝐼1	=		 :
1,						𝑡	𝑖𝑠	𝑖𝑛	𝑝𝑒𝑟𝑖𝑜𝑑	𝑜𝑓	𝑙𝑜𝑐𝑘𝑑𝑜𝑤𝑛					

		0, 𝑜𝑡ℎ𝑒𝑟	𝑤𝑖𝑠𝑒  

 

where 𝑦1 and 𝑥1	are the dependent (air pollutants) and independent (human activities) 

variables of month t, respectively. 𝑏2  represents the intercept term, capturing the 

baseline air pollutants. The coefficients 𝑏3  and 𝑐	 quantify the impact of human 

activities and the lockdown effect that is not explained by human activity change on air 

pollutants levels during the lockdown period, respectively. The term εt represents the 

error term, accounting for unexplained variability in the model. 𝐼1  is an indicator 

variable that represents whether a specific period corresponds to the lockdown period 

or not. During the lockdown period, 𝐼1 takes a value of 1 while outside of the lockdown 

period, 𝐼1 takes a value of 0. 
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2.3 Results 

2.3.1 Air pollution assessment during COVID-19  

Data from hourly ground-based observations of air pollutants were aggregated and 

transformed into monthly averages from 2017– 2020. Similarly, data on air pollutants, 

expressway traffic volume, public transportation ridership, and NTL were averaged for 

the years 2017 to 2019 as a baseline to compare with the corresponding data from 2020, 

specifically during the COVID-19 lockdown period from March to June, 2020. The 

findings of this investigation will be discussed in the following sections. 

Table 2.2 Descriptive statistics of air pollutant concentrations, expressway traffic 

volume and public transport ridership data across the Bangkok Metropolitan Region 

in year 2017 to 2020 

 Year 2017-2019 Year 2020 

 Mean Min Max Mean Min Max 

NO2 (ppb) 15.85 10.29 24.04 15.78 8.73 21.01 

SO2 (ppb) 3.80 2.52 5.92 3.99 2.62 4.72 

CO (ppm) 0.62 0.45 0.78 0.44 0.33 0.49 

O3 (ppb) 18.12 11.04 24.77 22.26 13.41 24.30 

PM10 (µg./m3) 41.72 29.32 63.69 41.63 28.48 68.53 

PM2.5 (µg./m3) 24.61 13.89 44.24 21.46 12.11 40.98 

Expressway traffic 

volume 

1227.33 1160.70 1270.99 1049.18 589.86 1216.97 

Public transport 

ridership  

314.53 280.33 359.33 260.58 78.00 312.00 

Nighttime light 19.49 

 

10.143 23.17 

 

19.42 

 

5.03 23.91 
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Table 2.3 Average air pollutant concentrations and human activities during the first 

lockdown and same period in 2017 to 2019 in the Bangkok Metropolitan Region  

Pollutant Year 2017-2019 

(Before 

pandemic) 

Year 2020 

(During 

lockdown) 

%Change 

NO2 (ppb) 15.36 10.55 -34.87 

SO2 (ppb) 2.94 2.94 -0.08 

CO (ppm) 0.55 0.37 -32.86 

O3 (ppb) 17.63 23.17 31.45 

PM10 (µg./m3) 34.49 31.69 -8.12 

PM2.5 (µg./m3) 24.60 21.46 -12.77 

Expressway traffic volume  1227.33 1049.18 -31.02 

Public transport ridership 314.53 260.58 -47.11 

Nighttime light 19.69 18.83 -4.40 
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 Nitrogen Dioxide (NO2) 

The comparison of monthly NO2 values (ppb) was of special interest for determining 

the overall change in the NO2 levels between the first lockdown in 2020, compared to 

the same period from 2017–2019 (Fig. 2.4). Results revealed that the NO2 levels 

decreased by 34.87% during the first lockdown in 2020 (March to June, 2020) 

compared with those of the same period in 2017– 2019 as shown in Table 2.3. The 

minimum, maximum, and average NO2 levels in 2017–2019 were 10.29, 24.04, and 

15.85 ppb, respectively, while those in 2020 were 8.73, 21.01 and 15.78 ppb, 

respectively (Table 2.2). 

 

 

Figure 5.4 Time-trends of monthly averaged of NO2 concentration between 2017 to 

2020  
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 Sulphur dioxide (SO2) 

Figure 2.5 depicts the monthly SO2 values (ppb) levels observed during the 

lockdown periods in 2017 and 2020. When compared to the corresponding period from 

2017–2019, SO2 levels decreased by 0.08% in during the initial lockdown period in 

2020 (Table 2.3). Between 2017– 2019, the minimum, maximum, and average SO2 

levels were 2.52, 5.92, and 3.80 ppb, respectively (Table 2.2), while in 2020, these 

values were 2.62, 4.72, and 3.99 ppb, respectively. 

 

 

Figure 6.5 Time-trends of monthly averaged of SO2 concentration between 2017 to 

2020  
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 Carbon monoxide (CO)  

The comparison of monthly CO levels (ppm) during the lockdown periods of 2020 

compared to the same period from 2017– 2019 (Fig.2.6) revealed a 32.86% decrease in 

CO levels during the first lockdown in 2020 when compared to the corresponding 

period from 2017–2019 (Table 2.3). The minimum, maximum, and average 

concentrations of CO from 2017–2019 were 0.45, 0.78, and 0.62 ppm, respectively 

(Table 2.2), while in 2020; these values were 0.33, 0.49, and 0.44 ppm, respectively. 

 

 

Figure 7.6 Time-trends of monthly averaged of CO concentration between 2017 to 

2020  
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 Ozone (O3) 

A comparison of monthly O3 levels (ppb) during the lockdown periods 2020 and the 

same period from 2017–2019 (Fig. 2.7) revealed 31.45% increase in O3 levels during 

the first lockdown in 2020 compared to the period before lockdown from 2017 –2019 

(Table 2.3). The minimum, maximum, and average O3 concentrations from 2017 to 

2019 were 11.04, 24.77, and 18.12 ppb, respectively (Table 2.2), while in 2020, were 

13.41, 24.30, and 22.26 ppb, respectively. 

 

 

Figure 8.7 Time-trends of monthly averaged of O3 concentration between 2017 to 

2020  
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 PM10 and PM2.5     

The examination of monthly PM10 values (µg./m3) was assessing the overall 

fluctuation in PM10 levels during the 2020 lockdown period and the same period from 

2017–2019 (Figure 2.8). The findings indicated an 8.12% reduction in PM10 levels 

during the first lockdown in 2020 when compared to the period preceding the lockdown 

between 2017 and 2019. Table 2.2 shows that the minimum, maximum, and average 

PM10 levels from 2017 to 2019 were 29.32, 63.69, and 41.72 µg./m3, respectively. In 

2020, these levels were 28.48, 68.53, and 41.63 µg./m3, respectively. 

 

 

Figure 9.8 Time-trends of monthly averaged of PM10 concentration between 2017 to 

2020  
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Figure 2.9 shows a comparison of monthly PM2.5 values (µg./m3) during the of 2020 

lockdown period and the same period from 2017 to 2019 revealing a 12.77% reduction 

in PM2.5 levels during the first lockdown in 2020 when compared to the corresponding 

period between 2017 and 2019. Table 2.2 shows that the minimum, maximum, and 

average PM2.5 levels from 2017 to 2019 were 13.89, 44.24, and 24.61 µg./m3. In 2020, 

these levels were observed as 12.11, 40.98, and 21.46 µg./m3, respectively. 

 

 

Figure 10.9 Time-trends of monthly averaged of PM2.5 concentration between 2017 to 

2020  
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 Expressway Traffic Volume  

The comparison of monthly expressway traffic volume data (thousand trips) was of 

particular interest for determining the overall change in the expressway traffic volume 

data between lockdown period in 2020 compared to the same period from 2017–2019 

(Figure 2.10). The results showed that expressway traffic volume data decreased by 

31.02 % during the first lockdown in 2020 when compared to the same period from 

2017 to 2019. The minimum, maximum, and average expressway traffic volume data 

in 2017 to 2019 were 1160.70, 1270.99, and 1227.33 thousand trips, respectively, 

(Table 2.2) while those in 2020 were 589.86, 1216.97 and 1049.18 thousand trips, 

respectively. 

 

 

Figure 11.10 Time-trends of monthly averaged of expressway traffic volume 

concentration between 2017 to 2020  
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 Public Transport Ridership  

The monthly average public transportation ridership data in thousand trips were 

observed, with a specific focus on assessing the overall changes in the number of public 

transportation ridership data during the first lockdown in 2020, compared to the same 

period from 2017–2019 (Figure 2.11). The findings indicated a substantial decrease of 

47.11% in the monthly average public transportation ridership data during the first 

lockdown in 2020 when compared to the same period in 2017–2019. Analysis of the 

data from 2017 –2019 revealed that the minimum, maximum, and average public 

transportation ridership per day figures were recorded as 280.33, 359.33, and 314.53 

thousand trips, respectively (Table 2.2). In contrast, in 2020, these values were observed 

as 78, 312, and 260.58 thousand trips, respectively. 

 

 

Figure 12.11 Time-trends of monthly averaged of public transport ridership 

concentration between 2017 to 2020 
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 Nighttime light (NTL) 

The comparison of monthly average NTL intensity (nanoWatts/cm2/sr) between the 

first lockdown in 2020, compared to the same period from 2017– 2019 (Figure 2.12). 

The findings revealed a significant decrease of 4.40% in the monthly average of NTL 

during the first lockdown in 2020 when compared to the same period between 2017 and 

2019. Examination of the data from 2017–2019 showed that the minimum, maximum, 

and average NTL figures were 10.43, 23.17 and 19.49 nanoWatts/cm2/sr, respectively 

(Table 2.2). Conversely, in 2020, these values were 5.03, 23.91, and 23.91 

nanoWatts/cm2/sr, respectively. 

 

Figure 13.12 Time-trends of monthly averaged of nighttime light concentration 

between 2017 to 2020  

 

2.3.2 Correlation between human activities and air pollutants in the Bangkok 

Metropolitan Region   

Pearson's correlation coefficient was used to calculate the relationships between 

expressway traffic volume, public transportation ridership, NTL, and air pollutants. The 

correlation coefficients were calculated separately for each air pollutant, providing 

valuable insight into the magnitude and direction of the observed relationships.  
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The study examined the relationship between human activity and different air 

pollutants within the BMR region, specifically NO2, SO2, CO, O3, PM10, and PM2.5. 

