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Abstract: China is one of the largest carbon emitting countries in the world. Numerous strategies
have been considered by the Chinese government to mitigate carbon emissions in recent years.
Accurate and timely estimation of spatiotemporal variations of city-level carbon emissions is of
vital importance for planning of low-carbon strategies. For an assessment of the spatiotemporal
variations of city-level carbon emissions in China during the periods 2000–2017, we used nighttime
light data as a proxy from two sources: Defense Meteorological Satellite Program’s Operational
Linescan System (DMSP-OLS) data and the Suomi National Polar-orbiting Partnership satellite’s
Visible Infrared Imaging Radiometer Suite (NPP-VIIRS). The results show that cities with low carbon
emissions are located in the western and central parts of China. In contrast, cities with high carbon
emissions are mainly located in the Beijing-Tianjin-Hebei region (BTH) and Yangtze River Delta
(YRD). Half of the cities of China have been making efforts to reduce carbon emissions since 2012,
and regional disparities among cities are steadily decreasing. Two clusters of high-emission cities
located in the BTH and YRD followed two different paths of carbon emissions owing to the diverse
political status and pillar industries. We conclude that carbon emissions in China have undergone a
transformation to decline, but a very slow balancing between the spatial pattern of high-emission
versus low-emission regions in China can be presumed.

Keywords: spatiotemporal variations; carbon emissions; DMSP-OLS; NPP-VIIRS

1. Introduction

China is the largest carbon emitter in the world, contributing 30% of global carbon emissions [1],
and is one of the most polluted countries. To address the climate change crisis, China submitted the
Intended Nationally Determined Contributions (INDCs) to the United Nations, announcing that China
will reach its peak carbon emissions and reduce its carbon intensity by 60% to 65% from 2005 levels in
2030 [2]. Under the pressure of achieving its carbon emissions reduction goals, China has put forward
clear strategies for energy-saving and sustainable energy development. However, before instituting
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these strategies, accurate and timely analysis of spatiotemporal variations of carbon emissions is of
great importance. Our detailed spatiotemporal analysis provides a basis for developing strategies for
low-carbon emissions in different regions in China.

In recent years, there has been an ever-increasing interest in utilizing various methods to evaluate
spatiotemporal variations in carbon emissions, such as atmospheric modeling, the geographically weighted
regression (GWR), kernel density estimation, the center of gravity method, etc. Liu et al. [3] used an
atmospheric model to investigate the spatial pattern of fossil-fuel CO2 over central Europe. Sather et al. [4]
introduced four kinds of inequality measures to investigate variations in provincial level carbon emissions in
China from 1997 to 2007. Lv et al. [5] combined the GWR and the STIRPAT (stochastic impacts by regression
on population, affluence, and technology) models to reveal the space heterogeneity of freight transport
carbon emissions among provinces in China. Wang and Liu [6] plotted the kernel density evolution path,
indicating that the gap in per capita carbon emissions between cities has been continuously narrowing from
1992 through 2013. Zheng et al. [7] introduced the center of gravity method to trace the spatiotemporal
evolution of the carbon footprint in Zhejiang province and found an overall southeast moving trend during
2005–2015. However, the above studies regarded carbon emission units as homogeneous and independent,
ignoring the correlation between the geographical units. According to Tobler’s first law of geography,
everything is related to everything else, but near things are more related than distant things [8]. Thus,
spatial autocorrelation analysis has become an important part of spatiotemporal analysis since inter-regional
industrial transfer and economy driven effects also play a crucial role in the distribution of carbon emissions.
Spatial autocorrelations of carbon emissions are significantly positive in China [6,9], while the degrees of
spatial autocorrelation of carbon emissions are different on different scales of analysis [10,11].

