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Editorial

Everynight Accounting: Nighttime Lights as a Proxy for
Economic Performance of Regions

Nataliya Rybnikova 1,2,3

1 Department of Mathematics, University of Leicester, Leicester LE1 7RH, UK; nrybhiko@campus.haifa.ac.il
2 Department of Natural Resources and Environmental Management, University of Haifa, Haifa 3498838, Israel
3 Department of Geography and Environmental Studies, University of Haifa, Haifa 3498838, Israel

Artificial nighttime lights, emitted from residential, industrial, commercial and enter-
tainment areas, and captured by satellites, have proven to be a reliable proxy for on-ground
human activities. Since the end of the 1990s, nighttime light data have been used to moni-
tor population concentrations and to assess the economic performance of countries and
regions (see, for instance, [1,2]). Since then, studies of this kind have been increasing in
an avalanche-like manner, and with nighttime lights being used as a proxy for even more
sophisticated things. The reason is that nighttime light data are indeed a very promising
tool to catch the patterns of human activities remotely. Specifically, these data are nowadays
available for each day and each point on the Earth, thus being more advantageous than
traditional estimates, which might be scarce and irregular (due to time-consuming analysis,
as in the case of defining the commuting rates), non-unified (due to different national
reporting standards), or confidential (due to security reasons or illegality, as in the case of
shadow economies).

In the current Special Issue, we have collected ten recent examples for the successful
usage of nighttime light data in a variety of socio-economic tasks, for which traditional
direct techniques are either inapplicable or inefficient. Thus, Mohammad Reza Farzanegan
and Sven Fischer [3], proceeding from the lifting of the international sanctions, proposed
using nighttime light data to estimate and model the level of the shadow economy in Iran.
John Gibson and Geua Boe-Gibson [4] used DMSP/OLS and VIIRS/DNB nighttime light
data to assess their association with disaggregated GDP for various industries at the county
level in the USA. Haoyu Liu with co-authors [5] demonstrated the substitution of time-,
money-, and labor-consuming GDP data at a county level in the Chinese Mainland by
nighttime lights, combined with daytime remote sensing data. VIIRS-provided nighttime
lights were used by Nils B. Weidmann and Gerlinde Theunissen [6] to substitute hard-to-
measure and rare data on local economic inequalities in the countries of the Global South.
Bingxin Qi, Xuantong Wang, and Paul Sutton [7] combined populational data with the data
of nighttime lights to model comparable estimates for educational inequality globally at the
national level. Dan Lu, with co-authors [8], using the example of Chongqing municipality
in China, proposed an approach to model—via DMSP/OLS and VIIRS/DNB nighttime
light data—population dynamics in an agricultural mountainous region. The rest of the
studies in the Special Issue are devoted to using nighttime light data for identifying urban
extent. Thus, for this purpose, Yuping Wang and Zehao Shen [9], proceeding from the
example of eleven urban districts of Nanjing, China, applied a threshold-based Kernel
Density Estimator to Luojia 1-01 and VIIRS-provided nighttime light data. Feng Li, with
co-authors [10], combined Luojia 1-01 nighttime light data with the Normalized Difference
Vegetation and Water Indices to extract data from the urban areas in four capital Chinese
cities. Ding Ma with co-authors [11] compared the hotspots, extracted for 20 major Chinese
cities, alternatively from the OpenStreetMap platform and VIIRS-provided nighttime light
data. Finally, Nataliya Rybnikova with co-authors [12], using the example of two European
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countries, proposed the substitution of the time-consuming mechanism of identifying
functional urban areas by optimal thresholds of VIIRS-provided nighttime lights.

We believe that the herein-presented analyses will be useful both for the research
community and decision-makers, aiming to better understand the patterns of regional
economic development and to design more informed policies. Besides, current studies may
provide important insights for engineers, developing and launching satellites for nighttime
remote sensing. Specifically, most of the studies in the field (including those of the current
Special Issue) use panchromatic data, whereas the potential of multispectral imagery is not
fulfilled due to the low availability of the corresponding data.

The Guest Editor is grateful to the Editorial Team for ensuring smooth communication
between the authors. I also thank the panel of invited reviewers whose constructive criticism
helped to improve the articles and to make them more comprehensive for the reader.

Sincerely,
Nataliya Rybnikova.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: With the implementation of the Joint Comprehensive Plan of Action (JCPOA) in 2016, Iran
experienced a short period without international sanctions which resulted in an annual increase
in the gross domestic product (GDP) in the following two years. However, it was not just the
formal economy that was affected by the sanctions. Previous studies have shown that sanctions
can negatively affect the shadow (or informal) economy and may even have a larger impact on
the informal economy than on the formal economy. Nighttime lights (NTL) data allow us to study
shadow economy activities that are not reported in the official GDP. This study uses a panel of NTL
(the DMSP/OLS and VIIRS/DNB harmonized dataset) from 1992 to 2018 for 31 Iranian provinces to
investigate the association between the lifting of sanctions and the growth of the shadow economy.
The empirical results suggest an increase in shadow economy activity with the lifting of sanctions
while controlling for other drivers of informal activities.

Keywords: shadow economy; Iran; sanctions; JCPOA; nighttime lights

1. Introduction

The international sanctions that were introduced in 2012 by the United States (USA)
and the European Union (EU) against Iran’s oil and financial sectors had an immediate
impact on the economy. Between 2012 and 2015, the average annual economic growth was
−1.1%, compared to 2.4% in the prior four-year period [1]. Moreover, Iranian crude oil
exports dropped from 2.4 to 1.4 million barrels per day in the same period [2]. Shadow
economy activity also significantly decreased by more than 30 percentage points, suffering
more from the sanctions than the formal economy [3]. When the formal part of the economy
is under increased pressure, a declining informal economy may endanger the political
stability of a country, increasing the risk of internal conflict [4,5].

After almost three years of negotiations, Iran and the five permanent members of the
United Nations Security Council (China, France, Russia, United Kingdom, and the USA),
the EU, and Germany came to an agreement called the Joint Comprehensive Plan of Action
(JCPOA), which was implemented in 2016. As a consequence, most international sanctions
against Iran were lifted, and for a short period, it appeared that economic activity returned
to pre-sanction levels or better. However, in 2018, the US government decided to withdraw
from the JCPOA and re-introduced sanctions against Iran, effectively ending the agreement
and returning Iran to a situation under sanctions.

These circumstances allow us to study the effect of the lifting of international sanctions
on the Iranian shadow economy in 2016 and 2017. Despite many views and perspectives
on the definition and measurement of the phenomenon of the shadow economy, there
are several approaches to address this topic. According to Schneider and Enste [6], a
shadow economy includes “unreported income from the production of legal goods and
services, either from monetary or barter transactions, hence all economic activities that
would generally be taxable were they reported to the tax authorities.” In this study, shadow
economy growth is calculated with the help of the harmonized global nighttime light (NTL)
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dataset and gross domestic product (GDP) data from the Iranian Ministry of Economic and
Financial Affairs (MEFA) [7].

The harmonized NTL dataset by Li et al. [8] utilizes monthly remote sensing data from
the Defense Meteorological Satellite Program (DMSP) of the United States Department of
Defense and the data from Visible Infrared Imaging Radiometer Suite (VIIRS) of the Earth
Observation Group of the United States National Oceanic and Atmospheric Administration
(NOAA). The authors created images of yearly data, removed noise, and harmonized the
two different types of measurement to create a dataset that can be used as time-series
data. The data gathered through remote sensing have several advantages, some of which
are relevant for our study. It offers the possibility to measure economic activity that goes
beyond the formal GDP, namely the shadow economy. This can help us to get a more
precise picture of the impact of the lifting of sanctions on economic activity in Iran. We are
using the NTL data to create a panel dataset of 31 Iranian provinces with 837 observations,
which we are using together with the official data from MEFA. To estimate the association
between the lifting of sanctions and the change of shadow economy in Iranian provinces,
we use multiple linear regression, in which the growth of the shadow economy, measured
in the first difference of the logarithm, is the dependent variable. We are presenting
different specifications and adding a variety of control variables to show the robustness of
our results.

The study’s contribution is that it uses a dataset that permits a longer study period
relative to prior studies on the case of Iran. The dataset of Li et al. [8] gives us the possibility
to study a longer time period for our panel data approach, instead of the two DMSP/OLS
and VIIRS/DNB datasets that are usually not comparable over time. It is essential for
our approach because the DMSP dataset ends in the year 2013 and does not include the
years of lifted sanctions. Moreover, the effects of lifting sanctions are discussed, which
is less covered in the literature compared to the effects of introducing sanctions. This is
also true for the behavior of the shadow economy after economic shocks. In addition,
this contribution will help to understand the dynamics of the shadow economy in similar
economies. Finally, it is an important addition to several recent studies about international
sanctions against Iran and already existing studies about its shadow economy [3,9–23]. The
paper is structured as follows. Section 2 presents an overview of the relevant literature
related to the topic, and Section 3 explains the data and methodology. In Section 4, the
results are presented, and we discuss the results in Section 5. Section 6 concludes the paper.

2. Literature Review

Using nighttime light (NTL) data in economics has three main advantages. First,
the growth in NTL reflects growth in economic activity, but it does not include possi-
ble GDP measurement errors in countries with low quality of national accounts [24–26].
Second, official GDP statistics do not account for the informal economy, which can be
significant in many countries [3,27,28]. These two aspects can lead to underestimating
the true effect of economic shocks. This has also been shown by several authors in the
context of natural disasters [29–31]. The third advantage is that nightlight datasets are
available for all countries and smaller geographical units and are therefore comparable
across units. Existing studies mainly use NTL to investigate economic activity and so-
cial well-being [24,25,29–33], the shadow economy and remittances [3,27,28], and electric-
ity consumption and light pollution [34–36], as well as urban ecosystems and urban extent
mapping [37–39].

The first part of the literature links NTL to the formal and informal economy. Chen
and Nordhaus show that NTL can be used as a proxy for GDP [24]. Their study is based
on Elvidge et al., who estimated the light emissions for 21 countries and showed that the
area lit is highly correlated to gross domestic product and electric power consumption [34].
Henderson et al. went a step further and developed a statistical framework to use NTL to
augment official GDP growth measures [25]. They use it to improve the estimates of true
GDP growth in countries with poor data quality. Additionally, Ghosh et al. discussed how
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nighttime lights could be used as a measure for human well-being such as GDP, poverty,
informal economic activity, remittances, human ecological footprint, electrification rates,
and how it can be used to calculate the Night Light Development Index (NLDI) and the
Information and Technology Development Index (IDI) [32]. They also studied the role of
remittances and the shadow economy in Mexico with the help of NTL from the United
States (US) because a large number of remittances are sent from the US to Mexico every
year [27]. According to the authors’ results, the magnitude of Mexico’s informal economy
and the inflow of remittances are 150 percent larger than their existing official estimates in
the gross national income. Moreover, Tanaka and Keola studied the shadow economy in
Cambodia using census data on formally registered non-farm establishments and NTL [28].
Their results suggest that both formal and informal firms increased their estimated sales,
and thus the informal sector increased quantitatively in both absolute and relative terms
over time. Another approach from Shi et al. uses NTL to estimate the total freight traffic in
China [33].

The second part of the literature uses the NTL to determine the impact of shocks
on the economy, for example, natural disasters. Bertinelli and Strobl use NTL data as a
measure of local economic activity to statistically assess the impact of hurricane strikes
on local economic growth [29]. Their results suggest that, on average, hurricane strikes
reduce income growth by around 1.5% at the local level, with no effect beyond the year of
the strike, which is more than 2 times higher than the impact estimated from aggregate
analyses. Moreover, Elliott et al. use a similar approach and focus on the impact of
typhoons on local economic activity in coastal China at a spatially highly disaggregated
level of approximately 1 km [30]. According to their results, a typhoon that is estimated to
destroy 50% of the property reduces local economic activity by 20% for that year. Klomp
examined the impact of large-scale natural disasters on economic development, measured
by NTL, and found that natural disasters reduce the number of lights visible from outer
space significantly in the short run, while climatic and hydrological disasters cause a large
drop in the luminosity in developing and emerging market countries, and geophysical and
meteorological disasters decrease light intensity more in industrialized countries [31].

The third part of the literature focuses on urbanization-related topics. Doll and
Pachauri investigate how NTL and spatially explicit population data can be used to study
electricity access [35]. They present satellite-derived estimates of rural populations without
access to electricity in developing countries. In addition, they show the slow progress of
electricity provision to households in Sub-Saharan Africa. On the contrary, Falchi et al.
focus on the topic of light pollution, which did not have a quantification on the global
scale before [36]. With their world atlas of artificial sky luminance, the authors show that
more than 80% of the world and more than 99% of the U.S. and European populations
live under light-polluted skies. This can affect many dimensions of life, such as ecology,
astronomy, health care, and land-use planning. Additionally, Bennie et al. studied the
impact of light pollution on 43 global ecosystem types and found that all ecosystem types
experienced an increase in light pollution in the period 1992 to 2012, with some ecosystems
being affected more than others [37]. Zhou et al. use the DMSP/OLS nightlights to map
the extent and dynamics of urban areas with a five-step method which was tested on the
cases of the United States and China [38]. Their results indicate that the urbanized area
occupies about 2% of total land area in the US, ranging from lower than 0.5% to higher
than 10% at the state level, and less than 1% in China, ranging from lower than 0.1% to
about 5% at the province level with some municipalities as high as 10%. After that, they
developed spatially and temporally consistent global urban maps from 1992 to 2013 and
found that the percentage of global urban areas relative to the world’s land surface area
increased from 0.23% in 1992 to 0.53% in 2013, with Asia being the continent with the most
significant urban growth [39].

Despite challenges in defining and measuring a shadow economy, there is a signifi-
cant body of literature on this topic [6,40–51]. Schneider and Enste summarize different
approaches to measuring the shadow economy, such as the currency demand approach, the
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electricity demand approach, the labor force approach, or the multiple indicator multiple
causes (MIMIC) model [6,50]. They use the latter to provide shadow economy estimates
for many countries worldwide, including estimations for Iran. Several Iranian researchers
have used the mentioned methods as well to determine the size of the shadow economy in
the country [52–55]. A comprehensive study on the effects of international sanctions on
Iran’s informal economy comes from Farzanegan, in which he discusses important trans-
mission channels of financial and energy sanctions, mainly through the foreign exchange
markets [15]. In addition, Farzanegan and Hayo show that the international sanctions
from 2012 and 2013 had a significantly stronger negative impact on the growth rate of the
shadow economy than on the official GDP growth rate [3].

Economic sanctions and trade embargos have been discussed for decades in the
economic literature. A theoretical framework to understand sanctions was developed by
Eaton and Engers [56,57], who state that sanctions are “measures that one party (the sender)
uses to influence another (the target). Sanctions, or the threat of sanctions, have been used
by governments to alter the human rights, trade, or foreign policies of other governments”.
However, they ignore that there can be multiple senders, as their framework is only an
interaction of two parties. Additionally, they admit that there are many other factors that
are not considered in their approach. Additionally, Caruso studied the impact of economic
sanctions on trade by looking at the USA and 49 targeted countries from 1960 to 2000. His
results suggest that extensive and comprehensive sanctions have a large negative impact
on bilateral trade [58]. In addition, he shows that unilateral extensive US sanctions have
a large negative impact, while limited and moderate sanctions induce a slightly positive
effect on other G-7 countries’ bilateral trade.

Torbat investigates the impacts of US trade and financial sanctions on Iran [9]. He
summarizes the economic and political effects of different US sanctions since the estab-
lishment of the Islamic Republic of Iran in 1979. According to the author, the sanctions
mainly damaged the Iranian economy, while the efficacy of sanctions has diminished in the
long run and had minimal political effects. In addition, the negative effect on the US econ-
omy by losing a trade partner was low since the country is not dependent on a few trade
partners. Overall, the author shows that unilateral sanctions might not have the strong
effect intended by the sender country. This is also supported by further empirical studies,
such as the study from Dizaji and Farzanegan, who analyzed the impact of unilateral and
multilateral sanctions on Iran’s military spending [12]. They found that an increase in the
intensity of sanctions is associated with a larger decrease in military spending, both in the
short and the long run. Moreover, they show that only the multilateral sanctions by the
US and other countries have a statistically significant and negative impact on the military
spending of Iran.

Additionally, Farzanegan estimates the effect of international banking and energy sanc-
tions on Iran’s military spending from 2012 to 2015 using the synthetic control method [16].
He concludes that per capita military spending was reduced by approximately USD 117 per
year, on average. This supports previous findings, which show that Iran’s military and
security expenditures significantly respond to shocks in oil revenues or oil prices, while
social spending components do not show any significant reactions [14]. The spending
behavior of the Iranian government in the wake of sanctions can be linked to the quality of
its political institutions [11,13]. Dizaji et al. show that sanctions have positive effects on
the quality of democratic institutions in the short and medium terms, and trade openness
may have a direct and positive impact on the size of its budget. However, the spending
allocation depends on how trade affects the government budget and its political behav-
ior simultaneously, which means that a weaker democracy can increase Iran’s military
expenditures and may reduce the share of non-military expenditures.

Based on these findings, Dizaji studies how improvements in trade openness in Iran
due to lifting sanctions could affect political institutions and military spending [10]. The
results of his impulse response analysis, based on an unrestricted VAR model, suggest that
the response of political institutions to a one standard deviation shock to trade openness
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or to positive changes in trade openness is negative and statistically significant. On
the contrary, government revenues and defense and non-defense expenditures respond
positively to a positive shock toward trade openness, while shocks to trade openness
influence military spending more than non-military spending.

Several other studies focus on the effects of oil price shocks and sanctions on different
aspects of Iran’s economy, such as GDP growth, inflation, publicly traded companies, envi-
ronment, export, technology, foreign investments, and oil production [19–22]. Farzanegan
and Markwardt analyze the dynamic relationship between oil price shocks and major
macroeconomic variables using a VAR approach [59]. According to their results, the asym-
metric effects of oil price shocks, negative and positive, significantly increased inflation.
Furthermore, they find a strong positive relationship between positive oil price changes
and industrial output growth, as well as the Dutch disease syndrome through significant
real effective exchange rate appreciation. Gharehgozli estimates the costs of international
sanctions against Iran from 2011 to 2014 using the synthetic control method and finds that
sanctions during this period reduced Iran’s real GDP by more than 17%, with the largest
drop occurring in 2012 [18].

Another case study on Iran focuses on the impact of sanctions on the black-market
premium on the Iranian Rial and US dollar exchange rate [23]. As discussed in previous
studies [15,59], oil price shocks under sanctions may affect foreign exchange markets; thus,
Zamani et al. investigate the effects of energy sanctions on the black-market premium on
the exchange rate. Using data from 1959 to 2017 and a nonlinear autoregressive distributed
lag (NARDL) model, they find that falling oil revenues caused by sanctions increase the
black-market premium. Overall, previous studies on Iran have shown that economic
sanctions and the lifting of sanctions can affect GDP growth, shadow economy growth, oil
exports, trade, inflation, exchange rates, public spending, institutional quality, banking
system, and other macroeconomic indicators connected to household welfare, with the
focus mainly on the introduction of sanctions and not the removal of sanctions. Therefore,
this article will be an important contribution to the latter part of the literature.

3. Data and Methodology

This study uses version 2 of the harmonized global NTL dataset by Li et al. [8]
(https://figshare.com/articles/dataset/Harmonization_of_DMSP_and_VIIRS_nighttime_
light_data_from_1992-2018_at_the_global_scale/9828827/2, accessed on 12 October 2020),
which is based on data from the Defense Meteorological Satellite Program/Operational
Linescan System (DMSP/OLS) of the United States Department of Defense (https://
eogdata.mines.edu/products/dmsp/, accessed on 5 November 2021), ranging from 1992
to 2013, and data from Visible Infrared Imaging Radiometer Suite/Day Night Band (VI-
IRS/DNB) of the Earth Observation Group of the United States National Oceanic and
Atmospheric Administration (NOAA) (https://eogdata.mines.edu/products/vnl/, ac-
cessed on 5 November 2021), ranging from 2012 to 2018 [60–62]. The harmonization
procedure contains three major steps. First, they aggregated the global average radiance
composite images of the VIIRS/DNB dataset from monthly to yearly observations. In
addition, noises from aurora, fires, boats, and other temporal lights were excluded during
this step. This might also filter out light emissions that are not very strong, for example,
from small villages [26]. Second, they quantified the relationship between processed VIIRS
data and DMSP NTL data in 2013 using a sigmoid function so that the processed VIIRS data
have the same spatial resolution and similar radiometric characteristics as the DMSP data.
Third, they applied the derived relationship at the global scale to obtain the DMSP-like data
from VIIRS and finally generated the consistent NTL data by integrating the temporally
calibrated DMSP NTL data (1992–2013) and DMSP-like NTL data from VIIRS (2014–2018).
The authors provide one picture in Tagged Image File (TIF) format for each year.

Figure 1a,b show samples of the harmonized NTL dataset from 2013 and 2017 for the
provinces of Iran, which is a year during the time of international sanctions against Iran,
and a year after the lifting of sanctions. We can see that the light intensity in most of the
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31 provinces has increased from 2013 to 2017, thus this will not give us an indication of how
the shadow economy changes over time, but we utilize this dataset to calculate the growth
of shadow economy, as presented in equation (1). The shapefile used in the figures and
in the process of data extraction is from the United Nations Office for the Coordination of
Humanitarian Affairs (OCHA), Regional Office for the Middle East and North Africa [63].
It uses the latest provincial borders, the first-level administrative divisions, after the reform
of Tehran province in 2010. With the help of Quantum Geographic Information System’s
(QGIS) Zonal Statistics tool and the shapefile, we calculate the average light intensity in
each province over the time period 1992–2018. This leaves us with a panel dataset of
837 observations for the NTL. The values represent the yearly mean of nighttime light
intensity in each Iranian province and range theoretically from 0 (black) to 63 (white).
However, Table 1 shows that the average NTL for Iranian provinces ranges between 0.139
and 25.426, which tells us that we can use the dataset for our approach. If a province has a
value of 63, we would not be able to determine an increase in economic activity because
this is the maximum possible value.

  
(a) (b) 

Figure 1. (a) NTL in Iranian provinces, 2013; (b) NTL in Iranian provinces, 2017. Source: own illustration using the files
from [8,63].

Table 1. Summary statistics of used data.

Variables N Mean Std. Dev. Min Max

NTL, mean 837 5.272 4.381 0.139 25.426
ΔLn(NTL) 806 0.065 0.191 −1.098 1.461

GDP, in
Trillion IRR 601 272.8 612.8 3.831 7407.000

ΔLn(GDP) 570 0.211 0.12 −0.35 1.061
ΔLn(Shadow) 539 −0.143 0.261 −1.43 1.379
ΔAgriculture 248 0.004 0.015 −0.044 0.057

ΔIndustry 248 −0.003 0.03 −0.113 0.095
ΔServices 248 −0.002 0.025 −0.082 0.094

The economic data are from the Iranian Ministry of Economic and Financial Af-
fairs (MEFA) (https://databank.mefa.ir/data?lang=en, accessed on 1 July 2021) and are
available for many indicators from 2000 to 2019 [7]. Different measurements of shadow
economies worldwide are usually available on the country level, like the data from Buehn
and Schneider for the period 1999 to 2007 [41]. With their multiple indicator multiple
causes (MIMIC) approach, they estimate the shadow economy in Iran to be between 17.3%
and 19.1% of the official GDP, while the average of their full sample is 17.1%. An updated
estimation for the period 1991 to 2017 estimates values between 13.2% and 20.5% [48].
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However, our study uses NTL to calculate the growth rate of the shadow economy, mainly
due to data available on the provincial level. With the following equation, we calculate the
shadow economy growth:

ΔLn(NTLi,t)− ΔLn(GDPi,t) = ΔLn(Shadowi,t) (1)

We subtract the first difference of the natural logarithm of the current gross domestic
product (GDP) in Iranian Rial (IRR) from the first difference of the natural logarithm of the
harmonized NTL for 31 Iranian provinces (i) for the period 2005–2018 (t). The nighttime
light data were previously used as an indicator of GDP [24,25]. However, Farzanegan and
Hayo assume that it is likely that shadow economic activity has a positive relationship
with the intensity of night light, too [3]. Therefore, the data on night light has two main
components: one is related to activities registered in the official GDP (observed sector), and
the other is related to activities in the shadow economy (unregistered sector).

Our dependent variable, the measurement of shadow economy growth, is the differ-
ence between the growth rates of nighttime light and GDP. To operationalize the dependent
variable, first, we take the natural logarithm of the formal GDP and the natural logarithm
of the NTL data. Then the first difference of the natural logarithm of the formal GDP and
the first difference of natural logarithm of the NTL data is calculated. The first difference
(Δ) of the natural logarithm of a variable represents a growth rate similar to percentage
growth, thus providing us with growth rates for NTL and GDP. Finally, we calculate the
difference between the growth rates of nighttime light, ΔLn(NTL), and the growth rates of
formal GDP, ΔLn(GDP), as presented in equation (1), to capture the relative development
of the shadow economy.

Figure 2a,b show samples of the calculated values for the same two years as in the
previous figures, where one year is in the time period of sanctions and the other in the time
period of lifted sanctions. When simply comparing the changes of the shadow economy in
these two years, we can already see a difference, namely a decrease of shadow economy
compared to the year before in all provinces in the year 2013, and a positive value of
shadow economy growth in most provinces in the year 2017, compared to the year before.
The exceptions are the provinces Alborz, Ilam, Khuzestan, Kohgiluyeh and Boyerahmad,
and Tehran. The summary statistics of NTL and other used variables are presented in
Table 1, excluding the dummy variable.

A detailed data description, including sources, is available in Table A1 in the Appendix A.
From the descriptive statistics, we get a first glimpse of the behavior and the difference
between the formal and informal economy in the reflected period. If we compare the
volatility of ΔLn(GDP) and ΔLn(Shadow), we see that the shadow economy growth has
a larger standard deviation of 0.26, compared to 0.12 of the formal economic growth.
This is a first indication that the shadow economy might react more strongly to positive
and negative economic shocks, which has been seen in previous studies [3]. On the one
hand, we can argue that the shadow economy reacts or adapts faster to the new economic
situation, but on the other hand, that also means more uncertainty for people engaged
in the informal economy. The relationship between different variables can be seen in the
correlation matrix in Table A2 of the Appendix A.
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(a) (b) 

Figure 2. (a) ΔLn(Shadow) in Iranian provinces, 2013; (b) ΔLn(Shadow) in Iranian provinces, 2017. Source: own illustration
based on own calculations.

Using the described data, this study uses a regression analysis with ordinary least
squares (OLS) and province-fixed effects. We use unbalanced panel data of 31 Iranian
provinces from 2001 to 2018 and use the following specification:

ΔLn(Shadowi,t) = α + β1 ∗ Li f tedt + β2 ∗ Trendt + β3 ∗ ΔUnemploymenti,t + β4 ∗ ΔAgriculturei,t + β5 ∗ ΔIndustryi,t+

β6 ∗ ΔLn(Shadowi,t−1) + β7 ∗ ΔLn(Shadowi,t−2) + πi + εi,t.
(2)

The dependent variable is the shadow economy growth that was calculated in (1),
where the subscript i represents the Iranian provinces and the subscript t represents the
years. In addition, the model includes a constant α and an error term ε, and the term Lifted
represents the dummy variable which takes the value 1, if the year is 2016 or 2017, which
were the two years of lifted sanctions under JCPOA, and it takes the value 0 otherwise.
We have added a trend term that controls for time trends that have not been controlled
for in the model, for example, technological progress or inflation. As the values do not
change between provinces, it will also replace the time-fixed effects, which are not included
in our estimations, because the inclusion of time dummies to capture possible trends
would lead to perfect multicollinearity. The remaining independent variables are control
variables, such as other drivers of shadow economy activity like unemployment as well as
the size of agriculture and the industry sectors. These are often used in previous studies
on the shadow economy, such as in studies by Farzanegan and Hayo or Schneider and
Enste [3,50]. The service value added divided by total value added was not included due
to collinearity. Furthermore, the model includes province fixed-effects π that are used
to control for individual factors that affect each province over the period, for example,
cultural attitudes toward formal and informal jobs. Despite relative homogeneity in terms
of religion and culture, Iran is a multi-ethnic country with several ethnic minorities that
are concentrated in different provinces. Moreover, we use robust standard errors that are
clustered on the province level.

4. Results

The results of the empirical analysis, presented in Table 2, suggest that the lifting
of international sanctions had a positive and statistically significant effect on the relative
growth of Iran’s shadow economy. The seven presented specifications show the relationship
between the lifting of sanctions dummy variable, starting from a simple regression and
then adding more control variables that are considered important drivers of the shadow
economy. Table A3 in the Appendix A shows the behavior of the dummy variable if we
add the control variables individually. Additionally, we can see that the lifting of sanctions
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has a stronger effect on the growth rate of the shadow economy than on GDP growth. In
2016 and 2017, the GDP growth of Iran was 13.4% and 3.8% [1], respectively. This is an
increase of 14.7 and 5.1 percentage points compared to 2015, where the annual GDP growth
rate was −1.3%. As presented in specification (2.7), the lifting of sanctions in the time
period 2016–2017 is on average associated with an increase of shadow economy growth
of 13.6 percentage points. The remaining specifications show values between 14.4 and
30.9 percentage points, which are higher than the changes of the formal economy during
the lifting of sanctions. This is also in line with arguments presented in the literature on
the cyclical features of the shadow economy [64], especially in developing and emerging
economies. A positive shock (lifting of sanctions) which booms the formal economy, does
have a stronger positive effect on the informal economy, while a negative shock (imposition
of sanctions) which leads to recession of the formal economy, results in a more significant
decline of economic activities in the informal economy, as shown in Farzanegan and
Hayo [3].

Table 2. Lifting of international sanctions and shadow economy growth.

(2.1) (2.2) (2.3) (2.4) (2.5) (2.6) (2.7)

Dependent variable: ΔLn(Shadow)

Lifted 0.189 *** 0.193 *** 0.144 *** 0.309 *** 0.276 *** 0.241 *** 0.136 **
(0.03) (0.036) (0.022) (0.052) (0.053) (0.06) (0.053)

Trend −0.001 0.007 *** 0.005 *** 0.015 *** 0.034 *** 0.004
(0.001) (0.001) (0.002) (0.003) (0.008) (0.01)

ΔLn(Shadowt-1) −0.415 *** −0.468 *** −0.526 *** −0.605 *** −0.586 ***
(0.067) (0.076) (0.085) (0.096) (0.098)

ΔLn(Shadowt-2) −0.378 *** −0.399 *** −0.308 * −0.2
(0.068) (0.079) (0.154) (0.136)

ΔUnemployment 0.02 *** 0.023 * 0.014
(0.006) (0.013) (0.01)

ΔIndustry −4.829 *** −6.929 ***
(0.813) (0.759)

ΔAgriculture −11.441 ***
(1.922)

Observations 539 539 508 477 393 215 215
R-squared 0.054 0.054 0.180 0.231 0.269 0.434 0.575
Adjusted
R-squared 0.052 0.050 0.175 0.225 0.259 0.418 0.561

Province-fixed
effects Yes Yes Yes Yes Yes Yes Yes

Notes: Robust standard errors clustered on the province level are reported in parentheses. Significance levels: *** p < 0.01, ** p < 0.05,
* p < 0.1.

Due to data availability, the number of observations in our seven specifications in
Table 2 is different, but all coefficients of the dummy variable Lifted show the same direc-
tion and are statistically significant on the 1% level. Additionally, we lose observations
by calculating the first differences and adding time lags of the dependent variable. In
parentheses, we report robust standard errors clustered on the province level, and the
significance levels are shown by one to three asterisks, where three asterisks refer to the
1% level, two asterisks refer to the 5% level, and one asterisk refers to the 10% level. The
significant effect is also true for the time lags of our shadow economy indicator that is
statistically significant and negative, as expected from earlier studies [3]. The other control
variables, such as different economic sectors, show mixed results. First, the coefficient
of the first difference of industrial value added divided by total value added is negative
and statistically significant on the 1% level in specifications 2.6 and 2.7 of Table 2, thus an
increase in industrial value added will, on average, decrease the shadow economy growth.
This effect is expected and can be explained through the shift of informal industrial com-
panies and workforce to the formal sector. In this case, the shadow economy serves as a
substitute for the formal economy.

Second, the coefficient of the first difference of agriculture value added divided by
total value added is negative and statistically significant on the 1% level in specification 2.7
of Table 2; thus, an increase in agriculture value added will, on average, decrease the
shadow economy growth. This effect is expected and can be explained through the shift of
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the informal agricultural workforce to the formal sector. In this case, the shadow economy
serves as a substitute for the formal economy. Third, the coefficient of the first difference of
services value added divided by total value added, which is reported in Table A3 of the
Appendix A, is positive and statistically significant on the 1% level in specification 3.6. It
was not reported in Table 2 because it was omitted due to collinearity with the other two
sectors. This effect is not expected and would assume that both the formal and informal
service sectors serve as complements. This means that an increase in the service value
added will increase the shadow economy growth. A possible explanation could be that a
part of the workforce in the service sector will not be employed in the formal economy, so
the growth of the official service sector might also increase the informal economy.

Moreover, the results suggest that an increase in unemployment is associated with an
increase in shadow economy growth, as reflected by the coefficients in specifications 2.5
and 2.6 of Table 2, which are statistically significant on the 1% and 10% levels, respectively.
This effect was expected, as an increase in unemployment will increase the number of
people who are seeking jobs in the informal economy. The latter is also considered a safety
net in the context of developing countries if the government does not provide any form
of unemployment benefits. Firoozabadi et al. show in their case study of the province
Sistan and Baluchistan how unemployment pushes people into the informal economy [54].
However, our result for unemployment is not robust to the inclusion of other control
variables such as the value added of different economic sectors. Similar to other control
variables used in this study, the available time period is very limited, and as reflected in
Table 2, the number of observations in our specifications significantly reduces when adding
some of the control variables. Therefore, there is a systematic shortening of the time period,
and we should be careful in the overinterpretation of the control variables. As we do not
want to lose observations in our shorter specifications, we kept as many observations as
possible and did not limit them to the observations of specification 2.7. Overall, our main
finding is that the variable of interest, the dummy variable of lifted sanctions, is statistically
significant when adding further control variables or changing the specifications in other
ways, as presented in Tables 2 and A3 in the Appendix A.

5. Discussion

In our study, we used an approach to estimate the change of shadow economy over
time utilizing NTL data because there is no direct way of measuring the size or behavior of
the shadow economy. This approach is comparable to other indirect ways of measuring the
shadow economy, such as the currency demand approach, the electricity demand approach,
or the labor force approach [6,50]. A more sophisticated approach is the MIMIC model,
which uses multiple indicators and multiple causes and is usually used to determine the
size of the shadow economy on the country level. This modeling approach, however, needs
a large amount of data which we usually do not have for the province level, especially in
the context of developing countries. Therefore, remote sensing data such as the NTL are an
enormous help to shed light on the shadow economy in lower administrative units than
the country level.

However, there are also several weaknesses of the NTL approach, and therefore
limitations to our study. Firstly, we have the strong premise that NTL measures economic
activity. An indication of this connection is the correlation of the mean of NTL and the GDP
of 31 Iranian provinces. Pearson’s correlation coefficient for the two data series is 0.65 based
on 570 observations, which suggests a strong positive relationship. This has also been
shown in several previous studies [24,29,31,34]. Secondly, we have a strong premise that
the remaining part, when subtracting GDP from NTL, is connected to shadow economy
activity. This phenomenon has also been widely discussed in the literature [3,27,28,32]. If
these two premises hold, our approach will reflect the growth rate of the shadow economy.

However, in previous studies, nighttime lights have been used to measure different
other forms of human activity, which might not all be associated with the shadow economy,
for example, non-commercial private household electricity use. In addition, NTL might
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also contain other nighttime light sources that are not usually associated with formal or
informal economic activities, for example, wildfires. Fortunately, this type of measurement
error was removed in the data preparation process by Li et al. [8] and other researchers
who have worked on the DMSP/OLS and VIIRS/DNB datasets before [60–62]. Another
limitation is that the effect of our dummy variable for the lifting of sanctions only reflects
the short-term effect on the shadow economy growth; thus, we do not know if this short
period of lifted sanctions has an impact in the long run. We rather argue that the shadow
economy is rapidly adapting to economic challenges and thus might only be affected by
this shock for a short period of time. Moreover, we do not measure the size of the shadow
economy, but only the changes of the shadow economy due to international sanctions.

6. Conclusions

We provide new empirical evidence for the relationship between the shadow economy
and international sanctions in Iran. First, we summarize previous findings on sanctions
and the lifting of sanctions in Iran that have focused on aspects such as GDP growth, oil
exports, trade, inflation, exchange rates, public spending, institutional quality, banking
system, household welfare, and other macroeconomic variables. Extending the previous
research on the Iranian shadow economy under sanctions [3,42], we show that the lifting
of international sanctions in 2016 and 2017 was associated with an increase of the shadow
economy which is larger than the increase of the official economy in Iran. Moreover,
we found that the performance of the shadow economy is more volatile than the formal
economy. Therefore, we can argue that the shadow economy is more flexible and can react
faster to positive or negative economic shocks because the workforce and businesses in
the informal economy do not need to follow administrative procedures or hiring practices.
Usually, smaller-scale businesses in the informal economy are also able to react faster to
shocks. This would explain why the shadow economy was hit harder when introducing
sanctions, as seen in Farzanegan and Hayo [3], and recovered faster than the formal
economy after lifting sanctions, as we have shown in this study. Overall, this means that
the lifting of sanctions will be a relief for potential workers who seek employment both
in the formal and informal economies in Iran. Our results are also in line with cyclical
features of the shadow economy, suggesting that the informal economy undergoes larger
output movements over the business cycle in emerging and developing economies than in
developed economies [64].
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Appendix A.

Table A1. Description of data used.

Abbreviation Description Available Time Period Source

GDP Gross domestic product (current
price) in Iranian Rial (IRR). 2000–2019 MEFA [7]

NTL Mean of nighttime lights, ranging
from 0 (black) to 63 (white). 1992–2018 Li et al. [8]

ΔLn(Shadow) ΔLn(NTL)–ΔLn(GDP). 2001–2018
Li et al. [8], MEFA [7],

following the approach of
Farzanegan and Hayo [3].

Lifted Dummy variable that is 1 if the year
is 2016 and 2017, and 0 otherwise. 1992–2019 Own coding

ΔUnemployment Δ(unemployment rate in %). 2006–2019 MEFA [7]

ΔAgriculture Δ(agricultural value added divided
by total value added). 2012–2019 MEFA [7]

ΔIndustry Δ(industrial value added divided
by total value added). 2012–2019 MEFA [7]

ΔServices Δ(services value added divided by
total value added). 2012–2019 MEFA [7]

Table A2. Correlation matrix of variables used.

Variables (1) (2) (3) (4) (5) (6) (7) (8) (9)

(1) NTL 1.000

(2) ΔLn(NTL) 0.051 1.000

(3) GDP 0.650 *** −0.005 1.000

(4) ΔLn(GDP) −0.049 −0.153 *** 0.073 * 1.000

(5) ΔLn(Shadow) 0.104 ** 0.887 *** −0.025 −0.592 *** 1.000

(6) ΔUnemployment −0.022 0.018 −0.052 −0.215 *** 0.101 ** 1.000

(7) ΔAgriculture −0.284 *** −0.173 ** −0.122 * 0.043 −0.171 ** −0.076 1.000

(8) ΔIndustry 0.164 ** −0.162 ** 0.137 ** 0.646 *** −0.362 *** −0.061 −0.511 *** 1.000

(9) ΔServices −0.016 0.293 *** −0.085 −0.778 *** 0.522 *** 0.117 * −0.012 −0.854 *** 1.000

Notes: The presented Pearson’s correlation coefficients are calculated based on the 217 observations that are available for all variables.
Significance levels: *** p < 0.01, ** p < 0.05, * p < 0.1.

Table A3. Lifting of international sanctions and shadow economy growth; alternative specifications.

(3.1) (3.2) (3.3) (3.4) (3.5) (3.6) (3.7)

Dependent variable: ΔLn(Shadow)

Lifted 0.193 *** 0.144 *** 0.316 *** 0.185 *** 0.277 *** 0.244 *** 0.197 ***
(0.036) (0.022) (0.065) (0.039) (0.051) (0.05) (0.043)

Trend −0.001 0.007 *** −0.004 * 0.001 −0.02 *** −0.033 *** −0.074 ***
(0.001) (0.001) (0.002) (0.002) (0.007) (0.007) (0.015)

ΔLn(Shadowt-1) −0.415 ***
(0.067)

ΔLn(Shadowt-2) −0.261 ***
(0.062)

ΔUnemployment 0.014 *
(0.007)

ΔIndustry −4.915 ***
(0.799)

ΔServices 7.242 ***
(0.783)

ΔAgriculture −6.984 ***
(2.468)

Observations 539 508 477 397 217 217 217
R-squared 0.054 0.180 0.078 0.064 0.223 0.352 0.148

Adjusted R-squared 0.050 0.175 0.072 0.057 0.212 0.343 0.136
Province-fixed effects Yes Yes Yes Yes Yes Yes Yes

Notes: Robust standard errors clustered on the province-level are reported in parentheses. Significance levels: *** p < 0.01, * p < 0.1.
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Abstract: Nighttime lights (NTL) are a popular type of data for evaluating economic performance
of regions and economic impacts of various shocks and interventions. Several validation studies
use traditional statistics on economic activity like national or regional gross domestic product (GDP)
as a benchmark to evaluate the usefulness of NTL data. Many of these studies rely on dated and
imprecise Defense Meteorological Satellite Program (DMSP) data and use aggregated units such as
nation-states or the first sub-national level. However, applied researchers who draw support from
validation studies to justify their use of NTL data as a proxy for economic activity increasingly focus
on smaller and lower level spatial units. This study uses a 2001–19 time-series of GDP for over 3100
U.S. counties as a benchmark to examine the performance of the recently released version 2 VIIRS
nighttime lights (V.2 VNL) products as proxies for local economic activity. Contrasts were made
between cross-sectional predictions for GDP differences between areas and time-series predictions of
GDP changes within areas. Disaggregated GDP data for various industries were used to examine
the types of economic activity best proxied by NTL data. Comparisons were also made with the
predictive performance of earlier NTL data products and at different levels of spatial aggregation.

Keywords: VIIRS; DMSP; GDP; nighttime lights; cross-sectional; time-series; economic statistics

1. Introduction

Satellites have been observing the Earth at night for over 50 years, but it is especially
since the digital archive of nighttime lights (NTL) was established in 1992 by the National
Oceanic and Atmospheric Administration (NOAA) that researchers have found an ever-
growing set of use for these data. Several key early studies by non-economists showed
that NTL data from the Defense Meteorological Satellite Program (DMSP) could be used to
estimate sub-national indicators of economic activity and per capita incomes [1–5]. Poten-
tial advantages of these NTL-based estimates, compared to traditional economic activity
statistics like national or regional gross domestic product (GDP), are timelines, lower cost,
comparability between countries irrespective of statistical capacity, and availability for
spatial units below the level at which GDP data are reported.

In the last decade, economists have also begun using NTL data. Widely cited early
studies from two different research teams noted that DMSP data are noisy, but in a wide
range of contexts [6,7], or alternatively, just in data-poor environments [8,9], DMSP data
could add value to conventional economic statistics. In contrast to earlier studies focused
particularly on comparing regions, a theme in recent studies by economists is using NTL
data to track fluctuations in local economic activity in response to various shocks such
as disasters [10–12], or certain policy interventions [13,14]. This use of NTL as a proxy
for changes in local economic activity, plus ongoing cross-sectional use as a proxy for
variation in economic performance, raises the question of how predictive NTL data are
for studying differences in economic activity between areas and the temporal changes in
activity within areas.
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Several validation studies have considered this question by using GDP data as a
benchmark for assessing predictive performance of NTL data. An early and widely cited
study used national level DMSP and GDP data for 188 countries from 1992 to 2008 [7],
while a similar study used these data for 1500 regions (mostly at first sub-national level)
from 82 countries from 1992 to 2009 [15]. However, applied researchers who draw support
from validation studies to justify their use of NTL data as an economic activity proxy have
increasingly focused on smaller and lower level spatial units [16]. Several studies have
used DMSP data at the third sub-national level, which includes counties, sub-districts, and
NUTS3 regions [10,17–20], with some studies for even lower level spatial units such as
villages [14], micro-grids [21], and even pixel-level [11,22]. A mismatch exists between
the spatial level of validation studies and the spatial level of applied studies that use NTL
data to proxy for economic activity matters because flaws in DMSP data such as spatial
imprecision and blurring [23,24] make the predictive performance far worse for lower level
spatial units such as the third sub-national level than for more aggregated units such as the
national or first sub-national level [25].

The extant validation studies are mainly for older NTL data products such as DMSP.
Some comparisons between GDP and version 1 NTL annual composites from the Visible
Infrared Imaging Radiometer Suite (VIIRS) have been made [26], but these products are
only for 2015 and 2016. To date, no validation studies have used version 2 VIIRS annual
composites (V.2 VNL), which have recently been released [27]. To help close this gap in the
literature, this study used the 2001–19 time-series of GDP for over 3100 U.S. counties as a
benchmark to examine the usefulness of three NTL data sources, DMSP, V.1 VNL, and V.2
VNL as proxies for local economic activity. We included data from the 2014–18 extension of
DMSP based on pre-dawn readings (compared to the early evening readings for DMSP
prior to 2014). We also used the V.2 VNL data with two other samples, a cross-country
dataset, so that results could be compared with earlier validation studies [7] and state-
level U.S. data to examine the aggregation effects. Our panel data estimation framework
helps to contrast cross-sectional predictive performance for differences between areas with
performance for a time-series of changes within areas. A further contribution is to use GDP
for various industries to see what economic activities are best proxied by NTL data. The
industry-level results and related split-sample results based on agriculture’s contribution
to GDP and on population density provide a basis to consider how our findings may apply
to other settings where the economic structure differs from that of the United States.

2. Materials and Methods

2.1. Related Literature on NTL Validation Studies

In the current context, validation studies have attempted to estimate the nature of
the relationship between NTL data and traditional economic activity data for places with
trustworthy data. These studies provide a basis for using NTL data as a proxy in other
times and places where traditional data such as GDP are either absent or not trusted. The
errors in GDP data should be independent of errors in NTL data, so some studies have
noted an optimal indicator of true economic activity would weight a mixture of the two
measures [7–9]. Studies using this framework have put some weight on DMSP data for
examining cross-sectional differences in places where the GDP data have low reliability,
but note that without further refinement of the NTL data, they are “not a reliable proxy
for time-series measures of output growth” [9] (p. 241). A far lower predictive ability for
time-series changes, even if DMSP data are good predictors of cross-sectional differences in
economic performance, also holds at very local (third sub-national) levels in a developing
country setting [28].

The VNL data from VIIRS are a refinement over DMSP data, in terms of spatial
precision and temporal consistency [23], so the question of whether these data are a reliable
proxy for measuring changes in economic activity has been examined, albeit within the
limits of the short time-series for V.1 VNL annual composites. The V.1 VNL data predict
over 70% of variation in U.S. state-level GDP (and over 85% of variation in GDP for
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metropolitan areas), but predict less than 4% of variation in annual rates of change in
GDP [26]. Direct comparisons of VIIRS and DMSP have been limited because the V.1 VNL
annual composites are only for 2015–16 [29] and the popular DMSP stable lights time-
series [30] ends in 2013 (data from the DMSP 2014–18 extension are yet to be used). To deal
with this issue, annual NTL estimates for 2013 from VIIRS monthly data are constructed by
various researchers, usually with masking procedures to remove outliers in the monthly
data, and these VIIRS annual estimates better predict in cross-sections of GDP than DMSP
data [25,31–33].

While several studies have noted that DMSP data are noisy measures of true luminos-
ity, the nature of the measurement error has rarely been examined. A study at the second
sub-national (NUTS2) level for Europe found mean-reversion, where errors in DMSP data
negatively correlate with true values [33]. Unlike random errors that do not bias regression
coefficients if NTL data are the left-hand side variable and attenuate coefficients in pro-
portion to the reliability ratio if they are the right-hand side variable [34], mean-reverting
errors in a left-hand side variable cause bias and in a right-hand side variable may over-
state coefficients rather than attenuate them [35–37]. A decomposition using DMSP data
adjusted for top-coding [38] found that most of the spatially mean-reverting errors were
still present, implying that the blurring of the DMSP images [24] is the more important
source of error in DMSP data [33].

A consequence of mean-reverting errors is understated inequality between places as
NTL estimates revert toward their mean. Some studies have considered inequality as an
aspect of economic performance by using DMSP data as a proxy in places that lack timely
or fine resolution sub-national GDP data [39,40]. However, validation studies show that
DMSP data understate spatial inequality, especially in urban and high density areas, with
this pattern holding across developed and developing regions of the world [25,33].

Validation studies have also examined the types of economic activity (and hence, the
type of places, given different patterns of specialization) for which NTL data are a poor
proxy. The GDP-luminosity relationship (using DMSP data from 1992 to 2009) is positive
for countries with agricultural shares of GDP below 20%, but negative elsewhere [41]. The
weaker relationship with agricultural sector activity is also seen at the third sub-national
level in China in the DMSP data, while the V.1 VNL data (annual estimates from masked
monthly records) are unrelated to primary sector GDP [25]. If NTL data poorly capture
agricultural activity, it may help explain why NTL data are a weaker proxy for economic
activity in low density areas [42], given the predominance of agriculture in such places.