These correlations’ characteristics were thoroughly investigated. The Pearson's 

correlation coefficients for the correlation between expressway traffic volume and air 

pollutants (Table 2.4) were NO2 (0.227), SO2 (0.195), CO (0.395), O3 (-0.203), PM10 

(0.199), and PM2.5 (0.2168947). These coefficients show a positive relationship 

between traffic volume and NO2, SO2, CO, PM10, and PM2.5, indicating that as 

expressway traffic volume increases, so do the concentrations of these air pollutants. 

However, there was a negative correlation found between traffic volume and O3, 

implying that higher expressway traffic volume is associated with lower levels of O3. 

Table 2.4  Descriptive of correlation between expressway traffic volume and air 

pollutants in the Bangkok Metropolitan Region  

Air pollutants Expressway traffic volume  

r p-value 

NO2 0.227 >	0.05 

SO2 0.195 >	0.05 

CO 0.395 < 0.01 

O3 -0.203 >	0.05 

PM10 0.199 >	0.05 

PM2.5 0.217 >	0.05 

 

Regarding the correlation between public transportation ridership and air pollutants 

(Table 2.5), the Pearson's correlation coefficients were as follows: NO2 (0.405), SO2 

(0.355), CO (0.299), O3 (0.072), PM10 (0.359), and PM2.5 (0.315). These coefficients 

show a positive correlation between ridership and NO2, SO2, CO, PM10, and PM2.5, 

implying that as ridership increases, so do the concentrations of these air pollutants. 
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However, the correlation between ridership and O3 was relatively weak (0.072), 

implying a less pronounced relationship between ridership and O3 levels. 

Table 2.5  Descriptive of correlation between public transportation and air pollutants 

in the Bangkok Metropolitan Region  

Air pollutants Public transportation ridership 

r p-value 

NO2 0.405 < 0.01	

SO2 0.355 < 0.01	

CO 0.299 < 0.05 

O3 0.072 >	0.05	

PM10 0.359 < 0.01	

PM2.5 0.315 < 0.05 

 

Furthermore, the relationship between NTL and various air pollutants was 

investigated as shown in Table 2.6. The Pearson's correlation coefficients for this 

analysis were: NO2 (0.553), SO2 (0.226), CO (0.239), O3 (0.417), PM10 (0.424), and 

PM2.5 (0.443). These coefficients show a significant positive correlation between NTL 

and NO2, O3, PM10, and PM2.5, implying that higher levels of NTL concentrations are 

associated with higher concentrations of these air pollutants. However, the correlation 

between NTL and SO2 was relatively weaker (0.226), indicating a less pronounced 

relationship between nighttime light and SO2 levels. Notably, the largest correlation 

observed in this study was between NTL and NO2, with a Pearson's correlation 

coefficient of 0.553. This finding suggests a strong positive relationship between NTL 

and NO2 levels, indicating that areas with higher NTL intensity tend to exhibit elevated 

concentrations of NO2. 
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Table 2.6 Descriptive of correlation between nighttime light and air pollutants in the 

Bangkok Metropolitan Region  

Air pollutants Nighttime light intensity  

r p-value 

NO2 0.553 <	0.001 

SO2 0.226 >	0.05 

CO 0.239 >	0.05 

O3 0.417 < 0.01 

PM10 0.424 < 0.01 

PM2.5 0.443 <	0.001 

 

2.3.3 Multiple regression analysis between human activities and air pollution 

changes in the Bangkok Metropolitan Region  

Multiple regression analysis revealed important insights into the sensitivity of 

human activities (expressway traffic volume, public transportation ridership and NTL) 

to changes in air pollutant levels, specifically NO2, SO2, CO, O3, PM10, PM2.5, while 

considering the lockdown period into account. The model included the lockdown 

indicator as an indicator variable, with set 1 representing the lockdown period and set 

0 representing the no lockdown period. Table 2.7 presents the multiple R-squared 

values for each regression model. 

For the analysis of NO2 levels, the model found an R2 of 0.29 for NTL, 0.09 for 

expressway traffic volume, and 0.16 for public transportation ridership, indicating that 

NTL is the human activity most sensitive to NO2. Regarding the analysis of SO2 levels, 

the R2 value was 0.10 for NTL, 0.04 for expressway traffic volume, and 0.14 for public 

transportation ridership. These findings indicated that public transportation ridership is 
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a human activity that is more sensitive to SO2 levels. For CO, the model achieved an R2 

of 0.23 with NTL, 0.16 with expressway traffic volume, and 0.13 with public 

transportation ridership with NTL being the most sensitive measure of human activity 

to NO2. R2 was 0.34 with NTL, 0.04 with expressway traffic volume, and 0.15 with 

public transportation ridership for analysis of O3. These findings demonstrated that 

NTL is a measure of human activity that is more sensitive to O3. In terms of PM10, the 

model achieved an R2 of 0.25 with NTL, 0.05 with expressway traffic volume, and 0.13 

with public transportation ridership, indicating that NTL is a more sensitive human 

activity to NO2 than expressway traffic volume. The R2 values for NTL, expressway 

traffic volume, and public transportation ridership in the PM2.5 analysis were 0.28, 0.05, 

and 0.10, respectively. These findings demonstrated that NTL is a human activity that 

is more sensitive to O3. 

These results indicate that NTL is a more sensitive measure of human activity to 

NO2, SO2, CO, O3, PM10 and PM2.5 levels, whereas expressway traffic volume and 

public transportation ridership have no significant impact on these pollutants in the 

BMR. On the other hand, the number of riders appears to affect SO2 levels. 

Thus, these results revealed that NTL is the most sensitive measure of human 

activities to changes in air pollutants is. We will use NTL as human indicator to the 

effect of human activity on air pollution change caused by the COVID-19 lockdown in 

the subsequent chapters. 
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Table 2.7 Multiple regression analysis between air pollutants and measure of human activities in the Bangkok Metropolitan Region during the 

lockdown period 

 Nighttime light  Expressway traffic volume Public transportation ridership 

 b1 c R2 b1 c R2 b1 c R2 

NO2 0.426*** -6.128** 0.255 -0.004 -7.838 0.088 0.046* 0.795 0.164 

SO2 0.052. -0.965    0.090 0.001 -0.652 0.043 0.0116* 0.817 0.138 

CO 0.007* -0.219** 0.183 0.0004 -0.057 0.158 0.0002 -0.195 0.131 

O3 0.611** 4.706 0.349 -0.007 1.691 0.043 0.059* 13.559** 0.153 

PM10 1.047*** -10.342* 0.220 0.009 -7.612 0.046 0.122* 7.998 0.139 

PM2.5 0.797*** -8.143* 0.243 0.008 -5.766 0.054 0.064 1.305 0.099 

Note. P-value ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1
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2.4 Discussion  

During Thailand’s lockdown period, NO2, SO2, O3, PM10, and PM2.5 concentration 

decreased significantly, with reductions of 34.87%, 0.08%, 32.86%, 8.12%, and 

12.77% respectively, compared to baseline levels between 2017– 2019. These 

reductions can be attributed to the restrictions imposed on movement and commuting, 

which resulted in a substantial decrease in vehicular traffic within the BMR due to the 

implementation of the lockdown measures. It is worth noting that the BMR 

encompasses wide range of economic sectors, including urban, industrial, agricultural, 

and tourism activities, with Bangkok serving as a vital hub for the national economy. 

Nonetheless, the COVID-19 lockdown measures effectively halted human mobility by 

necessitating remote work and stay-at-home orders, resulting in a decrease in inter-

province traffic. In contrast, a substantial increase of approximately 31.45% was 

observed in O3 levels. This finding can be explained by the fact that O3 is classified as 

a secondary pollutant, which is dependent on the presence of its precursors, namely 

NOx and VOCs.  It is possible that the reduction in emissions of these precursors during 

the lockdown period contributed to an elevation in O3 concentration in the atmosphere. 

A reduction in NOx emissions, which are involved in both O3 formation and removal, 

can decrease the removal of O3 from the atmosphere, potentially leading to an increase 

in O3 concentration. Furthermore, in areas where O3 formation is limited by the 

availability of VOCs rather than NOx, a decrease in NOx emissions can shift the system 

to being VOC-limited, allowing more VOCs to react and produce O3, resulting in an 

increase in O3 concentration (Lu et al., 2020). 

In addition, Pearson's correlation coefficient was used to examine the monthly 

correlation between human activities and various air pollutants. The result suggests that 

expressway traffic volume, public transportation use and NTL are associated with 

variations in air pollutant concentrations. The strongest correlation was observed 

between NTL and NO2, suggesting that nighttime activities contribute significantly to 

NO2 emissions. NO2 is emitted primarily from the combustion of fossil fuels, 

particularly in urban areas with residential and commercial heating, industrial processes 

and road transportation. NTL are typically higher in urban areas, making them more 

visible in satellite imagery. Therefore, the strong spatial correlation between urban 

areas, where artificial lighting is prevalent, and NO2 emissions contributes to the 
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correlation between NTL intensity and NO2 levels. (Bechle et al., 2015). Furthermore, 

For the other two measures of human activity, data on public transportation ridership 

only cover a portion of transportation. NTL may encompass a broader range of human 

activities, such as other traffic modes, industrial, electric power consumption (Elvidge 

et al., 2001) and economic activity (Ghosh et al., 2010; Chen and Nordhaus, 2011). 

This study employed the multiple regression analysis to investigate the sensitivity of 

human activities to changes in air pollution levels during a lockdown period. This 

approach enabled us to gain insights into the relationships between air pollution and 

specific human activities, thereby contributing to our understanding of the impact of 

human activities and the efficacy of lockdown measures in reducing air pollution. The 

findings indicate that NTL is a more sensitive human activity to NO2, CO, O3, PM10, 

and PM2.5 levels than expressway traffic volume and public transportation ridership in 

the BMR. Alternatively, the number of riders appears to have an effect on SO2 levels. 

Thus, these results revealed that NTL is the human activity most sensitive to variations 

in air pollutants. NTL data can provide spatial information regarding the distribution of 

human activities and emissions. It measures the intensity of artificial lighting, which 

can be used as a proxy for urbanization, population density, and economic activity (Liu 

et al., 2021a). The Thai government’s announcement of the first lockdown, resulted in 

strict restrictions on people's movement, resulting in the closure of public transportation, 

educational institutions, and non-essential local businesses (WHO, 2020). This 

decrease in human activity has the potential to reduce air pollution emissions. As a 

reliable indicator of human activities, NTL can exhibit a significant decrease during the 

lockdown period, making it appear more sensitive to variations in air pollution levels 

than other variables. 