Earlier, studies have mostly focused on the national or provincial scale. Grunewald et al. [12]
found that the spatiotemporal distribution of CO2 emissions among countries have equalized from
1971 to 2008. Wang et al. [13] investigated province-level dispersion of carbon emissions in China,
demonstrating that carbon emissions of eastern provinces have always been much higher than those
of the central and the western provinces, which has also been shown by others [5,14]. Some studies
analyzed the spatiotemporal variations in specific regions in China such as the North China Plain [15],
or in a certain province like Guangdong province [16] and Zhejiang province [7]. The local government
is the most important manager and executor in a carbon emission reduction work, carrying out
analysis to reduce carbon emission at the city-level is important to get accurate information about the
regional carbon emissions considering the spatiotemporal variations of carbon emissions are different
at different scales [10,11]. The analysis of spatiotemporal variations of carbon emissions will provide
valuable information if carbon emissions have improved with the recent development of low-carbon
city policies [17] in China.

The energy statistics system in China is not very consistent and accurate. As a result, city-level
carbon emissions are not available [18]. For timely city-level carbon emissions estimation, efforts are
made to carry out modeling using parameters obtained from the atmospheric-inversion to get an
estimate at fine-scale spatial structure [19]. Reflecting human activity dynamics directly, nighttime
light data is considered as an effective proxy variable to estimate many socio-economic indicators.
Nighttime light data from the Defense Meteorological Satellite Program’s Operational Linescan System
(DMSP-OLS) indirectly provide information about urbanization [20], electricity consumption [21–23],
population density [24,25], and gross domestic products (GDP) [26]. In 2012, National Oceanic and
Atmospheric Administration’s National Centers for Environmental Information (NOAA/NCEI) of the
USA launched a new generation sensor of nighttime light data: Visible Infrared Imaging Radiometer
Suite carried by the Suomi National Polar-Orbiting Partnership (NPP-VIIRS). Compared to OLS
sensors, VIIRS sensors have higher detection ability and spatial resolution, which is considered to
be more reliable in estimating socio-economic parameters [27,28]. The NPP-VIIRS data provide
information about the distribution of some finer scale variables which cannot be detected by OLS
sensors, e.g., emissions from the heavy industries [29], aircraft operations [30], and goods transport [31].
Nighttime light images have advantages in providing unified, spatial continuous, timely data, which are
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of great help in monitoring spatiotemporal variations of carbon emissions at finer scales [11,32–34].
The NOAA/NCEI ceased releasing the DMSP-OLS data after 2013 and only started releasing the
NPP-VIIRS data in 2012, we have combined nighttime data from these two sources during the study
periods 2000 to 2017. In recent years, many studies [35–38] have shown the high feasibility and validity
of combining DMSP-OLS and NPP-VIIRS nighttime light data and their association with the estimation
of carbon emissions [5,10].

We carried out the integration of nighttime artificial light combining DMSP-OLS and NPP-VIIRS
for long time periods 2000–2017 to provide a direct trend and spatial pattern of carbon emissions.
Our detailed analysis provides overall characteristics of the spatial distribution of carbon emissions that
will be of great importance to understand the regional disparities and correlations of carbon emissions.

2. Study Area and Data

This study is based on cities at and above the prefectural level in the mainland of China excluding
Tibet. A prefectural level city does not refer to an urban settlement in the usual sense, it is the second
administrative division of the China-ranking system below the provincial level. Provinces consist of
prefectural cities, which contain both urban area (“city” in the usual sense) and surrounding rural
area (e.g., countries, towns, and villages). The shape of these prefectural cities means that they cover
the land surface tightly, making them excellent spatial units for the analysis of nation-wide remote
sensing data. The China Energy Statistical Yearbook is the source of terminal energy consumption
data during 2000–2017 used for provincial carbon emission estimation. The satellite data include
two main types of nighttime light data, the DMSP-OLS nighttime stable light considered from the
NOAA/NCEI website [39] and also NPP-VIIRS data. The NOAA/NCEI provides cloud-free annual
nighttime light data composites, involving six DMSP satellites (F10, F12, F14, F15, F16, and F18).
The annual NPP-VIIRS nighttime light data were derived from the “Flint” version Beta 1 [40], by the
Chinese Academy of Science (CAS). These annual data products are converted from the original
monthly data products provided by NOAA/NCEI. The Flint data were available after statistical data
cleaning, average noise reduction, and inter-annual smooth processing; the difference between the
products of different years is basically equivalent to the difference between the surface light [29].