2.2. Data and Methods

We used four data sources to test the relationships between night lights and county-
level and state-level GDP. The first was real GDP in chained 2012 dollars, from the U.S.
Bureau of Economic Analysis (BEA). The annual estimates are provided separately for each
county for the 2001 to 2019 period, except in Alaska, where the BEA combines some census
areas in their reporting, for example, in Hawaii, where they combine Maui and Kalawao
counties, and in Virginia, where there are 23 BEA-created combination areas where one
or two independent cities with 1980 populations of less than 100,000 are combined with
an adjacent county. The dissolve function in ArcGIS was used to modify a county-level
shapefile, so that it matched these combination areas. There were n = 3109 counties and
combination areas (we refer to all of these as county-level units) with data available in
each year.

The second data source was four annual products for the 2014 to 2019 period from the
version 2 VIIRS nighttime lights (V.2 VNL) annual composites [27]. We used the average
radiance, median radiance, and the masked variants of these two data products, summing
the radiance by county-level unit in each year. While the V.2 VNL annual composites are
also available for 2012 and 2013 (as they are built from monthly data available since April
2012), the values for those two years are yet to have a stray light adjustment. With the
northerly latitude of much of the U.S., stray light can affect the images on many nights.

19



Remote Sens. 2021, 13, 2741

This reduces comparability with the time-series from 2014 onwards, which is based on
stray light corrected data, so we did not use the 2012 and 2013 V.2 VNL data.

The V.2 VNL are produced from monthly cloud-free radiance averages, with initial
filtering to remove extraneous features such as fires and aurora before the resulting rough
annual composites are subjected to outlier removal procedures. To isolate the background
from lit grid cells, a data range threshold is set from 3 × 3 blocks of grid cells where the
threshold is based on a multiyear maximum median and a multiyear percent cloud-cover
grid [27]. In other words, there is a single data range threshold across all the years in the
series, in contrast to the year-specific thresholds that were used for the version 1 VIIRS
annual composites [29]. The data are in units of nano Watts per square centimeter per
steradian (nW/cm2/sr) reported on a 15 arc-second output grid.

The third data source was the version 1 VIIRS nighttime lights (V.1 VNL) annual
composites for 2015 and 2016 [29]; the only two years for which this product is available.
We used the stray light corrected version (vcmsl) of these annual composites, with the
outliers removed and background set to zero (ormntl). The average annual radiances from
each of the 15 arc-second output pixels were summed to county-level totals.

The fourth data source was annual composites from the Defense Meteorological
Satellite Program (DMSP) satellites F14, F15, F16, and F18. These composites provide an
average digital number (DN) for each 30 arc-second output pixel, where DN values are 6-bit
digital numbers that range from 0–63, with higher numbers indicating greater brightness.
Ephemeral lights such as from fires and gas flares are removed from the annual composites,
and the original processing by NOAA scientists also excluded (at pixel level) images for
any nights affected by clouds, moonlight, sunlight, and other glare. The usual stable lights
product has a time-series that ended in 2013 [30], with two satellites providing data for
each year up to 2007, so there are 20 satellite-years available over the 2001 to 2013 period.

The DMSP satellites have an unstable orbit, tending to observe Earth earlier as they
age. For example, a satellite tracking mission (see: http://www.remss.com/support/
crossing-times/ accessed on 6 August 2019) shows equator crossing times for F18 of 8 pm
in 2013, but 6 pm by 2018. Thus, what starts out as a Day–Night observation becomes
Dawn–Dusk observation. The Earth Observation Group at the Colorado School of Mines
has exploited this feature to extend the time-series of DMSP stable lights annual composites
by using pre-dawn data from satellite F15 for 2014 to 2018. Lights observed in the early
hours of the morning are more likely to be from public infrastructure (e.g., street lights)
than from private consumption and production activities, so the extended DMSP stable
lights series may not be consistent with the earlier DMSP data, and we treated them as a
separate source of information on NTL. For both sets of DMSP data, we used the sum of
the DN values within a county-level unit.

Our main parameter of interest was the elasticity of GDP with respect to night lights,
as estimated from the following regression:

ln(real GDP)it = α + β ln(sum o f lights)it + μi + ϕt + εit (1)

where the i indexes the cross-sectional units (county-level units in most cases but we also
estimated Equation (1) with country and state-level data); the t indexes years; the μi are
fixed effects for each cross-sectional unit; the ϕt are the fixed effects for each year; and
εit is the disturbance term. The fixed effects let us control for time-invariant features of
each cross-sectional unit, and spatially-invariant features of each time period. One could
allow time effects to vary across space at some more aggregated level (e.g., at state level if
there are county fixed effects), but the setup we used is the traditional one in economics
studies using night lights data. The elasticity is a unit-free measure showing by what
percentage the left-hand side variable changes for each percentage change in the right-hand
side variable. Thus, the fact that the V.1 and V.2 VNL data are measured in nW/cm2/sr
while the DMSP data are in DN values does not affect the estimation of the elasticity.

The specification of Equation (1) with NTL data on the right-hand side does not imply
that lights cause GDP (as any causation would go the other way) and instead, it has a
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predictive interpretation. The typical situation where NTL data are used as a proxy for local
economic activity is because traditional measures like GDP are either unavailable or are
considered untrustworthy. Thus, it is important to learn from settings like the U.S., where
the GDP data are both available and trustworthy, about how closely NTL data correlate
with GDP data, in order to see if the NTL data are an adequate proxy measure.

For example, many studies use NTL data to estimate impacts of a shock such as a
natural disaster [10–12], which affects some cross-sectional units but not others, and occurs
in some time periods but not others. The validity of using NTL data to estimate the impacts
on local economic activity of such shocks (or more generally, of ‘treatments’) depends on
the product of two relationships: (∂GDP/∂lights)·(∂lights/∂treatment). In the settings of
interest, typically the ∂GDP/∂lights relationship is not estimated because there are no GDP
data (as any available and trustworthy GDP data would already be used for the evaluation).
Instead, the validation studies from elsewhere provide evidence on the ∂GDP/∂lights term
that is needed for interpreting estimates of the impact of the treatment on night lights
as estimates of the impact of the treatment on local economic activity. In other words, if
relationships between changes in GDP and changes in NTL data are very weak, then it is
hard to see how estimates of the (∂lights/∂treatment) effect are informative about how the
shock impacts on economic activity and performance.

To provide a basis to interpret results of Equation (1), we considered two widely cited
studies (with 1850 and 650 Google Scholar citations as of May 2021) that have reported
estimates of Equation (1). With 17 years of DMSP data for 188 countries, the elasticity is
about 0.3 (long differences give a similar value) [7]. With 18 years of DMSP data for 1500
regions (typically at the first sub-national level) from 82 countries, an even larger elasticity
of about 0.4 was reported [15].

The Equation (1) specification is known as a ‘fixed effects’ or ‘within’ estimator, as
the variation that allows β to be estimated comes from time-series changes for each cross-
sectional unit. In other words, Equation (1) lets one see how changes in annual GDP
vary with changes in NTL data. An alternative estimator that uses the same panel data is
the ‘between’ estimator, where averages over time for each cross-sectional unit are used
in the regression (e.g., the average GDP of a county from 2014 to 2019 is regressed on
the average sum of lights in the county over the same period). The between estimator
allows for examination of cross-sectional GDP differences between areas while the within
estimator allows for time-series predictions of GDP changes within areas. We report the
results for both estimators. The NTL data have been used in various studies in both
contexts; to proxy for economic performance in cross-sectional studies such as when long-
run impacts of historical factors are considered [43], and in studies focused on fluctuations
in economic activity because the intervention or shock that they study occurs in the sample
period [12,44].

3. Results

3.1. Country-Level Results

We started with country-level results for a comparison to a key study that found a GDP-
lights elasticity of 0.3 using the within estimator and DMSP data [7]. In the first two columns
of Table 1, we show the results for all countries with data on real GDP in local currency
units from 2014 to 2019 in the World Development Indicators [series NY.GDP.MKTP.KN].

The estimated GDP-lights elasticity was only 0.015 if the V.2 VNL average radiance
product was used, while it was six-times larger, at 0.094, if the masked average was
used. It seems that background noise and ephemeral sources of light in the unmasked
data may attenuate within estimates of the elasticity. However, even after removing
noise by masking, the elasticity was less than 0.1, which was far smaller than the earlier
estimate of 0.3 with DMSP data. Moreover, omitting countries not in the sample of the
widely cited Henderson et al. study [7] slightly lowered the estimated elasticity to 0.085
(column (3)). The other change in specification for results in the last two columns of Table 1
was to divide the sum of radiance by country area to match the way NTL data were

21



Remote Sens. 2021, 13, 2741

used in the Henderson et al. study, and to add a quadratic term for the model reported
in column (4); the squared term is statistically insignificant (p = 0.95) and the double
logarithmic specification seems appropriate.

Table 1. Within estimator results for GDP-lights elasticities using V.2 VNL data: country-level 2014 to 2019.

Independent Variables and
Summary Stats

All Countries with Data Henderson et al. (2012) Specification

Mean Radiance Masked Mean Masked Mean/Area Quadratic Model

ln(lights) 0.015 ** 0.094 ** 0.085 ** 0.084 **
(0.007) (0.038) (0.037) (0.040)

R-squared (within) 0.012 0.076 0.074 0.074

Notes: Based on a panel of 203 countries (1192 observations) in columns 1 and 2, with ln(lights) based on the sum of radiance by year and
country. Columns 3 and 4 are based on 181 countries (1072 observations) using lights per square mile in column 3 (and a quadratic of this,
with an unreported squared term, in column 4). Models include year and country fixed effects. Standard errors in parentheses clustered at
country level, ** p < 0.05.

The results in Table 1 suggest that findings from earlier periods using DMSP data may
not apply in more recent periods with VIIRS NTL data. However, there are at least two
issues with this evidence. First, applied studies are increasingly focused on lower level
spatial units, so country-level results may provide less guidance than in the past when the
NTL data were used with more aggregated spatial units. The second and more concerning
issue is that country level GDP data are of widely varying reliability and so they may not
provide the consistent benchmark given by sub-national GDP data for the United States.

3.2. Results at County and State Level

The results of using four V.2 VNL products (average radiance, median radiance,
masked average radiance, and masked median radiance) for a panel of 3109 county-level
units observed each year from 2014 to 2019 are reported in Table 2. The top panel has
the “within” estimator results, based on time-series variation, and the bottom panel has
“between” estimator results, based on differences in average economic performance in the
cross-section. Unlike the country-level results in Table 1, which are subject to wide variation
in statistical capacity between countries that make some GDP data more trustworthy than
others, we considered that county-level GDP data produced by the BEA will provide a
consistent level of reliability over time and space. Consequently, differences in the lights-
GDP relationships are interpreted in terms of potential measurement error features of the
NTL data, rather than reflecting possible errors in the GDP data that may vary with either
spatial scale or types of economic activity.

Table 2. Relationships between VIIRS V.2 NTL and county GDP: within and between estimator results.

Independent Variables and
Summary Statistics

V.2 VNL Annual Data Product

Average
Radiance

Median
Radiance

Masked Average
Radiance

Masked Median
Radiance

Within-estimator, for annual GDP changes within each county

ln(sum of lights) 0.021 * 0.004 0.118 *** 0.131 ***
(0.013) (0.011) (0.019) (0.022)

Year fixed effects Yes Yes Yes Yes
County fixed effects Yes Yes Yes Yes
R-squared (Within) 0.002 0.000 0.029 0.030

Between-estimator, for average GDP differences between counties

ln(sum of lights) 1.261 *** 1.270 *** 1.049 *** 1.045 ***
(0.015) (0.015) (0.007) (0.008)

R-squared (Between) 0.706 0.709 0.863 0.861

Notes: Based on a strongly balanced panel of 3109 county-level units, observed each year from 2014 to 2019, giving N = 18,654 observations.
Standard errors in parentheses (clustered at county level for the within-estimator results), * p < 0.10, *** p < 0.01.
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The masked products were better predictors of time-series changes in GDP and cross-
sectional differences in GDP than were the unmasked data products. The within-estimator
R2 values (which are always very low across all NTL data products, levels of spatial
aggregation, types of economic activity, and time periods used in this study) were three
points higher when using the masked data products. The between estimator R2 values
were 15 points higher (at 0.86 vs. 0.71) when using the masked VNL data products rather
than their unmasked counterparts. Prior studies have shown that NTL data are more
powerful cross-sectional predictors of differences in GDP (and other economic activity
indicators) between areas than they are predictors of time-series changes [26,28,45]. This
pattern also holds for the masked V.2 VNL data, where the R2 values for the between
estimator in the cross-section were almost 30 times as high as for the within-estimator of
the time-series changes.

The GDP-lights elasticity was almost zero if using the within estimator with unmasked
data products, and was 0.12 (0.13) when the masked average (median) was used. The
masking procedure was designed to remove background noise and ephemeral sources of
light [27]. To the extent that such noise is not auto-correlated across years, the usual pattern
of random measurement error in a right-hand side variable, causing attenuation of the
regression coefficient on that variable [34], seems to occur here, given that the estimated
elasticity rises when masking is used to remove this noise from the data.

With this attenuation bias pattern in mind, it may seem puzzling that the between
estimator results showed a larger GDP-lights elasticity (at 1.26 rather than 1.05) when
the unmasked data products were used. Although not reported in Section 3.1, a similar
pattern showed up in the country-level results, where the between-estimator gave a GDP-
lights elasticity of 0.96 with the unmasked data and of 0.86 with the masked data (and the
difference was statistically significant at p < 0.02). A potential explanation lies in the impact
of non-random, and specifically mean-reverting, measurement errors. The unmasked data
included occurrences of apparent light (either ephemeral or noise) outside of usually lit
areas. After averaging across years, the apparent radiance of these unlit areas was raised
and so the apparent luminosity of these areas became closer to the mean. With this mean-
reverting error, when NTL data are on the right-hand side of a regression, the coefficients
can be exaggerated, as seen in the first two columns of between estimator results in Table 2.
Once this noise is removed, the results in the last two columns in the lower panel of Table 2
suggest that, on average, a county where the sum of NTL is ten percent higher than for
another county will have a real GDP that is 10.5 percent higher.

The results in Table 2 are atypical of studies that relate NTL data to GDP data. While
there are some county-level results for China [25], the validation studies with GDP data as
a benchmark are mostly for spatially aggregated data at the national or first subnational
level, even as applied studies increasingly use NTL data locally [45]. It is therefore of
interest to see how the results for estimating Equation (1) change when the GDP and NTL
data are at the state-level. This spatial aggregation suppresses much of the variation in
the fluctuations; for example, the coefficient of variation for annual changes in log GDP,
which is what the within-estimator is based on, has a value at the state level that is just
one-sixth of the value at the county level. There is less suppression of variation for the
between-estimator based on the averages over 2014–19, with the state-level coefficient of
variation being one-half the county-level coefficient of variation.

An important change with state-level data is that there is less gain from masking to
remove noise when using the within estimator; the top panel of Table 3 shows that the
unmasked V.2 VNL data gives elasticities for changes in state-level GDP with respect to
changes in state-level NTL of about 0.05, compared to 0.04 with the masked products (and
these coefficients are surrounded by standard errors of about 0.03, so we cannot reject the
hypothesis that the four sets of within-estimator elasticities in Table 3 are all the same).
Unlike with the county-level data, predictive accuracy for annual changes in log GDP was
not any higher when using the VNL masked data, and actually fell slightly from 0.05 to
0.02 (for the average radiances).
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Table 3. Relationships between VIIRS V.2 NTL and state-level GDP: within and between estimator results.

Independent Variables and
Summary Statistics

V.2 VNL Annual Data Product

Average
Radiance

Median
Radiance

Masked Average
Radiance

Masked Median
Radiance

Within-estimator, for annual GDP changes within each state

ln(sum of lights) 0.050 ** 0.047 0.043 0.037
(0.025) (0.032) (0.038) (0.031)

Year fixed effects Yes Yes Yes Yes
State fixed effects Yes Yes Yes Yes

R-squared (Within) 0.053 0.040 0.021 0.013

Between-estimator, for average GDP differences between states

ln(sum of lights) 0.598 *** 0.591 *** 0.840 *** 0.838 ***
(0.116) (0.114) (0.083) (0.079)

R-squared (Between) 0.351 0.355 0.679 0.699

Notes: Based on a strongly balanced panel of 51 state-level units (treating the District of Columbia as equivalent to a state), observed each
year from 2014 to 2019, giving N = 306 observations. Standard errors are in parentheses (clustered at state level for the within-estimator
results), ** p < 0.05, *** p < 0.01.

One interpretation of the fact that using masked data has little effect on the within
estimator at the state level, unlike at the county-level, is that noise in estimates of annual
changes in lights may cancel out as data are spatially aggregated to the state-level (noting
also that there is less variability in annual GDP changes at state level than at county
level). However, with even further aggregation to the country level in Table 1, using the
masked data again seemed to matter (although discussion of the country-level relationships
must be tempered by the fact that the GDP data across countries are likely to be a less
consistent benchmark than are the sub-national data for the U.S. given the variation in
statistical capacity between countries). The issue of how relationships between changes in
NTL data and changes in GDP vary by level of aggregation is one that could usefully be
investigated further.

The state-level results from the between estimator, in the bottom panel of Table 3,
also show important differences from the county-level results. The predictive accuracy
was lower, with R2 values just below 0.70 with masked data products (or below 0.36 with
unmasked data) compared to an R2 of 0.86 at the county level. The elasticities were also
lower at 0.84 compared to 1.05 in the county-level results with masked VNL data. Overall,
this sensitivity to the level of spatial aggregation suggests a need to use findings from
validation studies that are based on a similar level of spatial aggregation to what is used in
ones’ own study.

3.3. Results Using Earlier NTL Products

The V.2 VNL data products have only been recently available, so much of the literature
has used older NTL data products such as V.1 VNL and DMSP stable lights composites. In
this section, we examine how the results of estimating Equation (1) changed when older
NTL data products are used. For comparisons, we used the V.2 VNL masked average
radiance as that data product had the equal best performance in Table 2. Additionally,
summing a (masked) mean to a county total is conceptually more consistent with GDP,
which is the sum of economic activity in a county, than the case for summing a median.

In Table 4, we report estimates of Equation (1) for 2015–16 using either V.1 or V.2
VNL data as the right-hand side variable. For the analysis of temporal changes in GDP
with respect to changes in NTL (the within estimator), V.2 is clearly superior, with an
elasticity about four times larger (and an R2 over 10-times larger). This is consistent with
the expectation of the data creators, that the V.2 VNL series would do better at the analysis
of lighting changes, due to using the same outlier removal threshold in all years rather
than using a threshold that is year-specific, as in the V.1 VNL product [27]. Nevertheless,
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we emphasize that the predictive power for county-level annual changes in GDP based
on annual changes in NTL is very low, regardless of whether the V.1 or V.2 data are used.
When cross-sectional differences were examined using the between estimator, performance
of the V.1 and V.2 VNL data was very similar, with R2 of about 0.86 and elasticities of about
1.03. Thus, existing cross-sectional results that have been established with the V.1 data
should also hold with the V.2 data.

Table 4. Within and between estimators of GDP-lights elasticities: V.1 and V.2 VNL county-level results, 2015–16.

Indep Variables and Summary Stat
Within Estimator Between Estimator

V.1 VNL V.2 VNL V.1 VNL V.2 VNL

ln(sum of lights) 0.020 0.078 *** 1.037 ** 1.026 ***
(0.015) (0.017) (0.007) (0.008)

R-squared 0.001 0.014 0.865 0.857

Notes: Based on a balanced panel of 3109 county-level units, observed in 2015 and 2016. The within estimator models include year and
county fixed effects. The V.2 VNL product is the masked average radiance. Standard errors in parentheses (clustered at county level for the
within-estimator), ** p < 0.05, *** p < 0.01.

Many studies of economic performance using NTL data continue to use DMSP
data [16,33], even though the flaws in this data source, compared to VIIRS, have been
known for almost a decade [23]. A key difference between these data sources is that even
though the output grid for DMSP is only twice as coarse as for VNL (30 arc-seconds vs. 15
arc-seconds), the underlying spatial resolution of DMSP data is far coarser. This coarseness
is due to geolocation errors [46], the smoothing of pixels into 5 × 5 blocks because onboard
storage could not hold all the fine pixel data, and because there is no compensation for
the expanded field-of-view as the Earth is viewed at an angle away from the nadir [24].
Consequently, the spatial precision of VNL images is at least 45 times greater than the
precision of DMSP images [23]. One way that this imprecision shows up is through an
exaggerated impression of urban extent from DMSP images [16,24,47].

Figure 1 shows how the lower 48 states of the U.S. (and also parts of Canada and
Mexico) appear in the DMSP stable lights composite for 2013. Much of the land surface to
the east of the 100◦ W meridian appears to be covered in light, and large clusters of light
are also apparent around Denver, Salt Lake City, Phoenix, in California south of 39◦ N, and
in Oregon and Washington north of 43◦ N. However, the picture shown with the V.2 VNL
composite for 2014 appears very different, with cities having a far smaller lit area footprint
than the DMSP data suggest (Figure 2). Notwithstanding the later overpass time of VIIRS,
which may mean that some lights visible in the early evening have been turned off, the
difference between Figures 1 and 2 reflects a key feature of DMSP of attributing city lights
to places that are much less brightly lit (or even unlit). This feature contributes to noisy
data that may distort apparent relationships between NTL and local economic activity.

There are several ways to numerically contrast Figures 1 and 2. A salient approach
is to use spatial inequality statistics, as ever more studies use DMSP data to estimate
inequality [39,40,48]. The overstated lit area in Figure 1 from DMSP blurring [24] makes it
harder to distinguish areas of concentrated activity from other areas. Top-coding of DMSP
data also attenuates differences between places. These spatially mean-reverting errors lead
to far lower spatial inequality estimates when DMSP data are used, compared to when
VIIRS data are used. When the Gini coefficient (an inequality measure that is zero for
perfect equality and 1.0 for complete inequality) was calculated from the county-level GDP
data, the average value over 2001–19 was 0.71 with no trend up or down. The V.2 VNL
masked average radiances for 2014–19 gave a slightly lower value of 0.65, but it was not
statistically significantly different to what the benchmark GDP data showed and also had
no time trend. However, when the DMSP data for 2001–13 were used they gave an average
Gini coefficient of just 0.50, significantly below the benchmark GDP estimate. Moreover,
the DMSP data misleadingly suggested a downward trend in spatial inequality that was
not apparent with the benchmark GDP data.
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Figure 1. Night lights according to the DMSP stable lights annual composite, 2013.

Figure 2. Night lights according to masked average radiance from the V.2 VNL, 2014.

In Table 5, we report the results of estimating Equation (1) using DMSP data for the
panel of 3109 county-level units observed between 2001 (when the GDP data were first
available) and 2013 (when the most widely used DMSP stable lights time-series ends). The
table parallels Table 2, except for the earlier time period. For each year from 2001 to 2007,
two DMSP satellites provided data (F14 and F15 through 2003, F15 and F16 through 2007).
To deal with this extra information, we used three procedures reflecting approaches from
applied studies. The first was to simply average the DN values from the two satellites
operating in a particular year [49]; the second was to discard information from one satellite
so that each year only had one source of data [13]; and the third recast the analysis in terms
of satellite-years and introduced fixed effects for each satellite, in addition to fixed effects
for each year [8]. The satellite-year approach creates an observation from the interaction of
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a year and a satellite; for example, F15_2001 is a separate observation from F14_2001 or
from F15_2002. Thus, when this method is used, the years with two satellites providing the
data are counted twice as often as the years with just a single satellite. Therefore, to put
equal weight on each year, the observations from 2001 to 2007 were weighted by 0.5 (as all
of these years have two satellites providing the data) while a weight of 1.0 was used for the
other years. Given that economics studies rarely use inter-calibrated DMSP data [50,51] as
the year dummies in Equation (1) are claimed to deal with year-by-year fluctuations in the
NTL time-series caused by sensor degradation and differences between satellites [7] we
also did not use inter-calibrated DMSP data products.

Table 5. Relationships between DMSP NTL and county GDP: within- and between estimator results.

Independent Variables
and Summary Statistics

Approach Used for Years with Two Satellites
Restricting to a 6-Year

Time-Series (2008 to 2013)Averaging
within Year

Use Observations of
only 1 Satellite/Year

Use Satellite-Year
Observations

Within-estimator, for annual GDP changes within each county

ln(sum of lights) 0.245 *** 0.173 *** 0.099 *** 0.190 ***
(0.027) (0.030) (0.019) (0.032)

Year fixed effects Yes Yes Yes Yes
County fixed effects Yes Yes Yes Yes
Satellite fixed effects No No Yes No
R-squared (Within) 0.100 0.070 0.042 0.080

Between-estimator, for average GDP differences between counties

ln(sum of lights) 1.221 *** 1.222 *** 1.219 *** 1.208 ***
(0.011) (0.011) (0.011) (0.011)

R-squared (Between) 0.798 0.798 0.801 0.783
Sample size 40,408 40,408 62,163 18,653

Notes: Based on a balanced panel of 3109 county-level units, each year from 2001 to 2013. The within-year averaging affects years 2001 to
2007, which each have two satellites providing data. To use observations of only one satellite per year, we used F15 from 2001 to 2007, F16 in
2008 and 2009, and F18 from 2010 onwards. Standard errors in parentheses (clustered at county level for the within-estimator), *** p < 0.01.

How the issue of two DMSP satellites per year is dealt with affects the within-estimates
of the GDP-lights elasticity, which can vary from 0.10 (using satellite-year observations) to
0.25 (using within-year averaging). A review of 18 economics studies using DMSP data
found only two used satellite fixed effects while all used year fixed effects [16]. The results
in Table 5 imply possible sensitivity of the results in this literature from not exploring other
ways of incorporating multiple DMSP readings within a year (the within estimator is also
affected by inclusion or exclusion of particular years, as seen below). This issue has no
effect on the between estimator, which gives estimated elasticities of 1.22 across-the-board,
because it is the same whether one first averages between satellites within a year and then
averages over years, or instead averages over all satellite-years in one go.

Given the sensitivity to different ways of dealing with the observations from years
with two DMSP satellites providing data, we also report the results in Table 5 for a 6-year
time-series from 2008 to 2013. By necessity over this period, there is only one satellite
available per year and so there is no sensitivity to different ways of dealing with multiple
satellites in the same year. Additionally, these results (in the final column of Table 5) used
a time-series that was of the same length as the time-series used for the V.2 VNL results
shown in Table 2.

Two key patterns emerged from comparing the results in Table 5 with those in Table 2.
First, the within estimator gave a higher GDP-lights elasticity using DMSP data for the
period to 2013 than when using V.2 VNL data for the period since then, being about
50% higher if attention was restricted to the two 6-year time-series. Second, the between
estimator showed that DMSP data gave elasticities more similar to those from the unmasked
V.2 VNL data than those from the masked VNL data. Specifically, the estimated elasticity
was 1.22 with DMSP data, 1.26 with unmasked V.2 VNL data, and only 1.05 with masked V.2
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VNL data. In other words, the results with DMSP data were more like those coming from
V.2 VNL data that had not had the background noise removed, which is an indirect way of
saying that there is evidence of noise in the DMSP data. This noise reflects two features of
DMSP data noted previously: attributing light to unlit places (blurring) and top-coding in
brightly lit places [23,24]. Both features produce errors that cause a reversion toward the
mean, and are likely to lead to elasticities being overstated rather than understated [35–37]
if DMSP NTL data are on the right-hand side of regression equations.

The blurring and top-coding of DMSP that contribute to the noise in the NTL data are
illustrated at finer scale in Figure 3, which maps four counties in western Massachusetts:
Berkshire, Franklin, Hampshire, and Hampden using V.2 VNL data and DMSP data. The
largest city in this region is Springfield (population: 160,000), and lights from this city (with
masked average radiance exceeding 130 nW/cm2/sr) are clearly visible in the middle of
Hampden county in map (a) using V.2 VNL data for 2014. The largest cities in the other
counties are far smaller, with populations of about 45,000 in Pittsfield (Berkshire Co.),
40,000 in Amherst (Hampshire Co.), and only 18,000 in Greenfield (Franklin Co.). The
smaller size and lower brightness (e.g., no pixels in Pittsfield had an average radiance
greater than 54 nW/cm2/sr) of these other cities is also clear with the V.2 VNL data.

In contrast, the DMSP stable lights image for 2013 makes much of the area appear to
be lit, with lights extending north from Springfield along Interstate 91 (I-91) corridor to
Greenfield and into Vermont and New Hampshire (Figure 3b). Likewise, most of Berkshire
county appears to be lit, with some parts seeming to be almost as brightly lit as Springfield.
For example, Pittsfield has areas with DN = 60, which is almost as high as some areas
in Springfield that have pixels with DN = 63, however, the reality seen in the V.2 VNL
radiance data was that Pittsfield was only about 40% as brightly lit as Springfield, in line
with being only one-quarter as populous.

When lights are aggregated to county level, the DMSP data greatly understate the
differences between places. For example, the sum of lights for Franklin county was 35% of
the sum of lights for Hampden county when DMSP data for 2013 were used. In contrast,
the V.2 VNL data for 2014 showed that the sum of lights for Franklin county was just 9% of
what was emitted by Hampden county. The GDP of Franklin county in either 2013 or 2014
was just 12% of that of Hampden county, and so the V.2 VNL data are a far more realistic
proxy for what GDP reveals about the differences in economic activity in these two places.

This feature of DMSP data in understating differences between places is due both to
blurring, which attributes light to unlit or less-lit places, and top-coding [33]. At least for
the example of western Massachusetts, these two problems seemed to contribute equally
to understated differences between places. In certain years (1996, 1999, 2000, 2002, 2004,
2005, and 2010), ‘radiance-calibrated’ DMSP data were derived from certain nights when
NOAA asked the Air Force to turn down the amplification on the DMSP sensors, so that
DN values were not top-coded in urban areas [52]. With these data for 2010, the sum of
radiance-calibrated lights in Franklin Co. was one-quarter the sum of lights for Hampden
Co., while the GDP of Franklin Co. in 2010 was only 13% of that of Hampden Co. In
other words, the radiance-calibrated lights data made the smaller economy seem twice
as large as what the GDP data showed. This improved over the three-fold overstatement
of the smaller economy implied by the usual DMSP lights data, but the fact that the
radiance calibrated lights still understated the GDP differences highlights the importance
of the blurring problem in DMSP data, given that this problem is not dealt with by the
radiance-calibration.

Features of DMSP data like blurring that contribute to exaggerated GDP-luminosity
elasticities in between estimator results seem to hold in the extended DMSP series for the
2014–18 period. In Table 6, we report results using V.2 VNL data and extended DMSP data.
The between estimator elasticity of 1.05 with V.2. VNL data was hardly changed from what
was reported in Table 2 (as averaging was over five of the six years used in Table 2), but
DMSP data for the same period gave an elasticity of 1.14. Once again, this exaggeration
of the elasticity was consistent with mean-reverting errors in DMSP data. For the within
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estimator results, the elasticity with DMSP data was smaller, perhaps because pre-dawn
lights are less responsive to fluctuations in economic activity than are evening lights. For
both the within and between estimators, the V.2 VNL data were more powerful predictors
of GDP than were the DMPS data.

Figure 3. Night lights of western Massachusetts according to (a) V.2 VNL masked average radiance
in 2014 and (b) DMSP stable lights in 2013.

A higher GDP-lights elasticity (for 2014–18) from V.2 VNL data than from extended
DMSP data also holds with the country-level data. Recall from Table 1 (column 2) that
the country-level elasticity with VNL data was 0.094 ± 0.038. This elasticity rose to
0.131 ± 0.034 when 2019 was omitted (so there is some sensitivity to sample periods). In
contrast, with extended DMSP data, the elasticity was 0.063 ± 0.026 (the within R2 was
0.046 compared to 0.118 with VNL data). Even noting that pre-dawn lights may vary less
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with economic fluctuations than do evening lights, this is a far smaller GDP-lights elasticity
than seen in prior results with DMSP data.

Table 6. Within and between estimators of GDP-lights elasticities: DMSP and V.2 VNL county-level results, 2014–18.

Indep Variables and Summary Stat
Within Estimator Between Estimator

DMSP V.2 VNL DMSP V.2 VNL

ln(sum of lights) 0.025 ** 0.090 *** 1.139 *** 1.047 ***
(0.010) (0.018) (0.011) (0.008)

R-squared 0.004 0.016 0.767 0.862

Notes: Based on a balanced panel of 3109 county-level units, observed each year from 2014 to 2018. The within estimator models include
year and county fixed effects. The V.2 VNL product was the masked average radiance. Standard errors in parentheses (clustered at county
level for the within-estimator), ** p < 0.05, *** p < 0.01.

3.4. Results Using GDP by Industry

The U.S. has a larger share of GDP from the services sector than does any other major
economy. The strength of the relationship between NTL and overall GDP depends on the
structure of the economy because not all types of economic activity are equally reliant on
lighting at night [25,26,41]. Thus, one way to examine how the above findings for the U.S.
may apply to other countries is to look at estimates of Equation (1) that are disaggregated
by industry, so that some extrapolation of the results to settings with different industrial
structures can be considered.

The first two columns of Table 7 show that V.2 VNL data have higher predictive
power for services sector economic activity than for goods-producing activities, whether
examining cross-sectional differences or time-series changes. Hence, in countries where
the services sector is less important than in the U.S., the NTL data may be less successful as
a proxy for local GDP than they are in the U.S.

The private goods sector covers a range of industries and in some of them, there is
a very weak, or entirely absent, relationship between NTL data and economic activity.
The last two columns of Table 7 show the results for agriculture, forestry, fishing, and
hunting (the primary sector), and for mining, quarrying and oil and gas extraction. The
within estimator showed that changes in nighttime lights were not related to changes
in primary sector economic activity, while they were only weakly related to changes in
activity in the mining and oil and gas extraction sector. The between estimator results
showed that GDP-lights elasticities were far smaller for these two industries than for all
goods-producing industries and the R2 values were much lower (and are almost zero for
the primary sector).

Another way to consider the pattern shown in the third column of Table 7 is to divide
counties into two groups, based on having an above-median or below-median share of
agriculture in GDP (based on the 2014–19 averages). The within estimator results from
column 3 of Table 2, where the elasticity was 0.12 ± 0.02, were re-estimated for these
two sub-samples. In the counties where agriculture is more important, the elasticity was
only 0.05 ± 0.02 (and the R2 = 0.01), but where agriculture is less important, the elasticity
was 0.18 ± 0.03 (and the R2 = 0.08). Thus, NTL data may be less useful as a proxy for
fluctuations in overall economic activity in places where agriculture is more important.
Notwithstanding this result for fluctuations in economic activity, between estimator results
in the first two columns of the lower panel of Table 8 suggest that V.2 VNL data remain
a good proxy for differences in GDP between counties, whether they are more reliant on
agriculture or not.
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Table 7. Relationships between V.2 VNL masked average radiance and GDP by industry: counties, 2014–19.

Independent
Variables and

Summary Statistics

Services
Sector

Private Goods
Sector

Agriculture, Forestry,
Fishing

Mining, Quarrying,
Oil & Gas Extraction

Within-estimator, for annual GDP changes within each county

ln(sum of lights) 0.065 *** 0.154 *** −0.038 0.161 ***
(0.010) (0.030) (0.061) (0.050)

Year fixed effects Yes Yes Yes Yes
County fixed effects Yes Yes Yes Yes
R-squared (Within) 0.013 0.008 0.000 0.002

Between-estimator, for average GDP differences between counties

ln(sum of lights) 1.097 *** 0.960 *** 0.136 *** 0.639 ***
(0.010) (0.010) (0.020) (0.032)

R-squared (Between) 0.813 0.747 0.016 0.130

Notes: Based on county-level panels, observed each year from 2014 to 2019, with N = 2935 cross-sectional units for the first two columns
and N = 2850 cross-sectional units for the last two columns. The private goods-producing industries consist of agriculture, forestry, fishing,
and hunting; mining, quarrying, and oil and gas extraction; construction; and manufacturing. Standard errors in parentheses (clustered at
county level for the within-estimator), *** p < 0.01.

Table 8. Split-sample results for relationships between VIIRS V.2 VNL and county GDP.

Independent Variables and
Summary Statistics

Agriculture Share of GDP Population Density

Below Median Above Median Below Median Above Median

Within-estimator, for annual GDP changes within each county

ln(sum of lights) 0.181 *** 0.053 *** 0.142 *** 0.093 ***
(0.029) (0.015) (0.025) (0.015)

Year fixed effects Yes Yes Yes Yes
County fixed effects Yes Yes Yes Yes
R-squared (Within) 0.080 0.005 0.020 0.040

Between-estimator, for average GDP differences between counties

ln(sum of lights) 1.073 *** 0.908 *** 0.799 *** 1.163 ***
(0.011) (0.012) (0.012) (0.012)

R-squared (Between) 0.849 0.800 0.726 0.851

Notes: Based on 3109 county-level units, observed each year from 2014 to 2019. The share of agriculture in GDP was averaged over all
years and counties were then allocated into the above median or below median group based on the multi-year average. Population density
was based on the 2010 census. Standard errors in parentheses (clustered at county level for the within-estimator results), *** p < 0.01.

One reason NTL data may be a less useful proxy for fluctuations in overall economic
activity in more agricultural places is that there are some forms of non-agricultural activ-
ity, like retail shopping and wholesale distribution, which may occur at night aided by
concentrated artificial light while this is less common for agriculture. Another factor is
agriculture’s use of space as a productive input, so population density and NTL intensity
are lower in agricultural areas. For example, the counties with an above median share of
agriculture in GDP had an average population density just under 40 people per square
mile in the 2010 Census, while the counties with a below median share of agriculture had
an average density more than 10-times higher, at almost 440 people per square mile.

The last two columns explore the role of population density more directly by splitting
the sample into counties above and below the median density. In higher density counties,
the predictive power of NTL data as a proxy for GDP was higher, for both the within
estimator and the between estimator. The overall level and the composition of economic
activity vary with population density, so relationships between NTL data and traditional
indicators such as GDP will average over what could be quite disparate relationships for
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particular places and types of activity, and this should be borne in mind when NTL data
are used as a proxy.

4. Discussion

In this paper, we used a comprehensive and updated set of DMSP, V.1 VNL, and V.2
VNL nighttime lights data. We mainly examined the relationships with county-level and
state-level economic activity for the U.S. over the 2001 to 2019 period, but we also provided
some country-level results to link to the previous literature. Our motivation for using this
rich set of NTL data products, and for using the lowest level spatial units that have GDP
data available, stems from a concern that existing validation studies that assess NTL data
as a proxy for economic activity are mainly for dated and imprecise DMSP data, and the
most widely cited of these studies use aggregated spatial units such as nations or the first
sub-national level. However, NTL data are increasingly used to proxy for economic activity
at very local levels such as the third sub-national level and below. Another feature of recent
applied studies is using NTL data to proxy for temporal fluctuations in local economies
when evaluating the impacts of various shocks or policy interventions. In contrast, earlier
studies tended to use NTL data to study regional differences in economic performance.

A key overall finding is that masked average radiance from the V.2 VNL data product
was a better cross-sectional and time-series predictor of GDP than any of the other NTL
products considered here (with the masked median also a good predictor). Masking to zero
out background noise and ephemeral lights substantially improved predictive performance
in cross-sections of county- and state-level GDP, and for time-series changes in county-level
GDP. The masked V.2 VNL also better predicted time-series changes in GDP than did the
V.1 VNL data, most likely because V.2 VNL uses a single multiyear threshold to isolate the
background from lit grid cells while the year-by-year thresholds used for V.1 VNL may
provide a less consistent basis for detecting changes. Comparisons with the predictive
performance of extended DMSP data, which are based on pre-dawn readings from 2014 to
2018, also highlight the superiority of the masked V.2 VNL data.

When the various NTL data products faced the same benchmark GDP data, some
predicted better than others. At least one reason for this is that some NTL data products
are more error-ridden measures of true luminosity. The patterns of GDP-luminosity
elasticities help to reveal the nature of these measurement errors. If either DMSP data
or unmasked VNL data are used, the cross-sectional GDP-luminosity elasticity from the
between estimator is exaggerated, with county-level estimates exceeding 1.20 (or 1.14 for
the extended DMSP data product) compared with an elasticity of 1.05 from the masked
VNL data that should have the least noise. This exaggeration of the elasticity suggests that
measurement errors in DMSP data, and in unmasked VNL data, are mean-reverting rather
than random. Consequently, these measurement errors will bias regression coefficients
even if NTL data are the left-hand side variable, and can exaggerate coefficients rather than
attenuate them if NTL data are the right-hand side variable.

There are at least two other consequences of mean-reverting errors in popular NTL
data products like the DMSP annual composites. First, the literature that is beginning to
use these data to estimate trends in spatial inequality may prove misleading, as inequality
is significantly understated by DMSP data compared to what the GDP data and VIIRS
data show. Second, attempts to splice together DMSP and VNL data to obtain a longer
time-series face a key difficulty in finding an adjustment factor to make the DMSP data
more like the VNL data. The measurement errors in DMSP data appear to vary with true
but unknown luminosity; less brightly-lit areas have apparent luminosity overstated and
more brightly-lit areas have it understated. Hence, no single adjustment factor, like an
inter-calibration regression coefficient, can be most appropriate in all times and places.
Moreover, spatial aggregation also affects the impacts of the measurement errors, as seen
in the different patterns of results at county and state level.

The NTL data did far worse at predicting time-series changes in county GDP than at
predicting in cross-sections of GDP. A prior study also found this in the V.1 VNL data [26],
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but the results here are more compelling because they are from a longer time-series, using
V.2 VNL data that should better measure lighting changes because they are derived from a
constant threshold across years for isolating the background from lit grid cells. The weak
relationship between changes in NTL and changes in GDP raises doubts about applied
studies that show the effects of their treatment (e.g., a shock) on NTL data. If the GDP-
luminosity elasticity is only 0.1 (and the within R2 values are close to zero, as seen in
Table 2), which is far lower than the elasticities in the literature reported from DMSP data
at the national and first-subnational level, then it is hard to see how changes in NTL data
are a good proxy for changes in local economic activity. In other words, estimates of the
impact of the treatment on NTL data may not be very informative about the impact of the
treatment on economic activity. In particular, treatment effects may be far smaller than
presumed from econometric estimates using NTL data, especially if the researchers assume
that cross-sectional elasticities hold in the time-series context [45].

5. Conclusions

There are several things that we can conclude from our analyses. First, masking
to reduce measurement error improved the predictive power of V.2 VNL data. Second,
predictive accuracy in county-level cross-sections was about 30-times higher than for
county-level time-series changes in GDP. Third, the V.2 VNL data better predicted time-
series changes in GDP than did the V.1 VNL data; likely due to V.2 VNL using a single
multiyear threshold for isolating background from lit grid cells while the V.1 VNL uses
year-by-year thresholds. Fourth, whether examined at the country level or county level,
the relationship between recent temporal fluctuations in GDP and fluctuations in V.2 VNL
data yielded a far smaller elasticity than was estimated when DMSP data were used for
earlier years. Fifth, cross-sections of DMSP data provided similar results to what unmasked
VNL data showed, indicating noise in the DMSP data (this pattern also holds if using the
extended DMSP series). Relatedly, the DMSP data understate spatial inequality and the
example we provide suggests that this comes in equal parts from blurring and top-coding.

The results reported here pertain to the United States—a setting where NTL data
are not especially needed for research, given the abundance of other data on economic
activity. However, the patterns of results across the various NTL data products for different
spatial levels and for modeling time-series changes versus cross-sectional variation in
economic performance should hold more broadly. For example, just using the U.S. data, it
was possible to obtain a GDP-luminosity elasticity of 0.25 if a particular way of handling
years with two DMSP satellites was used, which is quite close to the existing values in the
literature beyond the U.S., despite more precise VNL data, suggesting an elasticity below
0.1. Moreover, the U.S. is a very diverse country, with types of economic activities in some
places that are more like those in poorer countries. For example, given that NTL data are
shown to be poor predictors of agricultural activity, or of changes in total economic activity
in highly agricultural counties, there are grounds to question whether NTL data can be
relied upon as a proxy for economic performance in predominantly agricultural settings in
other countries. Relatedly, we also show that the NTL data were a less useful proxy for
economic activity in less densely populated areas. Overall, our results suggest a need for
greater caution in using NTL data as a proxy for economic activity, especially as findings
from validation studies in different settings, or with different NTL data products, or at
different levels of spatial aggregation may not translate to other settings.
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Abstract: The official method of collecting county-level GDP values in the Chinese Mainland relies
mainly on administrative reporting data and suffers from high costs of time, money, and human labor.
To date, a series of studies have been conducted to generate fine-grained maps of socioeconomic
indicators from the easily accessed remote sensing data and achieved satisfactory results. This paper
proposes a transfer learning framework that regards nightlight intensities as a proxy of economic
activity degrees to estimate county-level GDP around the Chinese Mainland. In the framework,
paired daytime satellite images and nightlight intensity levels were applied to train a VGG-16
architecture, and the output features at a specific layer, after dimensional reduction and statistics
calculation, were fed into a simple regressor to estimate county-level GDP. We trained the model
with data of 2017 and utilized it to predict county-level GDP of 2018, achieving an R-squared of
0.71. Furthermore, the results of gradient visualization confirmed the validity of the proposed
framework qualitatively. To the best of our knowledge, this is the first time that county-level GDP
values around the Chinese Mainland have been estimated from both daytime and nighttime remote
sensing data relying on attention-augmented CNN. We believe that our work will shed light on both
the evolution of fine-grained socioeconomic surveys and the application of remote sensing data in
economic research.

Keywords: attention-augmented CNN; nightlight; fine-grained GDP estimation; daytime satellite
imagery; arbitrary area representation

1. Introduction

Fine-grained, large-scale measures of economic development levels are vital to re-
source allocation and policy-making. Gross domestic product (GDP in short) is an ele-
mentary but crucial indicator in assessing regional productivity and consumption degrees.
Disaggregated GDP maps can reflect both the overall development levels and the regional
imbalance within a country. It is worth to emphasize that the geographic administrative
hierarchy in China is province, city and county in descending order, county is a relatively
small administrative unitwhich is quite different with the system of many other countries.
In the Chinese Mainland, the official county-level GDP, i.e., GDP of the second sub-national
administrative unit in China [1,2], are collected by local government statistical services.
The final GDP values are calculated mainly from administrative reporting data and supple-
mented (or amended) by periodical surveys and censuses. However, official county-level
GDP values are often heterogeneous and costly [3] because statistical institutions at the
county level commonly suffer from the lack of specialized persons and the inaccessibility
to essential materials [4,5].
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In recent years, remote sensing data have been increasingly applied to predict socioe-
conomic indicators [6]. A series of studies have been conducted to develop convenient
and scalable methods to estimating various indices relying on nighttime lights, satellite
imagery, and emerging machine learning models. Previous studies have demonstrated
the correlation between lit areas and GDP values [7,8]. Researchers successfully applied
nightlight data and regression methods to generate disaggregated maps of socioeconomic
indicators in different regions around the world, including both developed countries such
as European Union countries, the United States [8], and Japan [9], and developing countries
such as India [10,11] and China [12]. However, nightlight data are easily affected by coarse
resolution, noise, and oversaturation [13,14]. They also overlook the relationship between
economic developments and geographic patterns. The rapid development of convolu-
tional neural networks and the availability of high-resolution daytime satellite imagery
enable the detection of detailed land appearances thought to be strongly correlated with
socioeconomic statuses, such as buildings, cars, roads, and farmlands [15,16]. Despite the
informativity of daytime satellite imagery, it is often infeasible to estimate socioeconomic
indicators directly from daytime images since there are hardly enough ground-truth data to
supervise the training of data-intensive CNN-based models. Learned from previous studies,
some researchers creatively combined daytime and nighttime remote sensing data [17,18].
They regarded nightlight intensities as a data-rich proxy of economic development degrees
and applied CNN-based classifiers to predict nightlight from the corresponding daytime
images. Later, the high-dimensional output features at a specific layer of CNNs are fed into
simple regressors to estimate indicators in interest. In this way, fine-grained GDP maps
can be generated conveniently from easily accessed data.

This paper is interested in predicting annual county-level gross domestic product
(GDP) around the Chinese Mainland from readily accessed remote sensing data, including
daytime satellite imagery and nighttime lights. Our framework is mainly based on the work
of Jean et al. [18], in which paired daytime images and nightlight intensities are utilized
for training a CNN classifier, and the output features at a specific layer, after dimensional
reduction and statistics calculation, are fed into a simple regressor for the final estimation.
We boost the model performance via incorporating attention mechanism into the CNN
architecture. To the best of our knowledge, this is the first time that the CNN-based
estimation of county-level socioeconomic indicators from remote sensing data have been
applied on such a large scale in China, i.e., all over the country. Since the number of
image grids belonging to a county-level administrative region varies, each economic index,
i.e., annual county-level GDP, corresponds with an indeterminate number of output feature
vectors. To uniform the dimensions of downstream model inputs, feature vectors belonging
to the same county are regarded as a sample, and the representative statistics are computed
as the final independent variables for the regression models.