The study’s findings indicate that when compared to other measures of human 

activity in the BMR, NTL has the highest sensitivity to air pollutants. This suggests that 

changes in NTL intensity are more sensitive to variations in regional air pollution levels. 

The parameter 'c' estimates the deviation of lockdown periods from other "normal" 

periods. The impact of the lockdown on NO2 levels is clear in this case, as there is a 

substantial reduction in NO2 levels during this period. Although, the changes in NTL 

intensity alone cannot fully account for the observed decrease in NO2 concentrations 

during the lockdown. This implies that although NTL is generally correlated with NO2, 
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the reduction in NO2 during the lockdown may be influenced by a variety of other 

regional factors, a concept known as "contextuality". In other words, there are factors 

other than NTL intensity that contribute to the observed reduction in NO2 levels during 

the lockdown. Furthermore, in the following chapter, we will use NTL as an indicator 

of human activity and expand area from the BMR to the entire country of Thailand, 

with a focus on the lockdown period, to investigate the contextuality of the association 

between the changes in human activity and air pollution. 

2.5 Conclusion 

 This study aims to investigate variations in air pollution by using ground-based air 

pollutants such as NO2, SO2, CO, O3, PM2.5, and PM10. The study compared changes in 

air pollutant levels during Thailand’s first lockdown in 2020 to the baseline period of 

2017– 2019 in the BMR area. The monthly NO2, SO2, PM10, and PM2.5 concentrations 

decreased significantly during the lockdown period. The primary cause for the decrease 

in air pollutant concentrations is the cessation of anthropogenic activities such as 

transportation, travel, industrial activities, which are the primary source of such 

pollutants (Sharma et al., 2020).  

NTL showed a strong positive monthly temporal correlation with NO2 levels in the 

BMR. NO2 is primarily emitted from the combustion of fossil fuels, particularly in 

congested urban areas. The strong spatial correlation between urban areas, with high 

levels of artificial lighting and NO2 emissions contributes to the relationship between 

NTL intensity and NO2 levels (Bechle et al., 2015). 

However, multiple regression analysis showed that the NTL reduction cannot fully 

explain the reduction of NO2 during the lockdown period. In the following chapter, a 

more detailed geographical analysis could reveal the contextual association between 

human activities and air pollution to explore the changes in human activities and air 

pollution during COVID-19 lockdown period.  
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CHAPTER 3 

The Impact of Changes in Anthropogenic Activity Caused by COVID-19 

Lockdown on Reducing Nitrogen Dioxide Levels in Thailand Using Nighttime 

Light Intensity 

The previous chapter examined the changes and correlations in the Bangkok 

Metropolitan Region air pollutants during the lockdown versus the baseline. Moreover, 

we investigated how sensitive human activities are to changes in air pollution levels. 

This chapter will look at the regionally varying relationship between changes in human 

activity and Thailand's air pollution levels. Noted that the content of this chapter was 

published as a journal article in Sustainability (Thongrueang et al., 2023). 

3.1 Introduction 

In mid-March 2020, the Thai government announced the implementation of the first 

lockdown and administration zoning, which commenced at midnight and affected 

approximately 68 million citizens (Figures 3.1 and 3.2). The lockdown imposed strict 

restrictions on the movement of people, resulting in the closure of public transport, 

schools, colleges, universities, and non-essential local businesses. To enforce the 

lockdown effectively, the government imposed maximum controls and additional 

restrictions on movement (Figure 3.2), including a ban on leaving homes between 22:00 

and 04:00 local time (WHO, 2020). As a result, anthropogenic, industrial, vehicular, 

and commercial energy-consuming activities in Thailand were substantially reduced 

due to COVID-19 lockdowns (Jain and Sharma, 2020), leading to a reduction in air 

pollution. The Pollution Control Department (2021) reported that environmental quality 

had improved in all aspects after the first lockdown, as transportation and economic 

activities were temporarily halted. Furthermore, the implementation of restrictions 

caused Thailand's air quality index resulted to improve overall by 30% (Kaewrat et al., 

2022). 
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Figure 3.1 Population density of Thailand 
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Figure 3.2 COVID-19 cases per 1000 people during the first lockdown and COVID-19 situation administration zoning map (March 18 to June 
30, 2020). 
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However, the extent to which the COVID-19 pandemic-induced reduction in 

anthropogenic activity has resulted in a decrease in air pollution on a geographic scale 

remains unclear due to the challenges associated with identifying changes in 

anthropogenic activity at a high geographical resolution. To overcome this difficulty, 

one potential solution is to employ nighttime light (NTL) imagery indicators, which are 

the most sensitive human activity observed from Chapter 2. Moreover, NTL can be 

correlated with economic indicators, such as gross regional product, at different spatial 

scales (Doll et al., 2006). Kovács (2022) found a relationship between past emissions 

of NTL intensity and the relative change in NO2 concentration in metropolitan France. 

Observations during the lockdown in Spain demonstrated a significant reduction in 

urban light emissions, NO2, and aerosols (Bustamante-Calabria et al., 2021). Xu et al. 

(2021) demonstrated that NTL radiation in Asia decreased following COVID-19 

lockdowns in cities, indicating a decrease in anthropogenic activity levels, particularly 

in commercial and residential areas (Shao et al., 2021). Despite the widespread use of 

NTL in studies of economic activity and natural disasters (Doll et al., 2006; Zhao et al., 

2018), limited research has been conducted to examine the relationship between air 

pollution and NTL during the COVID-19 lockdown period. 

The NO2 concentration in the air was chosen as the measure of air pollution in this 

study due to its strong association with anthropogenic activities, such as emissions from 

transportation. Liu et al. (2020b) demonstrated that air quality improved as a result of 

reduced vehicle usage and industrial production during the COVID-19 pandemic. 

Significant reductions in NO2 emissions were observed as a result of reduced reliance 

on fossil fuels, including transportation and industrialization (Jechow and Hölker, 

2020). The intensity of light emitted at night and its contribution to atmospheric NO2 

concentrations can vary depending on the type of anthropogenic activity. In Thailand, 

transportation, power generation, industrial activities, and biomass burning are the 

primary sources of NO2 emissions. In urban areas, transportation, specifically cars and 

motorcycles, is the primary contributor to NO2 emissions, while in rural areas, 

agricultural waste burning and forest fires are the primary contributors to poor air 

quality (Stockholm Environment Institute, 2021; World Bank, 2002). Therefore, the 

relationship between changes in NTL and air pollution is likely to vary geographically. 

In this study, we used GWR to investigate the regionally varying association between 

changes in NTL and air pollution in Thailand. Specifically, we examined the 
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relationships between observations of NTL and NO2 in the air prior to the 2019 

lockdown (pre-lockdown) and during Thailand’s COVID-19 control lockdown in 2020. 

3.2 Materials and Methods 

3.2.1 Data Sources and Preparation 

The NO2 data used in this study were obtained from the Sentinel-5 Precursor (S5P) 

satellite, which is a component of the Global Monitoring for Environment and Security 

(Copernicus) program launched by the European Space Agency to monitor air pollution 

(Veefkind et al., 2012). The Tropospheric Monitoring Instrument (TROPOMI), a 

multispectral imaging spectrometer with a wide field of view, is utilized to record the 

measurements. This instrument allows for global daily coverage and has a high spatial 

resolution of 7 × 7 km2, enabling the sampling of small-scale variabilities, especially in 

the lower troposphere. Consequently, TROPOMI is suitable for monitoring emissions 

sources and holds potential for air quality research (Ialongo et al., 2020). The S5P level 

3 Near Real Time was used in this study, sourced from the Google Earth Engine (GEE). 

Other researchers, such as Liu et al. (2020a), have used TROPOMI data to demonstrate 

that NO2 concentrations in urban areas of China and India were significantly higher 

than previously estimated. Furthermore, TROPOMI data have indicated that high levels 

of NO2 in Africa were caused by numerous fires, particularly in the savannah and 

rainforest (Van Der Velde et al., 2021). 

The NTL intensity data were gathered through Suomi-NPP satellite observations. 

The Suomi-NPP satellite, operated by NASA and the National Oceanic and 

Atmospheric Administration, possesses the Visible Infrared Imaging Radiometer Suite 

(VIIRS) that includes a day/night band (DNB). This DNB enables the acquisition of 

multitemporal NTL data and facilitates near-real-time monitoring due to its high 

repetition frequency (Elvidge et al., 2013). The VIIRS sensor captures data while in a 

polar orbit, during the appropriate time for observing Thailand, typically around 00.00–

00.30. We used the VIIRS Nighttime Day/Night Band Composites Version 1 in this 

study, which contains monthly averaged radiance composite images. We acquired 

stable composite data from the VIIRS-DNB data of 2019 and 2020 by applying the 

median reducer in the GEE to eliminate the maximum value of NTL. The average DNB 

radiance value was selected from the composite VIIRS-DNB data. To upscale NO2 and 
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NTL to 7 × 7 km2 grid cells, we employed the nearest neighbor resampling technique 

in the GEE. 

The land cover data used in this study were acquired from the land-cover portal 

website, which is maintained by SERVIR-Mekong. This website offers high-quality 

land cover information, which is sourced from multiple quality control sources. The 

processing of NO2 concentrations, NTL intensity, and land cover was conducted using 

7 × 7 km2 grid cells. 

3.2.2 Estimation of Air Pollution Emission and Its Relationship with 

Anthropogenic Activities 

To conduct a comparative analysis, the satellite-based NO2 concentrations and NTL 

measurements were determined by considering the median from 18th March to 30th June 

for both 2019 (before the implementation of lockdown measures) and 2020 (during the 

first lockdown period). The calculations were performed using the GEE platform, and 

the results were reported at the level of 7 × 7 km2 grid cells. Specifically, the changes 

in the NO2 concentrations during the lockdown period in 2020 were computed by 

comparing them to the pre-lockdown period in 2019. 

Furthermore, the present study investigated the relationship between the changes in 

NO2 and NTL data using a local spatial regression model known as Geographically 

Weighted Regression (GWR) model (Equations (3.1)– (3.3)). The objective was to 

estimate the geographically varying coefficients and determine the effects of the 

reduction in anthropogenic activities on air pollutant concentrations across different 

regions of Thailand during the pandemic outbreak phase. To handle large datasets, we 

employed a scalable variant of GWR (Murakami et al., 2020), which is available in the 

R package of the GWmodel (Lu et al., 2014). To account for the nonlinearity between 

NTL and NO2, we applied a logarithmic transformation. Equation (3.1) expresses the 

GWR model: 

 

𝑦4	 =	𝛽2(𝑢4 , 𝑣4) + 𝛽3(𝑢4 , 𝑣4)𝑥4	 +	𝜀4 (3.1) 
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In Equation (3.1), (𝑢4 , 𝑣4)	 represents the coordinates (easting, northing) of point 𝑖. 