Table 1 provides various parameters of DMSP-OLS and NPP-VIIRS nighttime light data, these
parameters differ due to two different data sources. The spatial and radiometric resolution of DMSP-OLS
data are lower compared to the NPP-VIIRS data [41]. The DMSP-OLS data do not have onboard
calibration system, while the NPP-VIIRS data are calibrated [35]. The digital pixel numbers (DN) of
DMSP-OLS data range from 0 to 63, and NPP-VIIRS data varies in the range 0–255. The different
conditions of the data retrieval demand for a careful integration procedure. The available temporal
sequence of DMSP-OLS data is from 1992 to 2013, while the NPP-VIIRS data are available from 2012 to
present. Considering the time limit of statistics (2000–2017), we used annual DMSP-OLS composite
data from 2000 to 2013 and annual NPP-VIIRS composite data from 2012 to 2017. The two data sets
DMSP-OLS and NPP-VIIRS were preprocessed in the same way. Before retrieval of the nighttime light
image of China, we have used the Asia Lambert Conic Projection and resampled spatial resolution of
them into 1000 m × 1000 m.

Table 1. The differences between raw Defense Meteorological Satellite Program’s Operational Linescan
System (DMSP-OLS) and Visible Infrared Imaging Radiometer Suite carried by the Suomi National
Polar-Orbiting Partnership (NPP-VIIRS) data.

Data Source DMSP-OLS NPP-VIIRS

Spatial resolution 0.008333◦ (30 arc-seconds) 0.004167◦ (15 arc-seconds)
Radiometric resolution 6-bit 14-bit

Overpass time 19:30 01:30
On-board calibration No Yes

DN range 0–63 0–255
Temporal sequence 2000–2013 annual composites 2012–2017 annual composites
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3. Methods

3.1. Integration of Two Nighttime Light Data

The DMSP-OLS data were acquired by different sensors without onboard radiometric calibration;
therefore, it is necessary to intercalibrate between various OLS sensors [42]. Additionally, since the
VIIRS sensors are more sensitive to low light compared to the OLS sensors, the first step of NPP-VIIRS
data correction was to remove the VIIRS low light signal that cannot be detected by OLS sensors.
The second step was to correct outliers of NPP-VIIRS data caused by oil and gas fires [27,28,36]. At last,
we performed continuous correction of DMSP-OLS and NPP-VIIRS data under the assumption that
the brightness of night light is in a state of continuous diffusion and enhancement [5]. Details of these
two steps are discussed in Supplementary Materials.

In addition to comprehensive corrections of the remote sensing data, a new integration method
is required. There are only few studies developing methods of integration between two types of
nighttime light data. Those studies conducted at the pixel level were limited to specific regions
(Syria, Hangzhou, Shanghai, and Beijing, China), making it feasible to handle a large number of pixel
points [35–37]. However, in order to do the integration covering the whole China, we aggregated the
total DN values (TDN) of the DMSP-OLS and NPP-VIIRS data at the city level in the overlapping
years for regression fitting (2012–2013). Compared with the linear regression model and the quadratic
polynomial model, the power function (Equation (1)) is an optimal regression model with the highest
coefficient of determination (R2 = 0.950).

TD = aTNb (1)

where TD and TN refer to the TDN of DMSP-OLS and NPP-VIIRS data in 2012 and 2013 at the city
level, respectively. The coefficients of this model are a = 0.1155 and b = 1.0413.