Our work has the following contributions.

• Creativity: To the best of our knowledge, it is the first time that county-level GDP
around the Chinese Mainland have been estimated from both daytime satellite im-
agery and nightlight data using CNNs. Thanks to the scalability of remote sensing
data, the proposed model can generate fine-grained estimation maps covering the
whole country in a convenient and economical manner;

• Convenience: All the daytime satellite images and nightlight intensities fed into the
model come from easily accessed, open-source online interfaces. Meanwhile, since the
data-rich nighttime lights are applied to supervise the training process, there is also
no need to manually annotate the daytime images to ensure the CNN architecture
to converge;

• Refinement: We modify the CNN classifier by incorporating attention mechanism and
achieve better performance;

• Robustness: In our framework, all the grid images belonging to the same county are
utilized to generate corresponding features. Thus, predicted values are less likely to
vary with noise or missing data.
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2. Related Work

2.1. Estimating GDP with Nightlight Only

Large amounts of previous studies have investigated the association between eco-
nomic activities and nighttime lights at different scales and in different areas. The Defense
Meteorological Satellite Program (DMSP) and the Visible Infrared Imaging Radiometer
Suite (VIIRS) are two main sources of nightlight data applied in socioeconomic research [19].
The DMSP annual stable lights from 1992 to 2013 published by the NOAA Earth Obser-
vation Group (EOG) boosted studies that estimated socioeconomic indicators, GDP for
instance, by nighttime luminous data in the last decades. Elvidge et al. [20] examined the
relationship between the area of lighting measured from the DMSP data and country-level
GDP for 200 nations. Doll et al. [7] moved one step further and produced the first-ever
global map of GDP using the total lit area of a country, indicating a high correlation between
nightlights and GDP at the country level. As fine-grained socioeconomic data became
increasingly desirable, the following studies tended to examine the relationship between
nightlight and economic activity degrees at smaller geographic units. Doll et al. [8] success-
fully produced disaggregated maps for 11 European countries along with the United States
at a 5 km spatial resolution using nighttime radiance data and the prevailing land-use data.
There also existed evidence that nightlight could be applied to predict sub-national GDP
or income levels in developing countries such as India [10,11] and China [12,21]. These
studies verified the rationality of considering nighttime lights (provided by the DMSP data)
as a proxy of regional economic activity degrees. However, flaws in DMSP data, including
pervasion blurring, no calibration, coarse spatial and spectral resolution, and inter-satellite
differences [14,22], inflicted inaccuracy and even invalidity upon studies using this data
source, especially for smaller units and lower density areas [23,24]. In comparison, the new-
generation VIIRS data, which became available from 2012 onward, were more pertinent to
the needs of socioeconomic researchers. Empirical results proved that the VIIRS data could
be a promising supplementary source for socioeconomic indicator measures [25–27] and
have better performance than the DMSP data [23,28].

It should be noticed that despite the superiority to DMSP data, estimation at small
geographic units and detection of agricultural activities remained to be challenges for the
utilization of VIIRS data [23,26]. The estimation of county-level GDP in China from night-
light was only affected by the limitation of data sources. To the best of our knowledge, no
studies have ever generated county-level GDP maps covering the whole country. Moreover,
many studies either eliminated the output of primary industry, i.e., agricultural output,
from local GDP [29] or incorporated additional information such as land-use status and
rural population [30]. Data that are both informative for small or low-density regions and
easily accessed are needed.

2.2. Detection of Economic-Related Visual Patterns from Daytime Satellite Imagery via
Deep Learning

Remote sensing data are valuable for economic studies because they provide ac-
cess to information hard to obtain by other means and generally cover broad geographic
areas [6]. Apart from nighttime lights, daytime satellite imagery is another valuable re-
source for socioeconomic research. Compared with relatively low-resolution nightlight
data, daytime images contain much more features and can reveal more detailed topo-
graphic information [6]. Land appearance detection relying on CNN-based architectures
from daytime satellite imagery perform well in locating regions that strongly related to
socioeconomic status [15,31,32]. Engstrom et al. [15] trained CNNs to extract features
concerning buildings, cars, roads, farmlands, and roof materials from high-resolution
daytime images. They fed these features into a simple linear model and explained nearly
sixty percent of both poverty headcount rates and average log consumption at the village
level in Sri Lanka. Abitbol and Karsai [32] applied a CNN model to predict inhabited
tiles’ socioeconomic status and projected the class discriminative activation maps onto the
original images, interpreting the estimation of wealth in terms of urban topology. To date,
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daytime imagery and deep neural networks have been widely applied to predict vari-
ous socioeconomic indicators such as population [33–35], poverty distribution [15,18,36],
and urbanization [6,37]. Despite the convenience and scalability, these studies depend
largely on data-intensive CNNs and require large volumes of ground-truth labels to super-
vise the training process. Han et al. [6] developed a framework for learning generic spatial
representations in a semi-supervised manner. They constructed a small custom dataset in
which daytime satellite images were classified into three urbanization degrees by four an-
notators and applied it to fine-tune the CNN-based classifier pre-trained on ImageNet [38].
The output features can be adopted to predict various socioeconomic indicators, but the
training labels of this method suffered from high expenses and subjective judgments.

2.3. Nightlight as an Intermediate between Economic Indicators and Daytime Satellite Imagery

In many developing countries, reliable sub-regional socioeconomic data are scarce and
expensive, making it difficult for data-intensive neural networks to directly learn relevant
features from informative daytime satellite imagery. Since nightlight data are much more
abundant and commonly correlated with degrees of economic activities, some researchers
began to regard them as a data-rich intermediate between economic indicators and daytime
satellite imagery. Xie et al. [17] proposed a two-step transfer learning framework in which
a fully convolutional CNN model pre-trained on ImageNet [38,39] was tuned to predict
nightlight intensities from daytime images and learn poverty-related features simultane-
ously. They found that the model learned to identify semantically meaningful features such
as urban areas, roads, and farmlands from daytime images without direct supervision of
poverty indices but with only nighttime lights as a proxy. Jean et al. [18] refined this method
by feeding the features learned from raw daytime satellite imagery by the tuned CNN into
ridge regression models to estimate average household wealth in five low-income African
countries. Their research further demonstrated that nightlight data could well serve as
an intermediate between daytime satellite imagery and socioeconomic indicators relying
on deep learning techniques [40]. Follow-up studies showed that the fully convolutional
network, which was tuned to extract high-dimensional features from daytime images
under the supervision of corresponding nightlight intensities, could be substituted for
various architectures [40], including DenseNet [41] and ResNet [42], and this approach also
generalized well to predict poverty-related indices in other countries outside Africa [43].
Nighttime lights also proved useful when there was a lack of ground-truth socioeconomic
data, guiding the CNN-based model to compute economic scores from daytime imagery
in an unsupervised way [18]. Instead of utilizing luminous data as approximate labels
to train neural networks, Yeh et al. [44] trained identical ResNet18 [42] architectures on
daytime and nighttime images, respectively, and then fed the concatenated output features
into a ridge regressor to predict cluster-level asset wealth. Although this approach could
predict economic indicators from remote sensing data in an end-to-end manner, it required
much more efforts processing and matching daytime and nighttime imagery, and would
be unable to generate valid estimations when the ground-truth socioeconomic data are
insufficient for the CNNs to converge.

3. Data

This paper utilizes the following three data sources: daytime satellite imagery, night-
time light maps, and county-level GDP around the Chinese Mainland along with the
corresponding administrative boundaries. All the data sources mentioned above are joined
together to construct a complete dataset. The brief procedures of collecting and matching
data are shown in Figure 1.
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Figure 1. The brief procedures of collecting and matching data. There are three steps. (1) Deter-
mine the interval between adjacent image centers (2 km in this paper) and calculate all the center
coordinates across the Chinese Mainland. (2) Scratch a daytime satellite image covering an area of
1 km2 centered on each coordinate. (3) Select an area of 2.5 km2 centered on each coordinate and sum
up the nighttime light intensities. The sum of nightlight intensities is then classified into 3 degrees,
addressed as nightlight intensity level in this paper. The nightlight intensity level serves as the label
for the daytime satellite image centered on the same coordinate.

3.1. Daytime Satellite Imagery

We scratch daytime satellite images mainly through an API provided by the Planet
satellite. Posting a request consisting of locations and dates in a month-year mode, the API
will return a corresponding image of 256 × 256 pixels. In detail, the specific product we
utilize is PlanetScope Ortho Scene product (PSScene3Band), where the distortions caused
by terrain have been removed.

Each daytime image covers approximately 1 km2 with a 5 m resolution, which gen-
erally enables human activities to be observed. The natural idea is that we traverse the
Chinese Mainland at a 1 km interval so that all the images together can cover the whole
territory. However, such a procedure will result in large amounts of images, leading to
high time cost in scratching images and over-head computation in training models. As a
compromise, we set an interval of 2 km. In this way, the total amount of images is reduced
by 4 times, which will greatly speed up for the whole framework. We collect daytime
satellite images from 2016 to 2020 according to the grid coordinates. Since the Planet
product update image products monthly, the images we scratch are in month granularity
of the middle of the year, mostly in June and July. Several instances of daytime satellite
imagery are shown in Figure 2.

3.2. Nighttime Light Maps

As the pioneer of the nocturnal remote sensing technology, the Earth Observation
Group (EOG) has been collecting nighttime remote sensing data for years, producing
high-quality global nighttime light maps. We utilize the newest V1 annual composites
made with the “vcm” version of the year 2016, which covers the Asian area. In this
version, the influence of stray light has been excluded. Meanwhile, ephemeral lights and
backgrounds (non-lights) are screened out to ensure the ground truth.
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Figure 2. Instances of daytime satellite imagery with different corresponding nightlight intensity
levels in 2016. From top to bottom: images with low-level, medium-level, and high-level nighttime
light intensity.

The nighttime light map is then applied to construct labels for daytime satellite
imagery. For each daytime satellite image in 2016, we delineate a 2.5 km2 area centered
on the same coordinate and sum up nightlight intensities within the area. The areas we
select are slightly larger than daytime images and thus can roughly cover the gaps among
those images. We regard the sum of nightlight intensities within each area as a proxy of
the economic activity degree for the corresponding daytime satellite image. In addition,
we apply the Gaussian mixture model (GMM) to cluster the nighttime light intensities.
The Gaussian mixture model is a probabilistic model for representing normally distributed
subpopulations within an overall population [45]. It is a popular clustering algorithm
considered as an improvement over k-means clustering. With the GMM clustering method,
we divide the nighttime light intensities into three levels: low, medium, and high. Since
the proportion of low-level samples is too high, we drop a few samples with low nightlight
intensity levels to maintain the data balance. The final distribution of nightlight intensity
levels is shown in Table 1.

Table 1. Distribution of nightlight intensity levels.

Level Low Medium High

Percentage(%) 54.17 29.19 16.63

3.3. County-Level GDP and County Boundaries

By default, the word “county” in this paper denotes the second sub-national adminis-
trative unit in China. County-level units can be mainly divided into three types: municipal
districts, counties, county-level cities. Some county-level units, municipal districts for
instance, have merged to form larger administrative regions named cities or prefectures,
while others are governed directly by the first sub-national units in China, i.e., provinces.

Complex administrative hierarchy makes it difficult to collect annual county-level
GDP around the Chinese Mainland from a single publication. This paper sorts to the
China Economic and Social Development Statistics Database provided by China National
Knowledge Infrastructure (CNKI), where over 28,000 statistical yearbooks concerning
different themes released by official statistical institutions at different levels are available.
Most annual county-level GDP data can be fetched from the corresponding Provincial
Statistical Yearbooks, while a few are supplemented by the Municipal Statistical Yearbooks

42



Remote Sens. 2021, 13, 2067

and the data retrieval function supported by CNKI. In this paper, the annual county-level
GDP is measured in ten thousand Chinese Yuan.

The geographic boundary information of county-level units around China is gathered
from the National Catalogue Service for Geographic Information (https://www.webmap.
cn, accessec on 14 October 2021). We collected the boundary coordinates of 2900 county-
level administrative units along with county names and the names of the cities or provinces
these counties are governed by. GDP values are attached to geographic information via
names of counties as well as names of the superior administrative units.

In the data matching process, we utilized the geofencing algorithm supported by the
Python package geopandas [46] to compare image coordinates and county boundaries.
Specifically, an image along with its nightlight intensity level will be matched with a county
once its center falls into the target county-level administrative unit. Figure 3 shows this
matching process.

Figure 3. The GDP distribution map of the Chinese Mainland in 2018 (some values along with the
boundaries of county-level units are missing), and an example of matching center coordinates and
county boundaries. Blue crosses denote center coordinates that fall into the boundary of Liping
County, while red points denote centers that do not.

4. Method

Our target is to predict the annual county-level GDP from daytime satellite imagery
and nightlight intensities. Since county-level units in China vary in shape and size, the cor-
responding amount of satellite images along with nightlight intensity levels are variable.
Therefore, it is necessary to uniform input dimensions before estimating GDP values. In our
model, we first build an attention-augmented feature extractor under the supervision of
paired daytime satellite images and nightlight intensity levels. Given a county i in the
whole county set C along with the corresponding daytime satellite image set Pi that con-
tains ni images, each image such as the j-th image Pj

i in Pi will be passed through a trained
feature extractor to get the economic-related features Fj ∈ R

n, n = 4096, the length of the
output vector in the feature extractor. After dimensional reduction, the representative
statistical characteristics, including mean, variance, correlation, and the number of each
county’s reduced features, are calculated and combined as a fixed-size representation
Ri ∈ R

s where s is the amount of final used variables. Finally, the representation is fed into
a regression model to predict the GDP value at each county.

4.1. Training Feature Extractor via Supervised Learning and Transfer Learning

The attention-based VGG-16 network architecture is utilized to extract features from
satellite imagery. The VGG-16 [47] pre-trained on ImageNet [38] contains five convolu-
tional blocks, and each block consists of a series of convolution layers, pooling layers,
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and non-linear activation functions. The convolutional blocks are trained to extract and
construct complex features from raw input daytime images. The last two layers of the
network are fully connected layers trained to sort stimuli into 1000 predefined categories
based on features extracted from the preceding structure. This paper classifies nightlight
intensities into three categories, i.e., nightlight intensity levels, and applies them to su-
pervise the training of the extractor. In the last two convolutional blocks of VGG-16, we
insert an attention layer that can re-weight the activation representations. Suppose the
convolutional block of VGG outputs an activation features Mpre ∈ R

H,W,C defined as
pre-attention activation, the attention layer A ∈ R

C matches it in the channel dimension C
correspondingly. Later, the post-attention activation Mpost ∈ R

H,W,C is calculated as the
hadamard product between Mpre and A:

Mi,j,c
post = Ac × Mi,j,c

pre (1)

where i = 1, ..., H, j = 1, ..., W, c = 1, ..., C.
The post-attention activation modulated by the attention layer maintains the same shape

as the pre-attention activation, and they are then passed into the next block as Figure 4 shows.
We use the Adam optimizer to train the network. The loss function is defined as follows:

L = − ∑
i∈label

ỹi log ŷi (2)

where ỹi denotes the ground-truth class probability (i.e., low level, medium level, and high
level) and ŷi denotes the predicted probability. When the model converges, we remove the
last fully connected layer and utilize the remaining structure to extract features F ∈ R

n

from satellite imagery. n, the length of F, is equal to the length of the output activation
flattened by the last convolutional block in VGG-16.

4.2. Dimension Reduction

Once features have been extracted from each satellite image, we intend to reduce the
dimension of F into a smaller size. Since the number of counties applied in this paper of a
single year is around 2000, and we aim to utilize the statistical characteristics of a county’s
image set to fit GDP values, the dimension is supposed to be less than the number of
counties to avoid overfitting. Therefore, we implemented the principal component analysis
(PCA) [48] to reduce the dimensions of the feature F.

PCA is nonparametric and does not require a parameter tuning process. It applies
orthogonal linear transformations of the original vectors to extract principal components
with the maximum variance. A sufficient number of principal components should explain
most of the variance of the original data and efficiently reducing dimensions. Empirically,
the first six components can explain approximately 80 percent of the variance, and addi-
tional gains will rapidly become marginal. This paper considers up to the first 25 principal
components in the dimension reduction process, i.e., k (3 ≤ k ≤ 25).

4.3. Statistical Characteristics

To address the varying number of daytime images along with nightlight intensity
levels belonging to a county, we calculate the statistical characteristics of each image set.
In this way, each county has a fixed-sized representation. Following the approach of [18], we
consider the following base statistical characteristics: (1) sample amount n, i.e., the number
of satellite images within a county; (2) the sample mean μ; (3) the standard deviation σ; and
(4) Pearson’s correlation of the reduced features ρ. These four statistical characteristics are
fundamental statistics that can capture the vital traits of an image set. Concretely speaking,
these descriptive statistical characteristics represent a sample set through central tendency
(the sample mean), dispersion (the standard deviation), association (the correlation), and
volume (the sample size). To enrich the independent variable, we apply the feature
interaction process in which the interactions and polynomial combinations of features are

44



Remote Sens. 2021, 13, 2067

added. Therefore, the augmented search space can be considered. Finally, for each county
i, we obtain a representation Ri of the same length s. The representation is later fed into a
regressor to estimate the target county-level GDP.

Figure 4. The structure of our method. Our method operates in three steps. (1) An attention-
augmented VGG-16 network pre-trained on ImageNet [38] is tuned to predict nighttime light intensity
levels from daytime satellite images. The middle blocks of the network are taken out as the feature
extractor after transfer learning (the pre-trained VGG-16 network) and supervised training (nightlight
intensity degrees as a proxy of socioeconomic indicators). (2) Reduce the dimensions of output
features via PCA. (3) Calculate the embedded spatial statistical characteristics and apply regression
models to predict the logarithm of county-level GDP.

5. Experimental Results

5.1. Performance Evaluation

In this study, the experiment was conducted in the environment of Public Computing
Cloud, Renmin University of China.We applied several methods to evaluate the model
performance. Unanimously, we take the data of 2017 as the training set and the data
of 2018 as the testing set. K-fold cross-validation is utilized to determine the optimal
hyperparameters for PCA and the regression process. The nightlight method takes the
sum of nightlight intensities of each county as the independent variable and applies it
to predict the corresponding county-level GDP directly via a regressor. The no-proxy

method utilizes the same VGG-16 architecture as the feature extractor in the proposed
framework but only pre-trains it on the ImageNet. The VAE (variational auto-encoder)
method plays the role of feature extractor in our model. A variational auto-encoder [49] is
an unsupervised deep learning algorithm that aims to learn a compressed representation
of the input data and recover, limiting the hidden layer’s scale. The VGG-A denotes our
proposed model, which features the attention-augmented VGG network.

As Table 2 shows, VGG-A (our proposed framework) outperforms all the other meth-
ods with an R-squared of 0.71. The satellite imagery does provide abundant features for
predicting GDP since the R-squared of only using nightlight intensities is 0.36. Moreover,
due to increased predicting quality against no-proxy (0.22) and VAE (0.45), we suggest that
using nighttime light as a proxy helps extract more economic-related features.
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Table 2. Results of different methods. The county-level GDP for training and testing is logarithmically
transformed since they are approximately log-normal.

Method Nightlight No-Proxy VAE VGG-A

R-squared 0.36 0.22 0.45 0.71

Figure 5 presents the prediction error map of county-level GDP of 2018 in China. The
degree of the color reflects the value of the prediction error. Red denotes overestimation,
while blue denotes underestimation. According to the prediction error map, we find that
estimations of larger counties tend to be more accurate than those of smaller counties.
A good reason is that larger counties usually contain more satellite image instances so that
the corresponding statistical characteristics are more representative. Another finding is
that the proposed framework seems to overpredict in the poorer areas and underpredict
in richer areas. In the error map, southeastern coastal areas, the most advanced regions
in China, are colored blue, while the middle of China, the less advanced regions, are
colored red.

 

Figure 5. The prediction error map of county-level GDP in 2018. White areas in the map represent
regions where data are missing. Due to the large area of the Chinese Mainland, there are a few regions
where images are either missing or of poor quality (Hainan Island, for instance). Nevertheless, the
number of counties covered by the images we gained is enough for this study.

5.2. Ablation Study

To ensure the effectiveness of different modules within our method, we conduct a
few ablation experiments. VGG uses only the VGG-16 network, dislodging the attention
layer. μ, σ, ρ, and n denote methods that remove the sample mean, standard deviation,
the Pearson’s correlation, and sample size from statistical characteristics, respectively.

According to the results shown in Table 3, the insertion of the attention layer effec-
tively improves the R-squared score by 0.02. Meanwhile, any removal of the statistical
characteristics decreases the final performance evidently, indicating that each of them
makes a meaningful contribution.

Table 3. Results of ablation study.

Method VGG-A VGG μ σ ρ n

R-squared 0.71 0.69 0.65 0.67 0.67 0.68

5.3. Comparison of Regression Methods

We fed the embedded statistics into different regression models and determined the
most suitable method in this case. Figure 6 reports the experimental results measured by
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R-squared. It can be concluded that, in general, random forest and the Xgboost algorithm
with a tree kernel (gbtree) perform the best, and that results of gbtree are more stable
than those of random forest. The feature interaction process, i.e., construction of extra
features, has little influence on these two methods’ performances, probably because random
forest and gbtree elect only the most essential features to predict dependent variables.
Ridge regression achieves satisfactory results when the original embedded statistics are
independent variables, while feature interaction enhances the performance of the Xgboost
algorithm with a linear kernel (gblinear). Meanwhile, we find that although feature
interaction may enable linear-based models to achieve better results, performances of these
models decline rapidly when the dimension of PCA increases.

Figure 6. Results of different regression methods measured by R-squared.

5.4. Gradient Visualization

To explore what our feature extractor focuses on, we conduct gradient visualization
with guided back-propagation applied in [50]. The guided back-propagation method
computes the gradient of the target output (nightlight intensity level in our case) concerning
the input. Gradients of ReLU functions are overridden so that only non-negative gradients
are back-propagated, which is a widely used method in interpreting convolution neural
networks. Based on Figure 7, we can observe the highlighted areas of buildings and the
contours of roads in the gradient map, which accords with the perception that a more
developed county tends to have denser buildings and advanced transportation systems.
It also confirms the validity of using nighttime light intensities as a proxy for economic
development levels.

Figure 7. Gradient visualization with guided backpropagation of VGG-A. The first row shows the
input satellite imagery samples and the second row shows the corresponding visualization results.
Larger gradient values result in higher brightness in the results.

47



Remote Sens. 2021, 13, 2067

6. Conclusions

This study considered nightlight maps as a proxy of socioeconomic indicators, con-
structing labels concerning nightlight intensity levels for daytime satellite imagery and
training attention-augmented VGG-16 network as a feature extractor. The fixed-length
county-level representation was calculated as each county’s statistical characteristics, which
were later fed into a simple regressor to predict GDP. Our method yielded a satisfactory
performance with an R-squared of 0.71.

Our methods are explainable both quantitatively and qualitatively. The model trained
on data from 2017 could achieve relatively high scores in predicting county-level GDP
values of 2018. On the other hand, the gradient visualization indicated that the CNN-based
classifier performed well in detecting visual patterns that were thought to be closely related
to economic development degrees, such as roads and buildings.

Experimental studies confirmed the learning abilities of the VGG structures in our
framework. Values of R-squared gradually became stable when the dimension of PCA
reduction was greater than 15. The feature interaction process did not contribute much to
prediction accuracy, indicating that features learned by the VGG structure were power-
fully informative.

This paper contributed to modifying methods that applied remote sensing data in the
estimation of socioeconomic indicators. Compared with Jean’s method [18], our framework
is both more applicable to county-level GDP estimation in China and more generalizable.
First, Jean’s method was point-to-point, while ours was capable of district-to-point esti-
mation. Concretely speaking, there was a one-to-one relationship between ground-truth
data (household wealth) and remote sensing data (paired daytime image and nightlight
intensity) in Jean’s method. Consequently, Jean’s method required large volumes of ground-
truth socioeconomic data, and the corresponding relationship between socioeconomic data
and remote sensing data was strictly constrained. In contrast, thanks to the process of
representative statistics calculation, our method could handle the case that a single socioe-
conomic indicator (or administrative unit) corresponded with variable number of daytime
images along with nightlight intensities. Therefore, our method required relatively less
ground-truth data and could be applied to estimate socioeconomic indicators at administra-
tive units of variable sizes. Second, since our method enabled all the daytime images and
nighttime light intensities belonging to an administrative unit to be used, the estimations
were more robust against noise and missing data. Third, the CNN-based classifier in our
method was incorporated with the attention mechanism. We successfully augmented the
model performance from an R-squared of 0.69 to an R-squared of 0.71 via this module.

Our method still has several limitations. First, missing images degraded model
performance, making it unable to learn broad principles around China. Second, while
economic development is a continuous process, we applied models trained on data from
the previous year to directly predict the next year’s GDP values, leaving the underlying
evolution out of consideration. Third, all the images were fed into the same model and, thus,
failed to incorporate regional differences.

To the best of our knowledge, there is no previous study that has succeeded in
estimating county-level GDP around the Chinese Mainland utilizing daytime and nighttime
remote sensing data. This paper filled in this gap, indicating the possibility of convenient
socioeconomic data-collecting methods relying on deep learning techniques and remote
sensing data. The framework proposed by this paper is still coarse. Nevertheless, it will be
fruitful to analyze current experimental results and augment model performance. On the
one hand, more accurate estimations are more helpful. On the other hand, research on
China, where social development degrees of disparate sub-national regions are measured
by the same national economic accounting system, will shed light on the principles of
applying remote sensing data in socioeconomic studies.
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Abstract: Economic inequality at the local level has been shown to be an important predictor of
people’s political perceptions and preferences. However, research on these questions is hampered
by the fact that local inequality is difficult to measure and systematic data collections are rare, in
particular in countries of the Global South. We propose a new measure of local inequality derived
from nighttime light (NTL) emissions data. Our measure corresponds to the local inequality in per
capita nighttime light emissions, using VIIRS-derived nighttime light emissions data and spatial
population data from WorldPop. We validate our estimates using local inequality estimates from
the Demographic and Health Surveys (DHS) for a sample of African countries. Our results show that
nightlight-based inequality estimates correspond well to those derived from survey data, and that
the relationship is not due to structural factors such as differences between urban and rural regions.
We also present predictive results, where we approximate the (survey-based) level of local inequality
with our nighttime light indicator. This illustrates how our approach can be used for new cases where
no other data are available.

Keywords: economic inequality; nighttime light emissions; VIIRS; spatial measurement

1. Introduction

In the social sciences, there is an increasing trend to use fine-grained data to capture
political and economic mechanisms. Measured at high levels of resolution such as indi-
viduals or households, they allow for a precise analysis of local conditions and the social
processes that people are embedded in [1]. The availability of fine-grained data is usually
very good for developed countries, where researchers can rely on extensive surveys or
administrative data. For many countries of the Global South, however, the availability
of disaggregated data is usually limited. Oftentimes, these countries are unlikely to be
covered by surveys, and administrative data shared for research purposes is sparse or does
not exist.

For this reason, social science scholars have increasingly turned to alternative sources
of data, such as remote sensing. One prominent example in this strand of research is the
use of nighttime lights (NTL) data collected by satellites. First attempts have used NTL
emissions at aggregated, lower levels of resolution. For example, earlier work has shown
that nighttime light emissions can track economic performance and human development
at the level of large geographic units, for example countries or states [2–5]. However, more
recent work has tried to increase the resolution of these tests. For example, Weidmann
and Schutte [6] show that nighttime light emissions correlate well with ground truth
measurements of household wealth, as recorded in surveys. This means that satellite-based
NTL data can be used also at high levels of resolution, for example for the estimation of
wealth, human development or regional inequality between provinces and sub-national
administrative units [7–11].

In this paper, we build on this work and attempt to use NTL data for the estima-
tion of local inequality. In recent years, and in particular following the influential work
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by Piketty [12], inequality has attracted a lot of interest from the research community. Using
aggregated country- or group-levels measures of economic inequality, this research has
shown for example that inequality can be an important driver of social conflict and political
instability [13]. Again, research in this vein has relied on NTL data, but only at aggregated
levels to measure inequality between [14–16] or within social groups [17]. However, re-
cent research has also shown that people do not perceive aggregated/systemic levels of
inequality. Rather, it is the local context that matters for explaining individuals’ behavior.
In particular, there is a number of studies showing that local inequality, i.e., inequality
with an individual’s immediate spatial context, affects citizen’s political preferences in
behavior [18–24].

To find out how this local context matters in the Global South, we need fine-grained
estimates of local inequality. This is what we present in this article. Our study, however,
is not the first to study local inequality with NTL data. Existing work, however, has not
used night light emissions to measure local inequality directly; rather, these studies first
approximate economic performance or wealth from night lights for small geographic units,
and then calculate inequality between them [9,25,26]. Our approach, in contrast, operates
directly on the NTL data in combination with a population raster, and is therefore able to
produce local inequality estimates for arbitrary locations on the globe and at a high levels
of resolution.

2. Data and Methods

In this paper, we present an approach to computing satellite-based estimates of local
inequality, which we validate with local inequality estimates derived from large-scale
survey data. In the following, we first describe the nighttime light data we use for our
indicator, before turning to the survey data used for validation.

Our satellite-based estimates of local inequality rely on the VIIRS nighttime light
data [27] (V2). We use the annual composites, where non-stationary light sources and
other erroneous influences have been removed by a combination of the different images
available for a given year. This methodology is described in Elvidge et al. [27]. The VIIRS
nighttime lights is one of the most recent freely available data products of remote-sensed
nighttime light emissions, and it is available for the years 2012–2021. Compared to earlier
products such as the frequently-used DMSP-OLS nighttime light data [28], it has a number
of advantages. Most importantly, VIIRS nighttime light rasters have a higher resolution
of 15 arc-seconds, which corresponds to about 500m at the equator. Furthermore, VIIRS
reduce the problem of top-coding: in the DMSP-OLS NTL data, high emissions are all
coded at the maximum value of 63, which eliminates a lot of variation at the upper end
of the spectrum. Therefore, with VIIRS data, we can exploit considerably more variation
within well-lit areas. Not surprisingly, existing research has concluded that VIIRS-derived
data should be preferred for work that uses nighttime lights to study socio-economic
processes [29,30].

For our approach, we rely on earlier work by Weidmann and Schutte [6], which
has analyzed nighttime light emissions as a proxy for economic wealth at high levels of
resolution. This work has shown that on average, more intensely illuminated areas are
also the richer ones. However, since variation in illumination to a large extent driven by
settlement patterns, more populated areas emit more light at night. In our analysis, we take
this into account by using a second spatial data source that maps the global population
at a high resolution: the WorldPop dataset, available from https://www.worldpop.org/
(accessed on 30 July 2021) [31]. We use the population counts raster from WorldPop,
which provides annual population estimates at the level of cells with a resolution of 30 arc-
seconds. These counts are computed in a “top-down” fashion, by disaggregating official
population statistics for administrative divisions using spatial covariates as described in
Lloyd et al. [32].

For combining the VIIRS NTL data and WorldPop, we aggregate the former to a
resolution of 30 arc seconds. Dividing the nighttime light emissions value by the population
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living in the same cell, we obtain per capita values of nighttime light emissions at the level
of the raster cells. This allows us to compute inequality estimates for any given point on the
globe: Given a set of longitude/latitude coordinates, we retrieve all cells within a buffer of
a certain radius, and simply compute an inequality index—the Gini coefficient—across all
of them. For this computation, we need the per capita nighttime light emissions as well as
the population counts of each grid cell. In line with results by Weidmann and Schutte [6],
we log-transform the nighttime light value before computing the inequality estimates. In
our analysis below, we vary the buffer size from 2 km to 20 km, to find out what produces
the most accurate estimates of local inequality. Figure 1 (left panel) illustrates the data
we use for this procedure. In principle, it is possible with this approach to compute local
inequality estimates for any point on the globe. For our validation exercise below, we do
this for the spatial locations where the survey was conducted, which allows us to compare
survey-based inequality estimates to those calculated from the nighttime lights.

Figure 1. Satellite imagery of nighttime light emissions in raster format for the town Kansanshi
in Zambia. (Left panel): The computation of the local Gini coefficient requires log-transformed
nighttime light emissions at the level of cells (in yellow) and population estimates (in white).
(Right panel): The DHS Wealth Index values of the households in the survey cluster at that location.
All values are hypothetical and only displayed for illustration purposes.

For our validation exercise, we require alternative estimates of local inequality. For
countries where detailed official income or wealth statistics are available, these estimates
can easily be computed (as for example in [33]). However, for many countries in particular
in the Global South, these data cannot be used for research purposes, or are simply not
collected regularly. This is why we rely on large cross-national survey data from the
Demographic and Health Surveys (DHS) project (see https://dhsprogram.com, accessed
on 30 July 2021). The DHS is a regular survey on living conditions and health-related
data that is conducted across many countries. It uses the same survey instrument in
all countries, which contains questions at the individual level but also the household
level. Most importantly, the DHS also include an assessment of the household’s wealth by
means of a wealth index. The wealth index is created from different questions answered
by the enumerator (not the respondents) about the household’s assets. These answers
are collapsed to the most important underlying dimension using factor analysis, and
the factor scores are used to assign each household to its corresponding quintile in the
distribution of scores in the country [34]. The household’s quintile (1–5) is the wealth index
for this household. Figure 1 (right panel) gives an example of the DHS data we use for the
validation. The entire sample covers 26 countries from DHS survey waves 6, 7 and 8, with
data collected in the years 2012–2019. Appendix A lists all the countries and survey waves
included in the sample.

To link the survey results to our spatial index of local inequality, we also require
geographic information about the location of households in the survey. These coordinates
are not provided at the level of households, but at the level of survey clusters or primary
sampling units (PSUs). In the DHS, a cluster is a group of about 25–30 households in close
proximity to each other, which were selected according to the DHS’s sampling scheme [35].
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The DHS categorize clusters into urban and rural ones. For each cluster, the DHS provide
a point (longitude/latitude) location, which, however, is randomly distorted to preserve
anonymity in the data. More precisely, an urban cluster’s location is randomly shifted
within a radius of 2 km, while a rural location is assigned a random location with a radius
of 5 km of its original location (10 km for a randomly chosen 1% of all rural clusters in a
given country and survey wave). Therefore, the spatial reference for the survey cluster
is approximate, and we construct the spatial buffers for the computation of our local
inequality index such that it contains the original cluster location (with the exception of
the randomly chosen 1% of the rural cluster with a spatial error of up to 10 km, which
introduces measurement error in our analysis that we cannot prevent).

For our survey-based measure of local inequality, we compute the Gini inequality
coefficient over the wealth index values of all households in a cluster. Since the input
values have a limited range of 1–5, the upper bound of the Gini coefficients is less than
1 (the usual upper bound of the Gini index). To normalize the resulting coefficient values,
we divide them by 0.382. The derivation for this value is presented in Appendix B.

3. Results

In this section, we first present the satellite-based and survey-derived estimates of
local inequality separately, before turning to a comparison of the two.

3.1. Estimates of Local Inequality from Nighttime Lights Data

As stated above, we compute spatial estimates of local inequality for all survey cluster
locations in our sample, so that we can later compare them to the survey-derived inequality
scores. These computations use NTL data for the same year in which the cluster was
included in the survey (see below). In Figure 2, we show the overall distribution of our
spatial estimates, computed with a buffer radius of 5 km. The distribution is bimodal,
which is an aggregate result of the different distributions of urban and rural clusters: While
urban clusters tend to have low values of inequality (most of them located around 0.20),
the opposite is true for rural clusters. Here, the majority of the cases has Gini values of 0.5
and above. This could partly reflect more segregated residential patterns in cities, where
neighborhoods tend to be inhabited by similarly poor or rich households. This could be
different in rural areas, where rich and poor households can be located close to each other,
thus resulting in a high level of local inequality.

Figure 2. Histogram of the overall distribution of nightlight-based Gini-coefficients, computed with
a buffer radius of five kilometers. The light-grey histogram shows the distribution of urban clusters,
the distribution of rural clusters is shown in dark-grey.

At the same time, this pattern can also indicate potential limitations of our satellite-
based measurement method. In urban areas, a small buffer radius (2 km or 5 km) will
include many cells with similar levels of illumination and similar population counts, thus
leading to low levels of the NTL-based inequality indicator. A plot of the inequality scores
for different buffer sizes (see Figure 3 partly confirms this: as the buffer size increases,
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cells within the buffers become more diverse as regards their illumination and population
values, and inequality scores increase as a result. Our validation exercise later will have to
test how buffer size affects the correlation between NTL-based and survey-based inequality
scores, and which of them results in the best fit.

Figure 3. Histogram of the overall distribution of nightlight-based Gini-coefficients for different
buffer sizes.

We also show the distribution of nightlight-based inequality scores separately for each
country in Figure 4. The results show that the distribution of NTL-based local inequality
values differs by country. Our validation exercise will have to test whether these patterns
reflect actual differences in local inequality.

Figure 4. Boxplot of the NTL-based Gini-coefficients for a buffer radius of 5 km for individual
countries. The lower and upper hinges correspond to the 25th and 75th percentiles, and the centerline
indicates the 50th percentile.

3.2. Estimates of Local Inequality from the DHS

What is the level of local inequality according to the survey data from the DHS? In
Figure 5, we plot the overall distribution of the survey-based inequality scores, distinguish-
ing again between urban and rural clusters. Again, we observe a similar distribution as for
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the NTL-based estimates above, with urban clusters on average exhibiting lower levels of
local inequality, while rural clusters have high Gini values. This is somewhat reassuring,
since it shows that the patterns we found for the nightlight-based indicator above are not
entirely driven by the measurement method.

Figure 5. Histogram of the overall distribution of survey-based Gini-coefficients. Distribution of
urban clusters in light-grey, the dark-grey histogram shows the distribution of rural clusters.

We again plot the indicator distribution separately for each country (see Figure 6). In
contrast to the pronounced differences between countries for the NTL-based indicator, we
see considerably less variation across countries here, with most distributions centered in
the range 0.25–0.5.

Figure 6. Boxplot of the distribution of survey-based Gini coefficients for the individual countries.
The number indicates the survey wave.

3.3. Validation

In this section, we compare the local inequality estimates obtained from the surveys to
those computed from the nighttime light data. As explained above, for each survey cluster
and the associated level of (survey-based) local inequality, we compute a nightlight-based
estimate for the same year in which the survey was conducted. In Figure 7, we show simple
scatterplots of the two indicators, as well as a line indicating the linear fit. Overall, the plot
shows a positive and significant correlation between the two indicators. In other words,
our nightlight-based indicator is able to pick up some of the variation in local inequality

58



Remote Sens. 2021, 13, 4624

we see in the surveys. Still, the large point clouds also indicate that there is considerable
error where the two indicators disagree.

Figure 7. Scatterplot of NTL-based Gini coefficients (computed with a buffer size of five kilometers)
and survey-based Gini coefficients, separately for urban and rural clusters.

To test how buffer size affects the fit between the nightlight-based and the survey-
derived indicator, we plot the full distribution of clusters for different buffer sizes in
Figure 8. Here, we see that neither small nor large buffer sizes maximize the fit between
the two indicators. Rather, a buffer size of 5 km seems to give the best results over the
entire sample.

Figure 8. Scatterplot of NTL-based and survey-based Gini coefficients, for different buffer sizes.

Can we also observe different patterns for the different countries in our analysis?
Following our approach above, we plot the two indicators separately for each country in
Figure 9. In all countries except one (Ghana), the correlation between them is positive,
which is encouraging. In some countries, we observe high levels of agreement (as for
example, Burkina Faso, Uganda or Zambia), while in a few others, our satellite-based
measurement method does not seem to work well. In Gabon and Ghana, for example,
correlations between the indicators remain low.
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Figure 9. Scatterplot of nighttime light-based Gini coefficients (with a buffer size of five kilometers)
and survey-based Gini coefficients, by country and survey wave.

Our bivariate comparison of survey-based and NTL-based indicators cannot control
for other factors that could potentially affect the positive correlation we find between the
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nightlight-based and the survey-based indicator. For that reason, we run multivariate re-
gression models for each buffer size (2 km, 5 km, 10 km and 20 km), with the survey-derived
Gini coefficient as the outcome. Our main predictor is the inequality index computed from
the satellite data. We include a number of control variables. First, we include a dummy
variable for urban clusters, to remove variation in the outcome that is driven by the dif-
ference between urban and rural locations (see the discussion above). We also control for
demographic factors such as the average size of the household, as well as the number of
households included in the cluster. To make sure that the results are driven by inequality in
the nightlight emissions and not the overall level of emissions or the size of the buffer, we
also control for the sum of the nighttime light emissions in a buffer, and the total population
as well as the number of cells in the buffer. The results of the regression models are shown
in Table 1. We provide additional results with country/wave fixed effects in Table 2, to take
into account systematic differences between countries and survey waves.

Table 1. OLS regression results. Dependent variable: survey-based Gini coefficient. Standard errors clustered by country
and survey wave.

Survey-Based Inequality Index

Radius

2 km 5 km 10 km 20 km

(1) (2) (3) (4)

Intercept 0.638 *** 0.626 *** 0.507 *** 0.327 ***
(0.027) (0.028) (0.029) (0.030)

NTL-based Gini 0.098 *** 0.165 *** 0.211 *** 0.265 ***
(0.009) (0.009) (0.009) (0.009)

Urban −0.088 *** −0.116 *** −0.152 *** −0.177 ***
(0.005) (0.004) (0.004) (0.004)

Household size (mean) 0.002 * −0.001 −0.002 * −0.001
(0.001) (0.001) (0.001) (0.001)

Number of households 0.0003 −0.0005 −0.001 *** −0.002 ***
(0.0003) (0.0003) (0.0003) (0.0003)

Total NTL emissions (log) −0.003 *** −0.001 *** −0.0002 *** −0.0001 ***
(0.0004) (0.0001) (0.00002) (0.00001)

Total population (log) −0.042 *** −0.031 *** −0.016 *** −0.003
(0.002) (0.002) (0.002) (0.002)

Number of cells 0.005 *** 0.002 * 0.001 0.001
(0.001) (0.001) (0.001) (0.001)

Observations 9343 11,029 12,946 15,211
R2 0.423 0.437 0.421 0.398
Adjusted R2 0.423 0.437 0.421 0.398
Residual Std. Error 0.158 (df = 9335) 0.163 (df = 11,021) 0.168 (df = 12,938) 0.172 (df = 15,203)

Note: * p < 0.1; *** p < 0.01.

The regression results confirm that our NTL-based indicator remains a strong predictor
of actual local inequality. We see that in both types of regression and for all four buffer sizes,
the coefficient of this variable remains positive and highly significant. This results holds in
the presence of several control variables. For example, the “urban” dummy nets out the
difference between urban and rural clusters we have seen above, with urban clusters having
lower levels of inequality. Furthermore, the effect of the NTL-based indicator remains when
we control for the overall level of night light emissions and the total population, which
are additional controls that go beyond the simple urban/rural distinction and provide
additional support for the impact of our NTL-based indicator. In Appendix C, we provide
additional results that limit the sample to clusters with at least 30 households, since we
may be concerned that survey-based local inequality may be measured with considerable
error if we have fewer observations in a cluster. Furthermore, we repeat the analysis
without log-transforming the NTL. The substantive results from our main analysis remain
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unchanged. In short, these results show that our indicator can capture local inequality
well and that the relationship we see is not due to some a spurious correlation with other
characteristics of the survey clusters and their spatial features.

Table 2. OLS regression results with country/wave fixed effects. Dependent variable: survey-based Gini coefficient.
Standard errors clustered by country/survey wave.

Survey-Based Inequality Index

Radius

2 km 5 km 10 km 20 km

(1) (2) (3) (4)

Intercept 0.218 *** 0.164 *** 0.042 −0.115 ***
(0.034) (0.035) (0.035) (0.037)

NTL-based Gini 0.105 *** 0.171 *** 0.207 *** 0.257 ***
(0.009) (0.009) (0.009) (0.011)

Urban −0.079 *** −0.103 *** −0.137 *** −0.162 ***
(0.005) (0.004) (0.004) (0.004)

Household size (mean) 0.015 *** 0.011 *** 0.010 *** 0.010 ***
(0.001) (0.001) (0.001) (0.001)

Number of households 0.007 *** 0.008 *** 0.008 *** 0.008 ***
(0.001) (0.001) (0.001) (0.001)

Total NTL emissions (log) −0.008 *** −0.001 *** −0.0003 *** −0.0001 ***
(0.0004) (0.0001) (0.00002) (0.00001)

Total population (log) −0.018 *** −0.014 *** −0.005 *** 0.004 *
(0.002) (0.002) (0.002) (0.002)

Number of cells 0.007 *** 0.001 *** 0.0002 *** 0.00005 ***
(0.001) (0.0002) (0.00003) (0.00001)

Fixed effects (country/wave) Yes Yes Yes Yes
Observations 9343 11,029 12,946 15,211
R2 0.539 0.532 0.508 0.470
Adjusted R2 0.537 0.530 0.507 0.469
Residual Std. Error 0.142 (df = 9299) 0.149 (df = 10,985) 0.155 (df = 12,902) 0.161 (df = 15,167)

Note: * p < 0.1; *** p < 0.01.

3.4. Predicting Local Inequality from Nighttime Lights Data

Our above analyses show that the nightlight-based indicator picks up variation in
local inequality, even when we control for a number of factors that could be driving this
result. In a final analysis, we move from correlation analysis to prediction. We analyze a
situation where a researcher requires estimates of local inequality, and uses simple machine
learning models to predict these values based on our NTL indicator with a model fitted
on available data from other locations. Specifically, we study two scenarios. In the first
one, we use data from a given country to fit a prediction model, and then predict local
inequality for a new location. In the second and more difficult scenario, we predict local
inequality for a new country with a prediction model fitted on data from other countries.
For both scenarios, our aim is to gauge the average prediction error that the researcher
would have to incur when relying solely on our NTL indicator.

In both scenarios, we use very simple prediction models. Our first model is an OLS
regression model similar to the one we have used above, but with only one predictor: the
nightlight-based estimate of local inequality. The second model is a generalized additive
model (GAM) using quadratically penalized likelihood, fitted using the gam function from
R’s mgcv package (see [36]), while more complex machine learning models could be applied,
we do not expect significant performance gains due to the simple setup of the prediction
exercise with a single predictor only. We evaluate all our models out-of-sample. In the first
prediction scenario, this means that we keep a single cluster in a country as a hold-out, fit
the model on the remaining clusters from that country, and then predict the level of local
inequality for the cluster that was set aside. In Figure 10, we show the distribution of the
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absolute prediction errors across the 37 surveys in our sample, for satellite-based inequality
indicators with different buffer sizes (2 km, 5 km, 10 km and 20 km) and the two different
prediction models (LM and GAM). For comparison, we add an additional linear model
that only contains a binary predictor for urban vs. rural locations. The tabular presentation
of the results is provided in Appendix D.

Figure 10. Predicting wealth from nighttime light emissions, within-country. The figure shows the
median (black lines), the 25th and 75th percentile (hinges) and the full ranges of the mean absolute
prediction errors across the 37 surveys in our sample. Lower values indicate better performance.

The plot shows that prediction of local inequality for new locations using our spatial
indicator works well. Using small buffer sizes (2 km), we miss the level of local inequality
as given by the survey data only by around 0.11 on average, and 75% of the cases have an
error of less than 0.125 (for the GAM). The GAM performs slightly better than the LM, but
the differences are small.

In our second prediction scenario, we predict local inequality in a new country that
was not used in training the model. We again use leave-one-out cross-validation, where
we fit the model on all our data except one country, and then predict the values for that
country. In Figure 11, we show again the distribution of absolute prediction errors for
this exercise.

Figure 11. Predicting wealth from nighttime light emissions, across countries. As above, the figure
shows the distribution of the mean absolute prediction errors across the 37 surveys in our sample,
with lower values indicating better performance.

Figure 11 shows that as expected, prediction errors are higher as compared to the
first scenario. This is not surprising, since in the second scenario, the model is not able
to capture a possible country-specific relationship between the satellite-based estimates
and the survey-based inequality indicator. Still, prediction errors are again of limited
magnitude even in the more difficult scenario. However, unlike in the first prediction task,
we see that our NTL-based indicator improves predictive performance only marginally
as compared to the simple model using only the urban/rural dummy (“LM Urban”) in
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Figure 11. In particular, the 5 km buffers seem to work best. Together, these results show
that we can use our NTL-based indicator in a simple machine learning model to obtain
local inequality estimates for new locations in a given country, but in particular for cases
where we do have some training/calibration data available for the same country.

4. Discussion

In this article, we have introduced an indicator for local inequality derived from high-
resolution night lights data. In addition to the night lights raster data, the computation
of this indicator requires only a fine-grained population grid, both of which are freely
available. We combine these two data sources to obtain per capita emissions values at the
grid cell level, which we use to compute a Gini index of inequality for spatial buffers of
a given size. We present two main analyses. In a first validation exercise, we compare
the NTL-based indicator to estimates of local inequality derived from survey data. The
correlations are positive and significant in almost all countries in our sample, although
not surprisingly, the indicator cannot fully capture local inequality as measured by the
surveys. This is to be expected: while survey estimates of wealth take into account a variety
of household assets, only some of them are related to electricity consumption and are
therefore possibly reflected in nightlight emissions. Furthermore, in particular in urban
areas, night light emissions are less likely to be attributable to individual households, and
rather reflect public infrastructure. This will also reduce the correlation between NTL
emissions and individual wealth.