The dependent variable 𝑦4 and the independent variable 𝑥4 	are defined in Equations 

(3.2) and (3.2) as follows: 

 

𝑦4	 =	 𝑙𝑜𝑔𝑁𝑂#4,#2#2	 − 𝑙𝑜𝑔𝑁𝑂#4,#237	 (3.2) 

𝑥4	 =	 𝑙𝑜𝑔𝑁𝑇𝐿4,#2#2	 − 𝑙𝑜𝑔𝑁𝑇𝐿4,#237	 (3.3) 

  

In Equation (3.2), 𝑙𝑜𝑔𝑁𝑂#4,#237 and 𝑙𝑜𝑔𝑁𝑂#4,#2#2	 represent the log-transformed NO2 

concentrations for the pre-lockdown period in 2019 and during the lockdown period in 

2020, respectively. In Equation (3.3), 𝑙𝑜𝑔𝑁𝑇𝐿4,#237		and 𝑙𝑜𝑔𝑁𝑇𝐿4,#2#2	denote the log-

transformed average NTL intensity for the pre-lockdown period in 2019 and during the 

lockdown period in 2020, respectively. 

3.2 Results 

3.2.1 NO2 Level and NTL Intensity Change in Thailand 

The study examined the changes in monthly NO2 values (mol/m2 × 105) to determine 

the overall variations in NO2 levels between 2019 and 2020 (Figure 3.3). The national 

monthly changes in NO2 and NTL, as shown in Figure 3.3, did not exhibit any visible 

lockdown-induced changes. This could be due to differing degrees of lockdown 

restrictions, with some locations being less affected by the initial lockdown and an 

overall increase in NTL due to economic growth. In contrast, the geographical 

distributions of the comparative changes in NO2 and NTL during the lockdown period 

(Figures 3.4 and 3.5) are more pronounced, suggesting that the impact of the lockdown 

on NTL and NO2 cannot be captured by the national monthly changes. The results 

showed a 10.36% reduction in NO2 levels during the first lockdown in 2020 (March 18, 

2020 –June 30, 2020) compared to the same period in 2019. In 2019, the minimum, 

maximum, and average NO2 levels were 4.06, 16.20, and 6.74 mol/m2 × 105, 

respectively (Figure 3.4a), while those in 2020 were 3.83, 13.49, and 6.04 mol/m2 × 
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105, respectively (Figure 3.4b). While there was a decrease in NO2 levels observed in 

the mountainous regions of the northern and northeastern parts of Thailand, where there 

are dense forests, the most substantial reduction proportions of NO2 were observed in 

the central part of Bangkok, which includes the primary shopping, dining, and nightlife 

areas (Figure 3.4c). Additionally, a comparison of NO2 levels before and during the 

lockdown periods revealed that NO2 levels decreased in various regions, including the 

northern, northeastern, central, western, eastern, and southern during the lockdown 

period when compared to the same period in 2019. 

Figure 3.3 depicts the comparison of monthly trends to determine the overall change 

in NTL intensity between 2019 and 2020. The analysis of the minimum, maximum, and 

average NTL intensities before and during the lockdown period revealed that in 2019, 

the values were 0.001, 51.19, and 1.04 nW/cm2/sr, respectively (Figure 3.5a), while in 

2020, the values were 0.12, 49.40, and 1.09 nW/cm2/sr, respectively (Figure 3.5b). The 

central part of Bangkok experienced a substantial decrease in NTL intensity, while the 

eastern and northern regions experienced a slight decrease and other regions 

experienced an increase (Figure 3.5c).  
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(a) 

(b) 

Figure 3.3 Monthly trends of nighttime light (a) and NO2 (b) in 2019 and 2020 in 

Thailand. 
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Figure 3.4 Spatial distribution of the change in NO2 levels during the first lockdown period in 2020 compared to the same period in 2019. 

Note. The figures provide visual insights into the spatial patterns of changes in NO2 levels across Thailand during the COVID-19 pandemic outbreak. The map 

presents three sub-figures: (a) NO2 levels before the lockdown period in 2019, ranging from 18 March 2019 to 30 June 2019; (b) NO2 levels during the lockdown 

period in 2020, ranging from 18 March 2020 to 30 June 2020; and (c) the difference in the change of NO2 levels between the two period. 

   

(a) (b) (c) 
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Figure 3.5 Spatial distribution of the difference in nighttime light intensity between the first lockdown period in 2020 and the same period in 2019. 

Note. The figure consists of three subfigures: (a) shows the NTL intensity before the lockdown period in 2019 (from 18 March 2019 to 30 June 2019), (b) 

shows the NTL intensity during the lockdown period in 2020 (from March 18, 2020 –June 30, 2020), and (c) shows the difference in NTL change between 

the two periods.

   
(a) (b) (c) 
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Figure 3.6 depicts the areas where reductions in NO2 and NTL intensity occurred 

across different land cover categories in Thailand. These areas consist of grid cells 

where the NO2 and NTL levels decreased during the same period in 2019 and 2020, 

indicating a negative change. Table 3.1 reveals that a substantial reduction in NO2 levels 

was observed in cropland, forest and mixed forest, as well as urban and built-up areas. 

Meanwhile, the reduction in NTL intensity was mostly observed in urban and built-up 

areas. The land cover category of urban and built-up areas comprises approximately 

31.66% of Thailand, whereas orchards or plantation forests and croplands cover 

17.59% and 16.58% of the country, respectively. 

Table 3.1 Land cover types in NO2 and nighttime light intensity reduction areas 

Land Cover Types 
Nighttime Light (Decreased) NO2 (Decreased) 

Count Percentage (%) Count Percentage (%) 

Surface Water 2 1.01 12 0.96 

Mangroves 0 0.00 0 0.00 

Flooded Forest 0 0.00 0 0.00 

Forest 17 8.54 334 26.85 

Orchard or Plantation 

Forest 
35 17.59 62 4.98 

Evergreen Broadleaf 8 4.02 69 5.55 

Mixed Forest 16 8.04 251 20.18 

Urban and Built-Up 63 31.66 96 7.72 

Cropland 33 16.58 369 29.66 

Rice 19 9.55 25 2.01 

Mining 0 0.00 1 0.08 

Barren 0 0.00 0 0.00 

Wetlands 1 0.50 2 0.16 

Grassland 1 0.50 15 1.21 

Shrubland 0 0.00 2 0.16 

Aquaculture 4 2.01 6 0.48 

Note. Count is the number of 7×7 km2 grid cells
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(a) (b) 

Figure 3.6 Land cover types in reduction areas 

Note. The figure consists of two sub-figures: (a) NO2 and (b) nighttime light intensity reduction areas. 
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3.2.2 Association between the NTL and NO2 Levels 

The study found that there were positive correlations between the log-transformed 

NTL and NO2 levels. Pearson correlation coefficients were calculated and revealed that 

for the period preceding the lockdown in 2019, the coefficient was r = 0.33, while for 

the lockdown period in 2020, it was r = 0.38. In order to investigate this relationship 

further, we used the annual change in the log-transformed NO2 level as the dependent 

variable and the log-transformed NTL as the independent variable. To analyze the data, 

a GWR model was fitted. 

The estimated coefficient of NTL (β3) in the GWR model fitted to the data revealed 

that there were widespread positive correlations between the changes in NTL and NO2 

levels in the central, western, and northern regions of the country, while negative 

correlations were observed in the peripheral areas (Figure 3.7). The positive correlation 

indicates that when NTL intensity decreased, NO2 levels also decreased. A higher slope 

coefficient suggests that a more substantial reduction in air pollution resulted from a 

decrease in NTL intensity. The R-squared value of the fitted GWR model was 0.592, 

indicating a moderate level of fit. 
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Figure 3.7 Geographically weighted regression (GWR) estimates of the slope 

coefficient. 
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3.3 Discussion 

During the period of lockdown in Thailand, there was a reduction in the NO2 levels 

by 10.36% compared to the same period in 2019. Additionally, there was a notable 

reduction in NTL intensity around Bangkok and its surrounding areas during the 

lockdown period. GWR analysis revealed a positive correlation between the changes in 

NTL and NO2 levels, particularly in urbanized areas, especially the BMR. The central 

region of Thailand includes diverse economic sectors, such as urban, industrial, 

agricultural, and tourism, with Bangkok serving as the country’s major economic sector. 

Additionally, provinces in central Thailand that are connected to Bangkok through a 

road network have higher traffic. During Thailand’s dry season (November-February), 

the concentration of air pollutants exceeds the country’s air quality standards. However, 

the implementation of COVID-19 lockdowns effectively halted human mobility by 

requiring people to work remotely and stay at home, reducing inter-province traffic. 

This resulted in a substantial decrease in the concentration of NO2 and the intensity of 

NTL in the region. The findings indicate that the reduction in anthropogenic activities 

in cities, as reflected by the NTL changes, substantially decreased the NO2 

concentrations in the air surrounding the cities. 

However, it is crucial to exercise caution when examining the geographic context of 

the relationship between NTL intensity and NO2 emissions. NTL intensity decreased 

across land use categories, including urban and built-up areas (31.66%), orchards and 

plantation forests (17.59%), and croplands (16.58%). The NO2 reduction process in 

orchards, planted forests, and cropland areas is most likely an unintended consequence. 

The primary factor contributing to the decline in NO2 during lockdown measures can 

be attributed to reduced transportation and industrial activities, resulting from 

restrictions on international mobility and business operations, particularly in the BMR 

and adjacent regions encompassing agricultural land covers. Reduced human activity 

in urbanized areas may result in a lower NO2 emission, resulting in lower NO2 in 

agricultural land covers near the BMR. Agriculture employs approximately 30% of 

Thailand’s labor force (Musikawong et al., 2021). A portion of the agricultural 

workforce also resides on their farmland. The NTL sources in plantation forests and 

cropland might have been produced by inhabitants’ daily activities. Consequently, the 

results demonstrated that the decrease in NTL in agricultural land-use categories across 
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Thailand was smaller than in urban and built-up areas, while NO2 decreased in most 

cropland (29.66%), forest (26.85%), and mixed forest (20.18%) areas. Specifically, 

NO2 reduction was observed in northern Thailand, a non-urban region dominated by 

forests and cropland. This reduction may be attributed to the decline in agricultural 

combustion, such as burn farming, which is characteristic of this region (Yin et al., 

2019), due to the lockdown. However, further study is necessary to comprehensively 

understand this process. 