Earlier studies [5,42] directly used the optimal regression as intercalibration model to simulate
DMSP-OLS data after 2013. However, the relationship between the TDN of DMSP-OLS and NPP-VIIRS
nighttime light data of some cities deviated greatly from the regression function, shown as red triangle
frames in Figure 1. Ignoring these deviations, there would be a large difference between the simulated
and actual DMSP-OLS data in some cities (like Beijing, Shanghai, Tianjin, etc.; shown in Table 2). As a
remedy, we made a novel attempt to establish a new formula based on Equation (1), which can be used
to construct consistent time-series of nighttime light data in every city.Remote Sens. 2020, 12, x FOR PEER REVIEW 5 of 18 
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Table 2. Accuracy assessment comparison of two intercalibration models in 2012.

City Actual DMSP-OLS
Earlier Model Proposed Model

Simulated
DMSP-OLS RE (%) Simulated

DMSP-OLS RE (%)

Beijing 295,151 182,634 −38.62 291,495 −1.24
Tianjin 263,157 197,382 −26.15 261,843 −0.50

Shanghai 252,233 144,852 −42.61 247,273 −1.97
Chongqing 208,011 249,348 14.98 212,461 2.14

Suzhou 272,465 181,829 −33.81 269,128 −1.22
Fuyang 54,572 77,287 36.61 55,429 1.57
Xiamen 51,250 31,666 −38.59 50,521 −1.42

Heze 91,337 122,301 31.26 91,286 −0.06
Shangqiu 71,604 102,934 38.11 73,017 1.97
Zhoukou 65,964 94,697 34.77 68,841 4.36
Shenzhen 113,702 55,092 −51.56 111,414 −2.01

Yaan 9425 13,795 40.22 9638 2.26
MARE - - 16 - 4.95

The linear relations between the TDN in 2013 and subsequent years at the city level are shown in
Figure 2 (for comparison see Zhao et al. [10]). The linear corresponding slopes illustrate the growth
rates of city-level NPP-VIIRS data using the base year of 2013. The high values of R2 show that almost
all cities had the same growth rate, which prompted us to use Equation (2) for representing the TDN of
NPP-VIIRS data of the cities after 2013. This method ensures that the growth rates of the simulated
DMSP-OLS data for each city were consistent with the actual growth rates.

TNt = rtTN0 (2)

where TNt refers to the city-level TDN of NPP-VIIRS data after 2013. t = 1, 2, 3, and 4, which refers to
the year 2014, 2015, 2016, and 2017, respectively. TN0 refers to the city-level TDN of NPP-VIIRS data in
2013. rt is the linear corresponding slopes between the city-level TDN of NPP-VIIRS data in 2013 and
subsequent years.
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Another functional form can be obtained by substituting Equation (2) into Equation (1):

TDt = a (rtTN0)
b (3)

In Equation (3), TDt refers to the TDN of the simulated DMSP-OLS data at the city level after
2013. aTN0

b is equal to the TDN of the simulated DMSP-OLS in 2013 at the city level. To increase the
accuracy of the estimation, we used the actual city-level TDN of DMSP-OLS data in 2013 to correct the
simulated values as

TDt = rbTNc (4)

where TNc is the actual TDN of DMSP-OLS data in 2013.
Finally, obtaining the integrated nighttime light data (2000–2017) at the city level from this model

(Figure S1, Supplementary Materials), we observe that the TDN of integrated nighttime light data
gradually increased year by year.

Comparing to the earlier intercalibration methods, our proposed method effectively avoids the
large deviation between the simulated and actual values. To demonstrate the superiority of the
proposed intercalibration model in this study, we used DMSP-OLS data in 2012 as the validation set
to compare the accuracy of the two models. The mean absolute relative errors (MARE) of all cities
and the relative errors (RE) [43] were considered to evaluate the performance of the proposed versus
the earlier intercalibration model. The proposed model greatly reduces RE values of 12 typical cities
(Table 2), for example, the absolute RE values of Shenzhen are 51.56% and 2.01% for the earlier model
and proposed model, respectively. Furthermore, the proposed intercalibration model results in a lower
MARE (4.95%) compared to that of the earlier model (16%), clearly showing the improvement of the
proposed intercalibration model.