To address the question of whether it is possible to our indicator for locations where no
other data are available, we provide a second type of analysis. Here, we generate estimates
of local inequality with simple prediction models, and compare these predicted values to
the ones measured with the survey data. This analysis shows that prediction errors are
generally low. When we predict Gini coefficients of local inequality with our NTL-based
indicator, the best predictions have an average error around 0.05 on the 0–1 scale. This is a
good result, given that it is derived exclusively from simple spatial datasets (night light
emissions and population rasters). Overall, this shows that our approach can be used to
generate new estimates of local inequality for locations for which no other data exists.

While our results show that night lights emission can pick up local inequality to a
certain extent, they are necessarily weaker as compared to other approaches combining
multiple sources of data. For example, Chi et al. [37] introduce micro-level estimates of
wealth that are computed using a variety of input data, including telecommunication
coverage maps as well as Facebook connectivity data. This leads to better wealth estimates,
which could also be used to estimate local inequality. At the same time, however, the use
of proprietary data makes this approach impossible to use for many researchers without
access to these data. Furthermore, the coverage of these data may be limited to particular
countries, which restricts their applicability to country-specific studies. Our approach, in
contrast, uses only publicly available data, is fully replicable using open-source software
(PostGIS), and can be used for comparative, cross-national work in the social sciences.

Due to its ability to pick up variation in local inequality and its exclusive reliance on
publicly available data, our index enables future research in many different fields. In politi-
cal science, for example, it helps to better understand how local inequality in an individual’s
immediate context affects political preferences and behavior. Sociologists can use these
data to study the effect of local inequality on residential choice or personal relationships,
and development economists can use it to identify areas in need of particular support.

While the results presented in our article are encouraging, there are several drawbacks
associated with the NTL-based estimation of inequality. Due to its reliance on variation in
night light emissions, this approach can only work in world regions where no saturation
has been reached. For example, in most countries of the Global North, nightly illumination
of streets is commonplace, which reduces variation in night light emissions and their
correlation with socio-economic variables [38]. Consequently, we expect our approach
to be less applicable to these countries. Furthermore, there are limitations as regards the
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temporal variation the indicator is able to pick up. Night light emissions change slowly,
which is why our indicator will remain relatively stable even in cases of large population
shifts, for example due to refugee movements. When relying on night lights as a proxy
for wealth or inequality, researchers should be aware of these limitations and carefully
consider whether this data source is suitable for their project.
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Appendix A. Description of the Sample

Table A1 lists all countries, survey waves (“phases”) and years in our sample, along
with the number of PSUs and households.

Table A1. List of countries and waves included in the analysis.

Country Phase Year No. of Clusters No. of Households

Angola 7 2015 610 15,739
Benin 6 2012 704 16,480
Benin 7 2017 534 13,636
Burkina Faso 7 2014 203 5187
Burkina Faso 7 2017 214 5521
Burundi 6 2012 177 4311
Burundi 7 2016 552 15,921
Cameroon 7 2018 425 11,637
Chad 7 2014 557 15,577
DR Congo 6 2013 436 14,780
Ethiopia 7 2016 560 14,766
Gabon 6 2012 325 9537
Ghana 7 2014 416 11,552
Ghana 7 2016 192 5602
Ghana 8 2019 190 5509
Guinea 6 2012 295 7001
Ivory Coast 6 2012 325 8975
Kenya 7 2014 2 47
Kenya 7 2015 230 6189
Liberia 6 2013 310 8987
Liberia 7 2016 147 4158
Liberia 7 2019 320 8950
Madagascar 6 2013 274 8574
Madagascar 7 2016 358 11,284
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Table A1. Cont.

Country Phase Year No. of Clusters No. of Households

Malawi 7 2014 140 3405
Malawi 7 2015 848 26,323
Malawi 7 2017 148 3679
Mali 6 2012 376 9299
Mali 7 2015 177 4240
Mali 7 2018 313 8462
Mozambique 7 2015 8 189
Mozambique 7 2018 221 6117
Nigeria 6 2013 886 38,108
Nigeria 7 2015 301 7306
Nigeria 7 2018 1371 40,035
Senegal 7 2015 164 3550
Senegal 8 2019 176 3808
Sierra Leone 6 2013 433 12,592
Sierra Leone 7 2019 529 12,498
Tanzania 7 2015 388 8363
Tanzania 7 2017 332 7183
Togo 6 2013 329 9520
Togo 7 2017 171 4909
Uganda 7 2014 161 4197
Uganda 7 2016 650 18,392
Uganda 7 2018 309 8180
Zambia 6 2013 533 12,223
Zambia 7 2018 500 11,920
Zimbabwe 7 2015 375 9886

Appendix B. Proof: Upper Bound of Gini Coefficient for DHS Wealth Index Values

The DHS Wealth Index has values in the range 1–5, where 5 corresponds to the richest
households. For a group of households, the maximum Gini value can only be achieved if
each household belongs either to the lowest (1) or the highest group (5). Assume that we
have an income distribution with only two different groups, where a fraction n 0 < n < 1
of the population belongs to the group of poor households with wealth index 1, and
1 − n belong to the group with wealth index 5. The Lorenz curve (cumulative shares of
households along the x-axis, cumulative shares of wealth along the y-axis) is piecewise
linear with two linear segments. The first line segment connects (x0, y0) = (0, 0) and
(x1, y1) = (n, n

n+5(1−n) ), the second line segment connects (x1, y1) and (x2, y2) = (1, 1).
The Gini coefficient G is defined as the area between the equality line and the Lorenz curve,
which corresponds to G = 1 − 2B if B is the area below the Lorenz curve. In our case, this
means that the Gini coefficient is

G = 1 − 2[
1
2

x1y1 + (1 − x1)y1 +
1
2
(1 − x1)(1 − y1)]

or simplified
G = x1 − y1

Substituting x1 and y1, we get

G(n) = n − n
n + 5(1 − n)

Taking the first derivative, we get

d
dn

G(n) =
d

dn
[n − n

n + 5(1 − n)
] =

4(4n2 − 10n + 5)
(5 − 4n)2

which results in a maximum at n = 5−√
5

4 and with that a maximum value for the Gini at
0.382. In conclusion, the Gini coefficient cannot be higher than 0.382 for wealth values in
the range 1–5.
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Appendix C. Additional Results of the Validation Analysis

Table A2. OLS with country fixed effects, using only clusters with more than 30 households.

Survey-Based Inequality Index

Radius

2 km 5 km 10 km 20 km

(1) (2) (3) (4)

Intercept 0.036 0.052 0.059 −0.026
(0.080) (0.077) (0.073) (0.078)

NTL-based Gini 0.062 *** 0.116 *** 0.151 *** 0.201 ***
(0.015) (0.015) (0.016) (0.019)

Urban −0.060 *** −0.074 *** −0.099 *** −0.119 ***
(0.008) (0.008) (0.007) (0.007)

Household size (mean) 0.019 *** 0.014 *** 0.012 *** 0.009 ***
(0.003) (0.003) (0.003) (0.002)

Number of households 0.007 *** 0.008 *** 0.009 *** 0.008 ***
(0.002) (0.002) (0.002) (0.002)

Total NTL emissions (log) −0.010 *** −0.001 *** −0.0004 *** −0.0001 ***
(0.001) (0.0002) (0.00004) (0.00001)

Total population (log) −0.009 ** −0.009 ** −0.004 0.003
(0.003) (0.004) (0.003) (0.004)

Number of cells 0.009 *** 0.001 *** 0.0002 *** 0.0001 ***
(0.002) (0.0003) (0.0001) (0.00001)

Fixed effects (country/wave) Yes Yes Yes Yes
Observations 2631 3206 3824 4522
R2 0.557 0.538 0.503 0.442
Adjusted R2 0.553 0.534 0.500 0.439
Residual Std. Error 0.146 (df = 2604) 0.152 (df = 3179) 0.157 (df = 3797) 0.164 (df = 4495)

Note: ** p < 0.05; *** p < 0.01.

Table A3. OLS with country fixed effects without log-transformed NTL values.

Survey-Based Inequality Index

Radius

2 km 5 km 10 km 20 km

(1) (2) (3) (4)

Intercept 0.198 *** 0.136 *** 0.015 −0.146 ***
(0.035) (0.036) (0.036) (0.038)

NTL-based Gini 0.120 *** 0.188 *** 0.226 *** 0.282 ***
(0.009) (0.009) (0.011) (0.012)

Urban −0.077 *** −0.102 *** −0.137 *** −0.162 ***
(0.005) (0.004) (0.004) (0.004)

Household size (mean) 0.015 *** 0.011 *** 0.010 *** 0.010 ***
(0.001) (0.001) (0.001) (0.001)

Number of households 0.007 *** 0.008 *** 0.008 *** 0.008 ***
(0.001) (0.001) (0.001) (0.001)

Total NTL emissions (log) −0.008 *** −0.001 *** −0.0003 *** −0.0001 ***
(0.0004) (0.0001) (0.00002) (0.00001)

Total population (log) −0.017 *** −0.014 *** −0.006 *** 0.003
(0.002) (0.002) (0.002) (0.002)

Number of cells 0.007 *** 0.001 *** 0.0002 *** 0.00005 ***
(0.001) (0.0002) (0.00003) (0.00001)

Fixed effects (country/wave) Yes Yes Yes Yes
Observations 9361 11,046 12,968 15,221
R2 0.541 0.533 0.509 0.471
Adjusted R2 0.539 0.531 0.507 0.469
Residual Std. Error 0.142 (df = 9317) 0.149 (df = 11002) 0.155 (df = 12924) 0.161 (df = 15177)

Note: *** p < 0.01.

67



Remote Sens. 2021, 13, 4624

Appendix D. Results of the Prediction Analysis

Table A4. Within-country prediction results (AE = Absolute Error).

Model Mean AE Min AE Max AE
95%-Confidence

Interval: Lower Bound
95%-Confidence

Interval: Upper Bound

1 LM 2 km 0.11 0.07 0.21 0.10 0.12
2 GAM 2 km 0.12 0.08 0.17 0.11 0.12
3 LM 5 km 0.12 0.08 0.18 0.12 0.13
4 GAM 5 km 0.14 0.09 0.20 0.13 0.15
5 LM 10 km 0.11 0.07 0.22 0.10 0.12
6 GAM 10 km 0.11 0.08 0.16 0.10 0.12
7 LM 20 km 0.12 0.08 0.18 0.11 0.13
8 GAM 20 km 0.13 0.09 0.17 0.12 0.14
9 LM Urban 0.12 0.08 0.18 0.12 0.13

Table A5. Across-country prediction results (AE = Absolute Error).

Model Mean AE Min AE Max AE
95%-Confidence

Interval: Lower Bound
95%-Confidence

Interval: Upper Bound

1 LM 2 km 0.15 0.08 0.31 0.13 0.17
2 GAM 2 km 0.15 0.08 0.31 0.13 0.17
3 LM 5 km 0.15 0.09 0.27 0.13 0.17
4 GAM 5 km 0.15 0.09 0.26 0.13 0.16
5 LM 10 km 0.15 0.10 0.25 0.14 0.17
6 GAM 10 km 0.15 0.09 0.25 0.14 0.17
7 LM 20 km 0.16 0.10 0.24 0.14 0.17
8 GAM 20 km 0.16 0.10 0.24 0.14 0.17
9 LM Urban 0.15 0.09 0.33 0.14 0.16
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Abstract: Education is a human right, and equal access to education is important for achieving sus-
tainable development. Measuring socioeconomic development, especially the changes to education
inequality, can help educators, practitioners, and policymakers with decision- and policy-making.
This article presents an approach that combines population distribution, human settlements, and
nighttime light (NTL) data to assess and explore development and education inequality trajectories
at national levels across multiple time periods using latent growth models (LGMs). Results show
that countries and regions with initially low human development levels tend to have higher levels of
associated education inequality and uneven distribution of urban population. Additionally, the initial
status of human development can be used to explain the linear growth rate of education inequality,
but the association between trajectories becomes less significant as time increases.

Keywords: education inequality; nighttime light; urbanization; sustainable development; human de-
velopment

1. Introduction

Assessing our socioeconomic development in a frequent, rapid, and accurate manner
is important for achieving the United Nations’ Sustainable Development Goals (SDGs) on
various national and global scales [1]. The United Nations’ 2030 Agenda for Sustainable
Development was developed to transform our world by urging countries to solve current
development challenges related to education, poverty, inequality, climate change, etc. [2–5].
Recently, many countries and regional organizations have made significant progress toward
the achievement of these goals. Nevertheless, due to the complexity of socioeconomic
development, many countries are still suffering from these problems, and some of the
actions and policies are not implemented in an effective and efficient way.

To support the 2030 Agenda for Sustainable Development, it is important to monitor
and evaluate the current socioeconomic development status to provide scientific evidence
for facilitating the policy- and decision-making processes. Measuring socioeconomic
development, especially the status of education inequality, in a timely and accurate manner
can help educators, practitioners, scientists, and policymakers compare and evaluate a
variety of key education indicators. Measuring education inequality, for example, can help
us better evaluate the fairness and effectiveness of our education systems and the processes
of current educational development [6]. Since education is the foundation of development
and growth, measuring socioeconomic data related to education inequality also will help
countries achieve many of the SDGs including stable economic growth [7–9], eradication
of poverty [10,11], reduction of inequality and exclusion [12,13], and achievement of
sustainable development [14] in the long-run.
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This paper presents an approach that combines multi-source data (including popu-
lation distribution, human settlement, and artificial light data monitored from space) to
assess changes in trajectories of human development and education inequality at a national
level from 1990 to 2010. This research has utilized nighttime light (NTL) data collected by
the Defense Meteorological Satellite Program (DMSP) and human settlement data from the
Global Human Settlement Layer (GHSL) to measure human development and evaluate
its association with education inequality. Many researchers have demonstrated that NTL
data can be used to assess regional inequality and economic development [15–17]. Studies
also have shown that NTL is capable of capturing regional uneven development [18–20].
Therefore, we use DMSP NTL data to estimate human development [21] and assess the
associations of growth patterns with education inequality.

Education is a human right, and equal access to education is not only crucial for an
individual’s well-being, but also is essential for eradicating poverty, transforming our
society, ensuring long-term prosperity for all, and achieving sustainable development.
Many researchers have proposed that ensuring equal access to education can be achieved
through distributing education resources more equally [6]. Therefore, it is important to
develop indicators that can measure education inequality so we can monitor the changes to
education resource allocation status over time. Nevertheless, unlike many socioeconomic
indicators (e.g., the Gross Domestic Product) that are developed based on a series of sophis-
ticated accounting and statistical methods, it is difficult to measure education inequality
by assigning a monetary value to education accessibility or student achievement and
attainment. Some studies have demonstrated the usage of Gini coefficients for measuring
education inequality. An Education Gini (EG) index [6], for example, is developed based
on education attainment of the concerned population using the following steps:

EL =

(
1
μ

) n

∑
i = 2

i−1

∑
j = 1

pi
∣∣yi − yj

∣∣pj (1)

where EL is the education Gini, μ is the mean years of schooling, pi and pj are the percent-
ages of the population with certain levels of schooling, yi and yj are the years of schooling
at different education attainment levels, and n is the number of levels of the attainment
data for the concerned population.

Thomas et al. [6] also have adopted the Lorenz curve to calculate an education Gini
based on the cumulative proportion of the population with certain years of schooling,
which is similar to the calculation of an income Gini. Generally, although different studies
have proposed different approaches to education Gini calculation, an education Gini
is mainly derived based on the proportion of the population with various education
attainment levels.

Recently, many scientists also have incorporated multi-source data to enhance model
performance for evaluating various socioeconomic indicators that are related to human
development. There are many difficulties associated with collecting traditional socioeco-
nomic data for measuring human well-being. Accurate information about the distribution
of the population, settlements, and even wealth are not available for many less developed
regions, for example, and sometimes these data are of poor quality [22]. Nevertheless,
remote sensing technology and satellite imagery can help us observe, explore, and evaluate
the status of human development on the Earth’s surface [23]. Hence, geospatial data can
be an alternative way for scientists to study and monitor human activities in a timely,
consistent, and affordable way. NTL data is widely used for estimating and evaluating
socioeconomic activities, for instance, since it captures the artificial light at night [24–26].
Based on remotely sensed NTL data, for example, Sutton et al. [27] estimated global mar-
keted and non-marketed economic value from classified satellite images. Elvidge et al. [28]
produced a global poverty map on a subnational scale based on population and DMSP
NTL data. Therefore, the subnational data generated from NTLs can greatly help scientists
measure human activities on various spatial scales.
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Many scientists also have adopted Gini concepts for calculating other socioeconomic
indexes based on the Lorenz curve. Elvidge et al. [21], for example, produced the Nighttime
Light Development Index (NLDI) based on DMSP NTL data and LandScan population
density data to measure human development. NLDI for each country is calculated based on
the Lorenz curve produced from the cumulative proportion of the NTL and the cumulative
proportion of the population. Generally, results show that developed countries tend to have
low NLDI values and less developed countries have high NLDI values. It also shows that
NLDI has a strong correlation with other indicators like the Human Development Index
(HDI), poverty rate, and the proportion of the urban population. Therefore, the NLDI can
be an alternative way for measuring human development using NTL data. Song et al. [29]
also have used the Spatial Lorenz Curve (SLC) and Gini coefficients to measure land use
changes based on an unsupervised land use classification method with cloud-free Landsat
Thematic Mapper (TM) images. Similar to the NLDI, the SLC is calculated based on the
cumulative proportion of land use and the cumulative proportion of land. Therefore,
these studies show that there is great potential for scientists to utilize geospatial data
to monitor the allocation of resources, the distribution of population, and the different
levels of development on various spatiotemporal scales. Added to that, the availability of
geospatial data can help us establish a consistent, objective, and globally applicable method
for characterizing and measuring education inequality that are caused by development
problems like income inequality, urbanization, and resource allocation.

This research utilizes multi-source data to evaluate human development levels and the
uneven distribution of the urban population on various spatiotemporal scales to explore
development trajectories and patterns of human development and education inequality.
The rest of this paper is organized as follows. Section 2 describes data processing procedures
and the development of latent growth models (LGMs) for measuring different development
trajectories and patterns. Section 3 presents the results from LGMs to evaluate the growth
patterns for each factor included in this study. Section 4 discusses the associations between
trajectories. Finally, Section 5 summarizes the results and draws conclusions.

2. Data and Method

2.1. Gini Coefficients for Human Development and Education

During this study, we analyze the relationship between an Education Gini (EG),
Nighttime Light Development Index (NLDI), and population distribution at a national
level in 1990, 2000, and 2010. The NLDI for each county is calculated as a proxy for human
development [21]. Moreover, an urban population Gini (UG) index also is constructed
based on similar procedures [21,29] to measure the levels of urbanization with Lorenz
curves. A higher UG value represents higher levels of rural–urban population distribution
inequality which, in turn, indicates that less of the population are likely to benefit from
improved economic activity, better shared infrastructure, and higher standards of living
due to urbanization [30–32]. The datasets used in this study are described in Table 1. This
study utilizes the Defense Meteorological Satellite Program nighttime light (DMSP NTL)
data (Figure 1a) and the Global Human Settlement Layer (GHSL) population data (Figure 1b)
to construct an NLDI and UG for countries and regions around the world. Due to the data
availability issues, population data from 2015 (rather than 2010) and DMSP NTL data from
1992 (rather than 1990) are used to calculate these indexes.
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Table 1. Datasets for calculating the Nighttime Light Development Index (NLDI) and urbaniza-
tion Gini.

Dataset Description Sources

Global Human Settlement
Layers (GHSL)

Global geospatial dataset for
population distribution on

earth for 1990, 2000, and 2015

GHSL (https:
//ghsl.jrc.ec.europa.eu/,
accessed on 20 May 2020)

Defense Meteorological
Satellite Program

(DMSP) Data

DMSP average stable
nighttime light product from

1992 to 2013

National Oceanic and
Atmospheric Administration

(https://ngdc.noaa.gov/,
accessed on 10 May 2020)

Administrative Boundaries

National and subnational
administrative boundaries
from Database of Global

Administrative Areas (v3.6)

Database of Global
Administrative Areas

(https://gadm.org/, accessed
on 10 June 2020)

Global education Gini Index Gini Coefficients of Education
at the national level [33]

Figure 1. (a) Defense Meteorological Satellite Program (DMSP) nighttime light (NTL) and (b) Global
Human Settlement Layer (GHSL) population distribution data for the year 2000.

Based on the population distribution, NTL intensity, and human settlements, the Gini
coefficients for the NLDI and urbanization are calculated as follows:

G = 1 −
n−1

∑
i = 0

(Ni + Ni−1)(Pi − Pi−1) (2)

where G is the Gini coefficient for the NLDI or urbanization, Ni is the cumulative proportion
of the NTL (for calculating NLDI) or the urban population (for calculating an urbanization
Gini) in the subnational entities, and Pi is the cumulative proportion of the population in
the same subnational entities.

The NLDI and UG at the national level are constructed using level 0 and 1 admin-
istrative units. Level 0 represents national-level administrative boundaries, and level 1
represents state- and provincial-level boundaries. To construct the Lorenz curve for each
country based on the cumulative proportion of the NTL and population, this study uses the
level 1 subdivisions’ administrative boundary layer (state or province) to calculate the sum
of the population and NTL within each subdivision. Based on the cumulative percentage
of the NTL and population data, this study calculates the NLDI value for each country for
that corresponding year. The subnational NLDI at level 1 subdivisions is calculated based
on the level 2 subdivisions’ data using the same procedures. After matching and filtering
the data (i.e., based on the ISO3 country code), a total number of 141 countries and regions
from 1990, 2000, and 2010 are included in this study for trajectory analysis to construct
latent growth models (LGMs) [34] to study the trends of the EG, UG, and NLDI changes
(see Appendix A) on a national scale.

74



Remote Sens. 2021, 13, 843

2.2. Development of Associative Latent Growth Models (LGMs)

To better analyze the developmental trajectories of an Education Gini (EG), Nighttime
Light Development Index (NLDI), and Urban Population Gini (UG) for each country over
time, an unspecified associative latent growth model (LGM) is developed due to its greater
capacity to (1) test the efficiency and adequacy of the hypothesized growth structure, espe-
cially the non-linear growth curve [35–37]; (2) integrate a time-variant and time-varying
covariate [38] so as to estimate their effects on developmental trajectories; (3) identify
growth patterns based on the estimations of individual change, intra-individual differences
from individual change, and within-group error [39]. More importantly, the associative
LGMs allow researchers to explore interrelations among parameters for individual dif-
ferences [40–42]. This model, in other words, is specified to investigate the synchronous
model’s correlation coefficients, which are the correlations of trajectories between factors
that are included in this study [38].

It is suggested that the parallel process of LGM analysis methodology can be im-
plemented to test the research hypotheses [43]. First, three separate unconditional (i.e.,
without covariates) single-factor polynomial LGMs are constructed and evaluated for the
NLDI, UG, and EG, respectively. Second, these three single-factor LGMs are examined
based on their model fits. Three single-factor LGMs then are combined to construct the
unconditional three-factor associative LGM to further explain the associations between the
growth parameters of these three major factors. Third, this study evaluates the model fits
of the associative LGM and examines the growth trajectories between the NLDI, UG, and
EG by interpreting model fit indices and values of growth parameters.

2.3. Latent Growth Model (LGM) Configuration Procedures
2.3.1. Unconditional Latent Growth Model (LGM) Specification for All Factors

MPlus software Version.8 [44] is used to specify, configure, and estimate the latent
growth models (LGMs). To test and determine the growth shape of the Nighttime Light
Development Index (NLDI), a single-factor polynomial LGM with a quadratic growth
factor is specified. Since each major factor has been measured 3 times (i.e., 1990, 2000, and
2010), factor loadings of the latent intercept are all set to 1, and those of the linear latent
slope are set to 0, 1, and 2, respectively. Moreover, the factor loadings for the quadratic
growth factor are set to 0, 1, and 4 [45]. Additionally, the covariances between the latent
intercept, slope, and quadratic factors are set to be freely estimated. To ensure that the
model is overidentified with positive degrees of freedom, the error variances and mean
structures of the latent factors are set to 0.

Similar to the specification of a single-factor polynomial model with a quadratic
growth LGM for the NLDI, the model specifications and constraints for an Urban Popula-
tion Gini (UG) and Education Gini (EG) are set with identical configurations as the LGM
for the NLDI for the purpose of determining the growth shape and model identification.

2.3.2. Unconditional Three-Factor Associative Latent Growth Model (LGM)

The unconditional associative latent growth model (LGM) was developed by combin-
ing three separate single-factor polynomial LGMs to evaluate the associations between the
latent growth factors. To ensure that the model was overidentified, the residual variances
for 9 time points were set to 0 (i.e., t1–t9 since there are 3 factors, and each factor has
3 time points), and the mean structures for the growth factors also were set to 0. When the
three-factor unconditional associative LGM shows an acceptable model fit, further analyses
will be conducted to interpret covariances between growth parameters within and across
latent factors.

2.3.3. Model Estimation and the Fit Indices

Multiple fit indices are used in evaluating the latent growth models (LGMs), including
Chi-square test statistics, a comparative fit index (CFI), a Tucker–Lewis index (TLI), a
root mean square error of approximation (RMSEA), and a standardized root mean square
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residual (SRMR), which are the common fit statistics used for assessing structural equation
models [46]. The thresholds for each fit index to determine if a model is acceptable are as
follows: (1) it is noted that RMSEA values ranging from 0.08 to 0.10 indicate a mediocre
fit [47]. Moreover, they strongly argued that the RMSEA values alone could not accurately
determine the model fit, and it is reasonable to combine RMSEA values with confidence
intervals. Therefore, the p value should be greater than 0.50 to indicate an acceptable model
fit for testing closeness of fit with a 90% confidence interval [48]; (2) Hu et al. [49] suggested
that values of the CFI and TLI greater than 0.95 can indicate an acceptable model fit; (3) a
smaller value of the SRMR indicates a better model fit and a SRMR value of 0 indicates a
perfect model fit [50].

2.3.4. Model Parameter Estimation and Interpretation

Regarding either unconditional or associative latent growth models (LGMs), the
variances of intercepts indicate the differences of countries on human development and
educational status at the baseline. The variations in latent growth factors (such as the
slope and quadratic rates of change) can indicate differences of individual countries in
the probability of progressing in a linear or quadratic rate of change over time. Moreover,
in the associative model, the direction and magnitude of the covariances among growth
factors can indicate the directions and strengths of the relationships between the growth
trajectories for human development and education factors.

3. Result

3.1. Model Configuration Results

Separate unconditional single-factor polynomial latent growth models (LGMs) are
constructed for each factor. Shown in Table 2, the single-factor polynomial LGMs fit
the Education Gini (EG) and Urban Population Gini (UG) adequately. However, for
the Nighttime Light Development Index (NLDI), although the model does not yield an
acceptable fit (root mean square error of approximation (RMSEA) = 0.335), the single-
factor polynomial LGM with a quadratic growth parameter still demonstrates a better
fit over those with a constant and linear growth. Therefore, all factors show quadratic
change patterns. During the next step, a three-factor associative LGM is constructed to
explore the associations of developmental trajectories between factors, following the model
configuration procedures described in Section 2.

Table 2. Model fit indices including root mean square error of approximation (RMSEA), comparative
fit index (CFI), Tucker–Lewis index (TLI), and standardized root mean square residual (SRMR) for
latent growth models (LGMs) based on Education Gini (EG) and Urban Population Gini (UG), and
Nighttime Light Development Index (NLDI).

Model χ2 df RMSEA CFI/TLI SRMR

Single-factor LGM with NLDI 16.828 *** 1 0.335 0.967/0.902 0.029
Single-factor LGM with EG 2.486 1 0.103 0.998/0.995 0.015
Single-factor LGM with UG 2.155 1 0.091 0.998/0.993 0.037

Three-factor associative LGM 2.486 1 0.103 0.999/0.975 0.007
*** p-value < 0.001 with two-tailed test.

3.2. Associative Growth Trends

Based on the results in Table 2, it is found that the three-factor associative latent growth
model (LGM) yields an acceptable model fit for the dataset used in this study. Therefore,
for the rest of Section 3, we use this associative model to investigate the interrelationships
between the growth patterns of factors. First, to interpret how each factor is changing over
time, statistically significant growth parameter estimates within each factor are presented as
follows: (1) for the Nighttime Light Development Index (NLDI), the association between its
initial status and linear slope growth is statistically significant (Covariant (Cov.)1 = −0.435,
Standard Error (S.E.) = 0.068, p < 0.001), and the association between the linear slope
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growth and quadratic growth also is statistically significant (Cov2 = −0.869, S.E. = 0.021,
p < 0.001). Countries with lower NLDI values tend to have a higher linear growth but a
lower quadratic growth, in other words. However, countries with higher NLDI values
show a lower linear growth but a higher quadratic growth. (2) Regarding the Education
Gini (EG), the association between the initial EG status and the linear slope growth is
statistically significant (Cov3 = –0.307, S.E. = 0.076, p < 0.001), indicating that countries with
a greater initial education inequality tended to have a slower linear rate of change. The
association between the linear slope growth factor and the quadratic growth factor also is
statistically significant (Cov4 = –0.845, S.E. < 0.024, p < 0.001), which means that countries
with a higher linear rate of change to education inequality tend to have a slower quadratic
rate of change. Therefore, the EG exhibits a similar growth pattern to the NLDI where
countries with higher EG values at the initial stage demonstrate a slower linear growth,
but a higher quadratic growth. Whereas, for countries that have lower EG values at the
initial stage, they tend to have a higher linear growth, but a lower quadratic growth. (3)
Regarding the Urban Population Gini (UG), the linear slope and quadratic growth factor
covary significantly (Cov5 = –0.978, S.E. = 0.004, p < 0.001), indicating that countries with a
higher linear growth in population show a slower quadratic growth.

The associative LGM allows us to explore growth parameters across factors that are
statistically significant (Table 3): (1) countries with lower NLDI values also have a lower UG
(Cov6 = 0.293, S.E. = 0.077, p < 0.001); (2) countries with lower NLDI values also have lower
EG values (Cov7 = 0.566, S.E. = 0.057, p < 0.001); (3) countries with higher education Gini
tend to demonstrate a slower linear rate of change in the UG (Cov8 = –0.644, S.E. = 0.049,
p < 0.001). However, as time increases, countries with higher EG values show a higher
quadratic growth in the UG (Cov9 = 0.645, S.E. = 0.049, p < 0.001).

Table 3. Standardized model estimates for Education Gini (EG), Urban Population Gini (UG), and
Nighttime Light Development Index (NLDI) based on intercept (INT), slope (SLP), and quadratic
(QUA) growth parameters.

Covariance (Cov) Estimate Standard Error (S.E.) p-Value

Cov1 (INTNLDI, SLPNLDI) −0.435 0.068 <0.001
Cov2 (SLPNLDI, QUANLDI) −0.869 0.021 <0.001

Cov3 (INTEG, SLPEG) −0.307 0.076 <0.001
Cov4 (SLPEG, QUAEG) −0.845 0.024 <0.001
Cov5 (SLPUG, QUAUG) −0.978 0.004 <0.001
Cov6 (INTNLDI, INTUG) 0.293 0.077 <0.001
Cov7 (INTNLDI, INTEG) 0.566 0.057 <0.001
Cov8 (INTEG, SLPUG) −0.644 0.049 <0.001

Cov9 (INTEG, QUAUG) 0.645 0.049 <0.001
p-value: two-tailed.

The LGM trajectory analysis results also are reflected in Figure 2 (plotted based on
data in Appendix A). Figure 2 shows that both the EG and NLDI experience downward
trends from 1990 to 2010, which means that most of the countries included in this study
have less education inequality and higher human development levels. Nevertheless, the
urbanization Gini decreases from 1990 to 2000, and then increases from 2000 to 2010.
Therefore, there is a greater uneven urban population distribution in recent years. During
1990, there were positive associations between the initial status of the EG, UG, and NLDI.
This indicates that the countries with initially lower levels of human development also
had a higher education inequality and a greater uneven urban population distribution.
Considering 1990–2000, all factors experienced decreasing trends, and the EG demonstrated
a higher decreasing rate. Considering 2000–2010, the quadratic change rates of the UG and
NLDI showed a less significant change, whereas the quadratic change rate of the EG still
demonstrated a decreasing trend.
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Figure 2. Growth trajectories of the Nighttime Light Development Index (NLDI), Education Gini
(EG), and Urban Population Gini (UG) from 1990, 2000, and 2010 for all 141 countries with a 95%
confidence interval.

4. Discussion

Although nighttime light (NTL) is not measuring human activities directly, results
from previous studies have shown that NTL is capable of estimating socioeconomic devel-
opment accurately on different spatial scales [27,28]. Therefore, we calculate the Nighttime
Light Development Index (NLDI), Urban Population Gini (UG), and Education Gini (EG)
at the country level based on the Defense Meteorological Satellite Program (DMSP) NTL,
and the Global Human Settlement Layer (GHSL) population distribution. When analyzing
the results from the associative latent growth model (LGM), we are able to identify the
different growth trajectory patterns across multiple years, which can further inform us
about the associations between development and education inequality.

Considering 1990–2010, we see a significant drop in education inequality. Considering
1990–2000, that drop is accompanied by similar drops in the NLDI (related to Human
Development). However, from 2000 to 2010 the gains in the NLDI have ceased while
improvements to educational inequality have continued. This bifurcation raises some
interesting questions. Theory suggests that human development will correlate with higher
levels of education, which appears to be true from 1990 to 2000 [51]. Therefore, those
trends lead to a series of questions that need to be explored: (1) Is the departure from these
correlated trajectories due to exogenous or endogenous forces? (2) Could the departure
be related to fundamental resource constraints such as the availability of adequate food,
water, and energy? (3) Will improved educational outcomes occurring simultaneously with
slowed changes to human development foster increased levels of social unrest?

5. Conclusions

Here, we analyzed the trajectories of human development, urban population distribu-
tion, and education inequality using multi-source data on multiple spatiotemporal scales.
Generally, the overall trend for human development levels is increasing and for education
inequality is decreasing in most of the countries. However, there is a greater uneven urban
population distribution over time. Different development patterns are identified through
latent growth models (LGMs). To provide an example, (1) countries with low initial human
development levels tend to have greater associated education inequality; (2) countries with
higher initial human development levels tend to show higher linear and lower quadratic
rates of changes in human development over time; (3) education inequality changes show
a stronger association with the trajectories of urban population distributions than those of
human development levels. To be more specific, countries with a greater initial education
inequality are associated with a slower linear rate of change in the uneven distribution
of the urban population. However, as time increases, the countries with a greater initial
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education inequality also are associated with a greater quadratic rate of change in the un-
even distribution of the urban population; (4) however, the growth patterns of the human
development levels and education inequality show less significant associations.

It has been demonstrated that the Defense Meteorological Satellite Program (DMSP)
nighttime light (NTL) can support the estimation of socioeconomic data, especially at the
country level, as some of the outlier effects are minimized with data aggregation [52].
Nevertheless, due to its own limitations, it may not be able to capture the human activities
at smaller regional levels (e.g., city or town levels). Therefore, there is a potential for
using the Visible Infrared Imaging Radiometer Suite (VIIRS) NTL data for estimating
socioeconomic development in the future. VIIRS has outperformed DMSP in many ways,
including its better resolution and higher sensitivity for capturing artificial lights [53], and
the results derived from VIIRS NTL are more accurate [54,55]. Thus, VIIRS can help us
better capture the spatial heterogeneity of economic development on a finer scale (e.g.,
a provincial level). VIIRS data also can help us better assess and explore disparities in
education not only across countries but between urban and rural areas within countries and
regions. Accompanying more accurate subnational socioeconomic data, there is a potential
for us to develop advanced models (e.g., multi-level models) to capture the within-cluster
and between-cluster variations to better analyze education disparities.

Upcoming, there are several important steps that can take this research to the next
level: (1) using more accurate education Gini data to estimate education inequality as the
current data is developed based on a few indicators and may not reflect the true education
inequality on various scales; (2) collecting more historical data, including socioeconomic
data and geospatial data to monitor and forecast education inequality changes to build
LGMs with greater complexity to characterize the commonalities of trajectories; (3) de-
veloping suitable statistical models such as hierarchical linear models to cluster countries
and their subnational entities in terms of their levels of development to better compare
intra-group growth patterns; (4) using the VIIRS NTL data for future studies.
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Appendix A

Table A1. Nighttime Light Development Index (NLDI) and Urban Population Gini results for
141 countries and regions.

Country
NLDI Urban Population Gini

1990 2000 2010 1990 2000 2010

Afghanistan 0.745 0.650 0.481 0.213 0.162 0.471
Albania 0.366 0.140 0.148 0.165 0.180 0.103

United Arab Emirates 0.225 0.341 0.339 0.055 0.054 0.018
Argentina 0.194 0.224 0.281 0.042 0.039 0.053
Armenia 0.242 0.240 0.333 0.143 0.154 0.084
Australia 0.101 0.145 0.143 0.036 0.031 0.013
Austria 0.233 0.241 0.248 0.231 0.225 0.008
Burundi 0.945 0.813 0.715 0.084 0.064 0.637
Belgium 0.104 0.118 0.153 0.061 0.065 0.003
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Table A1. Cont.

Country
NLDI Urban Population Gini

1990 2000 2010 1990 2000 2010

Benin 0.446 0.366 0.415 0.158 0.125 0.323
Bangladesh 0.108 0.074 0.126 0.041 0.039 0.136

Bulgaria 0.201 0.174 0.198 0.148 0.184 0.047
Bahrain 0.447 0.478 0.577 0.030 0.021 0.033
Belize 0.196 0.178 0.213 0.136 0.141 0.096
Bolivia 0.326 0.251 0.240 0.046 0.036 0.090
Brazil 0.136 0.112 0.132 0.104 0.094 0.108

Barbados 0.180 0.186 0.296 0.174 0.158 0.048
Brunei Darussalam 0.056 0.109 0.216 0.146 0.136 0.008

Botswana 0.320 0.256 0.233 0.124 0.107 0.199
Central African Republic 0.751 0.681 0.506 0.209 0.190 0.614

Canada 0.277 0.289 0.342 0.076 0.067 0.011
Switzerland 0.192 0.226 0.230 0.123 0.115 0.016

Chile 0.221 0.276 0.289 0.063 0.061 0.064
China 0.336 0.264 0.262 0.068 0.072 0.130

Cote d’Ivoire 0.436 0.249 0.301 0.178 0.156 0.237
Cameroon 0.446 0.403 0.383 0.075 0.073 0.281

Congo, Rep. 0.456 0.402 0.719 0.120 0.127 0.267
Colombia 0.179 0.196 0.220 0.036 0.035 0.087
Costa Rica 0.157 0.256 0.318 0.136 0.120 0.029

Cuba 0.195 0.268 0.241 0.065 0.069 0.067
Cyprus 0.140 0.135 0.148 0.106 0.082 0.032

Czech Republic 0.159 0.185 0.208 0.147 0.155 0.011
Germany 0.117 0.166 0.208 0.113 0.112 0.007
Denmark 0.141 0.200 0.247 0.158 0.163 0.006

Dominican Republic 0.300 0.302 0.257 0.108 0.096 0.065
Algeria 0.594 0.496 0.376 0.095 0.076 0.059
Ecuador 0.281 0.227 0.235 0.113 0.102 0.096

Egypt, Arab Rep. 0.299 0.306 0.349 0.041 0.033 0.013
Spain 0.147 0.223 0.256 0.093 0.096 0.016

Estonia 0.311 0.190 0.254 0.180 0.195 0.040
Finland 0.166 0.214 0.208 0.109 0.110 0.018

Fiji 0.314 0.180 0.260 0.480 0.453 0.128
France 0.143 0.180 0.199 0.151 0.158 0.013
Gabon 0.691 0.723 0.616 0.138 0.129 0.177

United Kingdom 0.052 0.082 0.119 0.018 0.019 0.003
Ghana 0.388 0.234 0.215 0.116 0.090 0.276

Gambia, The 0.547 0.392 0.368 0.270 0.193 0.429
Greece 0.212 0.284 0.282 0.174 0.170 0.027

Guatemala 0.355 0.199 0.203 0.091 0.088 0.121
Guyana 0.418 0.301 0.309 0.205 0.188 0.210

Hong Kong SAR, China 0.493 0.512 0.505 0.007 0.006 0.118
Honduras 0.408 0.280 0.164 0.289 0.273 0.142

Croatia 0.242 0.192 0.245 0.197 0.212 0.048
Haiti 0.415 0.415 0.314 0.107 0.081 0.279

Hungary 0.163 0.150 0.207 0.162 0.171 0.046
Indonesia 0.335 0.224 0.245 0.072 0.076 0.147

India 0.313 0.323 0.338 0.064 0.057 0.124
Ireland 0.258 0.289 0.313 0.322 0.322 0.028

Iran, Islamic Rep. 0.519 0.327 0.295 0.061 0.049 0.032
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Table A1. Cont.

Country
NLDI Urban Population Gini

1990 2000 2010 1990 2000 2010

Iraq 0.387 0.454 0.443 0.043 0.038 0.050
Iceland 0.297 0.464 0.570 0.354 0.289 0.071
Israel 0.371 0.425 0.446 0.067 0.054 0.020
Italy 0.130 0.159 0.176 0.099 0.094 0.006

Jamaica 0.120 0.192 0.201 0.105 0.097 0.018
Jordan 0.235 0.303 0.348 0.102 0.075 0.023
Japan 0.295 0.367 0.398 0.051 0.054 0.010

Kazakhstan 0.296 0.410 0.300 0.055 0.050 0.074
Kenya 0.639 0.523 0.544 0.378 0.319 0.508

Kyrgyz Republic 0.312 0.260 0.251 0.114 0.111 0.046
Cambodia 0.705 0.672 0.521 0.230 0.193 0.469

Korea, Rep. 0.417 0.465 0.499 0.080 0.075 0.015
Kuwait 0.593 0.637 0.665 0.030 0.035 0.013

Lao PDR 0.769 0.569 0.386 0.567 0.519 0.389
Liberia 0.663 0.599 0.421 0.352 0.328 0.555
Libya 0.645 0.483 0.458 0.095 0.094 0.037

Sri Lanka 0.208 0.194 0.218 0.389 0.362 0.049
Lesotho 0.414 0.392 0.330 0.170 0.178 0.246

Lithuania 0.110 0.060 0.111 0.049 0.060 0.033
Luxembourg 0.143 0.159 0.234 0.179 0.188 0.007

Latvia 0.064 0.140 0.148 0.096 0.108 0.057
Macao 0.419 0.431 0.518 0.003 0.002 0.013

Morocco 0.169 0.188 0.190 0.114 0.109 0.063
Moldova 0.274 0.214 0.194 0.228 0.244 0.127
Mexico 0.209 0.212 0.222 0.138 0.120 0.029

Mali 0.593 0.362 0.247 0.140 0.135 0.388
Malta 0.344 0.340 0.345 0.039 0.036 0.042

Myanmar 0.550 0.328 0.353 0.132 0.122 0.280
Mongolia 0.523 0.466 0.352 0.247 0.277 0.356

Mozambique 0.515 0.478 0.443 0.121 0.112 0.392
Mauritania 0.761 0.647 0.635 0.304 0.244 0.541
Mauritius 0.220 0.228 0.261 0.134 0.122 0.033

Malawi 0.531 0.437 0.370 0.569 0.545 0.420
Malaysia 0.181 0.232 0.248 0.097 0.089 0.063
Namibia 0.587 0.464 0.431 0.620 0.531 0.361

Niger 0.595 0.458 0.432 0.153 0.155 0.434
Nicaragua 0.393 0.247 0.237 0.056 0.055 0.254

Netherlands 0.152 0.167 0.225 0.081 0.082 0.010
Norway 0.331 0.347 0.341 0.209 0.211 0.028
Nepal 0.326 0.276 0.133 0.086 0.173 0.196

New Zealand 0.140 0.178 0.206 0.155 0.144 0.058
Pakistan 0.082 0.054 0.088 0.086 0.062 0.065
Panama 0.274 0.195 0.232 0.263 0.234 0.150

Peru 0.281 0.288 0.317 0.142 0.134 0.199
Philippines 0.497 0.374 0.314 0.315 0.295 0.206

Papua New Guinea 0.580 0.529 0.467 0.151 0.133 0.538
Poland 0.126 0.085 0.124 0.098 0.098 0.011

Portugal 0.215 0.295 0.325 0.226 0.215 0.019
Paraguay 0.294 0.198 0.220 0.139 0.148 0.176

Qatar 0.463 0.447 0.588 0.117 0.091 0.021
Russian Federation 0.346 0.359 0.412 0.058 0.063 0.061
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Table A1. Cont.

Country
NLDI Urban Population Gini

1990 2000 2010 1990 2000 2010

Rwanda 0.820 0.696 0.641 0.064 0.079 0.486
Saudi Arabia 0.222 0.162 0.215 0.038 0.039 0.021

Sudan 0.506 0.467 0.427 0.059 0.050 0.401
Senegal 0.368 0.292 0.308 0.109 0.100 0.373

Singapore 0.224 0.189 0.210 0.001 0.001 0.025
Sierra Leone 0.503 0.534 0.479 0.216 0.198 0.556
El Salvador 0.237 0.166 0.156 0.098 0.092 0.041

Serbia 0.150 0.153 0.172 0.130 0.133 0.051
Slovak Republic 0.136 0.071 0.107 0.081 0.082 0.039

Slovenia 0.102 0.108 0.135 0.201 0.212 0.025
Sweden 0.279 0.341 0.313 0.125 0.134 0.011
Eswatini 0.202 0.168 0.115 0.219 0.179 0.156

Syrian Arab Republic 0.504 0.316 0.222 0.103 0.087 0.045
Togo 0.388 0.366 0.374 0.090 0.075 0.303

Thailand 0.496 0.358 0.294 0.234 0.232 0.124
Tajikistan 0.125 0.135 0.094 0.060 0.048 0.061

Tonga 0.338 0.112 0.111 0.279 0.318 0.099
Trinidad and Tobago 0.220 0.225 0.328 0.093 0.091 0.051

Tunisia 0.302 0.249 0.248 0.060 0.062 0.051
Turkey 0.265 0.288 0.221 0.122 0.116 0.087

Tanzania 0.575 0.491 0.407 0.197 0.182 0.499
Uganda 0.845 0.726 0.703 0.180 0.133 0.634
Ukraine 0.183 0.255 0.192 0.101 0.105 0.061
Uruguay 0.283 0.345 0.377 0.114 0.087 0.063

United States 0.204 0.259 0.279 0.142 0.128 0.005
Venezuela, RB 0.237 0.293 0.320 0.044 0.037 0.040

Vietnam 0.488 0.285 0.251 0.078 0.084 0.111
Yemen, Rep. 0.534 0.508 0.509 0.174 0.145 0.165
South Africa 0.269 0.190 0.187 0.237 0.191 0.110

Zambia 0.576 0.454 0.393 0.062 0.070 0.450
Zimbabwe 0.324 0.194 0.311 0.196 0.196 0.479
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Abstract: The sustained growth of non-farm wages has led to large-scale migration of rural popula-
tion to cities in China, especially in mountainous areas. It is of great significance to study the spatial
and temporal pattern of population migration mentioned above for guiding population spatial opti-
mization and the effective supply of public services in the mountainous areas. Here, we determined
the spatiotemporal evolution of population in the Chongqing municipality of China from 2000–2018
by employing multi-period spatial distribution data, including nighttime light (NTL) data from
the Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS) and the
Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (NPP-VIIRS).
There was a power function relationship between the two datasets at the pixel scale, with a mean
relative error of NTL integration of 8.19%, 4.78% less than achieved by a previous study at the
provincial scale. The spatial simulations of population distribution achieved a mean relative error of
26.98%, improved the simulation accuracy for mountainous population by nearly 20% and confirmed
the feasibility of this method in Chongqing. During the study period, the spatial distribution of
Chongqing’s population has increased in the west and decreased in the east, while also increased
in low-altitude areas and decreased in medium-high altitude areas. Population agglomeration was
common in all of districts and counties and the population density of central urban areas and its
surrounding areas significantly increased, while that of non-urban areas such as northeast Chongqing
significantly decreased.

Keywords: population reorganization; population density; spatiotemporal patterns; DMSP-OLS;
NPP-VIIRS; Chongqing

1. Introduction

Urban-rural migration is a major issue affecting the sustainable development of soci-
ety, while the spatial distribution of population is a core focus of research in population
geography [1]. Driven by economic globalization, developing countries occupy an increas-
ing share of the world economy and the world’s economic center continues to move to
Asia [2–4]. As the largest developing country, China has experienced an unprecedented
growth rate over the past 30 years. The urbanization rate has increased from 26% to 58%
and the growth rate is about 2.7 times the world average (World Bank). China’s rapidly
developing social economy and ongoing urbanization has resulted in the relocation and
reorganization of urban and rural populations [5–8] as reflected in the continuous growth of
the former and substantial reductions in the latter’s labor force. According to the National
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Bureau of Statistics of China (NBSC), the country’s urban population has increased by
an average of 21 million per year since 2000. In contrast, the agricultural labor force has
decreased by 11 million per year [9] and the rural population has decreased by ~30.2%,
from 808 million in 2000 to 564 million in 2018 (NBSC). It is worth noting that population
migration from mountainous areas has been particularly significant [9]. The process of
urban-rural migration results in the redistribution of production factors such as capital,
which will impact on the ecosystem and social economy, with contradiction between
resources, the environment and population changing accordingly [10–12]. The rural popu-
lation structure has also changed (including age, gender and number), which has changed
the land use pattern and human activities radius, thereby affecting the construction and
restoration of rural ecological civilization [6,13–15]. Therefore, mapping and estimating the
spatial distribution of populations can provide scientific support for developing regionally
sustainable development strategies and spatial land-use planning [16,17].