While NO2 concentrations are associated with emissions produced by transportation 

and are frequently employed as indicators of local air pollution exposure at various 

scales (Levy et al., 2014), some NO2 emission sources are not produced by 

transportation or daily human activities. In northern Thailand, forest fires and power 

plants contribute to NO2 emissions (Xu et al., 2021). For instance, severe air pollution 

from the Mae Moh Power Plant in Lampang Province, Thailand, in 1992 and 1997 

(Pollution Control Department, 2000) had negative impact on human health, property, 

animals, and vegetation in the surrounding areas. According to the GWR findings, the 

correlations between alterations in NO2 concentrations and NTL data were estimated to 

be approximately zero or negative, with NTL increasing as NO2 levels decreased in 

2020 compared to 2019 in the northern and northeastern areas of Thailand. This 

phenomenon could be attributed to temporally activated emission sources with non-

urban light, such as agricultural residue burning and forest fires, generating relatively 

minor NO2 emissions in comparison to coal power plants and vehicle exhaust, which 

are Thailand’s primary sources of NO2 emissions (Greenpeace, 2015). 

The effects of lockdown measures have been observed in recent global studies 

(Menut et al., 2020). Incorporating data from the second and third waves of the 

pandemic could lead to a more comprehensive understanding of the air pollution 

impacts resulting from lockdowns. However, the general population has started to adapt 

to the pandemic, incorporating various countermeasures into their daily routines and 

becoming less fearful of the pandemic than during the initial lockdowns. Consequently, 

the first wave of lockdowns was the most severe in its approach to the pandemic. The 

implementation of non-pharmaceutical interventions led to heightened caution among 

individuals when venturing outside or engaging in public outdoor activities. During this 

period, there was a substantial reduction in air pollution due to a reduction in human 
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movement and activities, effectively serving as a natural experiment. Additionally, it 

may be beneficial to examine longer time periods prior to 2019 to better understand the 

natural fluctuations in atmospheric NO2. As Thailand is a developing country, pollutant 

levels can fluctuate. Thus, in order to gain a more comprehensive understanding of such 

changes, this study focused on changes in NO2 concentrations during the 2020 

lockdown period compared to same timeframe in 2019, particularly in urban areas, to 

attain a more comprehensive understanding of such alterations. 

Using geographically detailed mobility data in future studies could potentially reveal 

a more robust association between human activities and air pollution. However, in 

Thailand and other developing countries, such data can be costly and may not cover the 

entire region. Thus, while mobility data could serve as a viable metric for assessing 

human activity levels, it is currently unavailable. As a result, we used NTL data, which 

can be used in other countries with similar methodologies. Nonetheless, the scope of 

this study was limited to Thailand. Subsequent research could broaden the study area 

by using satellite data, which could easily encompass other regions or the entirety of 

Southeast Asia. Additionally, addressing several challenging issues necessitates a more 

detailed analysis and understanding of meteorological influences over extended time 

periods. 

3.4 Conclusion 

This study aims to examine the correlation between NO2 and NTL in Thailand during 

the initial lockdown period in 2020. The study reveals a substantial decline in NO2 and 

NTL levels in most urban and built-up areas when compared to the same period in 2019. 

We used GWR to examine the regionally varying association between changes in NTL 

and air pollution in Thailand. It was observed that there is a positive correlation between 

the changes in NO2 and NTL in the Bangkok Metropolitan Region. These findings 

suggest that reductions in anthropogenic activities in urban areas, as reflected by the 

NTL in cities, have a substantial impact on reducing atmospheric NO2 concentrations. 

As a result, the study suggests that NTL observations can be used to monitor changes 

in air pollution caused by anthropogenic activities in urban areas. 

 



 56 

CHAPTER 4 

The Effect of Anthropogenic Activity Caused by COVID-19 Lockdown Resulting 

in Changes in Nitrogen Dioxide Levels Using Nighttime Light Intensity in South 

and Southeast Asia  

In chapter 3, the observation of the regionally varying association between the changes 

in human activities and air pollution during the lockdown period in Thailand has been 

discussed. This chapter will investigate the changes in NO2 and NTL during the 

COVID-19 lockdown in 18 cities across SA and SEA regions to explore how the 

changes are regulated by different situations in the cities with different lockdown 

policies.  

4.1 Introduction 

As discussed in previous chapters, the implementation of lockdown measures and 

the subsequent disruption of human and industrial activities have resulted in a 

substantial decrease in air pollution levels, particularly in the concentration of NO2. The 

emergence of the Coronavirus outbreak in the SA and SEA region was officially 

confirmed in mid-January 2020. Following this confirmation, the number of confirmed 

cases in SEA countries began to rapidly increase. In addition to the standard preventive 

measures, many countries in SA and SEA implemented lockdown measures ranging 

from community-specific to nationwide restrictions. Many studies have examined the 

changes in air quality during periods of lockdown in SA and SEA countries. Kanniah 

et al. (2020) observed a large reduction of 27%–34% in tropospheric NO2 column 

density within urban agglomerations in SEA during the COVID-19 period of 2020. 

Additionally, there was a substantial decrease in the levels of PM10, PM2.5, CO, and SO2 

in Malaysian urban areas when compared to the mean levels recorded from 2015–2019. 

Dhaka, Kathmandu, Jakarta, and Hanoi experienced the highest NO2 concentration 

reductions by approximately 40% –47% during the lockdown period in 2020 compared 

to the corresponding period in 2019 among 19 Southeast Asia cities (Roy et al., 2021).  

The findings presented in Chapter 2 showed a monthly positive correlation between 

the intensity of NTL and NO2 concentrations in the BMR. In Chapter 3, we confirmed 

that such positive correlation was mainly observed in major urban areas like the BMR.  
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This chapter highlights a wider contextuality regulating the relations between the 

changes in NTL and NO2 in major cities in SA and SEA by broadening the study area 

from Thailand to the international extent. Considering the large differences in the 

conditions in SA and SEA’s major cities, this chapter examines the impact of human 

activity caused by COVID-19 lockdown on NO2 concentrations in 18 major cities in 

SA and SEA. 

4.2 Materials and Methods 

4.2.1 Study area 

We selected seven cities in SA, namely Dhaka (Bangladesh), Islamabad (Pakistan), 

Kabul (Afghanistan), Kathmandu (Nepal), New Delhi (India), Colombo (Sri Lanka) 

and Thimphu (Bhutan), as shown in Table 4.1. We also selected 11 cities in SEA 

countries, namely Jakarta (Indonesia), Yangon (Myanmar), Bangkok (Thailand), 

Bandar Seri Begawan (Brunei), Kuala Lumpur (Malaysia), Manila (Philippines), 

Phnom Penh (Cambodia), Singapore, Dili (East Timor), Vientiane (Laos), and Ho Chi 

Minh city (Vietnam), as presented in Table 4.1. According to GADM (2018), SA is 

located between the latitudes 23° N and 55° N and the longitudes 60° E and 130° E 

(Figure 4.1), while SEA is geographically located between 29° N and 11° S and 92° E 

and 141° E (Figure 4.2). In this study, the administrative boundaries of each nation's 

main cities were used to define its borders. The city boundaries used in this study were 

obtained from the Global Administrative Areas (GADM) version 3.6 database, which 

was released in 2018 and can be accessed at www.diva-gis.org. 
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Table 4.1The study area description  

Country City Estimated 

Population 

(City) 

GDP 

per 

capita 

USD 

Started date 

Indonesia Jakarta 33,756,000 15,855 10th April 2020 

Myanmar Yangon 6,874,000 5,131 23rd March 2020 

Thailand Bangkok 18,007,000 22,675 18th March 2020 

Brunei Bandar Seri Begawan 100,700 75,583 24th March 2020 

Malaysia Kuala Lumpur 8,911,000 36,846 18th March 2020 

Philippines Manila 24,922,000 11,420 15th March 2020 

Cambodia Phnom Penh 2,463,000 6,092 9th April 2020 

Singapore Singapore 5,983,000 133,894 7th April 2020 

East Timor Dili 222,323 2,741.39 28th March 2020 

Laos Vientiane 1,001,477 9,800 1st April 2020 

Vietnam Ho Chi Minh City 15,136,000 14,458 1st April 2020 

Bangladesh Dhaka 21,741,000 7,985 26th March 2020 

Pakistan Islamabad 1,015,000 6,662 23rd March 2020 

Afghanistan Kabul 4,435,000 2,456 28th March 2020 

Nepal Kathmandu 1,442,000 4,677 24th March 2020 
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Country City Estimated 

Population 

(City) 

GDP 

per 

capita 

USD 

Started date 

India New Delhi 
 

29,617,000 
8,293 25th March 2020 

Sri Lanka Colombo 5,648,000 14,230 20th March 2020 

Bhutan Thimphu 114,551 13,077 11th August 2020 
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Figure 4.1 South Asia region map 

Note. The red star is the location of 7 cities. 
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Figure 4.2 Southeast Asia region map 

Note. The red star is the location of 11 cities.
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4.2.2 Data collection 

The data utilized in this chapter corresponds to the NO2 data discussed in Chapter 3. 

The NO2 data were obtained from observations made by the S5P (Sentinel-5 Precursor) 

satellite, which is part of the Copernicus program initiated by the European Space 

Agency for the purpose of monitoring air pollution (Veefkind et al., 2012). The 

measurements were conducted using the TROPOMI payload, which is a multispectral 

imaging spectrometer mounted on the satellite. S5P level 3 Near Real Time data from 

the GEE were used for the selected 18 cities.  NO2 data calculated mean of values for 

each month base on the shapefile of city extent. 

The NTL intensity data were gathered from observations conducted by the Suomi-

NPP satellite, specifically, the Visible Infrared Imaging Radiometer Suite Day/Night 

Band (VIIRS-DNB) instrument, located on the Suomi-NPP satellite operated jointly by 

NASA and the National Oceanic and Atmospheric Administration. The VIIRS-DNB 

instrument provides multitemporal NTL data, enabling near-real-time monitoring due 

to its high repetition frequency (Elvidge et al., 2013). For this study, we used the VIIRS 

Stray Light Corrected Nighttime Day/Night Band Composites Version 1. These 

composites consist of monthly averaged radiance composite images derived from 

nighttime data obtained from the VIIRS Day/Night Band (DNB). To ensure the stability 

of the composite data, we used the GEE’s median reducer to eliminate the maximum 

NTL values. To examine the relationship between NO2 levels and NTL, the 'avg_rad' 

band from the VIIRS Nighttime Day/Night Band Composites Version 1 dataset is used. 