3.2. Estimation of Carbon Emission

The basic assumption of this study is that nighttime light data has a constant linear relationship
with carbon emissions within a specific province. Although with some random uncertainty, this is
an appropriate model [9,15,33,44–46]. Panel data analysis is superior to simple time-series and
cross-section data analysis in avoiding spurious regression, controlling individual heterogeneity as
well as detecting potential effects [14]. Therefore, we considered the panel data model to recognize
those relationships. As consistent statistical data of carbon emissions at the provincial level are only
available from the National Bureau of Statistics, we developed a panel model linking provincial carbon
emissions and integrated nighttime light data (aggregating cities). The calculation of the statistical
carbon emission data at the provincial level followed the approach given by the Intergovernmental
Panel on Climate Change (IPCC) Guidelines, the calculation results are consistent with the that of
Liu et al. [9]. Figure 3 displays the bar diagram of statistical carbon emissions at the provincial level.

Firstly, we aggregated the city-level integrated nighttime light data to the provincial level to
ensure that all data are at the same scale. To avoid spurious regression, this study employed the
unit root test [47,48] and co-integration test before the construction of the carbon emission estimation
model. Both of these tests rejected the null hypothesis of non-stationarity at the 1% significance level,
indicating that province-level statistical carbon emission and the integrated time-series nighttime light
data for the periods 2000–2017 were stationary and had a long-term equilibrium relationship [45].
Based on the Hausman test, we considered a cross-section fixed effect model [49] in the present study.
In accordance with the F-test [50], we considered the variable intercepts and variable coefficients
model as the estimation model having individual effects on cross-section and structural differentiation.
Our estimation model is

NCpt = αp + βpTDpt + µpt (5)
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where NCpt, and TDpt are the estimated carbon emissions (104 t) and nighttime light data for province
p and year t, respectively. αp is the intercept for province p as fixed effect. βp stands for the coefficient
on province p as fixed effect, and upt is the error term.
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Estimated parameters using the panel data model are given in Table S2 (Supplementary Materials).
The adjusted R2 (0.9652), the p-value of F-statistics (<0.0001) and Akaike Info Criterion (−0.77) for
the fitted model confirmed that nighttime light data is a valid proxy variable to estimate carbon
emissions [5,9,10,41,45]. To test the accuracy of model results, MARE of the estimated carbon emissions
in 30 provinces for the periods 2000–2017 are shown in Table S3 (Supplementary Materials). The results
show that the MAREs of most provinces were less than 15%, suggesting reasonable estimation accuracy
that was better compared with the studies carried out by Lv et al. [5] and Zhang et al. [51].

Applying a top-down method [44,52], we downscaled provincial carbon emissions into the city
level on the basis that coefficient (αp) and intercept (βp) given in Table S2 (Supplementary Materials)
are stable within a province. Using the zero-error correction method [5] to limit the error within the
province, the carbon emissions are estimated at the city level for the periods 2000–2017. To assess the
accuracy of the proposed top-down model, we collected statistical carbon emission data of 50 cities in
2010 [53] for a comparison. The R2, root mean square error (RMSE), and mean average percentage error
(MAPE) are 0.8346, 486.701, and 24.83%, respectively. The three values given in Table S3 (Supplementary
Materials) show that the proposed top-down model is an appropriate method to estimate city-level
carbon emissions using nighttime light data.

3.3. Evaluation of Spatiotemporal Variations of Carbon Emissions

The disparity between regions was investigated using the coefficient of variation (CV) for carbon
emissions between cities. CV is one of the inequality indices, and the CV value increases with the degree
of regional disparity [4]. Since the kernel density estimation model is smoother and more continuous
compared to a traditional histogram [54], we analyzed the characteristics of carbon emission distribution
as well as the evolution of the distribution shape, applying a kernel density estimation model.