Traditional demographic statistics and analysis mainly rely on population surveys,
including censuses and sampling studies. Until now, China has carried out six censuses.
Although population surveys are scientific and authoritative [10,18], their data acquisition
cycle is long and townships are the smallest survey unit, such that the spatial resolution
of the data is insufficient [19]. Therefore most studies do not use the administrative unit
as the research object [13,20,21]. With the rapid development of geographic information
system and remote sensing technology, multi-source remote sensing data have been widely
applied in spatial population research, especially land-use and night-time light (NTL)
data [19,22–29]. For example, Yang et al. [24] combined Defense Meteorological Satellite
Program’s Operational Linescan System (DMSP-OLS) NTL data, enhanced vegetation
index data and digital elevation model (DEM) data to simulate the population density
of Zhejiang. Hu et al. [25] determined the spatial distribution of population in Sichuan
and Chongqing based on NTL data and land-use data. Other studies have shown that
the spatial distribution of regional populations can be well-described by data processing,
multi-source data fusion and model improvement [24,30]. Most research has remained
focused on the spatial modeling of population at a single point in time [19,23,29,31,32],
however few studies adopt multivariate data to model the population spatial distribution
in a long time series.

Although the DMSP-OLS dataset provides continuous NTL data from 1992 to 2013 [33],
its imagery contains problems due to OLS limitations such as discontinuity and oversatu-
ration by bright lights [34,35] These data were replaced by Suomi National Polar-orbiting
Partnership Visible Infrared Imaging Radiometer Suite (NPP-VIIRS) NTL data after 2013,
bringing clear upgrades such as improved spatial resolution and reduced saturation [33] as
well as on-board calibration [36]. Although these are clear upgrades, they also present chal-
lenges to obtaining consistent long-term NTL data [35,37,38], such that proper integration
of the two datasets must be accomplished before the construction of a long-term population
spatial distribution dataset and there have been several attempts to integrate DMSP and
VIIRS NTL data [37–41]. Zhu et al. [39] established the relationship between the two at
the provincial level and used it to model China’s Gross Domestic Product. Zhao et al. [37]
achieved this at the pixel level and established a long-term NTL dataset in Southeast Asia.
Previous studies have contributed to enhancing the consistency of NTL between DMSP and
VIIRS data, however there are limitations regarding a widespread application of current
methods, such as the models proposed has regional limitations and may not be suitable for
other regions [37,41]; the datasets used are not accessible to general public [40,41]; and the
time series of data generated only has consistent NTL indices at the administrative level
and is still limited at the pixel level [39].

The municipality of Chongqing integrates a metropolis and a large rural area that is
mostly mountainous area, which is characterized by intense human activities and a fragile
ecological environment. According to the NBSC, ongoing urbanization in Chongqing
resulted in the rural population declining from 15.33 million to 10.7 million from 2005 to
2018 (a decrease of 30.2%), exceeding the national average of 24.34%. Meanwhile, Chinese
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policies targeting poverty alleviation and rural revitalization have benefitted most residents
in poor mountainous areas through relocation, resulting in major changes in population
distribution. Therefore, exploring the spatiotemporal changes in Chongqing’s population
via a timely understanding of population distribution data can help guide population
migration from mountainous areas, promote the sustainable development of the regional
economy and inform ecological restoration in mountainous areas.

This study explored integration methods for the two NTL datasets that are suitable
for the study area at the pixel level and constructed a long-term NTL dataset that provides
a basis for modeling long-term population spatial distribution data. Then it simulated
the spatial distribution of Chongqing’s population in 2000, 2005, 2010, 2015 and 2018 by
integrating the two NTL datasets and analyzing spatiotemporal changes. Our results can
serve as a scientific reference for rationally allocating urban and rural resources, optimizing
urban and rural spatial patterns and promoting the high-quality development of the
regional economy.

2. Study Area and Data

2.1. Study Area

Chongqing is located in the eastern Sichuan Basin, covering 8.24 × 104 km2 from
28◦10′–32◦13′ N and 105◦11′–110◦11′ E (Figure 1). Its 26 districts and 12 counties cover a
rugged landscape that is 75.33% mountainous. Its location at the intersection of the Silk
Road and the Yangtze River Economic Belt allows it to form connections between east and
west while driving economic development between north and south, leading to a vital role
in China’s development strategy underlain by the Belt and Road Initiatives and Yangtze
River Economic Belt [42]. Chongqing is one of the important population areas in Western
China, having a resident population of 31.02 million in 2018, an increase of 2.53 million
compared with 2000 (NBSC); its average population density is about three times the national
average. Its location in the upper reaches of the Yangtze River is part of an ecological
protective screen within the Yangtze River Economic Belt. Its complex topography and
fragile ecological environment enhance tensions between humans and the environment,
such that ecological construction and regional development face many challenges.

Figure 1. Location map of the study area.
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2.2. Data Sources

DMSP-OLS Version 4 NTL data from 2000 to 2013 were obtained from the Paynes
Institute for Public Policy, Colorado School of Mines (https://eogdata.mines.edu/dmsp/
downloadV4composites.html). These have a spatial resolution of 30 arc-seconds, with data
values ranging from to 0–63 and have been denoised [43]. Monthly VIIRS Cloud Mask
(vcm) data from 2013 to 2018 were also obtained from the Paynes Institute for Public Policy,
Colorado School of Mines (https://eogdata.mines.edu/dmsp/download_radcal.html),
with a spatial resolution of 15 arc-seconds that excludes observations affected by stray
light. The data contained additional noise from sources such as auroras, fires, boats, other
temporary lights and outliers, probably caused by stable lights from oil or gas fires.

Land-use data (1 km × 1 km) were obtained from the Resource and Environment Sci-
ence Data Centre of the Chinese Academy of Sciences (http://www.resdc.cn/) with major
categories including cultivated land, forest, grassland, water, residential land and unused
land. Resident population data at the county level were obtained from the Chongqing
Statistical Information Net (http://data.tjj.cq.gov.cn/), while those at the township level
in 2015 were derived from the China County Statistical Yearbook 2016. DEM data were
obtained from the Geospatial Data Cloud (http://www.gscloud.cn/).

2.3. Data Preprocessing

Firstly, all data were extracted by administrative boundaries and the DMSP-OLS NTL
data was resampled to 1 km grids. Secondly, a stepwise calibration approach at the global
scale was used to improve the temporal inconsistency of DMSP time series [44]. Thirdly,
calculated the average value of VIIRS data from January to December to generate annual
time series of VIIRS NTL imagery. Fourthly, mask extraction was then used to remove
noise from the NPP-VIIRS NTL data. The DMSP-OLS NTL data and the annual NTL data
provided by the NPP-VIIRS dataset were used as mask data. Masks were selected for each
year according to the principle of time adjacency [34,45,46]. Finally, The maximum value
of VIIRS NTL data in the main urban area of Chongqing was selected as the effective light
intensity threshold and the eight-neighborhood algorithm was used to smooth the VIIRS
NTL data [47]. These procedures allowed the NTL correction data to be obtained.

3. Methods

We established a relationship model between the two kinds of NTL data (based on
the pixel scale), constructed a long time series of stable NTL datasets, then modeled the
spatiotemporal dynamics of Chongqing’s population from 2000 to 2018.

3.1. Integrating DMSP-OLS and NPP-VIIRS NTL Data

In order to match the spatial resolution and radiation characteristics of the two NTL
data, we first performed two processes on the VIIRS data with reference to Zhao et al. [37].
One is using a kernel density (KD) method for resampling to make the spatial resolution
the same as the DMSP data. The other is the logarithmic transformation. On this basis, we
further discuss the NTL integration model and convert the value of VIIRS data.

(1) Spatial Resampling Using a KD Method Given that the blur of DMSP NTL image
is a Gaussian point-spread function, the influence of neighborhood NTL brightness
should be taken into account during the conversion of VIIRS spatial resolution. This
paper adopted a quartic kernel function to realize as follows:

f (x) =
1

nh

n

∑
i=1

K
(

X − Xi
h

)
, (1)

where f(x) denotes the estimation of the KD function; n is the total number of samples;
h is the window width and the value is five times of VIIRS pixel size here; K is the
KD function; X is the pixel to be corrected; and Xi is the neighbor pixels within
the window.
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(2) Logarithmic Transformation Logarithmic transformation of NPP-VIIRS data can better
suppress the sharp radiance jump within urban core areas and strengthen the radiance
variance within suburban and rural areas [37]. Therefore, we performed a logarithmic
transformation for VIIRS data as follows:

Log−Ni = ln(Ni + 1), (2)

where Ni denotes s the aggregation results of VIIRS NTLs using the KD method
and Log_Ni denotes the corresponding logarithmic transformation results. To avoid
invalid values caused by logarithmic transformation, a constant of 1 was added.

(3) Conversion of the VIIRS NTL Value Both DMSP and VIIRS products provide NTL
data in 2012 and 2013 and the monthly VIIRS data in 2013 include all months, while
the monthly data in 2012 are only available from April to December. Considering
that a slight seasonal difference may exist in annual VIIRS data, 2013 data were used
to determine the relationship between the two data sets. We observed a positive
correlation between DMSP and processed VIIRS value (Figure 2).

Figure 2. Scatter density plots of DMSP and processed VIIRS nighttime lights (NTLs) in 2013.

For further analysis, we developed a linear regression model, a quadratic polynomial
regression model and a power function regression model relating the DMSP and processed
VIIRS values in 2013, in order to find the best model for integrating NTL data.

3.2. Modeling the Spatiotemporal Dynamics of Population

NTL mainly comes from household lighting, roads, urban lightscapes, all of which
are closely related to human activities. Moreover, NTL intensity directly reflects the
intensity of such activities. Figure 3 shows the relationships between population density
and the mean value of NTL at the county level. In Chongqing, NTL intensity grew
rapidly with growth population growth. The quadratic polynomial model had the highest
coefficient of determination of all models tested including the linear model and the power
function model.

Different land-use patterns reflect population distribution and human production [48].
Our correlation analysis between population and land-use types at the county level showed
that population was positively correlated with cultivated land, water and residential land
at the 1% significance level, positively correlated with unused land at the 5% significance
level and negatively correlated with forest and grassland at the 0.05 significance level
(Table 1).
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Figure 3. Relationship between light intensity and population density at the county level in Chongqing.

Table 1. Correlation analysis between population and land-use type (by area).

Land Use Cultivated Land Forest Grass Land Water Residential Land Unused Land

Correlation
coefficient 0.399 *** −0.311 *** −0.160 ** 0.471 *** 0.577 *** 0.180 **

Note: ** and *** are significantly different from zero at the 5% and 1% levels, respectively.

The population spatial distribution pattern was therefore closely related to NTL
and land use, so we used the random-effect model to establish the relationship between
population, NTL and land use. The resident population in each district and county was
selected as the dependent variable and the total value of NTL (NT), the number of bright
pixels (NL) and the number of dark pixels (ND) of each land use type in each district
and county were used as independent variables. Considering that geographical factors
are also important factors affecting population distribution, elevation variables were also
added into the model as independent variables, which includes the number of pixels with
altitudes (NPA) of 0–300 m, 300–500 m, 500–1000 m and >1000 m in each district and county.
Prior to empirical simulation, stepwise regression was used to identify the key independent
variables with a significance level within 20%. The key independent variables included the
NT of cultivated land and forest; NL of residential; ND of cultivated land and grassland;
and the NPA of 0–300 m, 300–500 m, 500–1000 m and >1000 m. The collinearity between
the variables was then tested using the variance inflation factor (VIF); the maximum VIF
of a single variable was 3.42 and the overall VIF was 2.49 and they were well below the
critical value of 10, indicating no serious collinearity problem between the variables. The
empirical model settings were as follows:

Pit = αi + βixit + μit (3)

where Pit is the resident population of the ith county in the tth year; i = 1,2, . . . , 38;
t represents the known year; xit represents the observation value of variables in the ith
county in the tth year; αi is the individual difference between regions; βi is a parameter to
be estimated; and μit is a random error term. Considering the real situation of population
distribution, water and unused land were not involved in the model calculation [19].

Next, based on the estimated results of the random-effect model, the resident popula-
tion of each grid was calculated as follows:

Pijk = P0/Ni +
m

∑
j=1

(
aj × NTijk + bj × NLijk + cj × NDijk + dj × NPAikn

)
(4)
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where Pijk is the resident population in the kth pixel of the jth land use type in the ith
county; P0 is a constant; Ni is the number of pixels in the ith county; aj, bj, cj, and dj are
coefficients; m is the number of land-use types; NTijk, NLijk and NDijk are the total value
of NTL, the number of bright pixels and the number of dark pixels in the kth pixel of the
jth land use type in the ith county, respectively; NPAikn is the number of pixels of the nth
elevation interval in the kth pixel and ith district and county. Negative coefficients for some
variables in the simulation equation established by the random-effect model resulted in the
estimated population of some pixels being negative, a situational impossibility. Therefore,
pixels with a negative estimation value were assigned a value of 0 before obtaining the
preliminary estimated population data.

Finally, the statistical data for county population were used to adjust the simulation
results as follows:

P′
ijk = Pijk × Pi/P′

i (5)

where P′
ijk is the final resident population in the kth pixel of the jth land use type in the ith

county; Pi is the statistical data of the resident population in the ith county; and P′
i is the

total population by preliminary estimate in the ith county.

3.3. Evaluation of Model Accuracy

Based on the population census data at the township level, the correlation coefficient
(R), mean absolute error (MEA), mean relative error (MRE) and root mean square error
(RMSE) were selected to evaluate accuracy as follows:

R =
∑n

i=1
(

Pi − P
)(

PEi − PE
)

√
∑n

i=1
(

Pi − P
)2
√

∑n
i=1

(
PEi − PE

)2
(6)

MAE =
1
n

n

∑
i=1

|PEi − Pi| (7)

MRE =
1
n

n

∑
i=1

|PEi − Pi|
Pi

(8)

RMSE =

√
∑n

i=1(PEi − Pi)
2

n
, (9)

where Pi is the statistical resident population in the ith township provided by census
data, PEi is the estimated resident population in the ith township, P is the average of the
statistical population and PE and is the average of the estimated population.

4. Results

4.1. Integration Model
4.1.1. Integration Model

The power function model had the highest coefficient of determination (R2 = 0.907) of
the three models tested (Figure 4). Therefore, the relationship established by the power
function model was used to simulate DMSP data from 2014 to 2018. The method of
integrating NTL data is as follows:

TNLn =

{
TNLa

n
4.33 × (Log−Nn)

1.39 + 4.87
1992 ≤ n ≤ 2013

n > 2013
(10)

where TNLa
n is the NTL radiance value for the DMSP-OLS data in the nth year; Log−Nn

is the processed VIIRS radiance value in the nth year; and TNLn is the value for the NTL
integration data in the nth year.
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Figure 4. Correlation between the Defense Meteorological Satellite Program (DMSP) and processed Visible Infrared Imaging
Radiometer Suite (VIIRS) values at the pixel scale for the (a) linear model, (b) quadratic polynomial model and (c) power
function model.

4.1.2. Accuracy Assessment

We assessed the accuracy of the integrated NTL data by comparing the DMSP-OLS
and adjusted NPP-VIIRS data in 2013 (Table 2). The MRE value of the mean NTL generated
from the integrated data was 8.19%, while the relative error (RE) values of the mean NTL
varied by county, with 39.47% of counties underestimated, 60.53% overestimated and
71.05% having RE values within 10%. The maximum and minimum RE values were 42.46%
(Chengkou) and 0.2% (Yubei).

Table 2. Accuracy assessment of the NTL integrated data by county.

County Mean NTL for DMSP-OLS Data Mean NTL for Adjusted NPP-VIIRS Data RE (%)

Xiushan 1.14 1.29 13.41
Youyang 0.50 0.59 17.76
Jiangjin 2.97 3.54 19.13

Nanchuan 1.67 1.85 11.31
Yongchuan 5.79 6.70 15.75
Pengshui 0.47 0.45 −4.64
Wulong 1.34 1.24 −7.43
Banan 5.29 5.83 10.16

Qianjiang 1.67 1.59 −4.70
Rongchang 4.57 5.18 13.46

Bishan 11.90 12.42 4.38
Dadukou 37.05 38.42 3.70
Nan’an 37.45 35.73 −4.58

Jiulongpo 29.55 30.85 4.39
Yuzhong 57.76 57.90 0.24
Jiangbei 31.31 32.20 2.84

Shapingba 36.30 35.14 −3.18
Fengdu 1.07 1.15 7.55
Beibei 14.65 14.40 −1.67

Changshou 8.45 8.55 1.16
Shizhu 0.92 0.98 5.48
Yubei 14.95 14.98 0.20

Tongnan 2.06 2.11 2.65
Tongliang 5.50 5.59 1.69
Hechuan 3.61 3.94 9.22
Dianjiang 3.45 3.20 −7.34

Zhongxian 1.43 1.47 2.51
Wanzhou 2.94 2.66 −9.54
Liangping 2.36 2.24 −5.17
Yunyang 1.31 1.12 −15.00
Fengjie 1.21 1.17 −3.32

Kaizhou 1.52 1.50 −1.38
Wuxi 1.59 1.18 −26.00

Wushan 0.62 0.61 −2.29
Chengkou 0.19 0.27 42.46

Fuling 4.05 3.98 −1.73
Dazu 5.60 6.11 9.09

Qijiang 2.80 3.21 14.66
MRE(%) - - 8.19
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A previous study exploring the relationship between the two kinds of NTL data at
the provincial level produced an MRE of 12.97% [39]. In comparison, our methods clearly
improved the matching accuracy, making this approach feasible for integrating NTL data.

4.2. Modeled Spatial Distribution of Population
4.2.1. Random-Effect Model

The random-effect model results produced an overall F value of 224.42, an R2 value
between groups of 0.71 and an overall p-value of 0.000, indicating that the model was
well-established and that the modeling equation was reasonable (Table 3).

Table 3. Estimated coefficients for the random-effect model.

Variable Coefficient Std. Error T Value p > |t|

the NT of cultivated land 0.0002 0.0002 1.47 0.142
the NT of forest −0.001 ** 0.000 −2.19 0.028
the NL of residential land 0.261 *** 0.023 11.54 0.000
the ND of cultivated land −0.001 0.002 −0.41 0.685
the ND of grassland 0.005 0.003 1.45 0.147
the NPA of 0–300 m 0.081 *** 0.019 4.30 0.000
the NPA of 300–500 m 0.015 ** 0.007 2.28 0.023
the NPA of 500–1000 m 0.007 ** 0.004 1.99 0.046
the NPA of >1000 m −0.010 ** 0.004 −2.52 0.012
Con 44.861 *** 6.501 6.90 0.000
Sigma_u 15.474
Sigma_e 5.842
Rho 0.875

Note: (1) *, ** and *** are significantly different from zero at the 10%, 5% and 1% levels, respectively.

4.2.2. Accuracy Assessment

We evaluated the population modeling results using 2015 census data for 150 randomly
selected villages and towns. As terrain factors could affect the accuracy of population
simulations, we divided the study area into the three zones by elevation (high-altitude,
≥1000 m; medium-altitude, 500–1000 m; and low-altitude, <500 m) among which the
randomly selected villages and towns were evenly distributed (Figure 5).

The four error evaluation indicators of the overall simulated population in 2015 were
R (0.85), MAE (4947.58), MRE (26.98%) and RMSE (8170.45). In addition, MRE differed by
altitude zone (low-altitude, 25.73%; middle-altitude, 25.90%; high-altitude, 29.34%). The
REs for each village and town showed that 46% were relatively accurate, 18% were generally
overestimated, 20% were generally underestimated, 8% were seriously overestimated and
8% were seriously underestimated (Table 4).

Table 4. Relative error (RE) classification for villages and townships.

RE

Seriously
Underestimated

Generally
Underestimated

Relatively
Accurate

Generally
Overestimated

Seriously
Overestimated

(−100% to −50%] (−50% to −20%] (−20% to 20%] (20% to 50%] (50% to −100%]

Number of villages
and townships 12 30 69 27 12
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Figure 5. Spatial distribution of the villages and towns selected.

4.2.3. Spatial Distribution of Population in Chongqing

According to the fifth census in 2000, if the population density of a municipal district
was more than 1500 persons/km2, the entire population was classified as urban. On this
basis, we regarded population densities of >1500 persons/km2 as high-population-density
regions. In addition, according to Tan et al.’s [19] hierarchical classification method for
population density, areas with a population density of 200–1500 people/km2 were classified
as intermediate-density regions and areas with a population density <200 people/km2

were classified as low-density regions.
From 2000 to 2018, Chongqing’s population density has generally increased in the

west and decreased in the east (Figure 6). High-density regions were mainly distributed in
western Chongqing and those centered on Yuzhong continued to expand. In contrast, the
population density of most regions in the northeast and southeast decreased to varying
degrees, trending toward low population density.

Low-density regions in Chongqing grew from 35.64 × 103 km2 in 2000 to 41.07 × 103 km2

in 2018 (an increase of 15.22%) (Table 5). 95% of the newly added regions were created by the
loss of population from Intermediate-density regions, mainly in the northeast and southeast,
including Fengjie, Yunyang, Wushan, Wuxi, Xiushan, Fengdu and Shizhu(Figure 7).

Table 5. Changes in population density from 2000 to 2018.

Regional
Division

Population Density Land Area (2000) Land Area (2005) Land Area (2010) Land Area (2015) Land Area (2018)

(persons/km2) (103 km2) (103 km2) (103 km2) (103 km2) (103 km2)

Low-density <50 14.18 14.91 15.12 16.59 16.06
50–200 21.46 22.43 24.53 25.50 25.01

Intermediate-
density

200–500 32.32 30.96 29.65 26.14 26.71
500–1500 12.71 12.24 10.82 11.52 11.67

High-density 1500–3000 0.80 0.85 0.97 1.14 1.16
>3000 0.27 0.35 0.65 0.84 1.12
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Figure 6. Simulated results of population density in Chongqing in 2000, 2005, 2010, 2015 and 2018.

Figure 7. Changes in population density in Chongqing from 2000 to 2018.
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The total intermediate-density area decreased from 45.02 × 103 km2 in 2000 to
38.38 × 103 km2 in 2018 (a decrease of 14.75%). The reduced regions were mainly dis-
tributed in the primary urban zone of Chongqing and in the northeast. Intermediate-density
regions in urban zone tended to agglomerate and gradually develop into high-density
regions, while intermediate-density regions in the northeast gradually lost their population
and developed into low-density regions. In addition, within each district and county,
population development trended toward agglomeration, manifested as a gradual increase
in urban population density and the gradual evolution of intermediate-density regions
into high-density regions; however, in non-urban areas, population loss was more common
in intermediate-density regions, where population density decreased.

High-density regions gradually expanded from 1.07 × 103 km2 in 2000 to 2.28 × 103 km2

in 2018 (an increase of 113.08%). In 2000, these were mainly distributed within a radius of
24 km from Yuzhong (Figure 8) but ongoing urbanization expanded this range to a radius
of 33 km by 2018. In addition, urban areas within each district and county also became
distributed within high-density regions, which expanded to different degrees.

Figure 8. High-population-density regions in Chongqing in 2000 and 2018.

The low-altitude zone had the highest average population density and population
growth while trending toward agglomeration (Table 6). The average population density
here increased from 550.58 to 647.08 people/km2 from 2000 to 2018, a total population
increase of 3.16 million. The growth rate was fastest from 2010 to 2015, increasing by
134.69 × 104 people in only five years. In contrast, the medium- and high-altitude zones
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showed declining population density and total population. The medium-altitude zone
showed a drop in average population density from 232.66 to 223.70 people/km2 from 2000
to 2018, a total population decrease of 0.4 million. The average population density in the
high-altitude zone dropped from 64.45 to 58.78 people/km2 from 2000 to 2018, a total
population decrease of 0.18 million.

Table 6. Average population density and total population of each altitude zone.

Regional
Division

Mean Population Density (people/km2) Total Population (104 people)

2000 2005 2010 2015 2018 2000 2005 2010 2015 2018

Low-altitude 550.58 554.00 585.39 626.88 647.08 1829.08 1838.12 1944.31 2079.00 2145.08
Medium-altitude 232.66 227.09 226.76 227.34 223.70 685.90 669.81 665.13 656.15 645.57

High-altitude 64.45 60.94 59.29 58.06 58.78 113.65 110.02 102.65 93.52 95.46

5. Discussion

The DMSP-OLS dataset represents the most widely used NTL data over the previous
two decades, while the new NPP-VIIRS NTL data have been available since 2012. Despite
the great significance of studying long-term population evolution in the context of urban-
rural migrations, few studies have integrated the two datasets to simulate and monitor
population spatial changes over the full time period. In this study, we proposed a method
for integrating the DMSP-OLS and NPP-VIIRS data at the pixel scale in order to extend
the temporal coverage of NTL data. Meanwhile, we have evaluated the accuracy of the
integrated NTL data and the MRE was 8.19%. Our integration accuracy was improved
by 4.78% compared with the long-time-series NTL dataset established at the provincial
level [39], which indicated that our method for NTL integration was feasible and the
resulting data had good quality and generally reliable temporal consistency.

Previous studies have simulated population spatial distribution in different regions
using NTL and land-use data. Hu et al. [25] did this for Sichuan and Chongqing in 2014,
with MREs for population data based on DMSP-OLS and NPP-VIIRS NTL data of 46.3%
and 44.62%, respectively. Chowdhury et al. [23] developed a model for estimating the
population in the Indian portion of the Indo-Gangetic Plains at both city and state levels by
employing OLS NTL data. The model was validated for the population of year 1995, with
an MRE of 9.4%. Liu et al. [26] simulated the spatial pattern of urban and rural residents in
the Huang-Huai-Hai area with an MRE of 15.6%. Tan et al. [19] simulated the population
density of China in 2000, achieving a correlation coefficient between the statistical and
simulated values of 0.95. The accuracy of population simulations in mountainous areas
such as Chongqing and Sichuan is lower than in plains areas such as Huang-Huai-Hai,
demonstrating that population simulation in mountainous areas is more challenging
and uncertain. As we were limited by the difficulty of obtaining accurate population
data in towns and villages, we only tested the accuracy of population simulation in
2015; the R value (0.85) and MRE (26.98%) confirmed that the adjusted VIIRS data were
capable of effectively simulating spatial population patterns. We optimized the simulation
method for mountainous areas based on previous research [25], increasing the results’
accuracy by nearly 20%. We also introduced a feasible method for constructing long-term
population spatial data, which is helpful for scientifically monitoring spatiotemporal trends
in mountainous populations. In addition, the U.S. Department of Defense has developed
the Landscan database using an innovative approach with Geographic Information Systems
and Remote Sensing, which is the finest resolution global population distribution data
available [49]. In order to further verify our results, we also evaluated Landscan data using
2015 census data for 150 randomly selected villages and towns and the results showed that
the R value and MRE were 0.78 and 35.7% respectively, which also proved the feasibility of
our method.

It is worth mentioning that there are still some limitations in this study. First, although
we were able to improve the accuracy of mountainous population spatial simulation
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through data processing, this method was unable to completely eliminate inherent defects
in the DMSP-OLS data, such as light saturation in urban centers with high light inten-
sity [50] and insufficient detection capabilities in low-radiation areas such as rural areas [33].
These flaws reduce the accuracy of population simulation to a certain extent. Second, the
change of lighting technology (from sodium vapor to light-emitting diode) reduced NTL
values in the city center [51], which may have led to an underestimation of population sim-
ulation results. Third, the study was difficult to obtain the annual population distribution
data and we only simulated the population distribution in the five periods of 2000, 2005,
2015 and 2018 due to limitation of data collection. Fourth, compared with DMSP-OLS data,
NPP-VIIRS data have a higher spatiotemporal resolution. The advantages of the latter
were not fully integrated into the long-term NTL dataset and further research is needed to
improve the spatial resolution of NTL integration.

6. Conclusions

We integrated DMSP-OLS and NPP-VIIRS NTL data to construct a long-term NTL
dataset, using the random-effect model with land-use data and corrected NTL data to
model the spatiotemporal dynamics of the Chongqing’s population from 2000–2018. At the
pixel level, there was a power function relationship between the two datasets (R2 = 0.907).
Compared with an NTL integration model previously established at the provincial level,
our model was 4.78% more accurate. In addition, accuracy tests using 2015 data resulted in
an MRE of 26.98%, an improvement of nearly 20% when compared with previous studies
of mountainous populations. Therefore, our approach is feasible and provides a technical
method for monitoring spatiotemporal population changes in mountainous areas.

From 2000–2018, the spatial distribution of Chongqing’s population has increased
in the west and decreased in the east, while also increasing in low-altitude areas and
decreasing in the medium-high altitude areas. Moreover, population agglomeration was
common. At the provincial level, high-density regions showed a significant increase, while
decreasing in intermediate-density regions. The population density significantly increased
in the central urban area and immediate surroundings in every district and county, while
significantly decreased in non-urban areas, especially in the northeast.
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Abstract: Nighttime light (NTL) data are increasingly used in urban studies and urban planning
owing to their strong connection with human activities, although the detection capacity is limited by
the spatial resolution of older data. In the present study, we comparedthe results of extractions of
urban built-up areas using data obtained from the first professional NTL satellite Luojia 1-01 with
a resolution of 130 m and the Visible Infrared Imaging Radiometer Suite (VIIRS). We applied an
analyzing framework combing kernel density estimation (KDE) under different search radii and
threshold-based extraction to detect the boundary and spatial structure of urban areas. The results
showed that: (1) Benefiting from a higher spatial resolution, Luojia 1-01 data was more sensitive
in detecting new emerging urban built-up areas, thus better reflected the spatial structure of urban
system, and can achieve a higher extraction accuracy than that of VIIRS data; (2) Combining with a
proper threshold, KDE improves the extraction accuracy of NTL data by making use of the spatial
autocorrelation of nighttime light, thus better detects the scale of the spatial pattern of urban built-up
areas; (3) A proper searching radius for KDE is critical for achieving the optimal result, which was
1000 m for Luojia 1-01 and 1600 m for VIIRS in this study. Our findings indicate the usefulness of the
KDE method in applying the upcoming high-resolution NTL data such as Luojia 1-01 data in urban
spatial analysis and planning.

Keywords: kernel density estimation; Luojia 1-01 satellite; nighttime light; spatial resolution; search-
ing radius threshold; urban built-up area

1. Introduction

Cities comprise a landscape type with the most concentrated human activities. The
intense exchanges of materials, energy, and information connect cities with nearby areas
via traffic and other networks, and form apparent social and environment gradients from
urban to rural areas, with diverse city structures [1]. Spatial analysis of city structures is
critical for understanding city functions and evolution, while accurate discrimination ofthe
urban boundary and the internal structure is a prerequisite for further spatial analyses [2–4].
In general, urban built-up areas within the administrative region of a specific city com-
prise continuous areas with adequate municipal facilities [5]. Urban built-up areas are
the core areas of cities and the main focus of research into urban structure, functioning,
anddevelopment [6].

Remote sensing images are a major data source for urban structure analysis. Early
studies usually employed daytime remote sensing data such as Thematic Mapper (TM)
images to extract urban built-up areas [7,8], but information about the buildings is not
always an accurate indicator of theintensity and economic importance of urban areas.
In recent years, nighttime light (NTL) data have been increasingly employed to indicate
human activities at the landscape to regional scales [9]. Pioneered by Elvidge et al.’s
application of NTL data in city mapping and analyses [10,11], this new approach provided
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a distinct and sometimes more effective informationfor urban structure identification and
spatial analysis, especially for high energy release patterns [11,12].

Li and Li (2015) stressed that NTL contains various types of information that merit fur-
ther research [13]. For example, The Defense Meteorological Satellite Program/Operational
Linescan System (DMSP/OLS) data has been employed in various applications, including
urban extent and extension analysis [14,15], regional economy assessment [16,17], energy
releasing events monitoring [18], and fishery research [19]. DMSP/OLS data have sig-
nificant research value because of the long time period covered. However, these data
are too coarse to extract detailed spatial information [20]. Thus, later studiestried to
combine DMSP/OLS data with high-resolution remote sensing data to obtain accurate
results [21–23]. For example, the Visible Infrared Imaging Radiometer Suite (VIIRS) was
launched in 2011 on the Suomi National Polar-Orbiting Partnership (NPP) spacecraft and it
provides a new data source with a resolution of 15′ (~500 m), implying a much-improved
detail detecting capacity. Shi et al. (2014) employed the VIIRS NTL data to extract built-up
urban areas, proving its reliability in urban extent extraction [24]. The combination of VIIRS
NTL data with high-resolution remote sensing data has been effective in extracting built-up
areas [25,26].The higher spatial resolution of the VIIRS NTL data ensures it anobviously
better ability in separating light sources from other land covertypes [27].

The Luojia 1-01 satellite was launched from China on 2 June 2018 and its onboard
complementary metal oxide semiconductor can produce high-resolution NTL imagery
(130 m). As the world’s first professional NTL satellite, Luojia 1-01 has a swath widthof
250 km and it covers the Earth surface every 15 days. Luojia 1-01 data have been used
to extract urban extent characteristics [28,29] and investigate artificial light pollution [30].
Compared with previous studies based on other NTL data, such as NPP-VIIRS data,
more precise extent of urban impervious surface can be obtained using Luojia 1-01 data
Appendix A, Figure A1), due to its superior capacity to detect more details andits wider
measurement range [31]. Further, researchers found it feasible to detect urban expansion
through the combination of Luojia 1-01 data and other imagery data. The high spatial
resolution of the NTL images played a critical role in achieving more accurate resultsin
detecting distinct energy-releasingobjects, such as urban impervious surface, population
density, or human activity intensity [32,33].

Along with increasing applications of NTL data inresearches, novel methods have
been developed to explore specific features of this data source. For example, threshold-
based method is widely used to select a specific NTL value to distinguish built-up areas
from non-built-up areas [34,35]. With ancillary data such as International Space Station
images [32], multiple thresholds can beidentified for extraction in different regions or
different time periods [36]. Clustering methods are also commonly applied in urban
areas extraction, which is especially useful in large-scale studies [15]. Machine-learning
methodsrepresent another active frontier of built-up areas classification with NTL data;
related examples include support vector machine [37], artificial neural network [38], and
specifically developed methods [39].

In this study, we employed Luojia 1-01 data, VIIRS data, and Landsat 8 data to develop
a method for extracting urban built-up areas using kernel density estimation (KDE), taking
Nanjing, the capital city of Jiangsu Province of China, as a study area.By comparing the
extraction of urban built-up areas using these two NTL datasets and testing the results
with the validation data, we intended to answer the following two questions: (1) What
is the relative advantages of Luojia 1-01 compared with VIIRS in detecting urban spatial
structure?; (2)How dothe searching radius of KDE and the discriminating threshold value
affect the effectiveness of KDE in extracting urban built-up areas, especially theurban
boundariesand new emerging built-up areas?
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2. Materials and Methods

2.1. Study Region and Data
2.1.1. Remote Sensing Data

Nanjing is a large inland port city, the capital of Jiangsu Province in East China, with
a population of 8.436 million and an urban area of 6587 km2 by 2018. Nanjing comprises
eleven urban districts (i.e.,Gaochun, Gulou, Lishui, Liuhe, Jiangning, Jianye, Pukou, Qin-
huai, Qixia, Xuanwu, Yuhuatai, andthe Jiangbei New District) that are distributed on the
south and the north banks of the Yangtze River. The Luojia1-01 data product of Nanjing
used in this study was imaged on 23 November 2018. It completely covered the study area
with the central geographical coordinates of 117.880537◦E/31.883928◦N. A Landsat 8 Oper-
ational Land Imager (OLI) image on 19 April 2018 was acquired from the Geospatial Data
Cloud (http://www.gscloud.cn/, accessed on 10 July 2020). The central coordinates of the
image were 118.8335◦E/31.7424◦N, and the cloud cover was 0.31%. The VIIRS monthly
synthetic product acquired in December 2018 for the same region was downloaded from
https://www.ngdc.noaa.gov/eog/viirs/download_dnb_composites.html (accessed on 21
November 2019), the website of the National Oceanic and Atmospheric Administration,
and included in this study.

The images were clipped to fit the study area. To ensure the accuracy of the area
calculations, images were applied using the Albers equal-area conic projection. To reduce
the effect of light saturation, aradiometric correction for Luojia1-01 NTL was implemented
using the following formula provided by the data distribution website:

L = DN3/2·10−10 (1)

where DN is the digital number representing the image value of each pixel, and L represents
the corrected radiance of the Luojia1-01 NTL data.

The unit of Luojia 1-01 radiance is W·m−2·sr−1·μm−1, and we converted the unit to
nano W·cm−2·sr−1 which is the unit of VIIRS data. To eliminate georeferencing errors in
Luojia 1-01 data, a geometric correction was also done referring to the OpenStreetMap.
After the correction, the image matched well with ground objects (Appendix A, Figure A2).
For further processing, both NTL images were resampled to the same resolution of Landsat
8 data (30 m) through cubic spline interpolation. Figure 1a,b show the corrected Luojia 1-01
image and the VIIRS image, respectively.

Figure 1. City structure of Nanjing City represented by radiometric corrected nighttime light (NTL)
images of (a) Luojia 1-01 and (b) Visible Infrared Imaging Radiometer Suite (VIIRS).
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2.1.2. Validation Data

Validation data isessential to assess the accuracy of urban built-up areas extracted
from the remote sensing data. In our study, the Nanjing Zoning Map and the urban system
planning map in the Nanjing Urban Master Plan (Figure 2a,b) were included for validation
purpose. The maps were used to evaluate whether the spatial pattern of the extracted
built-up area can reflect the actual structure of the urban system.

   
(a) (b) (c) 

Figure 2. Validation maps of the structure of Nanjing city represented as: (a) the zoning mapissued by Jiangsu Provincial
Bureau of Surveying Mapping and Geoinformation; (b) the urban system map derived from the plan of the Nanjing Jiangbei
New District Administrative Committee and the Nanjing Urban Master Plan (2011–2020) issued by Nanjing Municipal
Planning and Natural Resources Bureau; (c) the built-up area of Nanjing in 2018 from the Resource and Environment Data
Cloud Platform.

For accuracy evaluation, we obtained the data of urban built-up areas in 2018 from the
Resource and Environment Data Cloud Platform (http://www.resdc.cn/, accessed on 27
January 2020), supported by the Institution of Geographic Sciences and Natural Resources
Research, the Chinese Academy of Sciences. This 1-km resolution raster data was derived
from the Landsat 8 data through manual visual interpretation (Figure 2c).

2.2. Analytical Methods

We used the Vegetation Adjusted NTL Urban Index (VANUI) [40] to extract built-up
areas in Nanjing from Luojia 1-01 and VIIRS images. KDE was conducted under different
search radii, and then a threshold method was applied to extract high-value pixels as
built-up areas. Extraction results were compared with the validation data of urban built-up
areas in Nanjing to evaluate the accuracy. A conceptual diagramof methods of this study is
shown in Figure 3.
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Figure 3. The conceptual diagram of analytical procedure of this study.

2.2.1. VANUI for Luojia 1-01 and VIIRS

To improve the sensitivity of light density to the geographical objects it was used
to represent [41–43], such as the intensity of economic activities, we combined NTL and
Normalized Difference Vegetation Index (NDVI) to calculate the VANUI as indices for
extracting built-up areas instead of directly using NTL. This spectral index has been
proven effective in reducing NTL saturation and increasing variation of data values in
core urban areas [40]. The normalized difference vegetation index is an indicator of
vegetation coverage:

NDVI =
NIR − R
NIR + R

(2)

where NIR represents the near-infrared band and R represents the red band, i.e., band 5
and band 4 in the Landsat 8 OLI, respectively.

VANUI is defined as Equation (3), where NDVI is derived from Equation (2), and NTL
represents the radiance value of Luojia 1-01 and VIIRS data:

VANUI = (1 − NDVI)× NTL (3)

VANUI derived from Luojia 1-01 and VIIRS datawas respectively calculated (VANUI_LUOJIA
and VANUI_VIIRS). Figure 4 shows the spatial structures of Nanjing City derived from
VANUI_LUOJIA and VANUI_VIIRS.
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Figure 4. Spatial patterns of the urban indices: (a) Vegetation Adjusted NTL Urban Index
(VANUI)_LUOJIA, derived from Luojia 1-01 data and Normalized Difference Vegetation Index
(NDVI); (b) VANUI_VIIRS, derived from VIIRS data and NDVI.

2.2.2. KDE Method

KDE is a distance-dependent density estimate method, in which the value of each
output grid/point represents the accumulative influence of a neighborhood, described by a
kernel function, on the focal grid/point density [44]. KDE is generally applied to describe
the spatial patterns with lateral overflow, such as the species distribution ranges [45]
and road density patterns [46,47]. The density in each output grid cell is calculated by
adding the values of all the kernel surfaces where they overlay the grid cell center. KDE
is also applicable to NTL data as overflow generally exists in light density. Moreover, the
indicative capacity of NTL is variable among geographical objects. Specifically, for urban
patterns, the raw data of NTL could underrepresent the blocks with most lights inside
turning off at night, such as schools, banks, and parks located in urban areas. Therefore, a
smooth of night density is helpful to visualize the urban areas darker at night. Conceptually,
a smoothly curved surface is fitted over each point. The surface value is highest at the
location of the point and it decreases as the distance increases from the point, until it
reaches zero at the bandwidth distance from the point. The bivariate KDE is defined as:

f̂ (x) =
1

nh2

n

∑
i=1

K
{ x − Xj

h

}
(4)

where n is the sample size, h represents the bandwidth, K is the kernel function, the
two-dimensional x denotes the vector for which the function is evaluated, and the two-
dimensional Xj is the sample vector [48].

The kernel function used here is based on the quartic kernel function as follows:

K(x) =

{
3π−1(1 − xTx) xTx < 1
0 otherwise

(5)

In this study, we integrated the effect of the NTL surrounding each grid point, and
classified the output grids with values higher than a specified threshold value as urban built-
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up areas. KDE was thus used to compare the spatial patterns of urbanization recognized
by the NTL data of Luojia 1-01 and VIIRS.

We converted VANUI_LUOJIA and VANUI_VIIRS into a set of point features at the
center of each grid cell. Each point had the same value as the index grid cell from which it
was derived. We then used the KDE method to estimate the spatial pattern of the point
density to obtain the spatial distribution information for each index. The value of each
point was treated as its weight, i.e., the number of calculations for the point. The search
radius is an important parameter in the KDE method which has considerable influence on
the extraction result. To explore the proper search radius, KDE on VANUI_LUOJIA and
VANUI_VIIRS was conducted under a search radius ranging from 100 m to 2000 m with a
100-m interval, resulting in twenty KDE images for each NTL data.

2.2.3. Threshold-Based Urban Built-Up Area Extraction

KDE cannot be used to discriminate boundary by itself. Density threshold determining
is essential for reasonably deciding the boundaries of urban built-up areas. The most
widely employed methods include the mutation detection method [49], empirical threshold
method [50], and reference comparison method basing on spatial data [34] or statistical
data [51]. In this study, we employed the statistical data to help determine the threshold
value in order to identify and extracturban built-up areas. This method has been adopted
in previous NTL-based studies to determine the threshold in built-up area extraction and
the results proved satisfying [24,52,53].

According to the Nanjing Statistical Yearbook -2019, the built-up area of Nanjingcov-
ered 817 km2 in 2018. We employed this as a benchmark to extract 817 high-value pixels
from each KDE image. Then we eliminated individual pixels which were not connected
with other extracted pixels, and filled holes to obtain twenty optimum extraction results
for Luojia 1-01 and VIIRS data with different searching radii.

2.2.4. Extraction Result Evaluation

In this study, the Nanjing zoning boundaries and the Nanjing Urban System Plan map
were used to assess the structure of extracted built-up areas, while the built-up area for
2018 was applied to evaluate the extraction accuracy.

As shown in Figure 2c, validation data of the built-up area for 2018 has holes and
small fragments of built-up area. Thus, the processes of fragment removal and hole
filling in Section 2.2.3 were also carried out before the accuracy evaluation, resulting in a
validation data covering 963 km2. Four commonlyused metrics were calculated for accuracy
evaluation, including overall accuracy (OA), producer’s accuracy (PA), user’s accuracy
(UA) and Kappa coefficient (KC) [54]. OA presented the ratio of correctly identified pixels,
PA indicated the proportion of detected built-up areas in the validation data, UA measured
the proportion of truly built-up areas in extraction results, and KC provided an overall
assessment of extraction accuracy.

3. Results

3.1. Extraction Results and the Urban Structure

The KDE-based extraction results using two NTL datawith four searching radii (i.e.,
500 m, 1000 m, 1500 m, and 2000 m) were compared separately with the urban structure of
Nanjing (Figure 5). In general, built-up areas were mostly concentrated in the central city.
Districtsthat had long histories of urban development (e.g., Qinhuai, Xuanwu, and Gulou)
were almost fully covered with built-up areas. Regions with rapid economic growth in
recent years (such as Jiangbei New District and Jiangning District) also had large built-up
areas.
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Figure 5. Comparison of extraction results and the urban structure of Nanjing, in which blue areas indicate extracted
built-up areas, hatched areas indicate the central city, points represent new towns, and boundaries between districts are
drawn. Kernel density estimation (KDE) was conducted respectively on VANUI_LUOJIA and VANUI_VIIRS under the
search radius of 500 m, 1000 m, 1500 m, and 2000 m.

The urban system of Nanjing is composed of the central city and nine new towns.
Under a searching radius of 500 m, Luojia 1-01 identified all nine new towns with the best
performance. However, the results didnot agree well with the central city. With the increase
of the search radius, the new Tangshan town could not be detected, but the extraction
results performed better in the central city. On the other hand, VIIRS was able to detect
Tangshan but missed the new Chunxi town in northern Nanjing. In new towns Qiaolin,
Lukou, and Yongyang, VIIRS-based extraction results covered less area than that derived
from Luojia 1-01 data.

3.2. Accuracy Evaluation

Accuracy evaluation of the extraction results using OA, PA, UA, and Kappa metrics
were shown in Figure 6, for the raw data (radius as 0 m) of Luojia 1-01, VIIRS, and their
KDE images with radius increasing from 100 m to 2000 m; and the confusion matrix at the
radius of 0 m (no KDE), 500 m, 1000 m, 1500 m, and 2000 m were selected to show in Table
1. For Luojia 1-01 extractions, the KDE results are more accurate than the raw data when
the search radius was larger than 500 m; while for VIIRS, the KDE results were consistently
more accurate than its raw data. Overall, the Luojia-based extractions showed higher
accuracies than those of the VIIRS-basedresults in the KDEs with the radius over 500 m, but
the accuracy of the raw data (resampled to 1 km) of VIIRS was superior to that of Luojia
1-01. The accuracy of Luojia 1-01 extractions showed a unimodal change across the range
of search radius and peaked at a radius around 1000 m. ForVIIRS-based extractions, the
accuracy increased steadily and peakedat the search radius of about 1600 m.The accuracy
of the best extraction result of Luojia 1-01 images (0.937, 0.733, 0.815, and 0.734 for OC, PC,
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UC, and Kappa, respectively) was higher than that of VIIRS images (0.935, 0.732, 0.805, and
0.730, correspondingly).

Figure 6. The change of accuracy evaluationmetrics for built-up area extractions under different search radii using Luojia
1-01 and VIIRS data products.The evaluation values at the search radius of 0 m represent the raw data of LuoJia 1-01 and
VIIRS, respectively, without application of KDE.

Table 1. Confusion matrix of extracting built-up area with different search radii using Luojia 1-01
and VIIRS data products. BA: built-up areas; NA: non-built-up areas.

Search Radius Raw (0 m) 500 m 1000 m 1500 m 2000 m

BA NA BA NA BA NA BA NA BA NA

Luojia 1-01 BA 10.0% 4.6% 9.5% 2.6% 10.7% 2.5% 10.6% 2.5% 10.5% 2.6%
NA 2.4% 83.0% 5.1% 82.8% 3.9% 82.9% 4.0% 82.9% 4.1% 82.8%

VIIRS
BA 10.3% 4.3% 10.5% 2.8% 10.6% 2.7% 10.7% 2.7% 10.4% 2.6%
NA 2.6% 82.8% 4.1% 82.6% 4.0% 82.7% 3.9% 82.7% 4.2% 82.8%

As for the spatial distribution of extraction results (Figure 7), difference can be found
between the KDE patterns of two NTL datasets, as well as among different search radii.
VIIRS showed relatively poor results in the southern suburbs and failed to detect the most
southern built-up area. Under the search radius of 500 m, the KDE of Luojia 1-01 was not
able to fully extract the central part of built-up areas, whereas under the search radius of
1000 m, the extraction matched best with the validation data in the central part. However,
as the radius continued to increase, omission errors could be found near the margins.
Similarly, omission of built-up areas revealed in VIIRS-based extraction when the search
radius was 2000 m.
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Figure 7. Comparison of extraction results and the validation data for urban built-up areas, in which blue areas indicate
extracted built-up areas and hatched areas indicate built-up areas from the validation data. KDE was conducted respectively
on VANUI_LUOJIA and VANUI_VIIRS under the search radius of 500 m, 1000 m, 1500 m, and 2000 m.