The monthly NTL intensity value for each city was calculated as the mean of the 

monthly NTL values within each city's shapefile boundary. 

4.2.3 Statistical Analysis 

In order to examine the impact of the COVID-19 lockdown on air pollution, 

specifically NO2, and human activity, represented by NTL, we intended a comparative 

study among the 18 cities in SA and SEA. To facilitate this comparison, the monthly 

median values of satellite-based NO2 concentrations and NTL measurements were 

computed using data from 2019– 2020. Following the previous chapters analyzing the 

first lockdown period, we again focus on the same periods: “before-lockdown period” 

from March to July, 2019 and “during-lockdown period” from March to July, 2020. To 
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determine the change in NO2 concentration and NTL intensity between the two periods, 

a percentage change was summarized. The percentage change in NO2 concentrations 

was calculated using the following formula (4.1): 

 

𝑃𝐶!"! = $%𝑁𝑂#!"!" − 𝑁𝑂#!"#&) ÷ 𝑁𝑂#!"#&+ × 100                                         (4.1) 

 

where 𝑁𝑂#!"#& represents the monthly average NO2 concentration for the before-

lockdown period in 2019, and 𝑁𝑂#!"!" represents the monthly average NO2 

concentration for the during-lockdown period in 2020.  

The percentage change in NTL intensity was calculated using the following formula 

(4.2): 

 

𝑃𝐶!89 = %(𝑁𝑇𝐿#2#2 − 𝑁𝑇𝐿#237) ÷ 𝑁𝑇𝐿#237) × 100                                   (4.2) 

 

where  𝑁𝑇𝐿#237 represents the monthly average NTL concentration for the year 2019, 

and 𝑁𝑇𝐿#2#2 represents the monthly average NTL concentration for the year 2020. 

In addition, to investigate the different experiences in NO2 and NTL percentage 

change among the study cities during the first lockdown period, hierarchical 

agglomerative cluster analysis was employed to uncover groupings of cities, 

characterized by similar NO2 and NTL percentage changes during that period. Ward 

method was applied as the linkage criterion for the clustering. This algorithm begins by 

treating each data point as an individual cluster and then progressively merges the pair 

of clusters that minimally contributes to the overall increase in the within-cluster 

variance. This process continues iteratively until a specified number of clusters are 

formed. 
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Using the result of the clustering of cities, a scatter diagram was generated to visually 

illustrate the characteristics of the city groups. This graphical representation plotted the 

NTL percentage change on the x-axis and the NO2 percentage change on the y-axis, 

with each dot symbolizing a specific city. The position of each dot reflects the city's 

NO2 and NTL percentage changes.  

Furthermore, this study employed descriptive statistical techniques using boxplots 

and another type of graphs to summarize the city’s attribute variables by cluster to 

facilitate understanding of what city characteristics underlie the changes in NTL and 

NO2. The variables includes GDP per capita, area size, estimated population, and levels 

of policy restrictions for each of the 18 cities. 

4.3 Results 

4.3.1 NO2 Level and NTL Intensity Change in the 7 Cities in Southeast Asia  

The variations in monthly NO2 concentrations (mol/m2 × 105) in the study periods 

were shown in (Figure 4.3) for seven SA cities. NO2 levels decreased in all seven SA 

cities during the initial lockdown in 2020, including Dhaka, Islamabad, Kabul, 

Kathmandu, New Delhi, Colombo, and Thimphu, compared to the same period in 2019. 

The greatest drop was in New Delhi (20.93%), followed by Kathmandu (12.72%) and 

Kabul (12.14%). The remaining capitals saw declines ranging from 10.14% to 6.42%. 

Islamabad (10.14%), Dhaka (9.95%), Thimphu (7.53%), and Colombo (6.42%) are 

listed in detail. 

In addition, the monthly trends were compared to ascertain the overall change in 

NTL intensity, measured in nanoWatts/cm2/sr, between 2019 and 2020 (Figure 4.4). 

Colombo experienced the largest decrease of NTL (18.81%), while Islamabad did the 

second largest decrease of (10.45%). Other cities whose NTL intensities changed 

during the lockdown were New Delhi (10.02%), Dhaka (2.52%), and Thimphu (0.60%). 

Kathmandu and Kabul, on the other hand, experienced large increases of 28.90% and 

4.17 %, respectively.   
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Figure 4.3 Monthly trends of NO2 of 7 cities in South Asia in 2019 and 2020 
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Figure 4.3 Monthly trends of NO2 of 11 cities in Southeast Asia in 2019 and 2020 (continue) 
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Figure 4.4 Monthly trends of Nighttime light of 7 cities in South Asia in 2019 and 2020  
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Figure 4.4 Monthly trends of Nighttime light of 7 cities in South Asia in 2019 and 2020 (continue) 
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4.3.2 NO2 Level and NTL Intensity Change in the 11 Cities in Southeast Asia  

The variations in monthly NO2 concentrations (mol/m2 × 105) in the study periods 

were shown in (Fig. 4.5) for the 11 cities in SEA. The figure showed a reduction in NO2 

levels in all capital cities of SEA during the initial lockdown in 2020, as compared to 

the same period in 2019. Most large decreases were observed in Jakarta (30.43%), 

Singapore (22.83%), and Manila (22.56%). The remaining capitals saw drops ranging 

from 19.89% to 0.37%. The detailed breakdown is as follows: Kuala Lumpur (19.89%), 

Vientiane (12.22%), Yangon (11.58%), Bangkok (10.54%), Phnom Penh (7.96%), Ho 

Chi Minh city (3%), Bandar Seri Begawan (1.06%), and Dili (0.37%).  

The monthly trends of NTL intensity, measured in nanoWatts/cm2/sr, between 2019 

and 2020 were shown in Figure 4.6 for the SEA cities. Among the cities, Bandar Seri 

Begawan (18% decrease) and Bangkok (12% decrease) exhibited the most substantial 

drop in NTL intensities during the lockdown period. Other cities recorded the following 

changes in NTL intensities during the lockdown: Manila (11.62% decrease), Singapore 

(8.14% decrease), Jakarta (7.66% decrease), Ho Chi Minh city (5.48% decrease), and 

Phnom Penh (0.86% decrease) while Vientiane, Dili, Yangon and Kuala Lumpur 

exhibited clear increases of 18.69%, 10.32%, 1.82%, and 1.25%, respectively.  
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Figure 4.5 Monthly trends of NO2 of 11 cities in Southeast Asia in 2019 and 2020 
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Figure 4.5 Monthly trends of NO2 of 11 cities in Southeast Asia in 2019 and 2020 (continue)
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Figure 4.5 Monthly trends of NO2 of 11 cities in Southeast Asia in 2019 and 2020 (continue)
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Figure 4.6 Monthly trends of nighttime light of 11 cities in Southeast Asia in 2019 and 2020  
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Figure 4.6 Monthly trends of nighttime light of 11 cities in Southeast Asia in 2019 and 2020 (continue) 
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Figure 4.6 Monthly trends of nighttime light of 11 cities in Southeast Asia in 2019 and 2020 (continue) 
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Table 4.2 Description of study cities 

 
Note. The specific policy and response categories are coded as follows: 0 – No measures, 1 – Recommend and 2 – Restrict

Country City 
Estimated 
Population 

(City) 

Area 
(km2) 

GDP per capita 
USD 

Started date of 
lockdown 

% reduction 
of NO2  

% 
reduction 
of NTL 

Stay-
at-

home 

Internal 
movement 

Cancellation 
of public 

events 

Sri Lanka Colombo 5,648,000 37.31 14,230 2020/03/20 6.42 18.81 2 1 2 

Brunei Bandar Seri 
Begawan 100,700 100.36 75,583 2020/03/24 1.06 18.79 0 0 1 

Thailand Bangkok 18,007,000 1,568.70 22,675 2020/03/18 10.54 12.91 2 2 2 
Philippines Manila 24,922,000 633.00 11,420 2020/03/15 22.56 11.62 1 0 2 

Pakistan Islamabad 1,015,000 906.50 6,662 2020/03/23 10.14 10.45 2 2 2 
India New Delhi 29,617,000 42.70 8,293 2020/03/25 20.93 10.02 2 2 2 

Singapore Singapore 5,983,000 719.20 133,894 2020/04/07 22.83 8.14 1 2 2 
Indonesia Jakarta 33,756,000 661.50 15,855 2020/04/10 30.43 7.66 2 1 2 

Vietnam Ho Chi Minh 
City 15,136,000 2,095.00 14,458 2020/04/01 3.00 5.48 2 1 2 

Cambodia Phnom Penh 2,463,000 679.00 6,092 2020/04/09 7.96 0.86 0 0 0 
Bhutan Thimphu 114,551 26.10 13,077 2020/04/11 7.53 0.60 1 1 1 

Malaysia Kuala 
Lumpur 8,911,000 243.00 36,846 2020/03/18 19.89 -1.25 0 0 1 

Bangladesh Dhaka 21,741,000 306.40 7,985 2020/03/26 9.95 -2.45 2 2 2 
Afghanistan Kabul 4,435,000 1,028.00 2,456 2020/03/28 12.14 -4.17 1 2 2 
East Timor Dili 222,323 178.60 2,741 2020/03/28 0.37 -10.32 0 0 0 

Laos Vientiane 1,001,477 3,920 9,800 2020/04/01 12.22 -18.69 0 0 0 
Nepal Kathmandu 1,442,000 50.70 4,677 2020/03/24 12.72 -24.35 2 1 1 

Myanmar Yangon 6,874,000 598.80 5,131 2020/03/23 11.58 -35.77 2 2 2 
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4.3.3 The different experiences among the study cities during the lockdown period  

The study involved conducting hierarchical agglomerative clustering analysis, 

specifically utilizing Ward method, to classify the18 cities in SA and SEA. The 

classification was based on the standardized percentage changes observed in NO2 and 

NTL intensity during the first lockdown period in 2020. The dendrogram of the analysis 

indicated four distinct clusters, as represented in Figure 4.7. 

The scatter diagram generated to visualize these clusters exhibited a distinct 

differentiation among the four groups. Each data point on the scatter diagram 

corresponds to a city, where its location is determined by the percentage change in NTL 

on the x-axis and NO2 on the y-axis. The color-coding of points was determined 

according to their cluster assignments, as shown in Figure 4.8. 
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Figure 4.7 Hierarchical Clustering Dendrogram of percentage reduction of nighttime light and percentage reduction of NO2 during the lockdown 

period in 18 cities  
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Figure 4.8 Scatter diagram of percentage reduction of nighttime light and percentage reduction of NO2 during the lockdown period in 18 cities  
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The first group consists of cities with large NTL and NO2 reductions, particularly in 

Jakarta, Singapore, Manila, and New Delhi. However, Kuala Lumpur presents 

substantial decreases in NO2 levels, while also observing an increase in NTL emissions. 