To quantify spatial autocorrelation (correlation of geographic units with different spatial locations
and attribute values), we calculated Global and Local Moran’s I. Global Moran’s I is an index to
assess the average degree of overall spatial agglomeration phenomenon, which ranges from −1



Remote Sens. 2020, 12, 2916 8 of 16

to 1 [55], a value of zero indicates a random distribution [56]. Local Moran’s I can explore the
spatial heterogeneity and dependence inside geographical units so as to recognize the location and
characteristics of spatial agglomerations. The essence of Local Moran’s I index is to decompose the
Global Moran’s I index into the interior of each geographical phenomenon [57].

4. Results and Discussion

4.1. Spatial Distribution of Carbon Emissions

To analyze the spatiotemporal evolution of carbon emissions over 17 years, we extracted four
spatial distribution maps of city-level carbon emissions for the periods 2000 and 2017 (Figure 4).
The spatial distribution pattern of carbon emission is found to be similar to previous studies [5,6,11,38].
However, this study additionally detected a pronounced phenomenon that carbon emissions of most
cities in China declined during the periods 2012 to 2017.
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The high carbon emission regions show an expansive trend and obvious agglomerative
characteristics over the past decades. Cities with high carbon emissions mostly agglomerated in
the Beijing-Tianjin-Hebei region (BTH) and Yangtze River Delta (YRD). Conversely, cities with low
carbon emissions mostly concentrated in the western and central regions. Specifically, there were only
three municipalities (Beijing, Shanghai, and Chongqing) whose carbon emissions exceeded 10 million
tons in 2000. The number increased to 20 cities in 2006, 30 cities in 2012, but decreased to 21 cities in
2017, indicating that numerous policies on carbon reduction issued by the Chinese government have
gained positive response in recent years.

The growth rate analysis of city-level carbon emissions can intuitively present the spatiotemporal
trend of carbon emissions. However, earlier studies [5,10,58] focused on contemporaneous comparisons
of growth rates of carbon emissions in different cities, ignoring the temporal variations of growth rates of
carbon emissions. Thus, we plotted the annual growth type of carbon emissions at each stage (Figure 5).



Remote Sens. 2020, 12, 2916 9 of 16

To make the figure clear, we classified the growth rate of city-level carbon emissions into five types:
high-negative-growth (−∞, −10%), relatively-high-negative-growth (−10%, 0%), no-obvious-growth
(0%, 10%), relatively-high-growth (10%, 20%), high-growth (20%, +∞). From 2000 to 2006, most cities
in China were in the phase of rapid growth in carbon emissions during 2006–2012. Cities belonged to
relatively-high-growth and high-growth types concentrated in western and central China, where the
economic level is relatively low. It is worth noting that few cities have seen significant increases in
carbon emissions and almost half of the cites of China have entered the phase of carbon reduction
from 2012 on. Compared to the overall country (Figure S2, Supplementary Materials) and provincial
level (Figure 3), we see that there is an overall decline in carbon emissions rather than just being
evening away from the largest cities. Such a decline in carbon emissions clearly shows that new policy
is working effectively, which is followed by one and all in China. However, a very slow balancing
between the spatial pattern of high-emission versus low-emission regions in China can be presumed.Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 18 
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4.2. Regional Disparity of Carbon Emissions