4. Discussion

Being recognized as a useful indicator of human activity intensity, NTL data have been
increasingly applied for urban structure analyses [55,56]. The technical features of the first
professional NTL satellite Luojia 1-01 have been reported earlier [57–59]. After comparing
the built-up area extraction results obtained using different researching radii, we found that
the threshold-constrained KDEs for both Luojia 1-01 and VIIRS dataeffectively extracted
the built-up areas in the urban center and the false extraction of water bodies (such as
the Yangtze River and Xuanwu Lake) was satisfactorily avoided. However, there were
substantial differences in detection of urban built-up area boundaries, especially in the
suburbs. In addition, the search radius of KDE had considerable effects on extraction
results, and differed between the two NTL data sources.

The effectiveness of extracting the urban built-up area boundaries differed between
the Luojia 1-01 and VIIRS datasets. In the central city, the NTL data of Luojia 1-01 and
VIIRS produced comparatively consistent results. However, Luojia 1-01 was better at
identifying new growing urban cores, showing the advantage of Luojia 1-01 data with
a finer resolution in capturing the emergent urban structure under a proper KDE search
radius. The higher spatial resolution of Luojia 1-01 images provide a lesserdegree of mixture
of land use types and light sources, and warrant it a higher sensitivity to the change of
NTL environment than the coarser-resolution VIIRS images. In particular, moreomission
errors occurred in VIIRS-based extraction in the suburbs, where the urban built-up areas
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were more fragmented and mixed with other surrounding land-use types. Nevertheless,
the daily revisit interval of VIIRS data warrant it a much higher sensitivity to the dynamics
of ground processes, although the 15-day temporal resolution of Luojia 1-01 data generally
satisfies the requirement for urban built-up area analysis. It is also importantto keep in
mind that the difference in local acquisition time for VIIRS (01:30 a.m.) and Luojia 1-01
(10:30 p.m.) could also cause difference in their extraction results.

The KDE-based extraction of urban built-up areas has several advantages compared
with direct extraction from raw NTL data. First of all, as a grid data of on-site light intensity,
NTL is a useful indicator of nighttime human activity intensity. However, one type of NTL
data has a fixed spatial resolution. When it is used to detect the pattern of a particular
energy-releasing spatial process such as urban development, a high-resolution NTL data
could miss the urban buildings or blocks with most lights turning off at night, such as those
of banks, schools, museums, and administrative offices, as well as city parks. These areas
are generally scattered in the center of urban areas, but normally empty and darker at night,
compared with the areas of active nightlife, such as business and entertainment centers.
Therefore, the new high-resolution NTL data may generate more bias in detecting urban
areas compared with old coarser data, as demonstrated by the lower accuracy values of
Luojia 1-01 than VIIRS for their raw data and short search radius (≤500 m) KEDs (Figure 6).
This flaw of high-resolution NTL data can be offset by applying KDE that makes use of
the spatial autocorrelation of NTLs with a proper search radius adaptive to the actual
lamination environment, rather than being limited by the fixed scale of NTL data itself.
Actually, the accuracy of KDE with the optimal search radius was obviously higher that the
raw image for both NTL data, and the best KDE of Luojia 1-01 was more accurate than that
of VIIRS. Our application of KDE confirmed it as a useful method of urban detecting using
high-resolution NTL data, whichsmooth the NTL space by integrating the surrounding
NTL values on the focal pixels, and thus reasonably “erase” the darker points within a
continuous urban area. Secondly, in a KDE image, high-value grids have high accumulative
light density within the search radius. Unlike the raw data, this accumulation can help to
identify “NTL hotspots” with a threshold light valueand spatial magnitude that indicate
an emergent urban core. Moreover, KDE can be more reasonable and accurate in detecting
the urban boundary, out of which the NTL density drops below the threshold value that
is determined by the accumulation of surrounding light intensity within a radius, rather
than that at a single point.This effect is especially helpful for NTL data of upcoming higher
spatial resolution. Urban built-up areas comprise centralized and contiguous areas, and the
extraction of their boundaries is traditionally based on manual interpretation or automatic
identification according to the edge point density [6]. The KDE method integrated the
effects of the surrounding pixels on each output grid, which excluded small or narrowly
illuminated areas and helped to extract “centralized and contiguous” urban built-up areas.
Our results indicated that, regardless of whether the Luojia 1-01 NTL or VIIRS NTL was
employed, the KDE-based extraction results could map the built-up urban areas precisely.
This method should be particularly useful when the core urban areas have to be highlighted
and the emerging new towns need to be identified, as in the cases of urban planning.

In the KDE process, the search radius is an important parameter which can largely
influence the extraction result. As shown in Figure 6, both large and small radii resulted
in omission of built-up areas. When the search radius is too small, the KDE process
only includes the influence of a narrow neighborhood. Thus, some lighted areas with
dark intervals could be left out of the extraction result. If the search radius is too large,
built-up areas near the boundaries may be integrated into the non-built-up area, or some
disconnected built-up areas will be misconnected. The proper search radius should be
the point when the extracted built-up area decreases with the increase of the radius. For
Luojia 1-01 and VIIRS datasets used in our case, proper search radii appeared to be similar
(1000 m and 1600 m, respectively), indicatingthat the KDE optimal radius might not be
optimal per see, but subject to the spatial resolution of the NTL data, the validation data,
and the scale of fragmentation feature of the geographical objects.
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For both Luojia 1-01 NTL data and the KDE method, there remains much to be ex-
plored in future studies. There are other factors thatcan affect the data of Luojia 1-01 images,
as demonstrated in other NTL data sources, and thus may also impact the extraction result
that requires further work to estimate;these include the seasonal changes in nighttime light
brightness [60] and diurnal change of satellite overpass time [61], as well as the effect of
satellite observation angle on the nighttime light [62].The radiometric correction formula
for Luojia1-01 was obtained after running smoothly for several months. This data source
will be more reliable after further corrections aremade for different regions and time do-
mains, and thus expected to provide long-term and high-resolution NTL information to
support various applications in research, management, and policy-making; for example,
the possible evaluation of new request for energy in newly detected urban areas, as well as
the trend of CO2 level in the atmosphere. Luojia 1-01 images from June to November 2018
can be downloaded at present. With more images available in the future, the performance
of Luojia 1-01 in detecting urban area changes across different temporal resolution levels
could be discussed. Given the effectiveness in the KDE extraction results, choosinga proper
search radius would becritical fora successful application of this method. Our study shows
the effectiveness of the KDE method in a high-luminosity area; the universal principle
to select the optimal search radius in variable luminosity contexts remains for further
exploration.

5. Conclusions

The comparison with VIIRS indicates that the first professional NTL satellite Luojia 1-
01 provides a reliable new data resource of nighttime light remote sensing. Its substantially
improved spatial resolution is more sensitive to nighttime light variation, and thus benefits
the accurate extraction of the spatial structure of urban built-up areas, especially the urban
boundary andthe new growing urban cores. The application of KDE combinedwith a
properly determined threshold can be used to make use of the spatial autocorrelation in
NTL information.This improvement would be critical for the capture capacity of upcoming
higher-resolution NTL data inapplications of overall spatial pattern detection; and a proper
searching radius and NTL threshold value is critical for an optimized KDE result. The high
agreement between the extraction result and the validation dataindicates the potentialof
Luojia 1-01 data in widespread applicationsincluding urban study and planning.
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Appendix A

Figure A1. Comparison of the spatial resolutions of nighttime light (NTL) remote sensing data
sources in the study area. (a) Luojia 1-01 image acquired on 23 November 2018. (b) VIIRS monthly
synthetic product for December 2018.

Figure A2. Luojia 1-01 image before (a,b) and after (c,d) the geometric correction.
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Abstract: The accurate and efficient extraction of urban areas is of great significance for better un-
derstanding of urban sprawl, built environment, economic activities, and population distribution.
Night-Time Light (NTL) data have been widely used to extract urban areas. However, most of the
existing NTL indexes are incapable of identifying non-luminous built-up areas. The high-resolution
NTL imagery derived from the Luojia 1-01 satellite, with low saturation and the blooming effect,
can be used to map urban areas at a finer scale. A new urban spectral index, named the Modified
Normalized Urban Areas Composite Index (MNUACI), improved upon the existing Normalized
Urban Areas Composite Index (NUACI), was proposed in this study, which integrated the Human
Settlement Index (HSI) generated from Luojia 1-01 NTL data, the Normalized Difference Vegeta-
tion Index (NDVI) from Landsat 8 imagery, and the Modified Normalized Difference Water Index
(MNDWI). Our results indicated that MNUACI improved the spatial variability and differentiation
of urban components by eliminating the NTL blooming effect and increasing the variation of the
nighttime luminosity. Compared to urban area classification from Landsat 8 data, the MNUACI
yielded better accuracy than NTL, NUACI, HSI, and the EVI-Adjusted NTL Index (EANTLI) alone.
Furthermore, the quadratic polynomial regression analysis showed the model based on MNUACI
had the best R2 and Root-Mean Square Error (RMSE) compared with NTL, NUACI, HSI, and EANTLI
in terms of estimation of impervious surface area. It is concluded that MNUACI could improve the
identification of urban areas and non-luminous built-up areas with better accuracy.

Keywords: nighttime light; Luojia 1-01; MNUACI; urban area; urban remote sensing

1. Introduction

Urban areas are the supporting systems of urban population, built-ups, transportation,
and commercial corporations, as well as where urbanization takes place [1]. Urbaniza-
tion and urban sprawl have important influence on the urban ecological environment,
climate, public health, and socioeconomic development through the transformation of
land use/cover types [2–6]. Urban expansion brings a series of urban problems, such
as underground water pollution, traffic congestion, carbon emission increment, urban
heat island effect, etc. Furthermore, urban nighttime light (NTL) causes disturbance to
the human circadian rhythm and sleep disorders [7]. These urbanization issues increase
the burden on the urban ecological system and impact the sustainable development of
cities, especially in developing countries like China. Due to China’s opening and economic
development strategies, the urbanization rate of China’s permanent population has in-
creased from 18.96% in 1979 to 60.60% in 2019 [8], as shown in Figure 1. This approximately
exponential urban population growth has greatly promoted the accelerated expansion
of China’s cities. Faced with problems caused by rapid expansion of China’s cities, it is
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essential to design relevant analytical methods to solve these regular mapping problems of
urban sprawl.

Figure 1. China’s urbanization rate from 1979 to 2019.

The NTL data have been most widely used to extract urban areas at regional and
global scales, such as the Defense Meteorological Satellite Program/Operational Linescan
System (DMSP/OLS) and the Suomi National Polar-orbiting Partnership satellite with
Visible Infrared Imaging Radiometer Suite (NPP-VIIRS) data [9–12]. The main approaches
for identification of urban areas through NTL data include edge-detection, supervised clas-
sification, and threshold-based segmentation. Assuming the existence of abrupt changes of
NTL in urban and suburban transition zones, Tan used a light intensity gradient to delineate
the boundaries of urban areas [13]. Xue et al. adopted an edge detection method to ac-
quire urban boundaries based on the Vegetation Adjusted NTL Urban Index (VANUI) [14].
In supervised classification methods, many studies have proved that the support vector
machine (SVM) method could provide high-precision classification results. Cao et al. devel-
oped an SVM-based region-growing algorithm to distinguish urban areas from non-urban
background [15]. Jing et al. proved that results obtained by k-nearest-neighbors, SVM,
and the random forests classification algorithm could achieve a better agreement for the
purpose of urban area detection [16]. In addition, simple thresholding methods were also
usually adopted to extract urban area extent [17,18].

The integration of multi-source remote sensing data and NTL data can mitigate the
blooming effect (i.e., adjacent pixels of pervious surface are usually counted as impervious
surface due to similar NTL values) of NTL and improve its performance. Integrating
urban NTL with vegetation index and land surface temperature (LST) provides promising
approaches to differentiate urban areas from non-urban areas. For example, Lu et al.
developed a Human Settlement Index (HSI) with DMSP-OLS and the normalized difference
vegetation index (NDVI) data to map urban settlements [19]. Zhang et al. proposed a
simple and effective VANUI that could reduce the effects of NTL saturation and overcome
the overcorrection issue of HSI [20]. Zhuo et al. proposed an Enhanced Vegetation Index
(EVI) Adjusted NTL Index (EANTLI) to lessen the saturation problem of NTL data [21].
Liu et al. demonstrated that an LST and EVI Regulated NTL City Index (LERNCI) was
more effective in delineating the urban spatial structures than VANUI [22]. However,
when land cover types include water body and bare land, it is not enough to rely solely on
vegetation index or land surface temperature to separate urban area from non-urban area.
Therefore, Liu et al. established a Normalized Urban Areas Composite Index (NUACI) by
combining the Normalized Difference Water Index (NDWI), NTL, and the EVI to estimate
the urban impervious surface [23]. NUACI could degrade oversaturation using water body
and vegetation indexes, but it might still ignore certain urban areas in low-luminous areas.

A Modified NDWI (MNDWI) was found to be more suitable for water feature recog-
nition than the NDWI, as it can better suppress non-water land noise and better enhance

118



Remote Sens. 2021, 13, 2350

water features [24]. Thus, this study aimed to develop a Modified NUACI (MNUACI)
on the basis of the MNDWI, NDVI, and NTL, to further improve the identification of
urban areas. Moreover, the MNUACI has a higher spatial resolution than the previous
DMSP/OLS- and NPP-VIIRS-based indexes by using NTL data from the Luojia 1-01 NTL
satellite, designed and developed by Wuhan University in China, which has started pro-
viding nighttime imagery with a finer resolution of 130 m since 2018. The MNUACI would
be useful for a wide array of urban studies, such as urban population health [25], urban
spatial structure [26], and energy carbon emissions [27], where such an index has been
urgently demanded.

2. Study Sites and Data Sources

2.1. Study Sites

As shown in Figure 2, four capital cities in China from north to south, Beijing, Nanjing,
Guangzhou and Haikou, were chosen as study sites. Beijing, the political, science and
technology innovation and cultural center of China, is surrounded by mountains in the
west, north and northeast, and the North China Plain in the southeast [28]. It has sixteen
municipal districts with a total area of 16,410 km2, a resident population of 21.54 million
and a GDP of 3032 billion CNY in 2018 [29]. With six downtown areas as the center and
Tongzhou District as the sub-center, Beijing is expanding outward along east-west and
north-south axes, and the urban secondary industry and a large labor force is beginning
to migrate to the surrounding suburbs. Nanjing, a regional transportation hub, is in the
lower reaches of the Yangtze River and is the only megacity in the Yangtze River Delta
and East China. It includes twelve administrative districts, with a total area of 6587 km2,
a resident population of 8.44 million and a GDP of 1282 billion CNY in 2018 [30]. New
urban areas and towns were built along two banks of the Yangtze River, and the central
city expanded northward and southward to the suburbs, where the chemical industry
was centrally located. Guangzhou, located at the northern edge of the pearl river delta,
is an important transportation and logistics hub in South China. It consists of eleven
administration districts, with a resident population of 14.9 million and a GDP of 2286
billion CNY in 2018, covering a total area of 7434 km2 [31,32]. With the metropolitan area as
the city center, Guangzhou built two new districts in the south and east regions, and three
sub-centers in the north and east regions. The international tourist city of Haikou borders
the Qiongzhou Strait in the north and serves as the core city of the China Free Trade Zone.
Haikou covers a land area of 2290 km2 and a sea area of 861 km2, with a population of 2.3
million and a GDP of 151.1 billion CNY in 2018 [33]. Haikou has built the east and west
coast tourism belt and the north-south tourism axis of Nandu River urban water system.

The traditional economic growth points are mostly located in the central areas of China
cities. Based on the strong economic foundation, the latest urban planning and layouts of
the above four cities guide and drive the flow of the large labor force to the new industrial
agglomeration areas in suburbs, thus promoting the continuous urban expansion of these
cities. Besides, these four cities have experienced tremendous socioeconomic development
over the past 40 years, representing the natural and socioeconomic development levels of
different cities in China. Therefore, they are suitable to study the dynamics of urbanization
and its impact on urban ecosystems according to the extent of urban areas extraction.
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Figure 2. Geolocation map of study sites (Beijing, Nanjing, Guangzhou, Haikou).

2.2. Data Sources

The cloud-free Luojia 1-01 NTL images in Beijing, Nanjing, Guangzhou and Haikou,
which are dated 6 September 2018, 15 July 2018, 4 September 2018 and 5 September 2018,
respectively, as illustrated in Figure 3 and Table 1, were downloaded for free from the
Hubei Data and Application Center of High-Resolution Earth Observation System web-
site (http://59.175.109.173:8888, accessed on 1 June 2021). The Luojia 1-01 NTL satellite,
designed and developed by Wuhan University in China, has started to provide nighttime
imagery with a finer resolution of 130 m since 2018. This satellite sensor records with
14-bits radiometric resolution and improves on-board calibration functions, which demon-
strates finer spatial detail and urban spatial structure than DMSP/OLS and NPP-VIIRS
data [34,35]. Landsat 8 Operational Land Imager (OLI) images with minimum cloud cover
for Beijing, Nanjing, Guangzhou and Haikou on 23 October 2017, 6 June 2018, 23 October
2017, and 17 May 2018 were obtained from the United States Geological Survey (USGS)
website (https://glovis.usgs.gov, accessed on 1 May 2021), as illustrated in Table 1. Except
for the coastal/aerosol band and the cirrus band, OLI inherits the seven bands of the
Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) sensors, improving
image measurement abilities and offering compatibility with the historical Landsat images.
The Landsat 8 multi-spectral imagery ranging from Band 2 to Band 7 (Blue, Green, Red,
NIR, SWIR1, SWIR2, respectively) were used for relevant vegetation index calculation,
water body index calculation and image classification.
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Figure 3. Nighttime light images of Luojia 1-01 in (a) Guangzhou, (b) Nanjing, (c) Beijing, and
(d) Haikou.

Table 1. Research dataset description.

Image Type
Acquisition

Date
Day/Night

Spatial
Resolution (m)

Path &
Row

Location

Luojia 1-01 6 September 2018 Night 130 1423 & 28 Beijing
Luojia 1-01 15 July 2018 Night 130 8979 & 18 Nanjing
Luojia 1-01 4 September 2018 Night 130 6005 & 05 Guangzhou
Luojia 1-01 5 September 2018 Night 130 7644 & 05 Haikou
Landsat 8 23 October 2017 Day 30 123 & 32 Beijing
Landsat 8 6 June 2018 Day 30 120 & 38 Nanjing
Landsat 8 23 October 2017 Day 30 122 & 44 Guangzhou
Landsat 8 17 May 2018 Day 30 124 & 46 Haikou

3. Methodology

Figure 4 demonstrates the methodological framework, which involves four main steps.
First, basic preprocessing such as geometric rectification, reprojection, and atmospheric
correction was executed for the Luojia 1-10 NTL and Landsat 8 OLI raw data. Next, the
MNUACI model was developed by integrating NTL, HSI, NDVI and MNDWI data. Third,
four classic classification methods were applied to NTL, HSI, NDVI and MNDWI data for
mapping urban areas of study sites. Lastly, the reference urban mapping results based on
Landsat 8 data were used to evaluate the accuracy of the MNUACI model.
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Figure 4. Flowchart of methodology for the MNUACI model.

3.1. Data Preprocessing

The positioning accuracy of Luojia 1-01 NTL imagery was reported as approximately
800 m by executing the on-board geometric calibration method [36], but its results are
far from meeting the actual positioning requirements. For each Luojia 1-01 image, at
least forty ground control points (GCPs) were selected at road intersections on Landsat
8 images, and a geometric correction was carried out on Luojia 1-01 images through an
affine transformation. The geometric accuracy of the final correction error of each image
was controlled within half of a Luojia 1-01 image pixel, namely 65 m. Landsat 8 OLI records
not only the reflected and emitted radiation from the earth’s surface, but also the radiation
scattered or emitted by the atmospheric layer. To quantize the real reflectance from the
earth’s surface, the Radiometric Calibration Tool and the Fast Line-of-sight Atmospheric
Analysis of Spectral Hypercubes (FLAASH) module in the ENVI software were used to
convert the DNs of raw images into surface reflectance values. The purpose of atmospheric
correction is to eliminate the influence of atmosphere and solar illumination and obtain the
correct surface reflectance parameters of the earth’s surface. After atmospheric correction,
satellite images can improve the ability of data analysis. To integrate them better with
images from Landsat 8 OLI, Landsat 8 images were resampled to the same 130 m-resolution
as the Luojia 1-01 nighttime images after the images underwent atmospheric correction.

3.2. Modified Normalized Urban Area Composite Index (MNUACI)

Water and vegetation index can effectively differentiate water body and vegetation
types from urban areas [37]. Based on the characteristics of the two indexes, the NUACI,
established by integrating water index, vegetation index and NTL data, can be used to
recognize urban areas, as shown in the following equation:

NUACI =

{
0, d > r, d =

√
(NDWI − aNDWI)

2 + (EVI − bEVI)
2

(1 − d/r) ∗ NTLnorm, d ≤ r
(1)
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where aNDWI and bEVI indicate the average NDWI and EVI from the urban impervious
surface, respectively; d and r denote the distance and maximum radius of the circle from
urban core, respectively; and NTLnorm represents the normalized NTL which is expressed
with the following equation:

NTLnorm =
NTL − NTLmin

NTLmax − NTLmin
(2)

where NTLmin and NTLmax are the minimum and maximum values of NTL DN val-
ues, respectively.

Equation (1) reveals that the integration of NDWI and EVI can eliminate the blooming
effect of NTL when d is greater than r, while the saturation effect of NTL can be mitigated
when d is less than r. As illustrated in Figure 5, in the absence of NTL, NUACI is unable to
detect impervious surfaces, such as buildings and roads in urban areas. To make up for the
drawback of NUACI, HSI was introduced to reinforce the NTL effect of urban impervious
surfaces. In addition, compared with NDWI, MNDWI is more suitable for water identi-
fication of water bodies under urban background due to its merits of suppressing noises
from bare soil and built-up areas [38]. Considering the advantages of HSI and MNDWI, a
modified urban index MNUACI is constructed by integrating them, as expressed in the
following equation:

MNUACI =

{
0, d > r, d =

√
(MNDWI − aMNDWI)

2 + (NDVI − bNDVI)
2

(1 − d/r) ∗ HSI, d ≤ r
(3)

where aMNDWI and bNDVI indicate the average MNDWI and NDVI from urban impervious
surfaces, respectively. HSI can be expressed with following equation:

HSI =
(1 − NDVInorm) + NTLnorm

1 − NTLnorm + NDVInorm + NDVInorm × NTLnorm
(4)

where NDVInorm represents the normalized NDVI, and its normalized method is the same
as NTLnorm.

The equation of MNDWI is expressed as follows:

MNDWI =
G − MIR
G + MIR

(5)

where G and MIR denote the green band and mid-infrared band of Landsat 8 OLI im-
ages, separately.
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Figure 5. Urban areas in the Temple of Heaven Park in Beijing, extracted from (a) Bands 5, 4, 2 composite image of Landsat
8, (b) normalized Night-Time Light (NTL), (c) Enhanced Vegetation Index Adjusted Nighttime Light Index (EANTLI),
(d) Human Settlement Index (HSI), (e) Normalized Urban Areas Composite Index (NUACI), and (f) Modified Normalized
Urban Areas Composite Index (MNUACI).

3.3. Accuracy Analysis Methods

A confusion (error) matrix is an effective quantitative method of characterizing ac-
curacies of land use/land cover types in image classification results. The Commission
Errors (CE) are mistakes where results erroneously included in consideration when they
should be excluded. The Omission Errors (OE) are mistakes where results are erroneously
excluded from consideration when they should have been included. Overall Accuracy
(OA) is essentially what percentage of all reference data is correctly classified. The Kappa
Coefficient (KC) is a statistic measure of inter-rater reliability or intra-rater reliability for
qualitative (categorical) items [39–41]. The Jaccard Similarity coefficient (JSI) refers to a
statistic used for gauging the similarity and diversity of sample sets [42].

By calculating the CE, OE, OA, KC and JSC of the reference data and the user classifica-
tion data, the consistency between both datasets can be evaluated. The detailed equations
are as follows:
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OE = 1 − ntt

nrt
(6)

CE = 1 − ntt

nut
(7)

OA =
∑ ntt

N
(8)

KC =

N
c
∑

t=1
ntt −

c
∑

t=1
nrtnut

N2 − c
∑

t=1
nrtnut

(9)

JSI =
|U ∩ R|

|U|+|R|−|U ∪ R| (10)

where ntt refers to pixel numbers correctly classified in type t; nut refers to pixel numbers of
type t in user classification data; nrt refers to pixel numbers of type t in the reference data; c
refers to the number of all types; N refers to total pixel numbers in all types; and U and R
refer to the user classification dataset and reference dataset, respectively.

3.4. Estimation of Urban Impermeable Surface

The Impervious Surface Area (ISA) is considered to be an important indicator to
measure the degree of urbanization. Previous studies have confirmed a positive correlation
between ISA and urban NTL data [43,44], therefore, ISA can be used as an evaluation
indicator for extraction results of urban areas. Using the blue and near-infrared bands of
Landsat 8 images, the Perpendicular Impervious Surface Index (PISI) was derived and
used to represent the ISA [45]. The extraction accuracy for the ISA based on PISI ranged
from 89.51% to 96.50% in the four China cities, which demonstrated a better separability
for ISA and bare soil. The ISA can be derived by following equation:

ISA = 0.8192ρBlue − 0.5735ρNIR + 0.0750 (11)

where ρBlue and ρNIR denote the reflectance of the blue band and near-infrared band from a
Landsat 8 image.

4. Results

4.1. Urban Area Extraction by the MNUACI

Landsat 8 multi-spectral reflectance data from the four capital cities in China were
adopted to calculate MNDWI and NDVI. The MNUACI was then derived by integrating
MNDWI, NDVI and Luojia 1-01 NTL. Before performing the calculation for MNUACI,
the parameters aMNDWI and bNDVI were determined by Equation (3) based on samples
collected from the urban cores. The parameter r was calculated according to the farthest
distance between (aMNDWI , bNDVI) and (aMNDWI , bNDVI) from the sample data. The
parameters (aMNDWI , bNDVI , r) from Beijing, Nanjing, Guangzhou and Haikou are (0.73,
0.54, 0.35), (0.37, 0.55, 0.51), (0.41, 0.46, 0.32) and (0.36, 0.36, 0.49), respectively.

MNUACI is used to distinguish between light-intensity differences in urban core areas,
and therefore, to improve pixel resolution in light-saturated areas and allow recognition
of urban core structures. The Temple of Heaven Park in Beijing and Hongcheng Lake in
Haikou were selected to evaluate the effectiveness of MNUACI. As illustrated in Figure 5,
the urban areas (cyan) extracted from Landsat 8 were regarded as reference data, to which
NTL, EANTLI, HSI, NUACI, and MNUACI were compared. It can be seen that NTL and
EANTLI have similar results: neither buildings nor roads are recognized in the middle of
the park due to the lack of nighttime luminosity. Although NUACI shows more fractions of
urban areas, only a small amount of impervious surface in the park can be recognized, due
to the lack of a sufficient luminous condition. HSI and MNUACI identified detail structures
of impervious surfaces, but MNUACI extracted impervious surfaces more accurately.
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As illustrated in Figure 6, NTL and EANTLI mistakenly identify most urban areas as
pervious surfaces and increase omission errors. Although HSI identifies more urban areas,
it recognizes the lake as urban areas by mistake, resulting in many commission errors. The
recognition results of urban areas from NUACI and MNUACI are similar, both showing
the detailed urban structure. However, MNUACI exhibits higher accuracy of urban areas
extraction resulting from the reduction of the impact of water bodies on urban areas using
MNDWI.

Figure 6. Urban areas in the Hongcheng Lake in Haikou, extracted from (a) Bands 5, 4, 2 composite image of Landsat
8, (b) normalized Night-Time Light (NTL), (c) Enhanced Vegetation Index Adjusted Nighttime Light Index (EANTLI),
(d) Human Settlement Index (HSI), (e) Normalized Urban Areas Composite Index (NUACI), and (f) Modified Normalized
Urban Areas Composite Index (MNUACI).

Taking Nanjing as an example, Figure 7 illustrates a latitudinal transect of NTL,
NUACI and MNUACI. These three types of curve variation are similar, but DN values
of MNUACI and NUACI in urban areas are distinctly higher than those of NTL, which
suggests that MNUACI and NUACI can enhance the NTL effect in urban areas. For urban
areas, MNUACI has higher peaks and lower valleys than NUACI, which reflects more
characteristics of inner-urban variability and spatial differentiation. This suggests an easier
process of urban area extraction using MNUACI. For peri-urban areas, NUACI and NTL
present similar low DN values, proving it difficult to identify small towns with them. In
contrast, DN values are higher when MNUACI extracts urban areas in suburban regions.
In addition, NTL cannot eliminate blooming effects due to a small quantity of luminosity
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values occurring in water and vegetation areas, while MNUACI and NUACI solve these
blooming problems by introducing vegetation and water indexes.

Figure 7. Night-Time Light (NTL), Normalized Urban Areas Composite Index (NUACI), and Modified Normalized Urban
Areas Composite Index (MNUACI) along a longitudinal transection in Nanjing.

4.2. Performance Assessment of the MNUACI

In terms of urban area recognition, a combination of NTL and auxiliary data is better
than the use of NTL alone. Different extraction methods for urban areas demonstrate
different performances on the same composited NTL index [46]. To assess the feasibility
and effectiveness of MNUACI, several supervised and unsupervised classification ap-
proaches were separately applied to identify urban areas on NTL, EANTLI, HSI, NUACI
and MNUACI images. Because the optimal thresholding method is time-consuming and
laborious, the genetic algorithm (GA) was used instead of automatically determining the
image segmentation threshold for the extraction of urban areas [47]. Deep learning (DL),
GA, fuzzy C-means (FCM) and SVM methods were used to extract urban areas from NTL,
EANTLI, HSI, NUACI and MNUACI images of Beijing, Nanjing, Guangzhou and Haikou.
Moreover, urban area references of the four sample cities were obtained from Landsat
8 images using the maximum likelihood classifier (MLC) method. Corresponding urban
areas from each city were derived from NTL, EANTLI, HSI, NUACI and MNUACI im-
ages associated with DL, GA, FCM and SVM approaches. The point-to-point comparison
method was applied to test images and reference images. Then, precision indicators such
as the Kappa coefficient, overall accuracy and the Jaccard similarity index were calculated
to analyze the performance of the combination of different indexes and approaches.
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The OA and KC of reference images from Beijing, Nanjing, Guangzhou and Haikou are
(93.42%, 0.87), (95.88%, 0.92), (98.16%, 0.96) and (96.94%, 0.94), respectively, which suggests
that the classification accuracies of Landsat 8 images from the four cities are reliable.

As illustrated in Tables 2–5, based on the OA, KC and JSC of five NTL indexes, the
order of accuracy of urban area classification in Beijing, Nanjing, Guangzhou and Haikou
respectively are: MNUACI > HSI > NUACI > NTL > EANTLI, MNUACI > NUACI > NTL
> HSI > EANTLI, MNUACI > NUACI > HSI > NTL > EANTLI, MNUACI > NUACI> HSI
> NTL > EANTLI. MNUACI has a higher classification accuracy than the other four NTL
indexes of the four capital cities using four classification approaches. Based on the OA,
KC and JSC of the four classification methods in MNUACI, each SVM demonstrates the
highest classification accuracy in the four urban area classification methods. Except the
classification accuracy of NUACI which ranks third in Beijing, each NUACI accuracy from
the other three cities follows the corresponding MNUACI. For MNUACI, the accuracy
relationship of the four urban area extraction approaches in Beijing, Nanjing, Guangzhou
and Haikou are as follows: SVM > GA > FCM > DL, SVM > DL> GA > FCM, SVM > GA >
FCM > DL, SVM > GA > FCM > DL. The SVM method is superior to other methods with
the GA method being the second, the FCM method the third, and the DL method the last.

Table 2. Accuracy comparison among various methods of urban area extraction methods using
different nighttime light indexes in Beijing.

Method
MNUACI NUACI HSI

OA KC JSC OA KC JSC OA KC JSC

DL 91.31% 0.826 0.843 75.30% 0.512 0.518 88.93% 0.779 0.806
GA 92.33% 0.847 0.861 79.56% 0.595 0.604 91.31% 0.827 0.847

FCM 92.50% 0.850 0.864 88.59% 0.773 0.781 90.12% 0.803 0.825
SVM 93.36% 0.867 0.883 89.44% 0.790 0.797 92.67% 0.853 0.870

Method
EANTLI NTL

OA KC JSC OA KC JSC

DL 56.56% 0.149 0.156 65.76% 0.326 0.347
GA 64.74% 0.306 0.319 73.59% 0.477 0.509

FCM 80.07% 0.604 0.632 79.90% 0.599 0.649
SVM 84.50% 0.691 0.722 81.43% 0.628 0.696

OA: Overall Accuracy; KC: Kappa Coefficient; JSC: Jaccard Similarity Index.

Table 3. Accuracy comparison among various methods of urban area extraction methods using
different nighttime light indexes in Nanjing.

Method
MNUACI NUACI HSI

OA KC JSC OA KC JSC OA KC JSC

DL 94.71% 0.893 0.888 84.13% 0.675 0.662 83.89% 0.679 0.718
GA 93.99% 0.879 0.878 84.62% 0.685 0.672 83.17% 0.663 0.702

FCM 87.02% 0.743 0.780 93.03% 0.859 0.852 76.92% 0.549 0.666
SVM 94.95% 0.899 0.898 93.03% 0.859 0.854 85.34% 0.709 0.750

Method
EANTLI NTL

OA KC JSC OA KC JSC

DL 72.60% 0.430 0.415 76.44% 0.513 0.497
GA 65.87% 0.284 0.272 96.39% 0.927 0.925

FCM 90.14% 0.800 0.791 87.02% 0.743 0.780
SVM 89.66% 0.790 0.781 89.90% 0.795 0.791

OA: Overall Accuracy; KC: Kappa Coefficient; JSC: Jaccard Similarity Index.
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Table 4. Accuracy comparison among various methods of urban area extraction methods using
different nighttime light indexes in Guangzhou.

Method
MNUACI NUACI HSI

OA KC JSC OA KC JSC OA KC JSC

DL 86.22% 0.729 0.759 70.78% 0.437 0.494 69.12% 0.392 0.531
GA 94.06% 0.879 0.901 72.92% 0.485 0.527 83.14% 0.653 0.748

FCM 93.11% 0.860 0.885 91.21% 0.825 0.847 85.27% 0.692 0.787
SVM 94.06% 0.879 0.901 93.59% 0.870 0.890 85.51% 0.698 0.787

Method
EANTLI NTL

OA KC JSC OA KC JSC

DL 57.01% 0.213 0.255 64.37% 0.332 0.395
GA 83.61% 0.670 0.740 71.26% 0.447 0.524

FCM 72.21% 0.465 0.538 80.05% 0.596 0.697
SVM 76.72% 0.545 0.616 79.57% 0.588 0.687

OA: Overall Accuracy; KC: Kappa Coefficient; JSC: Jaccard Similarity Index.

Table 5. Accuracy comparison among various methods of urban area extraction methods using
different nighttime light indexes in Haikou.

Method
MNUACI NUACI HSI

OA KC JSC OA KC JSC OA KC JSC

DL 76.74% 0.537 0.585 77.52% 0.551 0.622 67.70% 0.358 0.439
GA 87.08% 0.741 0.783 78.81% 0.577 0.640 70.54% 0.411 0.553

FCM 86.56% 0.731 0.777 80.36% 0.608 0.668 80.36% 0.608 0.668
SVM 87.60% 0.752 0.789 83.20% 0.664 0.725 75.97% 0.517 0.658

Method
EANTLI NTL

OA KC JSC OA KC JSC

DL 71.06% 0.424 0.513 67.96% 0.363 0.451
GA 57.36% 0.159 0.191 66.67% 0.338 0.429

FCM 67.70% 0.359 0.416 80.36% 0.608 0.668
SVM 73.39% 0.469 0.564 76.23% 0.524 0.633

OA: Overall Accuracy; KC: Kappa Coefficient; JSC: Jaccard Similarity Index.

After applying the SVM method, the spatial distribution of the extraction accuracy of
urban areas, commission errors and omission errors from Beijing, Nanjing, Guangzhou
and Haikou are displayed in Figure 8. The results of EANTLI and NTL produce a great
deal of omission errors on some peri-urban areas lacking in nighttime luminosity. This
might be due to the Luojia 1-01 satellite imaging time set at 2:00–3:00 a.m. local time. The
primary errors of HSI for the extraction of urban areas are commission errors caused by
a large number of water bodies. Although NUACI improves the accuracy of urban area
extraction by integrating vegetation and water bodies, NUACI, like EANTLI and NTL,
still has difficulty identifying unlit urban areas due to the use of NTL alone. All results of
MNUACI in the term of extraction of urban areas illustrate lower commission errors and
omission errors contrasting to results of NUACI, HSI, EANTL and NTL. Moreover, the
spatial distribution type of MNUACI results is also closer to the MLC results.
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Figure 8. Accuracy comparison of urban area extraction using an SVM method on the basis of the Modified Normalized
Urban Areas Composite Index (MNUACI), Normalized Urban Areas Composite Index (NUACI), Human Settlement Index
(HSI), EVI-Adjusted NTL Index (EANTLI), and Night-Time Light (NTL) in (a) Beijing, (b) Nanjing, (c) Guangzhou, and
(d) Haikou.

The extraction results of urban areas in the Tongzhou District of Beijing based on
MNUACI, NUACI, HSI, EANTLI and NTL by the SVM method are shown in Figure 9,
and a Landsat 8 false color composite image (Figure 9a) is used as a visual reference for
urban areas. For two central city areas, MNUACI and HSI show specific spatial distribution
patterns and inner-urban differentiation. NUACI and EANTLI extracted non-vegetation
and illuminated regions as urban areas, while NTL extracted only illuminated regions
as urban areas. For two town areas, NTL, EANTLI and NUACI merely identify road
areas within them, missing most town areas, especially for Town II, while MNUACI and
HSI recognize more urban areas. For bare land area, NTL, EANTLI and NUACI merely
identify minor bare lands within them while MNUACI and HSI recognize most bare lands.
For construction sites, NTL almost identifies the whole construction sites as urban areas
without any difference, while EANTLI, HSI, NUACI and MNUACI can extract urban areas
correctly, among which MNUACI have the best extraction effect. For village areas, the
results of urban areas identified by the five indexes are similar, but for Village I, NTL,
EANTLI and NUACI, lead to a large number of omission errors, while the results of HSI
and MNUACI generate minimum omission errors. Moreover, NTL and EANTLI produce
slight commission errors over the river area, and even HSI mistakenly identifies rivers as
urban areas. In contrast, MNUACI and NUACI do not generate such errors.
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Figure 9. Landsat 8 false color composite image (a) and urban extraction results using an SVM method on the basis of the
Modified Normalized Urban Areas Composite Index (MNUACI) (b), Normalized Urban Areas Composite Index (NUACI)
(c), Human Settlement Index (HSI) (d), EVI-Adjusted NTL Index (EANTLI) (e), and Night-Time Light (NTL) (f) in the
Tongzhou District, Beijing.

4.3. Correlation between MNUACI and Urban Impervious Surface

Furthermore, one thousand sample points from an ISA image and corresponding
MNUACI, NUACI, HSI, EANTLI and NTL images in each city were randomly selected by
using the Create Random Points tool as well as the Extract Multi Values to Points tool of the
ArcGIS software. The quadratic polynomial regression models were subsequently estab-
lished with MNUACI, NUACI, HSI, EANTLI and NTL for estimation of ISA. Correlation
coefficients and Root-Mean Square Error (RMSE) were employed together to evaluate the
performance of the established regression models.

As shown in Table 6, the average R2 and RMSE of MNUACI, NUACI, HSI, EANTLI
and NTL in Beijing, Nanjing, Guangzhou and Haikou are (0.74, 0.13), (0.49, 0.18), (0.44, 0.19),
(0.21, 0.22) and (0.24, 0.22), respectively. According to correlation coefficients and the RMSE
of quadratic polynomial regression models, the results of EANTLI and NTL have similar
lower fitting accuracy, and the result of HSI is better than that of the previous two indexes.
Apart from the result of Beijing, model regression effects of NUACI in the other three cities
are better than EANTLI and NTL. In contrast, MNUACI shows the highest correlation
coefficients and the lowest RMSE in all four cities. This suggests that the regression model of
MNUACI could enormously decrease the blooming effect of Luojia 1-01 NTL and improve
identification accuracy for non-luminous ISA better than for other models. As illustrated
in Figure 10, the scatter plots indicate that regression models between MNUACI and ISA
in Beijing, Nanjing, and Guangzhou demonstrate the form of a quadratic polynomial
regression model, whereas the polynomial regression model at Haikou is closer to a linear
regression model. The NTL of urban core areas in developed metropolitan cities, such as
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Beijing, can contribute to the saturated MNUACI value. The ISA corresponding to PISI
might not be the highest, because the differentiation between the blue and the near-infrared
band during the daytime is weakened in the urban core area. On the contrary, the NTL of
urban core areas in developing cities, such as Haikou, might rarely generate a saturated
MNUACI value, which can present a good linear correspondence to ISA derived from a
multispectral image.

Table 6. Correlation coefficients and RMSE of regression models for estimating impervious surface areas.

Cities
MNUACI NUACI HSI EANTLI NTL

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Beijing 0.78 0.12 0.39 0.20 0.58 0.17 0.19 0.24 0.15 0.24
Nanjing 0.73 0.11 0.51 0.15 0.39 0.17 0.32 0.18 0.33 0.18

Guangzhou 0.72 0.14 0.52 0.18 0.51 0.18 0.16 0.24 0.23 0.23
Haikou 0.75 0.13 0.52 0.18 0.27 0.22 0.15 0.24 0.24 0.23

Figure 10. The quadratic polynomial regression models established based on the Modified Normalized Urban Areas
Composite Index (MNUACI) and impervious surface area (ISA) in (a) Beijing, (b) Nanjing, (c) Guangzhou, and (d) Haikou.

5. Discussion

In this study, the MNUACI was proposed to improve the capability of delineating
spatial structures of inner-urban areas using vegetation coverage and water body index via
Luojia 1-01 NTL data. Four China cities with different development levels were chosen to
evaluate the performance of MNUACI. To some extent, MNUACI expressed the specific
spatial distribution patterns and inner-urban differentiation of urban areas. It also tackled
the problems of urban area extraction in areas with low- and non-luminosity.
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5.1. Comparison with Previous Indexes

It is difficult for a single NTL to correctly identify urban areas. Through the intro-
duction of a vegetation index, EANTLI, HSI and NUACI all improved the differentiation
within the city core area, but HSI mistakenly identifies water bodies as urban areas, and
EANTLI also brings about commission errors because of the NTL blooming effect; NUACI
applied the water body and vegetation indexes further enhance the inner-city variability
and differentiation. However, NUACI is still subject to the NTL blooming effect, gener-
ating commission errors in the urban core area. For bare land and suburban towns, NTL,
EANTLI and NUACI all generate numerous omission errors due to the lack of luminosity
information. In contrast, by using smaller NDVI values (bare land, sand land and built-
ups), HSI increases the recognition rate of bare land and urban areas, so that HSI and
MNUACI can identify urban areas even under lower luminous conditions. As a regulated
version of NDWI, MNDWI can effectively reduce the misclassified built-ups and their
shadow information in urban water bodies, while HSI can strengthen the light index value
in urban and suburban areas. By introducing improved water index and HSI, MNUACI
decreased the size of saturated urban areas and increased the spatial differentiation and
variability of inner-urban ones. In addition, with the introduction of HSI, the MNUACI
significantly improves the identification ability of urban areas without NTL; it especially
reduces the commission errors of urban areas in suburban areas. Adjusted by MNDWI and
HSI, MNUACI can not only accurately express the spatial differentiation related to urban
spatial structure, but can also increase spatial variation in NTL outside saturated urban
areas more than NUACI.

The accuracy of urban area extraction was compared through four classification
methods on four sample datasets under different natural and socioeconomic conditions.
overall accuracy, Kappa coefficient and Jaccard similarity index were introduced to assess
the accuracy of MNUACI, NUACI, HSI, EANTLI and NTL in terms of urban area mapping.
Although vegetation index was added to the NTL data to reduce the blooming effect of
NTL, the problem of omission errors caused by unlit or low-lit areas was not solved for the
high-resolution light data such as for Luojia 1-01. Therefore, NTL and EANTLI had a lower
extraction accuracy for urban areas. HSI improves the identification accuracy of urban
areas in unlit or low-lit areas because HSI uses a smaller NDVI. However, HSI wrongly
identifies the water body as the urban area, resulting in large commission errors. The
integration of the water and vegetation index allows NUACI to reduce NTL saturation and
the blooming effect, but there still exists the problem of omission errors associated with
no-lit or low-lit data. Among the five indexes, the urban area results extracted by MNUACI
exhibit the highest accuracy and robustness. This is due to MNUACI dramatically reducing
the omission error caused by the unlit area based on small NDVI values and eliminating
the blooming effect of NTL through vegetation and the water body index.

For MNUACI, the SVM method has the best performance, followed by the GA method.
In third is the FCM method and the DL method shows the lowest urban classification
accuracy. Due to the lack of extensive shape and texture information from urban objects,
the DL method failed to achieve the desired high accuracy of urban area classification.
Although the GA method can obtain higher classification accuracy of urban areas by
simulating the natural evolution process to determine the optimal segmentation threshold,
the SVM supervised classification approach using training samples shows higher accuracy
in terms of Kappa coefficient, overall accuracy and Jaccard similarity index. In addition,
considering the coefficient of regression model and RMSE, the correlation degree between
the NTL index and ISA is as follows: MNUACI>NUACI>HSI>EANTLI>NTL. The above
results suggest that the MNUACI model is robust and reliable for extraction of urban areas.
Therefore, with the global coverage of Luojia 1-01 NTL and NDVI data, the approach we
proposed can also be applied to the study of urban socio-economic, and environmental
issues in other countries and regions around the world.
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5.2. Limitations of the Method

The proposed MNUACI model is proven to be effective and accurate in analyzing
and identifying urban areas. However, there remain several shortcomings of MNUACI
that could be further improved in the future study. Firstly, though the estimation errors
of MNUACI were the smallest in five indexes, there still exist large omission errors in
unlit and low-lit area, especially in peri-urban areas. More efforts in improving this
model quality and integrating more ancillary data should be made. For instance, POI
(Point of Interest), land surface temperature and population data can make up the defect
caused by unlit and low-lit areas [48–50]. Also, co-registration errors of Luojia 1-01 NTL
images with Landsat 8 images would be transmitted to MNUACI through NDVI and
MNDWI, resulting in some urban area misidentification. Once the positioning accuracy of
Luojia 1-01 images is improved, the fusion of NTL and Landsat 8 images will improve
the performance of MNUACI. Moreover, it is complicated and difficult to derive accurate
parameters d and r by statistical sample data of urban areas. Inaccurate parameters
may lead to the inability to exclude the impact of vegetation and water. Finally, the
performance of MNUACI was tested only using Luojia 1-01 NTL data, and its applicability
and feasibility need to be further evaluated by using other low-resolution NTL data, such
as NPP-VIIRS and DMSP-OLS.

6. Conclusions

Accurate and timely information on the spatial extent and spatial distribution of
urban areas, particularly at the regional and global levels, is crucial and important for
environmental and ecological issues. NTL data are valuable for regional and global urban
mapping and for analysis of urban human activities. The Luojia 1-01 satellite usually
captures NTL images before dawn, when urban area lights may be turned off. Thereby,
NTL data might ignore certain important urban characteristics. In this research, a new
urban index is proposed, combining information from Luojia 1-01 NTL data, NDVI and
MNDWI of Landsat 8 data for more detailed characterizations of inner-urban variations
in nighttime luminosity. In comparison with NUACI, HSI, VANTLI and NTL, MNUACI
was superior in identification of inner-city forms. Then, the performance of SVM, GA,
FCM and DL methods for extraction of urban areas were evaluated in four Chinese cities
according to the five urban indexes mentioned. MNUACI based on the SVM method
exhibits the best performance in urban area extraction, attributed to the integration of HSI,
NDVI and MNDVI information. The regression models based on the five NTL indices were
respectively established to map ISA using the urban fraction obtained by Landsat 8 images
as the reference data. The validation results reveal a closer goodness-of-fit relationship
with both MNUACI and corresponding ISA. The average correlation coefficient and the
RMSE of the four cities are 0.74 and 0.13, respectively. In conclusion, combining with multi-
source remotely sensed data, MNUACI has the ability to mitigate NTL pixel saturation and
eliminate blooming effects, and provides a promising approach for identification of urban
areas by enhancing inner-urban spatial differentiation and spatial differentiation.
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Abstract: A country can be well-comprehended through its core cities. Similarly, we can learn about
a city from its hotspots, as they manifest the concentration of urban infrastructures and human
activities. Following this philosophy, this paper studies the intra-urban form and function from a
complexity science perspective by exploring the power law distribution of hotspot sizes and related
socio-economic attributes. To detect hotspots, we rely on spatial clustering of geospatial big data sets,
including street data from OpenStreetMap platform and nighttime light (NTL) data from the visible
infrared imaging radiometer suite (VIIRS) imagery. Unlike conventional spatial units, which are
imposed by governments or authorities (such as census block), the delineation of hotspots is done in
a totally bottom-up manner and, more importantly, can help us examine precisely the scaling pattern
of urban morphological and functional aspects. This results in two types of urban hotspots—street-
based and NTL-based hotspots—being generated across 20 major cities in China. We find that Zipf’s
law of hotspot sizes (both types) holds remarkably well for each city, as do the city-size distributions
at the country level, indicating a statistically self-similar structure of geographic space. We further
find that the urban scaling law can be effectively detected when using NTL-based hotspots as basic
units. Furthermore, the comparison between two types of hotspots enables us to gain in-depth
insights of urban planning and urban economic development.