The large decrease in NTL and NO2 can be attributed to a decrease in overall economic 

activity and human movement during the lockdown period (Liu et al., 2020a). Factors 

such as urbanization, industrial emissions, transportation patterns, and local regulations 

may contribute to these variations. When people were confined to their homes during 

the lockdown, the reduction in commuting and industrial activity would have had a 

localized impact on pollution levels. This targeted reduction in emissions may have 

resulted in a clearer between changes in NTL and NO2. Moreover, the cities in this 

group have nearly identical levels of lockdown. As show in Table 4.2 and Figure 4.12– 

4.14, the cities have implemented the recommend and restrict response levels in 

accordance with lockdown restrictions, including stay-at-home, internal movement, 

and cancellation of public events. 

The second group including Bandar Seri Begawan, Colombo, Bangkok, Islamabad, 

and Ho Chi Minh City had high reduction in NTL and low reduction in NO2. For 

Bangkok and Islamabad, the level of lockdown measures implemented was restrict 

across all policy aspects of the lockdown as shown in Table 4.2 and Figure 4.12– 4.14. 

This may have contributed to a higher reduction in NTL. However, the reduction in 

NO2 levels was relatively lower than that observed in the first group. The varying 

degrees of lockdown policy restrictions implemented within each city could be a 

determining factor influencing NO2 reduction.  

The third group including Yangon, Kathmandu, and Vientiane displayed a pattern 

with substantial increase of NTL but high reduction in NO2. For Vientiane, government 

implemented “no measures” for all aspects of the lockdown policies as shown in Table 

4.2 and Figure 4.12– 4.14. The citizen could continue their daily routines unhindered 

by any specific restrictions. Furthermore, cities in this group are in less developed 

countries (Fan et al., 2022; Mali et al., 2022; Wang et al., 2019) with lower GPD per 

capita and smaller population than the cities in groups 1 and 2 as shown Figure 4.9 and 

4.11. This could result in a rapid growth of economic activity in these cities from years 

before the COVID-19 lockdown leading to the substantial increase of NTL. The 

Government of Nepal prioritized the reconstruction and recovery of damaged 
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infrastructure, including the electricity infrastructure following the 2015 earthquake 

near Kathmandu, (Chaulagain et al., 2016). This might lead to the increase of NTL 

during lockdown period compared to the same period before. Regarding the large 

reduction in NO2, in Yangon, the level of lockdown measures implemented “restrict” 

across all policy aspects of the lockdown as shown in Table 4.2. The substantial 

decrease in NO2 during the lockdown period can be attributed to the decrease in 

economic activity and human movement due to the lockdown implementation. In case 

of Kathmandu and Vientiane, the reduction of human activities from the lockdown 

measures in neighboring countries (such as India, Myanmar, and China) can cause the 

reduction in these cities. This may result in NO2 reductions in these cities. 

 
 The fourth group is composed of the cities in which NO2 was moderately reduced 

while NTL increased or was almost unchanged during the lockdown period. The group 

includes Dili, Dhaka, Kabul, Thimphu, and Phnom Penh. Specifically, Phnom Penh, 

and Dili implemented "no measures" for all aspects of the lockdown policies as shown 

in Table 4.2 and Figure 4.12– 4.14. This is due to different lengths of lockdown periods 

in each country but the study primarily focused on the period from March through July 

in 2020. During this specific lockdown period, although Phnom Penh and Dili did 

announce some form of lockdown measures, they were less severe in terms of intensity 

when compared to other cities. Furthermore, this group’s cities have lower GDP per 

capita and smaller population than cities in other groups as shown in Figure 4.9 and 

Figure 4.11. Low GPD per capita cities typically have low level of urbanization, 

transportation demand, and infrastructure, including well-lit streets, commercial 

districts, and residential areas. This might lead to lower levels of NO2 emission in these 

cities. Moreover, this group has a smaller population and a lower GDP per capita; as a 

result, NTL may not be able to effectively monitor human activities related to air 

pollution fluctuation.  

 
4.3.4 Description of boxplots and graphs analysis 

Figures 4.9 is the boxplot giving a comparative view of the GDP per capita across 

four groups of cities obtained from the cluster analysis. Each boxplot presents the 

interquartile range, median, and potential outliers, providing a comprehensive visual 

summary of the data. Each box encapsulates the interquartile range, from the 25th to 

the 75th percentiles, indicating where the middle 50% of values fall.  



 
 

 
 

82 

Group 1 had the highest median GDP per capita of $15,855, indicating most 

extensive economic activity. Group 2 followed closely with a median GDP per capita 

of $14,458, reflecting slightly lower yet substantial economic performance. Group 3 

showed a substantial drop in the median at $7,985. Group 4 exhibited a considerably 

lower median GDP per capita of $3,225, suggesting the lowest economic activity 

among the groups.  

 

 

 
 
Figure 4.9 Boxplot of GDP per capita by group of percentage of nighttime light and 
NO2 reduction 
 

Figure 4.10 illustrates the distribution of area size (km2) across the four groups. 

Group 1 has a median area size of 661.50 km2. Group 2 tends to exhibit a larger area, 

as indicated by the largest median area of 906.50 km2, while group 3 presents 

comparatively lower median of 598.80 km². Group 4 has the lowest median area of 

114.65 km2.  
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Figure 4.10 Boxplot of area size by group of percentage of nighttime light and NO2 
reduction 
 

Figure 4.11 visualizes the estimated population distribution across the four groups. 

Group 1 has a median estimated population of 29,617,000. Group 2 and group 3 have 

median populations of 5,648,000 and 6,874,000, respectively, suggesting moderately 

populated areas with moderate changes in emissions and nighttime light. The lowest 

level of reduction is embodied by group 4, with a median population of 1,952,500, 

which may indicate that these areas are less populated or less urbanized.  
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Figure 4.11 Boxplot of estimated population by group of percentage of nighttime light 
and NO2 reduction 
 

Figure 4.12 illustrates the effects of different levels of stay-at-home policies on the 

reduction of NTL and NO2 across the four distinct groups. In the case of groups 1 and 

2, it is observed that the level denoted as "restrict” is present in three cities, whereas the 

levels labeled as "recommend" and "no measures" are observed once. In contrast, group 

3 exhibits a distinct pattern whereby the impact remains consistent despite the absence 

of measures (level 0) and restrictions (level 2). However, at the initial level (referred to 

as recommendation), the reduction observed is minimal, suggesting a possible 

reluctance towards adopting voluntary measures. Group 4 presents a pattern with twice 

as many cities at no measures and recommendations levels, reducing to just one at the 

restrict level. The bar plot captures a wide array of policy approaches to stay-at-home 

orders across cities, showcasing diversity in country response strategies. 
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Figure 4.12 Bar plot of stay-at-home policy restriction levels by group of percentage 
of nighttime light and NO2 reduction 
 

Figure 4.13 illustrates the levels of internal movement policy restrictions across four 

distinct groups. Within group 1, it is observed that the level denoted as "no measures" 

is present once, whereas the levels labeled as "recommend" and "restrict" are observed 

twice. In group 2, the terms "no measures" and "restrict" are mentioned twice, while 

the term "recommend" is mentioned once. Group 3 reveals an equal distribution across 

all levels: “no measures,” “recommend,” and “restrict,” each appearing once.  Group 4 

exhibits a distribution that is in alignment with that of group 2, wherein the terms "no 

measures" and "restrict" are mentioned twice, while the term "recommend" is 

mentioned once.  
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Figure 4.13 Bar plot of internal movement policy restriction levels by group of 
percentage of nighttime light and NO2 reduction 
 
 

Figure 4.14 presents the levels of policy restrictions on the cancellation of public 

events by the four groups. Groups 1 and 2 exhibit identical characteristics, 

demonstrating in the levels of policy restrictions ranging from 0 (no measures) to 4 

(restrictions). Group 3 consistently maintains a policy level of 1 (recommended), 

regardless of any changes in the environment. In contrast, group 4 illustrates an initial 

policy restriction level of 2 (restrict), which subsequently decreases to 1 (recommend) 

at levels 1 and 2.  
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Figure 4.14 Bar plot of cancelation of public events policy restriction levels by group 
of percentage of nighttime light and NO2 reduction 
 
 
4.4 Discussion 

Several major cities in SA and SEA experienced reductions in NO2 concentrations 

during the COVID-19 lockdown period. The largest reductions were recorded in Jakarta, 

where NO2 concentrations declined by 30.43%. Similarly, New Delhi, Singapore, 

Manila and Kuala Lumpur experienced a large reduction of 22.93%,22.83%, 22.56% 

and 19.89% respectively. Nitrogen Oxides (NOx) are primarily produced by 

combustion-related activities, including vehicle exhaust emissions, residential heating, 

power plants and industrial processes (Dumka et al., 2019). Initially released as nitrogen 

monoxide (NO), these compounds undergo rapid oxidation reactions, leading to the 

formation of NO2. NO2 is widely recognized as an indicator of anthropogenic 

combustion activities and acts as a precursor to the production of nitrate aerosols and 

ozone (Zhang et al., 2020). Strict restrictions resulted in large reductions in human 

activity, particularly in the transportation and industrial sectors. This reduction had a 

substantial impact on many aspects of society, including the transportation, industrial 

activities, commercial operations, institutions, and households (Venter et al., 2020). 

These sectors were identified as major contributors to air pollution in most countries 

prior to the COVID-19 pandemic (Klimont et al., 2017).  
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Cities such as Jakarta, Singapore, Manila, New Delhi, and Kuala Lumpur (group 1) 

exhibited large reductions in both NTL and NO2 levels. During the lockdown, economic 

activities including industrial production, transportation, and commercial operations 

were substantially reduced. This decline in human activity likely led to a reduction in 

energy consumption, resulting in a decrease in NTL and emissions of pollutants like 

NO2. The implementation of strict lockdown measures, including stay-at-home orders, 

internal movement restrictions, and cancellation of public events, likely contributed to 

these high reductions as shown in Figure 4.12– 4.14.  

NTL reduction levels were also clear in Bandar Seri Begawan, Colombo, Bangkok, 

Islamabad, and Ho Chi Minh City (group 2), while NO2 reduction levels were relatively 

smaller compared to group 1. Bangkok and Islamabad imposed restrictions on all 

aspects of the lockdown, which may have contributed to the higher reduction in NTL. 