Carbon inequality at city-level, indicated by CV (Figure 6), suggests a decreasing trend during
the study period, from 1.38 in 2000 to 1.06 in 2017, which is consistent with results of Shi et al. [11]
and Wang and Liu [6], and can be interpreted from two opposite aspects: one is from the perspective
of high carbon emission areas, and the other is from the perspective of low carbon emission areas.
In high carbon emission areas, a series of carbon emissions policies have been implemented, such as
improving energy structure and technology, transferring energy-intensive industries to low carbon
emissions areas, which facilitate narrowing the gap between high and low carbon emissions regions.
On the contrary, low carbon emission areas have scaled up production and emitted more carbon in the
course of their economic development. Both development strategies and regional mechanisms have
notably reduced carbon inequality [6]. The other reason is that the eastern region has been outsourcing
their carbon emissions to western and central regions, which could bear the additional burden of
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carbon emissions from trading [59–61]. For instance, Beijing and Shanghai outsource 50 million tons
and 38 million tons of carbon emissions, respectively, for around 70% and 33% of their electricity
transmitted from other regions [62].Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 18 
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The Kernel density estimated distributions of carbon emissions over the study period 2012–2017
in China (Figure 7) suggest a significantly skewed shape that demonstrates the existence of carbon
inequality at the city level in China. In 2000, the majority of cities show carbon emissions around
600,000 t, and emissions mainly dispersed between 500,000 and 900,000 t. In 2017, carbon emissions
mostly concentrated at about 2,000,000 t, and most dispersed between 1,500,000 and 3,000,000 t.
The density curve shape (Figure 7) is gradually flattening from 2000 to 2017, indicating that carbon
emissions become more evenly distributed between cities, confirming the results measured by CV
index. Additionally, the shape of carbon emission density in 2017 is found to be similar to those of
2012, and the CV index shows a slowly decreasing trend from 2010. The dispersion pattern of carbon
emissions at the city level in China has stepped into a slow change state.
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4.3. Spatial Autocorrelation of Carbon Emissions

Although inequality indicators identify the regional disparity of carbon emissions, the spatial
effects are not taken into account. Thus, we introduced Global and Local Moran’s I to evaluate spatial
autocorrelation of China’s city-level carbon emissions, and the results were similar to that of earlier
studies [6,10]. From Figure 6, we observe that the value of Global Moran’s I has a rising trend, followed
by a decline after 2006, while CV shows a sustained downward trend. The CV index reflects only the
regional disparity at the quantitative level, but the Global Moran’s I further takes geographic variations
into consideration.

The Local Moran’s I can recognize spatial agglomerations and classify them into four types
(Figure 8): High-High cluster, Low-Low cluster, Low-High cluster, and High-Low cluster. The two
main High-High clusters are mainly located in BTH and YRD. The coverage of High-High cluster located
in BTH had been expanding towards west from 2000 to 2017, covering parts around Bohai Gulf area,
Shanxi province, Shaanxi province, and Inner Mongolia autonomous region in 2017. The coverage of
the High-High cluster concentrated in the YRD remained roughly unchanged during the study period.
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The top two city agglomerations in China, BTH, and YRD, followed different development paths
of carbon emissions because Beijing is the capital of China and the concentration of national resources,
which has been outsourcing its carbon emissions to surrounding cities [61]. Beijing mainly outsourced its
carbon emissions to Hebei (22%), Inner Mongolia (7%), and Shanxi (6%) in 2007 [63]. The energy-extensive
industry dominated economy in BTH is unrealistic to change in the short term [64], resulting in an
expansion of the coverage area of the High-High cluster located here. Thus, energy structure optimization
and energy efficiency improvement are the core carbon reduction strategies in the BTH. In contrast,
regions in north China account for a larger share of Shanghai’s carbon emissions exports (e.g., Hebei,
9%) than regions around Shanghai (e.g., Jiangsu, 6%) [63]. The pillar industries in the YRD are light
industries, such as medium and low-end manufacturing; it is easy to transform them and develop
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low-carbon “information technology” and high-tech industries. So, industrial structure optimization is
the core carbon reduction strategies in the YRD. In addition, most cities belonged the Low-Low cluster
distributed in western China, indicating that the carbon emissions of the cities in these backward regions
are still in a long-term low emission state. Remarkably, Chengdu, Chongqing, and Wuhan have been the
High-Low cluster cities during 2000–2017, for these cities are the central city of the Chengdu-Chongqing
and Wuhan Metropolitan Areas, the development of which started late, and the development gap between
the central city and surrounding cities is still large. To avoid excessive carbon outsourcing and promote
the harmonious development of the whole region, sustainable and coordinated development of cities is
the core carbon reduction strategy in these regions. Considering them as a whole, the distribution pattern
of carbon emission spatial agglomeration remained unchanged in the periods 2000–2017.