Keywords: urban hotspot delineation; Zipf’s law; intra-urban scaling; street nodes; VIIRS imagery

1. Introduction

As a result of urbanization or the continuous influx of people into cities, the number
of worldwide urbanites is predicted to be 6.9 billion by 2050, accounting for 68% of the
world’s population [1]. The urbanization in China has been unprecedentedly rapid as
well in the past few decades [2], reaching 60.6% nationally in 2019 [3]. Consequently, the
grasp of city form and function—that is, how cities look and work—has become the key to
our sustainable development. Given the circumstances, city-related research has attracted
scientists from a variety of subjects and has, inevitably, become cross-disciplinary, including
geography, economics, computer science, and physics, etc. To converge these disciplines,
scholars have called for a new science of cities in the past few decades, in which they view
cities as an organized complexity [4], for studying cities’ fractal shapes, complex structures,
and nonlinear dynamics (e.g., [5–11]).

One major aspect of urban complexity is its underlying scaling properties. The
scaling pattern of urban entities can be categorized into two perspectives: The power law
distribution of a single quantity, such as city sizes (Zipf’s law [12]), building heights [13],
street lengths [14], and leisure venue densities [15], and the power relationship between
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two quantities, such as populations versus innovations ([16,17]) or gross domestic product
(GDP) versus street fractality ([18,19]). This study uses the terms scaling and power law
interchangeably. Urban scaling is, to a great extent, a ubiquitous pattern across different
measures. Moreover, the theory developed by Bettencourt et al. [16], which is behind the
power relationship between urban populations and other socio-economic measures, has
been formulated as fundamental laws about cities: Universal scaling law. However, recent
studies have shown that the universal scaling law may not work as expected, as the scaling
exponent is sensitive to different city boundaries or ineffective urban areas [20,21]. This
controversy is likely to be bound with the top-down methods of defining geographic units
by governments and authorities, such as administrative city boundaries, census tracts, and
some equally partitioned cells, which are essentially for management purposes and hardly
consider the scaling pattern of urban morphological and functional entities.

The arrival of geospatial big data has triggered a new paradigm for urban analysis
since geospatial big data, such as remote sensing (RS) images and location-based social me-
dia data, has the capacity to offer fine-grained, massive-scale geographic information [22].
For instance, nighttime lights (NTL) data, also referred to as RS of human beings and
their activities [23], are globally downloadable and can manifest the development of urban
and regional areas. OpenStreetMap (OSM), a pioneering volunteered geospatial informa-
tion platform, provides street data across the globe for probably the first time in human
history [24]. Both NTL and OSM data help researchers construct alternative modeling
units for spatial analyses at both intercity and intracity levels, and remove the barriers of
inter-regional incomparability. The most recent relevant studies are so-called natural cities,
referring to the objectively defined cities based on different types of urban elements from
the open data, such as building footprints, street nodes, and points of interest (e.g., [25–29]).
However, most of these studies take the derived cities as a whole to understand the scaling
structure over a region or country, but seldom calibrate a “local” understanding of such
spatial configuration at the intracity level.

Thus, the present study attempts to investigate the intra-urban scaling properties
through the lens of city hotspots. A city is formed by highly concentrated areas of human
settlements or activities within a country extent [30]. Likewise, if we scale down our scope
from a country to one of its cities, such concentrations can be regarded as urban hotspots.
With the advance of geographic information system (GIS) technologies, urban hotspots
can be delineated more precisely on the support of geospatial big data and bottom-up
approaches. The study contributes to the current literature in three aspects. Firstly, we
followed the ideas of previous city delineation methods to derive two types of urban
hotspots across 20 Chinese cities: Street-based and NTL-based hotspots, from respectively
the spatial clustering of individual street nodes and NTL image pixels with the cutoff
determined by data’s inherent scaling properties (see details in Section 2.2). Secondly, we
found that Zipf’s law held remarkably well for both street-based and NTL-based hotspot
sizes per city, as do the city-size distributions on the national scale. The scaling exponents
derived based on NTL-based hotspots were also consistent with the established regimes,
implying that NTL-based hotspots can act as better spatial units for urban analysis. Thirdly,
we found that the spatial discrepancy between the street-based and NTL-based hotspots
can lead us to deep insights on urban planning and development.

The remainder of this paper is organized as follows. Section 2 introduces the data
sets and the designed methods for urban hotspot delineation and related scaling analyses.
Section 3 presents the maps of the detected hotspots across the top 20 cities in China, as
well as the power law metrics of hotspot sizes and associated socio-economic attributes.
Section 4 further discusses the intra-urban scaling properties. Section 5 concludes the study
and points to future research directions.
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2. Data and Methods

2.1. Data and Data Processing

We selected 20 well-developed cities in China as study areas and primarily made
use of the following three data sets: (1) VIIRS imagery, (2) OSM street network, and (3)
socio-economic grid data (Figure 1a). All data sets are national coverage. The NTL data
was obtained from NOAA/NCEI [31]. We chose one monthly image at June 2020, of which
the resolution is 15-arc-s (about 500 m at the Equator). We reprojected and cleaned the
image to get rid of noises (lit spots) such as burning wildfires and oil drilling, based on
the method proposed by Elvidge et al. [32]. The national street network was downloaded
from OSM, including 4,419,603 segments from which we extracted 3,172,001 street nodes
based on the criterion that a node must intersect with three segments. The socio-economic
grid data include the GDP and population from the National Resources and Environment
Database of the Chinese Academy of Sciences [33] and environmental grid data include
CO2 emissions from the National Earth System Science Data Center [34]. Raster data
sets for GDP, population, and CO2 were collected in 2010 and had a 1 km resolution. To
perform the analysis, we clipped out both the vector and raster data using each of 20 city
administrative boundaries, then conducted zonal statistics of cells with socio-economic
attributes for each city, which were further joined with city hotspots (Figure 1b).

Figure 1. Cont.
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Figure 1. (Color online) The related datasets (a) and the methodological framework (b) in this
study. (Note: The units of raster datasets for population, GDP, CO2 emissions are 1 person/km2,
10,000 CNY/km2, and 10,000 ton/km2, respectively).

2.2. Urban Hotspot Detection

We adopted the spatial clustering method for urban hotspot calculation and delimi-
tation. As there were two types of data sets (street junction nodes and NTL pixels) to be
processed, we applied two rules for cluster detection of each data set: Point proximity and
lit pixel adjacency. The threshold (distance between points or pixel value) for clustering
was determined by the data’s inherent scaling properties uncovered by head/tail breaks
and power law detection methods.

2.2.1. Spatial Clustering of Street Nodes and NTL Pixels

Urban hotspots—that is, populated areas in a city—are the basic unit for the analysis
in this study. Traditional urban analysis uses pre-defined administrative units provided
by local authorities or grids with different resolutions. However, both spatial units cannot
represent the merit of “concentration” as they are defined either from a top-down or
arbitrary manner. To overcome this issue, we adopted a spatial clustering approach to
objectively delimit the boundary of a hotspot from the dense areas of street junctions or lit
pixels.

We chose two clustering approaches for each data set. For street junctions, we first
computed the triangulated irregular network (TIN) to get junction–junction proximities.
As Figure 2a–c shows, the area of urban hotspot can be directly obtained through the
conversion of short TIN edges between points. For NTL images, the first step is to vectorize
each raster pixel into a polygonal feature with the light value maintained (Figure 2e), then
the hotspot can be derived through grouping the adjacent lit pixels (Figure 2f).

The above procedures can be simply done using any mainstream GIS or RS image
processing software (such as ArcGIS and Erdas). The major difficulty lies in identifying
the cutoff value for the classification short/long edges and dim/lit pixels across a set of
urban areas. In other words, it lacks an objective criterion to make the linkage between the
morphological hotspot (the concentration of urban infrastructure) and a set of proximate
street junctions or the functional hotspot (the concentration of human activities) and a
group of lit pixels. The same issue occurs when delineating the city boundaries (regardless
of administrative boundaries) at the country or cross-country level, whereas prior studies
(e.g., [35]) have made use of the universal scaling property for finding the effective cutoff
value. In a similar spirit, the next section will introduce how to obtain the optimal cutoff
value for the accurate delimitation of urban hotspots.
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Figure 2. (Color online) The derivation of urban hotspots using the spatial clustering approach based on respectively street
nodes (a–c) and NTL image pixels (d–f).

2.2.2. Scaling Analytics for Identifying the Cutoff for Spatial Clustering

A vast body of literature has investigated city-size distributions in different countries.
Most of those studies have used the power law model to characterize the uneven spatial
distribution of cities, as well as their sizes, such as Zipf’s law [12]. Zipf’s law states that
there is an inverse relationship between the rank and the size of a city. In other words, the
largest city is twice as big as the second largest city, etc. Such a statistical distribution would
strikingly present the long-tail effect or scaling pattern of far more small cities than large
ones. In most cases, the scaling pattern recurs within the power-law distribution and leads
to an inherent hierarchy, which can be derived through the head/tail breaks classification
scheme. In this study, we change our perspective from a “country-to-city” relationship to
“city-to-hotspot” one. In this way, we can borrow the scaling analysis methods (power law
detection and head/tail breaks), which were previously used for finding the cutoff value of
city demarcation, to delineate hotspots. To start with, we shall first introduce briefly Zipf’s
Law, power law, and head/tail breaks.

Referring to the size n of each city relative to its rank number r, Zipf’s law is denoted
by Equation (1):

n ∝ r−b (1)

where b usually is equal to 1, indicating that the city size is equal to the reciprocal of its
rank.

Another way to describe Zipf’s law is the Pareto distribution (or power-law, which
is a derivative of Pareto distribution) [36]. To do this, it is equivalent to use the inverse
function of Equation (1) as r ∼ n− 1

b , where r is further treated as the proportion, Pr, to
the whole population by the cumulative distribution function (CDF), and it is relative to
how many of the cities are greater than the size, x, is defined as follows:

Pr[X >= x] ∝ x−k (2)
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where k > 0. For a specific point of x, the power-law is acquired by the derivative of Pareto
distribution by the probability density function (PDF) as:

Pr[X = x] ∝ −kx−k−1 ∝ Cx−α (3)

where C is a constant and α = k + 1. In practical terms, the power-law distribution could
only be discovered in one part of the whole dataset, where there must be some lower bound
denoted as xmin. A formal form of the power-law is given as follows proposed by Clauset
et al. [37]:

p(x) =
α − 1
xmin

(
x

xmin

)−α

(4)

With the fixed lower bound xmin, the power law exponent α is then derived from the
robust maximum likelihood estimation (MLE) method, noted as Equation (5):

α = 1 + n

[
n

∑
i=1

ln
xi

xmin

]−1

(5)

So far, we can remark that, for detecting Zipf’s law, the power law exponent should be
two rather than one. Furthermore, a modified Kolmogrov-Smirnov test [37,38], needs to be
performed to determine the extent of fitness for the data to an ideal power-law fitted model
using the derived xmin and α values. Every time we generate 1000 synthetic datasets that
follow a perfect power law above xmin but have the same non-power-law distribution as the
original dataset. Then, we check how many times the maximum difference between each
synthetic data and the fitted model are larger than the one between the original dataset and
the fitted model, the ratio of number of times to 1000 is the goodness-of-fit index p-value.
We set p-value ≥ 0.05 as the acceptance of data being a power law in this study, meaning
that at least 50 among the 1000 synthetic datasets are less “power-law-distributed” than
the original dataset.

Zipf’s law can be used as an effective assessment when performing city demarcations.
In other words, if the demarcated city sizes follow Zipf’s law, we think that the result is
valid. The question then narrows down to how to derive cities whose sizes follow Zipf’s
law from geospatial datasets, such as the TIN model and NTL imagery (Figure 3). Here,
we introduce the head/tail breaks method [39] to effectively locate the cutoff value. Put
simply, data with a power law distribution can be divided into a high percentage in the
tail (≥60%) and a low percentage in the head (≤40%) at the arithmetic mean. Therefore,
for TIN and image models, the head refers to long TIN edges and light pixels, and the tail
refers to short edges and dark pixels. The process then runs recursively for the head part
until the head percentage is no longer small (say, ≥40%). During the process, a series of
arithmetic means were iteratively computed, naturally forming a scaling hierarchy of the
data. The number of mean values, also known as the ht-index [40], can then characterize
the tendency of data being power-law-distributed. Namely, the larger the ht-index value,
the more likely it is that the data is a power-law. Prior studies have used these nested mean
values as cutoffs for extracting the so-called natural cities whose sizes obey Zipf’s law at
either national or cross-national levels (e.g., [41]). However, the use of those values for
hotspot derivation at the city level remains under-researched. The present study would
detect urban hotspots through a combination of head/tail breaks for locating the feasible
cutoff and MLE method for examining Zipf’s law.

2.3. Power Function Fitting for Intra-Urban Scaling Law Examination

The examination of urban scaling concerns two perspectives: The power law detection
of a single urban indicator (as mentioned in Section 2.2.2) and the power relationship
between two types of urban quantities (for example, urban areas versus populations).
The latter have been formulated as the universal scaling law [16] for most of the urban
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indicators, which uses the power function fitting between an urban indicator and the urban
population size across cities at time t, denoted as Equation (6):

Y(t) = kN(t)β (6)

where β is the scaling exponent and k is the constant.
The scaling exponent β can be further investigated by means of three categories: The

sub-linear (β < 1), linear (β ≈ 1), and super-linear (β > 1) scaling relationships between
urban measures [16]. To elaborate, for β < 1, it normally refers to the need of a city’s
infrastructure scales sub-linearly with its population size due to the economies of scale,
whereas the number of a city’s innovations and crimes scales super-linearly (β > 1) due
to the endogenous social interactions. The regime of β ≈ 1 describes the pattern that the
individual demands in a city is proportionate to the urban population size. In this study,
we use the detected hotspots as alternative spatial units to reexamine the urban scaling law.
To do so, we conduct the power function fitting between urban socio-economic metrics
(such as population, GDP, and CO2 emissions) that are within urban hotspots. To compute
the scaling exponent, we first take the logarithms on both axes and adopt the ordinary
least-squares linear regression for fitting. The scaling exponent is then the slope of the
fitting line.

3. Results

3.1. Derived Urban Hotspots in the Top 20 Chinese Cities

We applied the urban hotspot detection method on street nodes and NTL imagery,
respectively, across top 20 Chinese cities, ranked by GDP. To derive the hotspots from the
street nodes, we established big TIN models for each city, whose TIN edges range from tens
to hundreds of thousands (Table 1). The heavy-tailed distribution statistics were striking
for each TIN model, as the average edge length (the mean length of ledge is about 450 m)
was classified effectively between short and long TIN edges according to their imbalanced
ratios (around 80% versus 20%). The observation of 80/20 division, namely the scaling
pattern of far more short TIN edges than long ones, objectively reveals the uneven spatial
distribution of street node densities. The delineation of urban hotspots for each city was
then conducted by grouping and converting those short edges into many different-sized
hotspots. The area of resulting hotspots per city followed well with Zipf’s law, as the mean
value of 20 cities’ power-law exponents was 2.01 (for more details of the basic statistics and
related power-law metrics of hotspot size, see Section 3.2). Figure 3 presents the appearance
of hotspots across selected cities, clearly showing that a few largest patches were located in
the downtown and numerous smaller ones were spaced dispersedly in places other than
the city center.

Table 1. Statistics of street nodes, related triangulated irregular network (TIN) edges, and head/tail
division results among 20 cities. (Note: #: Number; ledge: Average edge length).

City #Nodes #TIN Edges ledge Head%/Tail%

Shanghai 88,701 266,076 217.03 31/69
Beijing 103,752 311,239 274.43 25/75
Tianjin 56,698 170,074 368.58 26/74

Guangzhou 70,655 211,945 242.94 27/73
Chongqing 34,416 103,229 552.53 19/81

Qingdao 49,945 149,816 415.87 23/77
Shenzhen 47,954 143,841 183.35 28/72
Chengdu 53,151 159,439 348.79 25/75
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Table 1. Cont.

City #Nodes #TIN Edges ledge Head%/Tail%

Changsha 22,203 66,590 487.60 20/80
Hangzhou 62,346 187,017 363.57 23/77

Wuhan 32,981 98,928 365.61 25/75
Nanjing 36,282 108,824 343.24 26/74

Shenyang 16,433 49,278 595.23 20/80
Zhengzhou 20,209 60,610 436.42 23/77

Dalian 18,063 54,165 684.15 22/78
Fuzhou 21,215 63,631 649.26 24/76

Xian 34,363 103,070 395.22 26/74
Harbin 15,260 45,763 1031.37 16/84
Jinan 19,405 58,199 412.84 19/81

Kunming 19,308 57,906 624.11 17/83

Figure 3. (Color online) Urban hotspots based on the density of street junctions throughout the top 20 Chinese cities.
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The urban hotspot extraction from NTL data went through experiments with a series of
“candidate” mean values along with the head/tail breaking process on each image. To start
with, the number of pixels for each image ranged widely, from 9397 (Shenzhen) to 353,344
(Harbin) and, interestingly, also followed the fat-tailed distribution. More specifically,
among 20 city NTL images, most of the images (14) contain fewer than 78,045 pixels, some
(five) between 78,045 and 141,623 pixels, while only one image has more than 141,623
pixels, resulting in a ht-index value of 3, meaning that there are three hierarchical levels
of images regarding the number of pixels. Moreover, the ht-index for the pixel values of
each city image was even higher. Figure 4 shows clearly that each image contains far more
dark pixels than light ones, and such a scaling pattern recurs at least five times, indicating
that there were no fewer than five average lightness values of each image achieved as
candidate threshold values for a single city’s hotspot delineation (see Appendix A for
more details of the head/tail breaks method applied to the pixel values of each city’s
NTL data). Therefore, for every image we merged the vectorized pixels whose values
above each derived candidate thresholds based on head/tail breaks to extract the urban
hotspots, ensued with power law detection for each set of the hotspot results. The summary
of statistical results for varying thresholds is presented in Table 2, which shows that the
optimal cutoff value resided in the third level, since its power-law exponent was closest to 2,
leading to hotspots being most akin to the Zipf’s law configuration. It should be noted that
the average of the cutoff values across 20 cities (33.086) largely echoes the optimal threshold
(33.14) based on the VIIRS NTL data in 2013 for Chinese city demarcation [35]. Following
the located cutoffs for each image, the layout of extracted urban hotspots exhibited a
picture that was overall similar to that from street nodes in terms of the imbalanced spatial
distribution from city center to periphery (Figure 4).

Table 2. The candidate cutoff values for the NTL image and the resulting power law exponents
at different levels based on the head/tail breaks method. (Note: light: The average of lightness
thresholds at each level for 20 images; α: The average of power-law exponent of hotspot area for
20 cities).

light α

1st Level 5.376 1.812
2nd Level 18.192 1.769
3rd Level 33.086 1.921
4th Level 48.092 2.442
5th Level 67.799 3.076

By comparing Figure 3 with Figure 4, it is clear that two types of patches overlapped,
but in varying degrees, with each other, indicating there were similarities and differences
between urban physical and functional extents. Here, we applied the intersection over
union (IoU) metric to compute the overlapping ratio between two types of hotspots for
each city, the average ratio for 20 cities was around 0.27 (see more details in Appendix B).
It appeared that inland cities were inclined to have larger ratios, such as Shenyang, Xian,
and Zhengzhou had most overlays (around 0.4), whereas coastal cities such as Shenzhen
and Qingdao held much less (e.g., only 0.11 for Qingdao). We further opted to map the
overlay between two types of hotspots among the top four representative cities in China:
Beijing, Shanghai, Guangzhou, and Shenzhen (Figure 5), whose IoU metrics are all smaller
than the average, i.e., 0.26, 0.17, 0.21, 0.18, respectively. Moreover, it is intriguing to note
that detailed disparities can be found with respect to the extent of dispersive patches. In
other words, with similar power-law exponents (around 2), the sizes of NTL hotspots in
top cities seemed to be more even and the spatial distribution were more dispersed than
those of street hotspots.
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Figure 4. (Color online) Urban hotspots based on NTL imagery using the third mean value as the cutoff value.
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Figure 5. (Color online) Comparison between two types of urban hotspots in four Chinese first-tier cities.

3.2. Intra-Urban Scaling Properties Based on Derived Urban Hotspots

We applied the robust power law detection based on the MLE method to two types
of hotspots in 20 cities. For each city, we listed the power-law fitting metrics regarding its
hotspot areas detected using the cutoffs derived from head/tail breaks (Table 3). We can
see that Zipf’s law held remarkably well for both types of urban hotspots. As stated, the
power-law exponents for street hotspots were centered at 2.01 ± 0.15, while the averaged
exponent value for NTL hotspots was slightly smaller, 1.921 ± 0.19, due to the exception
of Chengdu (1.46). Most of the p-values were above 0.05 and readers can cross-check the
results in Table 3. In addition to the hotspot sizes, we also examined the power law fit of
the socio-economic status within the hotspots in the top four cities. As Figure 6 shows, the
power-law distribution still holds for GDP, population, and the amount of CO2 emissions
per hotspot, respectively. However, the values of exponents for each city performed slightly
differently. Specifically, the exponents of three urban metrics inside the hotspots remained
relatively stable with the hotspot size in Guangzhou and Shanghai, but less so in Beijing
(up-and-downs around αArea) and Shenzhen (all smaller than αArea).
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Table 3. Power law metrics of detected urban hotspot areas. (Note: αArea: Power-law exponent; p:
The goodness-of-fit index; Areamin: The minimum area above which the power-law holds).

Street Hotspots NTL Hotspots
City αArea p Areamin αArea p Areamin

Shanghai 2.20 0.62 0.31 2.38 1.00 6.29
Beijing 2.16 0.33 0.16 2.07 0.98 3.83
Tianjin 2.21 0.71 0.50 1.80 0.63 1.01

Guangzhou 2.32 1.00 0.25 1.93 0.30 0.80
Chongqing 1.79 0.30 0.12 2.09 0.88 1.89

Qingdao 2.21 0.75 0.78 1.76 0.26 0.70
Shenzhen 2.09 0.83 0.08 1.96 0.70 1.80
Chengdu 1.91 0.17 0.13 1.46 0.00 0.37
Changsha 1.91 0.08 0.18 1.88 0.57 0.57
Hangzhou 1.93 0.90 0.09 1.93 0.91 1.31

Wuhan 1.86 0.97 0.11 1.73 0.07 0.56
Nanjing 1.81 0.03 0.11 1.93 0.90 1.10

Shenyang 1.95 0.43 0.21 1.89 0.27 0.49
Zhengzhou 1.93 0.83 0.12 1.97 0.24 0.53

Dalian 1.83 0.49 0.18 1.70 0.11 0.34
Fuzhou 1.97 0.10 0.19 2.19 0.96 3.30

Xian 2.11 0.78 0.62 1.88 0.80 0.72
Harbin 2.09 0.80 3.26 1.93 0.74 1.06
Jinan 2.02 0.94 0.24 2.17 0.94 0.87

Kunming 1.95 0.42 0.24 1.77 0.43 0.59

Figure 6. (Color online) Power law distribution of NTL-based hotspot sizes (a), GDP (b), population (c), and CO2 emissions
(d) among the top four cities in China.
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We further investigated how these extracted hotspots worked as cores of each city.
Ideally, there should be a disproportionate relationship between hotspot areas and the
amount of pertained resources. Consequently, 3% of the city area, constituting either type
of hotspot, accommodates, on average, around 15% of GDP, 25% of population, and 20% of
CO2 emissions (Table 4). Extreme cases such as Shenyang, Wuhan, and Kunming showed
that derived hotspots could even account for more than 40% of the city’s total population
or GDP. Such imbalanced ratios enabled us to make use of those urban indicators within
the hotspots for exploring the intra-urban scaling law. After correlating the total areas,
GDP, and CO2 emissions with the population, based on two types of hotspots for each
city in double logarithm scales, we were intrigued by two findings. Firstly, there were
no scaling relationships between the area/GDP/CO2 emissions and population based on
the street hotspots, indicated by the very low R2 values (below 0.01), while significant
scaling relationships existed when using NTL hotspots (R2 values above 0.4). Secondly, the
relationships of area- and CO2 emissions-population were sub-linear (0.84 and 0.68; Figure
7a,c), whereas the GDP–population relationship was super-linear (1.13; Figure 7b), wherein
the corresponding scaling exponent values, computed among the chosen 20 cities, were
very consistent with values from the recent study based on 287 Chinese prefecture-level
cities [17].

Table 4. Percentages of area, gross domestic product (GDP), population, and CO2 emissions inside
urban hotspots to those of the entire city. (Note: Pop: Population; CO2: CO2 emissions).

Street Hotspots NTL Hotspots
City Area% GDP% Pop% CO2% Area% GDP% Pop% CO2%

Shanghai 2.73% 3.61% 12.61% 4.62% 2.44% 3.64% 8.94% 4.35%
Beijing 3.18% 10.58% 30.87% 13.74% 1.37% 5.75% 13.33% 6.90%
Tianjin 3.64% 10.58% 32.96% 13.75% 3.44% 5.22% 24.57% 17.40%
Guangzhou 2.40% 6.67% 24.42% 9.50% 3.99% 10.63% 29.28% 16.46%
Chongqing 2.56% 23.39% 20.50% 27.08% 0.76% 20.35% 12.71% 17.79%
Qingdao 3.54% 14.67% 22.52% 21.56% 0.81% 4.86% 7.95% 6.44%
Shenzhen 6.68% 6.71% 16.82% 9.56% 14.11% 9.22% 7.93% 20.57%
Chengdu 4.26% 26.00% 30.10% 26.72% 4.46% 25.71% 28.55% 29.16%
Changsha 2.75% 20.30% 28.76% 33.42% 1.00% 22.67% 43.94% 35.25%
Hangzhou 2.82% 16.91% 12.34% 20.60% 1.18% 7.79% 5.99% 11.67%
Wuhan 3.26% 27.04% 22.84% 17.44% 4.10% 42.02% 62.71% 19.57%
Nanjing 4.56% 12.20% 28.80% 17.05% 2.30% 6.04% 15.14% 9.48%
Shenyang 2.62% 12.11% 40.28% 25.86% 1.97% 13.42% 49.08% 7.50%
Zhengzhou 3.62% 20.06% 28.76% 20.03% 2.74% 3.37% 6.97% 9.32%
Dalian 3.31% 22.45% 39.21% 34.73% 1.13% 9.41% 19.79% 16.54%
Fuzhou 3.93% 26.50% 27.31% 32.73% 1.83% 16.91% 20.22% 25.72%

Xian 4.19% 16.52% 40.15% 33.90% 3.85% 14.88% 26.83% 39.59%
Harbin 0.82% 21.78% 25.13% 28.53% 0.24% 11.20% 11.33% 11.90%
Jinan 1.50% 7.72% 12.51% 13.00% 1.41% 7.79% 11.47% 13.57%

Kunming 1.86% 30.31% 34.93% 31.00% 0.83% 13.68% 11.34% 14.11%
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Figure 7. (Color online) Scaling relations and exponents for urban indicators reflected by NTL-based
hotspots (Note: Panels (a,c)show sub-linear scaling law for area/CO2 emissions versus population;
Panel (b) shows super-linear scaling law of GDP and population; all metrics for each city are
calculated based on the extent of contained NTL-based hotspots).

4. Discussion

Cities have long been treated as complex systems. The formation of cities can be
described as a dynamic, self-organized, and nonlinear process of human settlements [5],
demonstrating highly-heterogenous patterns in both its spatial and aspatial aspects [42].
The spatial aspect can refer to the fractal urban form and the aspatial aspect can refer to the
long-tailed distribution of city-related metrics. However, such heterogeneities cannot be
revealed effectively since conventional urban data, formed normally through top-down
approaches, lack sufficient geographic scope and granularity. In the current geospatial
big data era, we can easily conquer this constraint by acquiring fine-grained open data
regarding the city form and function at countrywide coverage. Big data is not only big,
but also possesses significant fractal and nonlinear properties [43], based on which we
can model and analyze a city in a bottom-up manner. That is, delimiting city boundary
at the country level or delineating hotspot area at the city scale by agglomeration of
individual-based locations.

By adopting the fractal and nonlinear ways of thinking and doing, the cutoff for
hotspot boundary derivation was located effectively. Specifically, drawing the border of
hotspots is similar to measuring the length of a coastline—a commonality between the
two is that, in reality, there is no ground truth for them. The father of fractal geometry,
Benoit Mandelbrot [44], has made it clear that the length of a coastline is immeasurable,
while the nonlinearity or scaling property is always measurable. In the present study, we
characterized the data’s nonlinearity in its inherent scaling hierarchy (by head/tail breaks)
and power-law or Zipf’s law distribution (by the MLE method), by which we obtained
the cutoff guiding the spatial clustering. Taking the NTL image as an example, the nested
mean values enable us to quickly classify pixels iteratively into a minority of light ones and
a majority of dark ones, without exhausting all pixel values by increasing the threshold one
at a time. Accordingly, only a few times of experiments on grouping-light-pixel operations
for each city led us to generate hotspot polygons whose sizes follow Zipf’s law.

The successfully detected Zipf’s law of street- and NTL-based hotspots across 20 cities
further strengthen the fractal structure of geographic space. It is well-known that a part of
a fractal is similar geometrically or statistically to the whole, termed as self-similarity. Since
there has been a good agreement among scholars that Zipf’s law holds for cities at the
country scale [36,45], such a repeated statistical regularity for hotspots at the city scale in
the present study can be considered evidence of the self-similarity of geographic space. The
self-similarity across multiple scales makes us connect the system of geographic space with
that of biology, where similar power law statistics appear across multiple layers in a human
body from organs, to tissues, and further to cells [46,47]. Therefore, we believe that Zipf’s
law can hold within even smaller sub-units than city hotspots (such as neighborhoods),
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and thus more refined urban center areas could be further identified with the proposed
methods. This certainly warrants further study as long as the data granularity allows.

The detected hotspots in both types constituted only a small part of the city area,
but accounted for a considerable portion of the urban population, wealth, and energy.
This imbalanced ratio between hotspot sizes and the associated socio-economic statistics
sheds light on the fact that not all city areas for people live or perform activities. This
is also known as the potential problem of the administrative city boundary for urban
analysis [21]. Without an accurate capture of human urban activities, the urban scaling
estimations may be subjected to unexpected variations. We also examined the power
relationship between selected urban measures within the entire administrative boundary
among 20 cities, and failed to achieve expected scaling exponents (small R2 values or in
wrong regimes), similar to the case when using the street-based hotspots. By contrast,
through the NTL-based hotspots, the derived scaling relationships of area/GDP/CO2
to population were consistent with the established regimes (e.g., [17,48]). The obtained
scaling exponents, shown in Figure 7, indicated that due to a more concentrated settlement
and use of infrastructure, the growth of urban economy paced quicker than that of the
population (super-linear regime), while the demands of urban areas and the related energy
consumption accelerates slower than the population growth (sub-linear regime). The
presence of scaling law further implied that the NTL-based hotspots could work as a new,
effective instrument for exploring the system of cities.

The hotspots identified by both street and NTL data, by and large, tally with the
locations of central urban areas of these 20 cities in China. As noted, street-based hotspots
can represent a city’s morphological aspects, whereas NTL-based hotspots can accurately
reflect a city’s functional aspects. The comparison between the two can give us a compre-
hensive image of how people utilized the urban space. It is noteworthy that the disparity
occurs in their spatial distributions. Given that NTL-based hotspots illustrate the aggrega-
tion of human activities, we refer that the NTL-based hotspots better manifest the actual
urban populous areas than the street-based hotspots, in the context that the street network
constructed or traffic planning normally show a time lag. This discrepancy normally hints
the evolution of urban centers. That is, these regions are preferred by humans, but apt to
be neglected by the municipal authorities or urban scholars. Thus, the planning authorities
should at least pay attention to these regions and other urban infrastructure should be
strengthened in order to keep pace with real human needs, as well.

By computing IoU metrics, we are able to find that two types of hotspots have less
overlays in coastal cities than in inland cities, while coastal cities in China normally have
better economic status. Meanwhile, it is worth mentioning that the NTL-based hotspots
are very dispersed in the four headmost metropolises, indicating that well-developed
cities tend to exhibit a balanced distribution of human activities. It is further referred
that cities with higher economic status shift to a more decentralized structure upon urban
autonomous development. On this basis, the governments need to take more measures
to promote urban justice (including the even distribution of urban resources, etc.) on the
process of urban development.

5. Conclusions

The ultimate goal of city science is closely related to urban smart growth and sustain-
able development. In natural and societal phenomena, it has been widely adopted that the
scaling pattern and power-law statistics are signs of sustainability [49]. This paper provides
an intra-urban perspective to study the underlying scaling structure of urban space through
novel spatial units: Urban hotspots, detected from geospatial big data including OSM
street data and VIIRS imagery. In contrast to conventional spatial units that were imposed
by local authorities, the present study adopted the objectively delineated concentration
areas as hotspots using the spatial clustering approach. This is mainly motivated by the
instability of urban scaling exponents affected by different cities and its sub-unit demarca-
tions. In sum, we found (1) that Zipf’s law also holds strikingly at the intra-urban level;
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and (2) that NTL-based hotspots can be good proxies for city populous areas, by which the
urban scaling relationship can be correctly maintained.

The method for hotspot detection acts as a promising tool and could supplement
innovative urban planning toolboxes in the big data era. Despite the strengths of urban
hotspot in this work, there is still room for improvement in terms of the following. Firstly,
whether the intra-urban scaling law exists in other countries remains to be verified from
a global view, in addition to these 20 cities in China. Secondly, it is important to add
NTL images before 2020 to check whether and how the intra-urban scaling exponents
change or evolve. Further, the updated raster data sets of GDP, population, and CO2
emissions after 2010 will be combined once they are available, for eliminating possible
biases or inaccuracies that occurred due to the difference in data time acquisition. Thirdly,
the multiscale effect of scaling analytics (e.g., detecting a more refined spatial unit and
related power law statistics) within one city needs to be further conducted. Fourthly, the
underlying mechanism of this scaling law has not been revealed yet, concerning policy,
landform or demographic traits, etc. Future work will point to these directions.
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Appendix A

This appendix supplements Section 3.1 by showing average pixel values derived along
with the head/tail breaks process of each nighttime image and the resulting power law
metrics on hotspot sizes, by city.
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Appendix B

This appendix supplements Section 3.1 by presenting the overlapping ratios between
street- and NTL-based hotspots among 20 cities. We adopted IoU for assessing how much
one type of hotspot overlaps another in a city. The IoU metric between two types of
hotspots can be denoted by the following equation:

IoU =
Areas ∩ Arean

Areas ∪ Arean

where Areas is the total area of street-based hotspots, Arean is the total area of NTL-based
hotspots. The results of IoU for each city is shown in Table A0.

Table A2. The intersection over union (IoU) metrics between two types of hotspots among 20 cities.

City IoU City IoU

Beijing 0.26 Nanjing 0.19
Shanghai 0.17 Changsha 0.24

Guangzhou 0.21 Zhengzhou 0.38
Shenzhen 0.18 Qingdao 0.11
Chengdu 0.38 Shenyang 0.45

Hangzhou 0.28 Dalian 0.21
Chongqing 0.21 Fuzhou 0.33

Wuhan 0.22 Harbin 0.26
Xian 0.42 Jinan 0.34

Tianjin 0.33 Kunming 0.28
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Abstract: A functional urban area (FUA) is a geographic entity that consists of a densely inhabited city
and a less densely populated commuting zone, both highly integrated through labor markets. The
delineation of FUAs is important for comparative urban studies and it is commonly performed using
census data and data on commuting flows. However, at the national scale, censuses and commuting
surveys are performed at low frequency, and, on the global scale, consistent and comparable data
are difficult to obtain overall. In this paper, we suggest and test a novel approach based on artificial
light at night (ALAN) satellite data to delineate FUAs. As ALAN is emitted by illumination of
thoroughfare roads, frequented by commuters, and by buildings surrounding roads, ALAN data
can be used, as we hypothesize, for the identification of FUAs. However, as individual FUAs differ
by their ALAN emissions, different ALAN thresholds are needed to delineate different FUAs, even
those in the same country. To determine such differential thresholds, we use a multi-step approach.
First, we analyze the ALAN flux distribution and determine the most frequent ALAN value observed
in each FUA. Next, we adjust this value for the FUA’s compactness, and run regressions, in which
the estimated ALAN threshold is the dependent variable. In these models, we use several readily
available, or easy-to-calculate, characteristics of FUA cores, such as latitude, proximity to the nearest
major city, population density, and population density gradient, as predictors. At the next step, we
use the estimated models to define optimal ALAN thresholds for individual FUAs, and then compare
the boundaries of FUAs, estimated by modelling, with commuting-based delineations. To measure
the degree of correspondence between the commuting-based and model-predicted FUAs’ boundaries,
we use the Jaccard index, which compares the size of the intersection with the size of the union
of each pair of delineations. We apply the proposed approach to two European countries—France
and Spain—which host 82 and 72 FUAs, respectively. As our analysis shows, ALAN thresholds,
estimated by modelling, fit FUAs’ commuting boundaries with an accuracy of up to 75–100%, being,
on the average, higher for large and densely-populated FUAs, than for small, low-density ones. We
validate the estimated models by applying them to another European country—Austria—which
demonstrates the prediction accuracy of 47–57%, depending on the model type used.

Keywords: functional urban areas (FUAs); boundaries; multiple regression modelling; artificial
light-at-night (ALAN); optimal threshold

1. Introduction

More than 50% of the world’s population currently resides in urban areas, and this
share is expected to increase to 70% by 2050 [1]. Due to a significant concentration of
production factors, urban areas produce approximately 80% of the global GDP [2]. This
makes spatial dynamics of urban areas to be important for policy-makers and researchers
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alike. Decision-makers can devise informed development policies, while in the research
community, this information can be used to monitor the process of urban growth and
the forces behind it [3–5], to assess the impact of urbanization on agriculture and natural
landscapes [6], on biodiversity [7], on land surface temperature [8], and other socioeco-
nomic and physical phenomena.

Urban growth is characterized by two distinctive components—physical growth and
functional change. The former group of attributes reflect changes in impervious surfaces and
built-up characteristics, such as building density, building volumes [9,10], as well as popu-
lation size and density of individual urban settlements [11–13]. Concurrently, functional
attributes of urban growth reflect factor mobility, associated with various economic activities,
such as commuting, commerce, industrial production and services [14]. Such exchanges
are especially intense between urban cores, where a large share of production factors is
concentrated, and their surrounding areas. Functionally-integrated clusters, representing
geographic entities that consist of a densely inhabited city and a less densely populated
commuting zone, both highly integrated through labor markets, are commonly referred
to as functional urban areas or FUAs [15]. A FUA is conceptually different from an urban
agglomeration, which is commonly defined as a major city surrounded by an adjacent
hinterland [16]. The major difference between the two is commuting, which is crucial for de-
lineating FUAs, but is not a prime consideration for the definition of urban agglomerations.

According to the mainstream approach adopted by the European Union (EU) and the
Organization for Economic Co-operation and Development (OECD), the boundaries of
FUAs are defined in three consecutive steps. First, urban cores are identified as contiguities
of high-density grid cells with population density of at least 1500 residents per km2 and
the total population in the contiguous cells of at least 50,000 residents. Second, local
administrative units (LAUs) with at least 50% of their residents living inside the urban
core are identified. At the final step, the commuting zone, comprising LAUs, which have
at least 15% of their residents employed in the core city, is determined. Together with the
central city, these administrative units are assumed to form a single FUA [17].

However, commuting data, needed to perform such delineations, are laborious to
collect and are infrequent and sporadic even in developed countries [18]. In addition,
different countries and regions report communing data with different frequencies, and
sometime collect them using different definitions and methodologies [18]. As a result,
comparable cross-country estimates of FUA boundaries cannot always be obtained.

As artificial light-at-night (ALAN) data are freely available globally and provide
a seamless global coverage, the idea of using them for the identification of human activities
was investigated in several studies (see inter alia [19–21]). In previous studies, ALAN data
were used in health geography [22–27], for the analysis of economic performance of coun-
tries and regions [28–31], and in population density research [20,32–36]. The use of such
data in the studies of light pollution and its ecological effects is also common [24,37–40].

In recent years there have been attempts to use ALAN data for the identification of
urban areas [20,21,41–47]. In one such study, Imhoff et al. [41] examined frequency-based
ALAN thresholds for three large metropolitan areas in the U.S.—Miami, Chicago and
Sacramento. After the authors analyzed the frequencies of differently lit pixels in the
ALAN images, they determined that pixels present with 85%, 89% and 94% frequencies,
occupy the areas of approximately same size, such as those reported in the Census for the
corresponding metropolitan entities.

In another study, Sutton et al. [20] investigated 2000 cities across the globe, and
compared their actual boundaries with those produced by three different frequency-based
ALAN thresholds—40%, 80% and 90%. As the study revealed, pixels in the ALAN image,
observed with a frequency of 80% or more, correspond to the actual municipal boundaries
best, reaching a correlation level of about 68%.

In a separate study, Henderson et al. [21] examined frequency- and intensity-based
ALAN thresholds that match the boundaries of San Francisco, Beijing and Lhasa. As the au-
thors of this study have found, the optimal ALAN frequency-based thresholds that produce
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the total lit area comparable in size to the Landsat data-derived urban delineations, reach
88% for Lhasa, 97% for Beijing, and 92% for San Francisco, with the corresponding ALAN
flux being equal to 19, 30 and 51 digital numbers (DN), respectively. However, the spatial
correspondence between metropolitan boundaries, determined using ALAN thresholds,
and actual metropolitan delineations was found to be relatively low, not exceeding 8–44%.

It should also be noted that the aforementioned studies focus on the identification
of built-up urban contiguities, while, to the best of our knowledge, only one study by
Bosker et al. [18] analyzed functional urban delineations based on commuting flows. The
authors of this analysis compared varying percentiles of ALAN intensities, reported by the
VIIRS/DNB satellite’s sensor for 2015, with commuting delineations in Malaysia. As this
study revealed, the best fit of ~40% is observed when 7% commuting frequency delineations
are compared with delineations based on the 25th percentile of ALAN intensities.

A possible reason for such a low fit of less than 40% is that FUAs even in the same
country differ by the amount of ALAN they emit. As a result, different ALAN thresholds
must be used for the delineation of FUA boundaries in different parts of the urban system.
In Figure 1, we illustrate this point using two FUAs in France, as an example. As evidenced
by this figure, the ALAN threshold of 0.71 nW/cm2/sr fits reasonably well the boundaries
of the Paris FUA, but the same threshold fits rather poorly the much smaller Chateauroux
FUA, ALAN flux at which boundary does not exceed 0.15 nW/cm2/sr.

Considering that ALAN emissions from different FUAs vary substantially, it is thus
important to establish varying ALAN thresholds, which would fit individual FUAs. This
task can be performed for each FUA separately. However, in order to be practical, the
approach needs to be sufficiently general, to enable its application to different FUAs, both
for countries and regions with well-established commuting data and for other locations
with unavailable or sparsely available commuting information. In this paper, we develop
such an approach and test it against actual FUA delineations.

Figure 1. Cont.
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Figure 1. Commuting-based boundaries (black lines) of the Paris (a) and Chateauroux (b) FUAs vs.
the ALAN contours (blue lines), representing the 0.71 nW/cm2/sr threshold level.

2. Materials and Methods

2.1. Study Phases

The proposed approach is implemented in several steps, as detailed in Figure 2. The
data sources and analysis stages are described in the subsections below.

Figure 2. Flowchart of study stages.
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2.2. Data Sources

Data for the present study were drawn from the following four main sources:

(1) The ALAN raster maps of France and Spain (see Figure 3), used in the study for
model training and validation, and ALAN raster for Austria, used for additional
validation of the models’ performance, were clipped from 2015 radiance-calibrated
ALAN image downloaded from the VIIRS/SNPP website [48]. The ALAN data used
in the study are free of background noise, solar and lunar contamination, and also
free from data degraded by cloud cover, and features unrelated to electric lighting
(e.g., fires, flares, volcanoes) [49]. In addition, the data underwent an outlier removal
procedure, applied to abnormally high radiance pixels that occur infrequently over
a year [49]. The image in question is the closest temporal match for other data
sources used in the analysis, specifically for the FUA delineations, available for 2011
only (Figure 4). Although ALAN images are available today from the VIIRS-SNPP
website on a monthly basis, and, since 2018, as daily composites [50], we opted
to use an annual composite image, so as to minimize disturbances resulting from
ALAN seasonal fluctuations and weather conditions, such as, e.g., cloud cover, which
are often present in monthly and daily composites [50]. The subject image is of
a ~500 × 500 m spatial resolution and reports the summarized intensity of nighttime
light in nW/cm2/sr for different wavelengths in the 500–900 ηm diapason [46]. In
the image, ALAN levels vary from 0 to 4187 nW/cm2/sr for France, and from 0 to
550 nW/cm2/sr for Spain (see Figure 3 and Table 1).

(2) Boundaries of FUAs and their cores (see Figure 4) were obtained as shapefiles from
the OECD website [51]. These shapefiles are generated using GeoStat grids, based on
2011 commuting data reported in national censuses [51].

(3) The latitudes of the FUA cores’ centroids and distances to the closest major city, used
to explain the variance of the optimal ALAN thresholds, were calculated using the
above FUA cores’ shapefiles by applying ArcGIS−10.x software tools.

(4) Population density of the FUA cores, and population densities of their 5–15–25 km
buffers, also used as explanatory variables for the estimation of the optimal ALAN
thresholds, were calculated using 1 × 1 km population grids obtained from the
LandScan database for 2011 [52].

Figure 3. Cont.
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Figure 3. ALAN maps for continental France (a) and Spain (b). Note: Areas located outside the
national borders are marked in blue.

Figure 4. Cont.
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Figure 4. FUAs and their cores in continental France (a) and Spain (b).

Table 1. Descriptive statistics of the research variables.

Variable Minimum Maximum Mean SD

France (82 FUAs)

Latitude of the FUA core’s centroid (dd) 42.757 51.001 47.137 2.366

Population density of the FUA core (persons per km2) 89.529 2586.130 470.764 382.596

Population density decline gradient a 1.110 15.409 3.986 2.224

Distance to the nearest major city (dd) a 0.000 5.900 1.781 1.359

Average ALAN level (nW/cm2/sr) 0.649 20.411 3.640 3.614

Spain (72 FUAs)

Latitude of the FUA core centroid (dd) 36.110 43.561 40.093 2.381

Population density of the FUA core (persons per km2) 20.554 3485.360 831.839 794.144

Population density decline gradient b 0.926 16.232 4.863 3.724

Distance to the nearest major city (dd) 0.000 5.120 2.202 1.542

ALAN averaged level (nW/cm2/sr) 0.745 23.129 6.442 4.583

Notes: a Calculated as straight line distance between a FUA core’s centroid and centroid of the closest FUA with 1.5M+ residents;
b Calculated as the ratio between the population density of the FUA core and that of the core’s buffer with a 5 km width for small FUAs
(less than 100,000 residents), a 15 km buffer for medium-size FUAs (100,000–250,000 residents), and a 25 km buffer for large FUAs (over
250,000 residents).

2.3. Initial Determination of the ALAN Thresholds

For the sake of simplicity, let’s assume that the nighttime light source of highest
intensity is located at the center of a FUA, and light intensities drop monotonically and
uniformly towards the FUA’s periphery (see Figure 5).
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Figure 5. A simplified distribution of ALAN emissions (a) and the associated frequency distribution
of ALAN values (b).

Such an assumption might be fully plausible for compact and monocentric urban areas
(Figure 6). Under these conditions, the territorial footprint of the FUA’s ALAN emissions
follows a perfect circle, and the most frequently observed (i.e., modal) ALAN values are
found at the FUA’s outer boundary (Figure 5a). These modal values are also the dimmest
ones, and, as such, they effectively define the FUA’s outer boundary (Figure 5b).

Figure 6. Examples of compact monocentric FUAs, which territorial footprints are close to a circular
shape: Le Mans (a) and Limoges (b) in France. Note: Thin grey lines mark FUAs’ boundaries.

If the above assumptions are upheld, the analysis of the frequency distribution of the
observed ALAN values can help to identify the ALAN level, which coincides best with the
FUA’s boundary. In particular, the researcher needs to choose the modal ALAN value, for
which ALAN intensity is expected to be close to zero (Figure 5b).