Nevertheless, the decrease in NO2 concentrations proved to be less substantial 

compared to the levels we observed in group 1. As shown in Figure 4.12– 4.14, the 

extent of NO2 reduction may be influenced by the different levels of lockdown policies 

enforced in each city. 

The third group, which included Yangon, Kathmandu, and Vientiane, exhibited 

distinct trends, with an increase in NTL and a substantial decrease in NO2 levels. 

Despite Vientiane imposing "no measures" for all aspects of the lockdown policies 

(Table 4.2 and Figure 4.12– 4.14), allowing residents to maintain their usual activities. 

These cities are in developing countries, with smaller economies and populations than 

the cities in groups 1 and 2 (Figure 4.9 and 4.11). Rapid economic growth could be a 

reason for increased NTL intensity in these cities during the COVID-19 lockdown 

period compared to the same period in 2019. Yangon, the largest city in Myanmar, has 

undergone rapid urbanization due to its economic transition (Fan et al., 2022). After the 

2015 earthquake reconstruction in Kathmandu, the government of Nepal prioritized the 

reconstruction of damaged infrastructure, which may have contributed to an increase in 

NTL during the lockdown period compared to the pre-lockdown period (Chaulagain et 

al., 2016). In contrast, the decrease in NO2 in Yangon was due to strict lockdown 

measures reducing human movement and economic activities (Table 4.2 and Figure 

4.12– 4.14). For Kathmandu and Vientiane, the reduction in human activities from 

lockdown measures in neighboring countries could have led to lower NO2 levels. 
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Kathmandu's air pollution is influenced by factors such as vehicle emissions and long-

range transportation of pollutants from India (Chen et al., 2015), which may contribute 

to NO2 reductions in this city.  

 Cities such as Dili, Dhaka, Kabul, Phnom Penh, and Thimphu (group 4) experienced 

low reductions in NTL and NO2 levels during the lockdown. The variations within this 

group are due to the severity and duration of lockdown measures. Phnom Penh and Dili, 

for example, implemented fewer and less intense lockdown measures compared to other 

cities during the specified period of analysis. Additionally, these cities have lower GDP 

per capita (Figure 4.9), limited urbanization, transportation demand, and infrastructure, 

which contribute to lower levels of NTL and NO2 emissions. In the case of Chapter 3, 

NTL and NO2 levels decreased substantially only in metropolitan cities like BMR. 

Similarly, in a broader international context, some countries may have the same 

situation. However, in less developed countries, the NTL capture could be 

compromised. 

These findings indicate that the reduction in NTL intensity and NO2 concentrations 

during the first wave of the pandemic is influenced by a number of factors, including 

the rigors of lockdown measures, city size, the diversity of emission sources, and the 

level of urbanization and infrastructure as shown in Figure 4.8– 4.10. Furthermore, 

NTL is also useful for monitoring human activity that related to NO2 changes, which is 

only effective in more developed countries. 

4.5 Conclusion 

The analysis in this chapter focuses on the impact of city lockdowns on NO2 and 

NTL changes in 18 cities in SA and SEA. Following the implementation of lockdown 

measures from March through July in 2020, NO2 concentration generally decreased 

compared to the same period in 2019 in most of the cities. This indicated that the 

lockdown caused a substantial reduction in NO2 in the 18 major cities in SA and SEA. 

Strict restrictions resulted in significant reductions in human activity, particularly in the 

transportation and industrial sectors. This reduction had a significant impact on various 

aspects of society, including transportation, industrial activities, commercial operations, 

institutions, and households (Venter et al., 2020). Moreover, reductions in NTL 

intensity were observed in some cities during the lockdown period, while some cities 
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experienced an increase in NTL. These variations can be attributed to differences in the 

duration and policies of the lockdown measures implemented, as well as economic 

activity in each country in the region. 

Economic activities including industrial production, transportation, and commercial 

operations were significantly reduced in the cities studied during the lockdown. This 

decline in activity likely resulted in a decrease in energy consumption, resulting in 

decreased NTL and NO2 emissions. However, the severity of lockdown policies, viz. 

degree of strictness and enforcement of measures, varied across the countries examined 

in this study.  

 In conclusion, the results of this study indicate a distinct and geographically diverse 

correlation between NO2 emissions and NTL intensity in the South Asian and Southeast 

Asian cities examined during the COVID-19 lockdown. The implementation of 

lockdown measures resulted in a decrease in industrial, transportation, and commercial 

activities, which led to a general reduction in both NO2 concentrations and NTL 

intensity. However, the variability in the strictness, enforcement of lockdown measures, 

and economic situations across the studied cities resulted in different levels of decrease 

and in some instances an increase in NTL intensity. In addition, NTL is beneficial for 

monitoring human activity related to air pollution (NO2), which is only work well in 

more developed countries. However, further research is necessary to investigate the 

variations in this correlation across different contexts and under different policy 

enforcement conditions. 
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CHAPTER 5 

Summary and Conclusion 

The main objective of this thesis aims to investigate the influence of changes in NTL 

resulting from the COVID-19 lockdown on air pollution. The study focuses on various 

geographical scales of analysis, including the city-wide scale of the BMR, the national 

scale of Thailand, and an international scale consisting of a selection of 18 major cities 

within SA and SEA. 

In Chapter 2, the study compares changes in air pollutants and human activities in 

the BMR during the COVID-19 lockdown and previous years. This analysis reveals a 

substantial reduction in air pollutant concentrations (NO2, SO2, PM10, and PM2.5), with 

a notable increase in O3 levels during the lockdown period. The findings align with the 

existing literature, which also highlights the improvement of air quality worldwide 

during COVID-19 lockdowns (Liu et al., 2021b; Saha et al., 2022) However, this study 

extends these findings by demonstrating a strong positive monthly correlation between 

NO2 levels and NTL intensity in the BMR, which suggests that urban areas with higher 

artificial lighting, indicative of human activity, were associated with elevated NO2 

emissions. This result supports the argument that NTL can be used as a sensitive 

indicator to monitor changes in air pollution caused by human activity. 

In Chapter 3, the thesis employs Geographically Weighted Regression (GWR) to 

examine the local associations between changes in human activity (i.e., NTL) and air 

pollution (NO2) around the first lockdown period in Thailand. This work helps to fill 

the research gap concerning the local association between NO2 levels and human 

activity at a high geographical resolution. The results from this analysis indicate a 

positive relationship between changes in NTL and NO2 levels, particularly in urbanized 

areas, which further affirms the usefulness of NTL observations for monitoring changes 

in air pollution caused by anthropogenic activities. 

In Chapter 4, the study broadens its scope to examine major cities in SA and SEA, 

further reinforcing the general decrease in NO2 concentrations during the lockdown 

period, consistent with previous studies (Liu et al., 2021b; Saha et al., 2022). 

Additionally, it illustrates how NTL intensity varies among cities, affected by factors 

such as lockdown measures' duration and policies, and economic activity. This finding 
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indicates that the NTL is beneficial for monitoring human activity related to air 

pollution (NO2) especially in more developed countries with larger populations, 

contributing to the understanding of the differential impacts of lockdown policies on 

air pollution in a broader international context (Schneider et al., 2022). 

The findings presented in this thesis contribute to our understanding of the intricate 

relationship between human activities and air pollution during the COVID-19 period. 

The reduction in anthropogenic activities has resulted in lower concentration of air 

pollutants, specifically NO2, highlighting the substantial influence of human activities 

on air pollution. The positive correlations between NO2 and NTL highlight the utility 

of NTL as a proxy for human activities contributing to air pollution. The study also 

highlights the potential of using NTL as an indicator to monitor changes in air pollution 

caused by human activities in urban areas. NTL is beneficial for monitoring human 

activities related to air pollution, but only under certain conditions. NTL is quite useful 

for monitoring air pollution when there is a sudden change in human activities, which 

is causing air pollution in cities with large populations and more developed economic 

activities. However, in regions with less development and smaller populations, NTL 

does not function well. 

Implications 

The findings from this study have important insights for understanding the 

relationship between human activities and air pollution during the COVID-19 pandemic. 

This study revealed a substantial reduction in NO2 emissions as a result of decreased 

human activity due to the COVID-19 lockdown. This decrease in air pollution had 

positive effects on human health, including fewer cases of respiratory and 

cardiovascular diseases, reducing healthcare costs and potentially saving lives (He et 

al., 2020; Saadat et al., 2020). Additionally, the lockdowns caused substantial economic 

losses due to business closures, unemployment, and decreased consumer spending 

(BBC, 2020; Cutler and Summers, 2020). However, the economic value of the air 

quality improvement can be calculated in terms of healthcare cost savings and increased 

productivity due to fewer ill days. In addition, the monetary valuation of health benefits, 

such as the value of statistical life or years of life spared, may demonstrate that the 

health benefits outweigh some of the economic losses. However, the beneficial 
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improvements in air quality were temporary and came at the cost of massive societal 

disruption. 

 Although the current environmental changes are temporary, this short improvement 

in air quality during lockdown may be an encouraging sign for governing authorities 

and policymakers seeking to improve air quality through planned and strict limitations 

on emission sources. To control pollution levels in their regions with minimal economic 

impact, governments may implement a strategic lockdown at pollution focuses for a 

period of time. 

Furthermore, broadening the study to include multiple cities in SA and SEA 

contributes to a better understanding of the regional variations in air pollution and the 

impact of lockdown measures. The variations observed in NTL changes across different 

countries highlight the need for tailored approaches to address specific socio-economic 

contexts and implement effective policies. The findings can contribute to informed 

decision-making processes and aid in the development of targeted strategies to improve 

air quality and public health in urban areas, both during and after crisis. 

Future studies 

This thesis investigates the influence of changes in NTL resulting from COVID-19 

lockdown on air pollution., acknowledging that NTL may not be a precise indicator of 

air pollution (NO2). There has been a notable increase in the availability of datasets 

regarding human mobility in developed countries. Using geographically detailed 

mobility data in future research could potentially reveal a stronger link between human 

activities and air pollution.  However, Chapter 2 provided the discussion about the 

notion of mobility. In Thailand and other developing nations, such data can be 

expensive and may not cover the entire region. Thus, despite the fact that mobility data 

could be used to measure human activity levels, it is currently unavailable. 

Consequently, we utilized NTL data, which can be applied to comparable 

methodologies in other countries. However, the scope of this investigation was limited 

to 18 cities in SA and SEA. Future research could broaden the scope of the current 

study by utilizing satellite data, which can easily encompass additional regions or the 

entire world. Additionally, addressing several challenging issues necessitates a more 
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detailed analysis and understanding of meteorological influences over extended time 

periods. 
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