4.4. Uncertainties in the Results

In the present study, city-level carbon emissions for the periods 2000–2017 were calculated through
a top-down method by using nighttime light data as a proxy variable. While nighttime light data
provide valid information for China, where subnational statistics are limited [44] that could raise
some uncertainties:

Firstly, we developed an intercalibration model to integrate the DMSP-OLS data and NPP-VIIRS
data to obtain an extended temporal coverage nighttime light data. However, the integration can
only be processed with reduced accuracy, resulting in the loss of detailed information detected by
VIIRS sensors.

Secondly, point sources like power plants may be ignored by using nighttime light data as a
proxy. Nighttime light data is closely related to human activities, while point sources are usually
weakly correlated with human activities [65]. For instance, the migration of point sources within
the province did not cause drastic changes in DN values but still have an impact on local carbon
emissions. This might have resulted in biased estimation of carbon emissions at the city level. However,
the limited availability of statistical carbon emissions at the city level makes it unrealistic to calculate
the error terms of every city. Earlier studies [5,10] have observed uncertainties as well, and expected
that data scarcity may be solved by the National Bureau of Statistics as soon as possible.

Thirdly, the link between nighttime light data and carbon emissions is not strictly linear, which is
greatly affected by the way of power generation: reduced emissions with similar to increasing light
emissions would be a product of a shift from high (e.g., coal) to low carbon emissions source (e.g., solar).
Decreasing carbon emissions accompanied by rising DN values has been observed recently. Although
we have shown that our proposed approach is valid so that this phenomenon will not cause many
deviations, this non-linear association can provide direct and indirect information about the energy
transformation and might become more important in the future. Thus, integration of multiple data
and exploration of new methods are required in further studies.

Fourthly, we estimated city-level carbon emissions with city-level nighttime light data. In this
step the model coefficients (αp and βp) are kept constant for all cities in a province, just the light data
depend on the city. That means, the evaluation indexes of spatiotemporal (CV, Global, and Local
Moran’s I) of the estimated emission data actually depend on the covariance structure of the model
coefficients (αp and βp) as well as the city light data. However, such problem is inevitable under the
data lacking situation.

5. Conclusions

This study introduced nighttime light data as a proxy variable to estimate city-level carbon
emissions based on the assumption that nighttime light data has a constant linear relationship with
carbon emissions within a specific province. As both DMSP-OLS and NPP-VIIRS time-series nighttime
light data have time limits, this study developed a novel method to integrate the data of both sources,
extending the temporal coverage during the study period and obtained consistent nighttime light
data during the periods 2000–2017. To get the utmost out of the information contained in all samples
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and improve the estimation accuracy, we built a panel data model linking the integrated nighttime
light data and statistical carbon emissions data at the provincial level to recognize their relationships.
A top-down method was proposed to estimate city-level carbon emissions by using the coefficient
(αp) and intercept (βp) calculated by the panel data model. Such downscaling method of carbon
emissions will be useful in monitoring spatiotemporal variations of carbon emissions at other finer
scales. These fine scales and timely data provided a basis for assessing the spatiotemporal variations
of carbon emissions at the city level.

From the detailed analysis in this study, we found that the cities with low carbon emissions
mostly agglomerated in the western and central regions, while cities with high carbon emissions
mainly concentrated in the BTH and YRD. In addition, High-High clusters located in the BTH and
YRD followed different development paths of carbon emissions during the study period owing to the
diverse political status and pillar industries. Indeed, carbon emissions in China have undergone a
transformation to decline, while the spatial pattern of carbon emissions in China will not change at a
short time. Although, we have found that the effectiveness of our approach may be further enhanced
after minimizing some uncertainties in our results. Further improvements need to be made in data
scarcity problems, the integration of multiple data, and the exploration of new methods.
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