2.4. Correction for Compactness

The above assumption of monotonic and concentric distribution of ALAN emissions
(Figure 5) is upheld only if the boundaries of FUAs that are circularly shaped. However,
if a FUA’s shape is not circular, using the modal ALAN value as a delineation threshold
would underestimate the actual area of the FUA. Figure A1 in Appendix A, which reports
different FUAs’ footprints, helps to illustrate this point. As this figure shows, the more
distant the shape of a FUA from a perfect circle, the brighter ALAN values emerge as the
most frequent. For such non-circular FUAs, it is thus necessary to correct for compactness,
so as to account for a FUA’s shape deviation from a perfect circle.
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To perform such a correction, we first estimate the FUA’s compactness (c), calculating
it as the ratio between the area of a FUA and the area of its bounding circle [53,54]:

cFUA =
SFUA
SBC

(1)

where SFUA = area of a FUA; SBC = area of the bounding circle, calculated using the
Minimum Bounding Geometry tool in the ArcGIS software.

Next, to represent FUAs, which deviate from circular shapes, we model them as
ellipses of the same compactness:

cEl =
SEl
SBC

=
πab
πa2 =

b
a
= cFUA (2)

where SEl = area of an ellipse with semi-axes a and b (a > b).
At the next step, to correct the initially estimated ALAN threshold (see Section 2.3)

for a FUA’s compactness, we calculate the radius of the circle, r, which has the maximal
intersection with ellipse, CEl. As shown in Box A1 in Appendix A, this radius is equal to:

r =
√

ab (3)

Lastly, we estimate the percentile of the ALAN value distribution, p*, corrected for
compactness (see Box A1 in the Appendix A for the justification):

p∗ = 2
π

arcsin
(

1 − c
1 + c

)
(4)

According to (4), for compact shapes, which are close to a circle, i.e., for which c → 1,
the optimal ALAN threshold percentile (p*) tends to the dimmest ALAN value (p* → 0),
while for prolongated shapes with c → 0, p* → 100, that is, the optimal ALAN threshold
will tend to the highest ALAN percentile (see Figure 7).

Figure 7. Relationship between a FUA’s compactness (c) and the optimal ALAN percentile (p*). Note:
Shapes deviating from a perfect circle are assumed to be elliptical; see text for explanations.

2.5. Regression Modelling

After the optimal ALAN threshold is identified for each FUA by determining the
modal ALAN value (see Section 2.3), and corrected for compactness (Section 2.4), we link
the estimated threshold values to several explanatory variables, characterizing the FUA
cores, so as to determine these variables’ load on the optimal ALAN threshold value. To
model these relationships, the following generic regression equation is used:

ALANi = b0 + b1 ∗ Lati + b2 ∗ Di + b3 ∗ PDi + b4 ∗ PDDi + εi (5)
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where ALANi is the optimal ALAN threshold for FUA i (nW/cm2/sr); Lati is latitude of
the FUA core’s centroid (decimal degrees, dd); Di is distance to the nearest major city,
calculated between a given FUA core’s centroid and the centroid of the nearest FUA with
more than 1.5M residents (dd); PD is population density of the FUA core (persons per
km2); PDD is population density decline gradient, calculated as the ratio between the
FUA core’s population density and population density in the FUA core’s buffer with
a 5 km width for small FUAs (under 100,000 residents), a 15 km width for mid-sized FUAs
(100,000–250,000 residents), and a 25 km width for large FUAs (over 250,000 residents);
b0..b4—regression coefficients, and ε is a random error term.

The predictors used in the model are expected to contribute to the ALAN threshold’s
variance due to varying reasons. In particular, population density is known to be closely
associated with ALAN flux (see inter alia [33,35,55]). Concurrently, population density
gradient might capture changes in the pattern of population density around the FUA core.
Concurrently, distance to the nearest major city is likely to show how local development
patterns are modulated by proximity to major urban concentrations [55]. In addition,
as population concentrations in high latitudes often require more artificial illumination,
especially during long winters [40], FUA’s latitude is also included into the model as
a potential predictor.

In the analysis, we tested different functional forms of the models, and determined
that the logarithmic transformation of the PD and PDD variables provides the best results,
by improving the regression fit substantially (p < 0.05). The initial analysis was performed
in the IBM SPSSv.25 software using its multiple regression module. To ensure the normal-
ity distribution of the dependent variable, ALANi, we applied Box-Cox transformation
procedure, to redefine the ALAN thresholds [56].

In addition to ordinary least square regressions (OLS), we also tested “random forest”
regressions. Such regressions imply building an ensemble of “decision trees”, each of
which “voting” for a certain level of the dependent variable, with subsequent averaging of
the estimates across all the decision trees [57]. In the present analysis, we implemented
a standard realization of the “random forest” regression (the TreeBagger module) in the
MATLAB v.R2020x software [58]. During the estimation procedure, two parameters were
a matter of choice—the number of independent variables used for the individual decision
tree construction and the number of decision trees that comprise the forest. To ensure
the comparability of the results, we used all independent variables, covered by the anal-
ysis, for the decision trees’ construction, and defined number of trees to be equal to 100,
which is usually considered to be a reasonable number for reaching a generalization error
convergence (see for example [57,59]). Each decision tree was built for 80% of randomly
selected observations.

2.6. Adjustment for Contiguity

When the analysis is performed, any given ALAN threshold level might identify
several clusters of identically lit pixels, some of which might be related to a given FUA,
while other pixels might be located elsewhere. Therefore, to identify the ALAN pixels
relevant to a given FUA, the following analytical procedure was implemented. First, for
each FUA, we identified pixels that overlap the FUA’s core area, considering the core
boundary information as an initial input (see Section 2.2: Data Sources). Next, for each
pixel selected thereby, we analyzed all the pixels in its surroundings. If the ALAN value of
a neighboring pixel was lower or equal to that of the pixel under analysis but greater than
the ALAN threshold identified for the FUA (see Sections 2.3 and 2.4), the pixel in question
was considered to be a part of the FUA analyzed. We have continued this procedure as
long as all the pixels, which satisfy the above criteria, maintained a spatial contiguity. Then,
for each FUA, we selected local administrative areas (LAUs), most of which area (that is,
>50%) is occupied by the pixels identified thereby. These LAUs were considered to be
a part of a given FUA (the MATLAB code for contiguity adjustment can be obtained from
the authors upon request).
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2.7. Initial Validation

To assess the performance of the estimated models (see Section 2.5), we analyzed
the degree of correspondence between the empirically determined (see Section 2.4) and
model-predicted ALAN thresholds adjusted for contiguity (see Section 2.6). To this end, the
model estimated for France was used to predict the ALAN thresholds for individual FUAs
in Spain and vice versa. In order to assess the extent to which the empirically determined
and model-predicted ALAN thresholds coincide, we used different metrics, including
Pearson correlation coefficients, standard error of the estimates (SEE), and weighted mean
squared errors (WMSE).

Next, we compared the FUAs’ delineations, either empirically determined using the
modal ALAN values (see Section 2.4) and adjusted for contiguity (see Section 2.6), or model-
predicted (see Section 2.5), with commuting-based FUAs’ delineations (see Section 2.2). To
perform such a comparison, we used the Jaccard Index (JI), which estimates the share of
intersection within the union of the two sets relative to these shapes’ union [60]:

J I(FUAC, FUAT) =
|FUAC ∩ FUAT |
|FUAC ∪ FUAT | (6)

where FUAC = the set of local autonomous units (LAUs) forming a FUA defined by
commuting, and FUAT = set of LAUs within either an empirically determined or model-
predicted FUA boundary. The value of the index in question ranges from zero, when no
intersection between the two sets is present, to one, when the two sets completely coincide
and their intersection is equal to their union [60].

2.8. Second-Step Validation

For an additional validation, we applied the models estimated for France and Spain
to FUAs in another European country—Austria (Figure 8).

Figure 8. FUAs in Austria used for the models’ validation.

Although Austria differs from the two other countries under analysis in terms of size,
urbanization level, topography, and FUAs’ location, it was chosen for an additional model
validation, to demonstrate that the estimated models perform reasonably well even in this
specific case. As all FUAs in this country are located apart from each other (see Figure 8),
this country is considered particularly suitable for the intended validation.

The validation procedure was carried out in the following four steps. First, we deter-
mined the optimal ALAN thresholds for each FUA empirically (see Sections 2.3 and 2.4).
Second, we used the ALAN-threshold identification models, estimated for France and
Spain (see Section 2.5), to predict optimal ALAN thresholds for FUAs in Austria, using
relevant input variables (see Sections 2.2 and 2.5), and, then, adjusted these estimates
for contiguity (see Section 2.6). Considering that FUAs in Austria are located in close
proximity to international borders, the input information was not limited to the areas inside
Austria only. For instance, population density-decline gradient and distance to the closest
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major city were calculated regardless of the state borders. Third, we assessed the corre-
spondence between the empirically determined and models-predicted ALAN thresholds
using Pearson correlation coefficients, SEE, and WMSE. Finally, we compared delineations,
based on model-predicted ALAN thresholds, with commuting-based delineations, while
expanding the study area by a 50-km buffer around the Austrian border, to cover the parts
of FUAs located outside Austria and potentially extending into neighboring countries.
As in the previous stage of the analysis (Section 2.7), the comparison of the shapes was
performed using JI.

3. Results

3.1. Optimal ALAN Thresholds

The descriptive statistics of the ALAN thresholds, estimated by the multi-step ap-
proach described in Section 2.1, are reported in Table 2, separately for France and Spain,
both as ALAN percentiles and actual ALAN levels in nW/cm2/sr. As evidenced by
this table, the optimal ALAN thresholds identified for individual FUAs appear to vary
widely, ranging from 0.15 to 9.91 nW/cm2/sr for France, and from 0.13 to 8.23 nW/cm2/sr
for Spain.

Table 2. Descriptive statistics of the identified ALAN thresholds.

Country/Variable Minimum Maximum Mean SD

France (Number of FUAs = 82)

• ALAN percentile (0–100) 13.610 45.290 25.623 6.533

• ALAN threshold (nW/cm2/sr) 0.150 9.910 0.664 1.218

Spain (Number of FUAs = 72)

• ALAN percentile (0–100) 12.660 46.460 29.355 7.279

• ALAN threshold (nW/cm2/sr) 0.130 8.230 1.026 1.518

The most frequent (i.e., modal) ALAN values for all FUAs under analysis are reported
in Figure 9, separately for France and Spain. In both countries, the modal ALAN values
are not identical to the dimmest ones, thus pointing out that the “circularity” assumption
(see Section 2.3) is violated. The bottom sub-figures report ALAN thresholds, corrected
for compactness using the approach described in Section 2.4. As it can be seen from the
comparison of the upper and bottom diagrams, modal ALAN thresholds, corrected for
compactness are closer to the dimmest ALAN values than before the correction (especially
for France), albeit differences in distributions are still valid.

Figure 9. Cont.
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Figure 9. The modal and dimmest ALAN values estimated for individual FUAs before correcting for
compactness ((a) = France; (b) = Spain) and after correcting for compactness ((c) = France; (d) = Spain).
Notes: The column numbering (axis X) refers to FUA numbers listed in Table A1 of the Appendix.
FUAs are sorted in an ascending order according to their modal ALAN values (upper diagrams) or
according to compactness-based ALAN thresholds (bottom diagrams).

3.2. Explaining the Variance of the Observed ALAN Thresholds

In Table 3, we report the results of OLS analysis, linking individually determined
optimal ALAN thresholds with geographic and socio-economic attributes of the FUAs’
core areas. As evidenced by Table 3, the predictors used in the analysis help to explain
~74% of the ALAN threshold variance (R2 = 0.739–0.740). Characteristically, in both models,
significant predictors are nearly identical and exhibit the same signs: population density
(+); population density gradient (−); latitude (+), and distance to the nearest major city (−)
(p < 0.01).

Table 3. Factors affecting ALAN threshold values estimated for individual FUAs (Method—OLS; Dependent variable—
ALAN optimal threshold level, Box-Cox transformed with α = −0.55).

Predictor
Model 1 (France) Model 2 (Spain)

B a Beta b t c B a Beta b t c

(Constant) −11.192 - −8.466 * −11.846 - −8.090 *

Latitude (dd) 0.106 0.246 4.209 * 0.140 0.278 3.909 *

Population density of the FUA core,
persons per km2 (ln) 1.151 0.751 11.143 * 1.158 1.114 13.124 *

Population density gradient (ln) −1.369 −0.685 −10.349 * −1.209 −0.724 −7.977 *

Distance to the nearest major city (dd) −0.137 −0.183 −3.035 * −0.147 −0.190 −2.945 *

N of obs. 82 72

R2 0.739 0.740

r 0.866 0.812

SEE 0.533 0.629

WMSE 4.521 2.718

F 54.43 * 46.304 *

Notes: a unstandardized regression coefficients; b standardized regression coefficients; c t-statistic and its significance level; SEE = standard
error of the estimates; WMSE = weighted mean squared error; F = F-statistics; * 0.01 significance level.

As random forest regressions do not provide explicit estimates of the explanatory
variables’ coefficients, we do not report these models here, but should remark that these
estimates in terms of correlation with the actual ALAN threshold levels are similar to the
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OLS estimates reported in Table 3 (r = 0.856 for France and r = 0.883 for Spain, as opposed
to r = 0.866 for France and r = 0.812 for Spain in the OLS models), while in terms of SEE they
are poorer (SEE = 0.913 for France and SEE = 0.817 for Spain in comparison to SEE = 0.533
for France and SEE = 0.629 for Spain; see Table 3).

However, in terms of WMSE, random forest regressions are much better (WMSE = 0.945
for France and WMSE = 0.545 for Spain in comparison to WMSE = 4.521 for France and
WMSE = 2.718 for Spain in the OLS models; see Table 3). Considering this result, we
use the ALAN threshold estimates, produced by the random forest regressions, in the
following analysis.

3.3. Model Cross-Validation

In Figure 10, we report the correspondence between the empirically determined and
model-predicted ALAN thresholds. For this analysis, the model estimated for France
(see Table 3) is applied to FUAs in Spain and vice versa. As evidenced by this figure, the
estimates are fairly congruent, with r > 0.819.

Figure 10. Models cross-validation results for France (a) and Spain (b).

3.4. Model-Estimated vs. Commuting-Based FUAs’ Delineations

Figure 11 shows several most successful examples of FUAs’ delineations, generated by
the proposed approach. Concurrently, in Figure 12, we report actual FUA delineations and
model estimates for all FUAs in continental France and Spain. In addition, in Table 4, we
report the degree of correspondence between the model-estimated and commuting-based
delineations, assessed using JI.

Figure 11. Cont.
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Figure 11. Examples of FUAs featuring compactness-based boundaries (blue lines), model-based
boundaries (green lines) and commuting-based boundaries (black lines): Paris (a) and Madrid (b)
(see text for explanations).

Figure 12. Commuting-based (a) vs. model-estimated (b) delineations of FUAs in France and Spain.

Table 4. Values of the Jaccard index (JI) calculated for FUAs of different size and population density.

FUA Type N. of Obs.

Delineations Derived from
Compactness-Based ALAN Thresholds

Delineations Derived from
Model-Based ALAN Thresholds

Mean SD Mean SD

All FUAs under analysis 154 0.342 0.158 0.351 0.150

FUAs in:

• France 82 0.304 0.116 0.326 0.124

• Spain 72 0.385 0.186 0.378 0.171

FUAs by class:

• 1&2 (Smallest) 93 0.327 0.154 0.335 0.152

• 3 (Medium) 55 0.351 0.154 0.361 0.138

• 4 (Largest) 6 0.499 0.187 0.507 0.134
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Table 4. Cont.

FUA Type N. of Obs.

Delineations Derived from
Compactness-Based ALAN Thresholds

Delineations Derived from
Model-Based ALAN Thresholds

Mean SD Mean SD

Population density in the FUA
core, people per km2 (ln)

• ≤5 18 0.235 0.097 0.349 0.139

• >5 136 0.356 0.159 0.351 0.151

• >6.5 48 0.440 0.177 0.424 0.174

• >7.5 12 0.551 0.190 0.487 0.204

Population density in the
core’s buffer zone, people per

km2 (ln)

• ≤5 101 0.313 0.137 0.340 0.135

• >5 53 0.398 0.180 0.372 0.174

• >6 11 0.525 0.220 0.469 0.235

• >6.3 4 0.638 0.277 0.557 0.299

Ratio between population
density in the core and the

core’s buffer zone

• ≤2 25 0.303 0.151 0.319 0.157

• >2 129 0.350 0.159 0.357 0.148

• >5 43 0.363 0.153 0.357 0.155

• >10 11 0.467 0.184 0.458 0.197

As can be seen in Table 4, the calculated JI values range between 0.30 and 0.64, being
higher for large FUAs (JI = 0.499–0.507) than for small FUAs (JI = 0.33–0.34). For densely
populated FUAs, the match between the commuting-based and ALAN-based delineations
is especially high, reaching 0.557–0.638, or 56–64% (see Table 4). [The JI values for all the
French and Spanish FUAs are reported in Figure A2 in Appendix A].

3.5. Second-Step Validation

In Table 5, we report ALAN threshold values for FUAs in Austria, calculated using
the ‘French’ and ‘Spanish’ models (Table 3), and compared to individually fitted ALAN
thresholds. As evidenced by this table, the ALAN thresholds, estimated using the French
and Spanish models, correspond to the individually fitted ALAN thresholds quite well,
with r > 0.77 and SEE < 0.82. Yet, in terms of WMSE, the French model performs poorer
in comparison to the Spanish model (WMSE = 0.711 vs. WMSE = 10.102, respectively).
In Figure 13, we report FUAs’ delineations obtained by averaging the estimates obtained
using the French and Spanish models (see Table 3).

Table 5. Individually fitted vs. model-estimated ALAN thresholds for FUAs in Austria.

FUA
ALAN Threshold, nW/cm2/sr

Individually Fitted Estimated Using the “French” Model Estimated Using the “Spanish” Model

Vienna 0.34 0.65 1.56

Graz 0.23 0.48 1.05

Linz 0.24 0.49 1.04

Salzburg 0.27 0.49 1.08
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Table 5. Cont.

FUA
ALAN Threshold, nW/cm2/sr

Individually Fitted Estimated Using the “French” Model Estimated Using the “Spanish” Model

Innsbruck 0.26 0.30 0.78

Klagenfurt 0.17 0.30 0.72

Performance indicators (in relation to individually fitted ALAN threshold)

r - 0.783 0.771

SEE - 0.216 0.819

WMSE - 0.711 10.102

Figure 13. Commuting-based vs. models-estimated delineations of FUAs in Austria (see text
for explanations).

4. Discussion and Conclusions

The delineation of geographic boundaries of FUAs is important for comparative
urban studies. However, using commuting data for this task is not always feasible due to
difficulties in data collection. In the present study, we suggested and tested an approach,
based on the analysis of ALAN data. As ALAN is emitted from roads, frequented by
commuters, and by buildings surrounding roads, ALAN emissions can be used, as we
hypothesize, for the identification of FUAs.

We verify this hypothesis using data on commuting-based delineations available for
France and Spain, applying a multi-step approach. First, we fit the ALAN threshold for
each individual FUA, using the modal value of the ALAN frequency distribution. Next,
we explain this threshold by a multiple regression analysis, using several characteristics of
the FUAs’ cores, such as latitude of the core’s centroid, distance to the closest major city,
population density, and density decline gradient. Although the boundaries of the FUA
core areas used as an initial input are not generated by the analysis per se, such boundaries,
if not a priori available, can be identified easily using Global Human Settlement [61] or
LandScan [52] as contiguities of densely populated grids. Lastly, we cross-validate the
obtained models for three European countries.

As our analysis indicates, the degree of correspondence between the individually
fitted and model-predicted ALAN thresholds is relatively high (r > 0.819), with Jaccard
Index values reaching up to 75% for France and up to 100% for Spain.

Our results are more robust than those obtained by Bosker and colleagues [18] for
FUAs in Indonesia, according to which the correspondence between ALAN-based and 15%
commuting-based FUA delineations did not exceed 28%. We explain the improvement,
obtained in the present study, by the use of individually-fitted ALAN thresholds, based on
the analysis of modal values, corrected for compactness.
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To the best of our knowledge, this study is the first that estimates the optimal ALAN
thresholds that approximate the boundaries of individual FUAs, using readily available, or
easy-to-compute, characteristics of the FUAs’ cores, such as latitude of the core’s centroid,
distance to the closest major city, population density and population density decline
gradient, combined with ALAN flux data.

The proposed modelling approach might be useful for FUA delineations in countries
and regions, for which commuting data are unavailable, as well as for places, in which
commuting data are not updated on a regular basis, and for a comparative analysis of
countries and regions, which use different commuting-assessment procedures. Using our
modeling approach, FUAs’ boundaries can be determined in the following steps. First, the
boundaries of FUAs’ cores should be identified. If such boundaries are not readily available,
they can be determined as contiguities of high-density grid cells, using input sources, such
as Global Human Settlement [61] or LandScan [52] grids. The procedure might follow
the algorithm described in Dijkstra et al. (2019): Grid cells with population density of at
least 1500 residents per km2 are identified. Afterward, the grid cells identified thereby
are grouped into contiguous area with a total population of at least 50,000 residents. For
such areas, the development and locational characteristics are identified next, including the
latitude of the contiguity’s centroid, distance to the closest major city, population density
and population density decline gradient (see Section 2.5). These characteristics of the core
areas are then used as predictors in the ALAN-threshold estimation models, reported
in Section 2.5 for either France or Spain, or both, to obtain the optimal ALAN threshold
estimates for each individual FUA. Finally, a VIIRS-DNB raster is used, to select pixels,
corresponding to the estimated ALAN threshold, and to identify LAUs associated with
such pixels’ contiguities, as detailed in Section 2.6.

The present study has several limitations. While for some FUAs, our estimates are
quite accurate, reaching the levels of accuracy of 74–100%, for other, typically smaller FUAs,
our estimations are less accurate. We assume that the reason might be that commuting-
based boundaries rely mainly on work-related commuting, while omitting other human
flows, such as travels for leisure, services, and social activities. In contrast, the suggested
ALAN approach captures human activities at large. In addition, the ALAN-based approach
might omit areas occupied by functions that operate mainly at daytime and emit much less
light at night. For smaller FUAs, this source of error might by more pronounced than for
large FUAs, where many functions operate around the clock. Another possible reason for
a relatively low correspondence between some commuting- and ALAN-based delineations
might be due to the fact that many FUAs are not monocentric, or might have a shape
which is far from circular or elliptic, which we considered for modelling. For such cases,
further studies might be needed to reflect more complex situations, in which FUA is either
polycentric, or adjacent to other FUAs and their boundaries overlap or merge.

It should also be noted that in this study, we investigated the performance of the pro-
posed method by applying it to three well-developed countries in Europe—France, Spain,
and Austria. Yet, question remains about the models’ applicability to countries outside
Europe and to countries in mid-latitudes, and, especially, to less-developed countries. We
expect that applying the models to such countries might result in the overestimation of the
optimal ALAN thresholds and thus in the underestimation of the commuting extent (the
evidence for this conclusion is provided in [21]). Therefore, a follow-up investigation of
the applicability of the proposed models to less developed countries and regions might be
needed. Additionally, we need to acknowledge that a temporal mismatch between ALAN
and actual FUAs’ delineation exists. Whether it might affect the results of the analysis
should be clarified in future studies, after newer commuting data become available.
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Appendix A

Table A1. FUAs’ identification (ID number = number in axis X in Figure 9 in the main manuscript).

Upper Subfigures
ID Number FUA Code FUA Name ID Number FUA Code FUA Name

France Spain
1 FR067 Quimper 1 ES053 Ciudad Real
2 FR061 Niort 2 ES538 Avila
3 FR021 Poitiers 3 ES546 Merida
4 FR053 La Rochelle 4 ES016 Toledo
5 FR051 Troyes 5 ES057 Ponferrada
6 FR086 Evreux 6 ES527 Jaen
7 FR066 Saint-Brieuc 7 ES050 Manresa
8 FR077 Roanne 8 ES011 Santiago de Compostela
9 FR035 Tours 9 ES040 Talavera de la Reina

10 FR059 Chalon-sur-Saone 10 ES540 Chiclana de la Frontera
11 FR093 Brive-la-Gaillarde 11 ES545 Lorca
12 FR104 Chalons-en-Champagne 12 ES528 Lleida
13 FR076 Belfort 13 ES529 Ourense
14 FR025 Besancon 14 ES059 Zamora
15 FR073 Tarbes 15 ES523 Leon
16 FR505 Charleville-Mezieres 16 ES031 Lugo
17 FR038 Le Mans 17 ES043 Ferrol
18 FR037 Brest 18 ES034 Caceres
19 FR068 Vannes 19 ES515 Burgos
20 FR096 Albi 20 ES519 Albacete
21 FR050 Montbeliard 21 ES014 Pamplona
22 FR074 Compiegne 22 ES041 Palencia
23 FR022 Clermont-Ferrand 23 ES542 Basin
24 FR023 Caen 24 ES017 Badajoz
25 FR506 Colmar 25 ES544 Linares
26 FR036 Angers 26 ES510 Donostia-San Sebastian
27 FR019 Orleans 27 ES062 Sanlucar de Barrameda
28 FR049 Lorient 28 ES033 Girona
29 FR058 Chambery 29 ES013 Oviedo
30 FR069 Cherbourg 30 ES009 Valladolid
31 FR018 Reims 31 ES022 Vigo
32 FR090 Chateauroux 32 ES054 Benidorm
33 FR056 Angouleme 33 ES501 Granada
34 FR063 Beziers 34 ES044 Pontevedra
35 FR020 Dijon 35 ES537 Alcoy
36 FR064 Arras 36 ES514 Almeria
37 FR057 Boulogne-sur-Mer 37 ES552 Igualada
38 FR016 Nancy 38 ES547 Sagunto
39 FR014 Amiens 39 ES026 Coruna (A)
40 FR048 Annecy 40 ES007 Murcia
41 FR079 Saint-Quentin 41 ES037 Puerto de Santa Maria, El
42 FR045 Pau 42 ES516 Salamanca
43 FR006 Strasbourg 43 ES021 Alicante
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Table A1. Cont.

Upper Subfigures
ID Number FUA Code FUA Name ID Number FUA Code FUA Name

France Spain
44 FR215 Rouen 44 ES073 Elda
45 FR082 Beauvais 45 ES048 Guadalajara
46 FR304 Melun 46 ES046 Gandia
47 FR011 Saint-Etienne 47 ES020 Cordoba
48 FR084 Creil 48 ES023 Gijon
49 FR214 Valence 49 ES533 Marbella
50 FR046 Bayonne 50 ES532 Algeciras
51 FR026 Grenoble 51 ES004 Seville
52 FR065 Bourges 52 ES035 Torrevieja
53 FR060 Chartres 53 ES018 Logrono
54 FR099 Frejus 54 ES028 Reus
55 FR039 Avignon 55 ES522 Cadiz
56 FR024 Limoges 56 ES005 Saragossa
57 FR205 Nice 57 ES006 Malaga
58 FR034 Valenciennes 58 ES508 Jerez de la Frontera
59 FR008 Nantes 59 ES065 Linea de la Concepcion, La
60 FR010 Montpellier 60 ES012 Vitoria
61 FR040 Mulhouse 61 ES505 Elche/Elx
62 FR047 Annemasse 62 ES521 Huelva
63 FR007 Bordeaux 63 ES001 Madrid
64 FR004 Toulouse 64 ES070 Irun

65 FR043 Perpignan 65 ES520 Castellon de la Plana/Castello
de la Plana

66 FR044 Nimes 66 ES015 Santander
67 FR052 Saint-Nazaire 67 ES525 Tarragona
68 FR017 Metz 68 ES002 Barcelona
69 FR009 Lille 69 ES003 Valencia
70 FR003 Lyon 70 ES019 Bilbao
71 FR012 Le Havre 71 ES506 Cartagena
72 FR519 Cannes 72 ES039 Aviles
73 FR207 Lens - Lievin
74 FR209 Douai
75 FR032 Toulon
76 FR062 Calais
77 FR001 Paris
78 FR203 Marseille
79 FR042 Dunkerque
80 FR324 Martigues
81 FR208 Henin - Carvin
82 FR013 Rennes

Bottom Subfigures
ID Number FUA Code FUA Name ID Number FUA Code FUA Name

France Spain
1 FR324 Martigues 1 ES013 Oviedo
2 FR047 Annemasse 2 ES034 Caceres
3 FR039 Avignon 3 ES012 Vitoria
4 FR040 Mulhouse 4 ES014 Pamplona
5 FR048 Annecy 5 ES021 Alicante
6 FR065 Bourges 6 ES023 Gijon
7 FR082 Beauvais 7 ES065 Linea de la Concepcion, La
8 FR208 Henin - Carvin 8 ES041 Palencia
9 FR304 Melun 9 ES547 Sagunto

10 FR505 Charleville-Mezieres 10 ES059 Zamora
11 FR049 Lorient 11 ES050 Manresa
12 FR067 Quimper 12 ES035 Torrevieja
13 FR066 Saint-Brieuc 13 ES037 Puerto de Santa Maria, El
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Table A1. Cont.

Bottom Subfigures
ID Number FUA Code FUA Name ID Number FUA Code FUA Name

France Spain
14 FR214 Valence 14 ES062 Sanlucar de Barrameda
15 FR209 Douai 15 ES540 Chiclana de la Frontera
16 FR068 Vannes 16 ES070 Irun
17 FR207 Lens - Lievin 17 ES514 Almeria
18 FR053 La Rochelle 18 ES046 Gandia
19 FR506 Colmar 19 ES053 Ciudad Real
20 FR064 Arras 20 ES057 Ponferrada
21 FR084 Creil 21 ES528 Lleida
22 FR050 Montbeliard 22 ES532 Algeciras
23 FR077 Roanne 23 ES028 Reus
24 FR056 Angouleme 24 ES039 Aviles
25 FR079 Saint-Quentin 25 ES054 Benidorm
26 FR069 Cherbourg 26 ES521 Huelva
27 FR012 Le Havre 27 ES519 Albacete
28 FR086 Evreux 28 ES537 Alcoy
29 FR519 Cannes 29 ES527 Jaen
30 FR063 Beziers 30 ES033 Girona
31 FR058 Chambery 31 ES525 Tarragona
32 FR090 Chateauroux 32 ES011 Santiago de Compostela
33 FR096 Albi 33 ES040 Talavera de la Reina
34 FR052 Saint-Nazaire 34 ES031 Lugo
35 FR057 Boulogne-sur-Mer 35 ES505 Elche/Elx
36 FR059 Chalon-sur-Saone 36 ES026 Coruna (A)
37 FR060 Chartres 37 ES522 Cadiz
38 FR061 Niort 38 ES016 Toledo
39 FR022 Clermont-Ferrand 39 ES544 Linares
40 FR010 Montpellier 40 ES018 Logrono
41 FR020 Dijon 41 ES533 Marbella
42 FR019 Orleans 42 ES510 Donostia-San Sebastian
43 FR026 Grenoble 43 ES552 Igualada
44 FR025 Besancon 44 ES073 Elda
45 FR076 Belfort 45 ES019 Bilbao
46 FR023 Caen 46 ES015 Santander
47 FR038 Le Mans 47 ES003 Valencia
48 FR045 Pau 48 ES529 Ourense

49 FR007 Bordeaux 49 ES520 Castellon de la Plana/Castello
de la Plana

50 FR021 Poitiers 50 ES004 Seville
51 FR034 Valenciennes 51 ES516 Salamanca
52 FR044 Nimes 52 ES001 Madrid
53 FR035 Tours 53 ES002 Barcelona
54 FR008 Nantes 54 ES005 Saragossa
55 FR006 Strasbourg 55 ES006 Malaga
56 FR004 Toulouse 56 ES007 Murcia
57 FR042 Dunkerque 57 ES009 Valladolid
58 FR017 Metz 58 ES044 Pontevedra
59 FR003 Lyon 59 ES017 Badajoz
60 FR104 Chalons-en-Champagne 60 ES020 Cordoba
61 FR036 Angers 61 ES022 Vigo
62 FR016 Nancy 62 ES043 Ferrol
63 FR073 Tarbes 63 ES048 Guadalajara
64 FR046 Bayonne 64 ES506 Cartagena
65 FR093 Brive-la-Gaillarde 65 ES501 Granada
66 FR099 Frejus 66 ES508 Jerez de la Frontera
67 FR203 Marseille 67 ES523 Leon
68 FR205 Nice 68 ES542 Basin
69 FR001 Paris 69 ES538 Avila
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Table A1. Cont.

Bottom Subfigures
ID Number FUA Code FUA Name ID Number FUA Code FUA Name

France Spain
70 FR051 Troyes 70 ES546 Merida
71 FR009 Lille 71 ES545 Lorca
72 FR011 Saint-Etienne 72 ES515 Burgos
73 FR013 Rennes
74 FR014 Amiens
75 FR018 Reims
76 FR024 Limoges
77 FR032 Toulon
78 FR037 Brest
79 FR062 Calais
80 FR043 Perpignan
81 FR215 Rouen
82 FR074 Compiegne

Figure A1. Cont.
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Figure A1. Light emission distribution from the center of a monocentric FUA, modelled by different
geometric shapes (left panel) and distributions of ALAN in corresponding FUAs (right panel).

Figure A2. Jaccard Index for the estimated delineations, derived from the compactness-based (a,b) and model-based (c,d)
ALAN thresholds: FUAs in France (a,c) and Spain (b,d). Note: The column numbering refers to FUA numbers listed in
Table A2 below. In the graphs, FUAs are sorted in descending order according to their JI values.

Table A2. FUAs’ identification (ID number = number on the X-axis in Figure A2 above).

ID
Number

Subfigure (a) Subfigure (b) Subfigure (c) Subfigure (d)
FUA Code FUA Name FUA Code FUA Name FUA Code FUA Name FUA Code FUA Name

1 FR006 Strasbourg ES065 Linea de la
Concepcion, La FR006 Strasbourg ES065 Linea de la

Concepcion, La
2 FR037 Brest ES015 Santander FR049 Lorient ES501 Granada
3 FR047 Annemasse ES001 Madrid FR047 Annemasse ES001 Madrid
4 FR024 Limoges ES540 Chiclana de la Frontera FR039 Avignon ES540 Chiclana de la Frontera
5 FR069 Cherbourg ES002 Barcelona FR003 Lyon ES515 Burgos
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Table A2. Cont.

ID
Number

Subfigure (a) Subfigure (b) Subfigure (c) Subfigure (d)
FUA Code FUA Name FUA Code FUA Name FUA Code FUA Name FUA Code FUA Name

6 FR039 Avignon ES501 Granada FR203 Marseille ES057 Ponferrada
7 FR042 Dunkerque ES520 Castellon de la Plana FR066 Saint-Brieuc ES004 Seville
8 FR043 Perpignan ES506 Cartagena FR043 Perpignan ES041 Palencia
9 FR001 Paris ES525 Tarragona FR007 Bordeaux ES538 Avila
10 FR023 Caen ES514 Almeria FR025 Besancon ES009 Valladolid
11 FR062 Calais ES018 Logrono FR062 Calais ES506 Cartagena
12 FR052 Saint-Nazaire ES041 Palencia FR001 Paris ES516 Salamanca
13 FR067 Quimper ES516 Salamanca FR068 Vannes ES533 Marbella
14 FR022 Clermont-Ferrand ES522 Cadiz FR063 Beziers ES523 Leon
15 FR505 Charleville-

Mezieres ES009 Valladolid FR008 Nantes ES053 Ciudad Real
16 FR205 Nice ES054 Benidorm FR042 Dunkerque ES532 Algeciras
17 FR009 Lille ES022 Vigo FR052 Saint-Nazaire ES022 Vigo
18 FR034 Valenciennes ES019 Bilbao FR046 Bayonne ES529 Ourense
19 FR073 Tarbes ES533 Marbella FR093 Brive-la-Gaillarde ES013 Oviedo
20 FR046 Bayonne ES004 Seville FR061 Niort ES522 Cadiz
21 FR066 Saint-Brieuc ES521 Huelva FR012 Le Havre ES014 Pamplona
22 FR049 Lorient ES529 Ourense FR053 La Rochelle ES521 Huelva
23 FR050 Montbeliard ES013 Oviedo FR010 Montpellier ES039 Aviles
24 FR057 Boulogne-sur-Mer ES026 Coruna (A) FR214 Valence ES034 Caceres
25 FR003 Lyon ES039 Aviles FR045 Pau ES037 Puerto de Santa

Maria, El
26 FR008 Nantes ES003 Valencia FR205 Nice ES015 Santander
27 FR032 Toulon ES021 Alicante FR009 Lille ES546 Merida
28 FR506 Colmar ES037 Puerto de Santa Maria,

El FR096 Albi ES520 Castellon de la Plana

29 FR040 Mulhouse ES053 Ciudad Real FR505 Charleville-
Mezieres ES002 Barcelona

30 FR012 Le Havre ES014 Pamplona FR024 Limoges ES542 Basin
31 FR519 Cannes ES532 Algeciras FR506 Colmar ES003 Valencia
32 FR004 Toulouse ES062 Sanlucar de Barrameda FR017 Metz ES062 Sanlucar de Barrameda
33 FR084 Creil ES528 Lleida FR048 Annecy ES019 Bilbao
34 FR065 Bourges ES057 Ponferrada FR022 Clermont-Ferrand ES026 Coruna (A)
35 FR203 Marseille ES033 Girona FR057 Boulogne-sur-Mer ES043 Ferrol
36 FR208 Henin - Carvin ES043 Ferrol FR215 Rouen ES059 Zamora
37 FR036 Angers ES046 Gandia FR004 Toulouse ES046 Gandia
38 FR068 Vannes ES035 Torrevieja FR036 Angers ES021 Alicante
39 FR010 Montpellier ES044 Pontevedra FR032 Toulon ES544 Linares

40 FR053 La Rochelle ES011 Santiago de
Compostela FR065 Bourges ES545 Lorca

41 FR074 Compiegne ES059 Zamora FR040 Mulhouse ES044 Pontevedra
42 FR044 Nimes ES510 Donostia-San Sebastian FR519 Cannes ES017 Badajoz
43 FR017 Metz ES508 Jerez de la Frontera FR016 Nancy ES005 Saragossa
44 FR082 Beauvais ES515 Burgos FR073 Tarbes ES020 Cordoba
45 FR007 Bordeaux ES006 Malaga FR019 Orleans ES035 Torrevieja
46 FR063 Beziers ES546 Merida FR034 Valenciennes ES510 Donostia-San Sebastian
47 FR076 Belfort ES050 Manresa FR023 Caen ES537 Alcoy
48 FR038 Le Mans ES523 Leon FR026 Grenoble ES006 Malaga
49 FR093 Brive-la-Gaillarde ES005 Saragossa FR013 Rennes ES054 Benidorm
50 FR214 Valence ES527 Jaen FR044 Nimes ES050 Manresa
51 FR016 Nancy ES023 Gijon FR059 Chalon-sur-Saone ES525 Tarragona
52 FR096 Albi ES020 Cordoba FR021 Poitiers ES011 Santiago de Compostela
53 FR324 Martigues ES070 Irun FR076 Belfort ES527 Jaen
54 FR021 Poitiers ES544 Linares FR084 Creil ES007 Murcia
55 FR207 Lens - Lievin ES007 Murcia FR077 Roanne ES040 Talavera de la Reina
56 FR077 Roanne ES031 Lugo FR035 Tours ES519 Albacete
57 FR209 Douai ES552 Igualada FR099 Frejus ES508 Jerez de la Frontera
58 FR045 Pau ES048 Guadalajara FR082 Beauvais ES023 Gijon
59 FR025 Besancon ES016 Toledo FR067 Quimper ES514 Almeria
60 FR056 Angouleme ES017 Badajoz FR209 Douai ES528 Lleida
61 FR013 Rennes ES073 Elda FR324 Martigues ES031 Lugo
62 FR026 Grenoble ES028 Reus FR037 Brest ES028 Reus
63 FR048 Annecy ES040 Talavera de la Reina FR014 Amiens ES016 Toledo
64 FR019 Orleans ES537 Alcoy FR011 Saint-Etienne ES070 Irun
65 FR018 Reims ES519 Albacete FR074 Compiegne ES073 Elda
66 FR099 Frejus ES547 Sagunto FR018 Reims ES552 Igualada
67 FR304 Melun ES034 Caceres FR104 Chalons-en-

Champagne ES033 Girona
68 FR064 Arras ES538 Avila FR050 Montbeliard ES547 Sagunto
69 FR011 Saint-Etienne ES542 Basin FR064 Arras ES018 Logrono
70 FR060 Chartres ES505 Elche/Elx FR069 Cherbourg ES048 Guadalajara
71 FR059 Chalon-sur-Saone ES545 Lorca FR038 Le Mans ES505 Elche/Elx
72 FR035 Tours ES012 Vitoria FR079 Saint-Quentin ES012 Vitoria
73 FR086 Evreux – – FR207 Lens - Lievin – –
74 FR079 Saint-Quentin – – FR058 Chambery – –
75 FR014 Amiens – – FR090 Chateauroux – –
76 FR215 Rouen – – FR020 Dijon – –
77 FR058 Chambery – – FR051 Troyes – –
78 FR051 Troyes – – FR056 Angouleme – –
79 FR061 Niort – – FR060 Chartres – –
80 FR020 Dijon – – FR304 Melun – –
81 FR104 Chalons-en-

Champagne – – FR086 Evreux – –
82 FR090 Chateauroux – – FR208 Henin - Carvin – –

180



Remote Sens. 2021, 13, 3714

Box A1. Estimation of the compactness-based ALAN threshold (derivation).

The figure below illustrates our assumptions: We model actual FUAs’ shapes by ellipses with
axes a and b (a > b).

A. Optimal Radius Calculation
To calculate the radius of the circle (r*), ensuring maximal intersection with the ellipse we

should define and maximize Jaccard index: J I = |SC∩SE |
|SC∪SE | → max , where Sc = area of the circle, and

SE = area of the ellipse. For this sake, we should calculate and differentiate the following function:

J I(r) =

∫ i
0 yellipse(x)dx +

∫ r
i ycircle(x)dx∫ i

0 ycircle(x)dx +
∫ a

i yellipse(x)dx
(A1)

where ycircle =
√

r2 − x2 is equation of circle and yellipse = b
a

√
a2 − x2 is equation of ellipse.

Limit of integration i is defined as x coordinate of intersection ycircle and yellipse:

√
r2 − x2 =

b
a

√
a2 − x2 (A2)

Both integrals in Equation (A1) are of the same type, which are calculated in the same way:

∫ √
k2 − x2dx =

{
x = ksin(y)

dx = kcos(y)dy

}
=

∫ √
k2 − k2sin2(y) ∗ kcos(y)dy

=
∫

k2cos2(y)dy = k2

2
∫
(cos(2y) + 1)dx = k2

2

(
sin(2y)

2 + y
)

= k2

2 (cos(y) sin(y) + y) = k2

2

(
x
k

√
1 − ( x

k
)2

+ asin
( x

k
)) (A3)

Proceeding from the equations of circle and ellipse, limit of integration i (formula (A2)), and
the integral calculation (formula (A3)), let’s consequentially compute the integrals in JI(r). Thus,
the first integral in nominator will look like the following:

i∫
0

yellipse(x)dx = b
a

a2

2

(
x
a

√
1 − ( x

a
)2

+ asin
( x

a
))∣∣∣∣ a

√
r2−b2

a2−b2

0
=

= ab
2

(√
r2−b2

√
a2−r2

a2−b2 + asin
(√

r2−b2

a2−b2

)) (A4)

The second one will be equal to

r∫
i

ycircle(x)dx = r2

2

(
x
r

√
1 − ( x

r
)2

+ asin
( x

r
))∣∣∣∣ r

a
√

r2−b2

a2−b2

=

= πr2

4 − ab
√

r2−b2
√

a2−r2

2(a2−b2)
− r2

2 asin
(

a
r

√
r2−b2

a2−b2

) (A5)
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The nominator of JI(r) will equal to (A4) + (A5):

i∫
0

yellipse(x)dx +
r∫
i

ycircle(x)dx = ab
2 asin

(√
r2−b2

a2−b2

)
− r2

2 asin
(

a
r

√
r2−b2

a2−b2

)
+πr2

4

(A6)

Actually, the denominator of JI(r), representing the union of SC and SE, is equal to the sum
of the quarter of corresponding areas diminished by the intersection of SC and SE, calculated in
formula (A6):

i∫
0

ycircle(x)dx +
a∫
i

yellipse(x)dx =

= 1
4
(
πr2 + πab

)− (
ab
2 asin

(√
r2−b2

a2−b2

)
− r2

2 asin
(

a
r

√
r2−b2

a2−b2

)
+ πr2

4

)
=

r2

2 asin
(

a
r

√
r2−b2

a2−b2

)
− ab

2 asin
(√

r2−b2

a2−b2

)
+ πab

4

(A7)

Thus, JI(r) is equal to

J I(r) =
ab∗asin

(√
r2−b2

a2−b2

)
−r2∗asin

(
a
r

√
r2−b2

a2−b2

)
+ πr2

2

−ab∗asin
(√

r2−b2

a2−b2

)
+r2∗asin

(
a
r

√
r2−b2

a2−b2

)
+ πab

2

=

=
{

ab ∗ asin
(√

r2−b2

a2−b2

)
− r2 ∗ asin

(
a
r

√
r2−b2

a2−b2

)
= z

}
=

z+ πr2
2

−z+ πab
2

(A8)

Derivative of JI(r) will be equal to

d(J I)
dr = z′

(
ab + r2)− 2zr + πrab =

=
{

z = ab ∗ asin
(√

r2−b2

a2−b2

)
− r2 ∗ asin

(
a
r

√
r2−b2

a2−b2

)}
=

= −2r ∗ asin
(

a
r

√
r2−b2

a2−b2

)(
ab + r2)−

−2r
(

ab ∗ asin
(√

r2−b2

a2−b2

)
− r2 ∗ asin

(
a
r

√
r2−b2

a2−b2

))
+ πrab =

= −2rab
(

asin
(

a
r

√
r2−b2

a2−b2

)
+ asin

(√
r2−b2

a2−b2

))
+ πrab

(A9)

To find the maximum of the function JI(r), let’s put equal to zero its derivative and define r:

−2rab
(

asin
(

a
r

√
r2−b2

a2−b2

)
+ asin

(√
r2−b2

a2−b2

))
+ πrab = 0;

asin
(

a
r

√
r2−b2

a2−b2

)
+ asin

(√
r2−b2

a2−b2

)
= π

2 ;

sin
(

asin
(

a
r

√
r2−b2

a2−b2

)
+ asin

(√
r2−b2

a2−b2

))
=

=
{

sin(α + β) = sin(α)
√

1 − sin2(β) +
√

1 − sin2(α) sin(β)
}
=

=
√

r2−b2
√

a2−r2

r(a−b) = sin
(

π
2
)
= 1√

r2 − b2 ∗ √a2 − r2 = r(a − b)(
r2 − b2) ∗ (a2 − r2) = r2(a − b)2(
r2 − ab

)2
= 0

r2 = ab
r =

√
ab

(A10)

B. Optimal Percentile Calculation
Optimal percentile p* will equal to the share of area (2) (see figure above) of the area of ellipse:

p∗ =

∫ a
i yellipse(x)dx − ∫ r

i ycircle(x)dx
πab

4

(A11)

Under defined optimal radius r =
√

ab, limit of integration i is equal to:

a

√
r2 − b2

a2 − b2 = a

√
b

a + b
(A12)

182



Remote Sens. 2021, 13, 3714

Box A1. Cont.

Thus, proceeding from the equations of circle and ellipse, limit of integration i (formula (A12)),
and the integral resolution (formula (A3)), p* will equal to:

p∗ = 1
πab

4

⎛
⎝
⎛
⎝ b

a
a2

2

(
x
a

√
1 − ( x

a
)2

+ asin
( x

a
))∣∣∣∣

a
a
√

b
a+b

⎞
⎠

−

⎛
⎜⎝ b

a
a2

2

(
x√
ab

√
1 −

(
x√
ab

)2
+ asin

(
x√
ab

))∣∣∣∣∣
√

ab
a
√

b
a+b

⎞
⎟⎠
⎞
⎟⎠

= 1
πab

4

((
πab

4 − ab
2

(√
ab

a+b + asin
(√

b
a+b

)))
−
(

πab
4 − ab

2

(√
ab

a+b + asin
(√

a
a+b

))))
= 2

π

(
asin

(√
a

a+b

)
+ asin

(√
b

a+b

))

(A13)

Since sin(α + β) = sin(α)
√

1 − sin2(β) +
√

1 − sin2(α) sin(β),

sin
(

asin
(√

a
a+b

)
+ asin

(√
b

a+b

))
= a−b

a+b ,
and then

p∗ =
2
π

asin
(

a − b
a + b

)
(A14)

Finally, putting compactness c of the ellipse with axes a and b (a > b) to be equal to their ratio
between the ellipse’s area and the area of the bonding circle (c =

Area o f Ellipse
Area o f Bonding Circle = πab

πa2 = b
a ,

optimal percentile p* will be equal to

p∗ =
2
π

arcsin
(

a − b
a + b

)
=

2
π

arcsin

(
a
a − b

a
a
a +

b
a

)
=

2
π

arcsin
(

1 − c
1 + c

)
(A15)
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