13 research outputs found

    Perceptual 3D rendering based on principles of analytical cubism

    Get PDF
    Cataloged from PDF version of article.Cubism, pioneered by Pablo Picasso and Georges Braque, was a breakthrough in art, influencing artists to abandon existing traditions. In this paper, we present a novel approach for cubist rendering of 3D synthetic environments. Rather than merely imitating cubist paintings, we apply the main principles of analytical cubism to 3D graphics rendering. In this respect, we develop a new cubist camera providing an extended view, and a perceptually based spatial imprecision technique that keeps the important regions of the scene within a certain area of the output. Additionally, several methods to provide a painterly style are applied. We demonstrate the effectiveness of our extending view method by comparing the visible face counts in the images rendered by the cubist camera model and the traditional perspective camera. Besides, we give an overall discussion of final results and apply user tests in which users compare our results very well with analytical cubist paintings but not synthetic cubist paintings. (c) 2012 Elsevier Ltd. All rights reserved

    Non-photorealistic rendering with spot colour

    Get PDF
    Colour is an important aspect of art. Not only does it give richness to images, but it always provides a means to highlight certain objects. This idea of spot colour has been used extensively in both fine art and commercial illustrations. Many non-photorealistic rendering (NPR) algorithms produce grayscale or monochromatic images with low saturations. In this paper we introduce the idea of spot colour to NPR and propose a simple and automatic algorithm to add spot colour to these rendering styles. The hue is thresholded into colour layers and the most appropriate layer is automatically determined based on factors such as layer region shape and salience. We also consider using an edge-based criterion to colourise the background, which is an effective means of making the foreground stand out. We demonstrate the effectiveness of our approach by adding spot colour to a diverse set of NPR styles

    Non-photorealistic rendering with spot colour

    Get PDF
    Colour is an important aspect of art. Not only does it give richness to images, but it always provides a means to highlight certain objects. This idea of spot colour has been used extensively in both fine art and commercial illustrations. Many non-photorealistic rendering (NPR) algorithms produce grayscale or monochromatic images with low saturations. In this paper we introduce the idea of spot colour to NPR and propose a simple and automatic algorithm to add spot colour to these rendering styles. The hue is thresholded into colour layers and the most appropriate layer is automatically determined based on factors such as layer region shape and salience. We also consider using an edge-based criterion to colourise the background, which is an effective means of making the foreground stand out. We demonstrate the effectiveness of our approach by adding spot colour to a diverse set of NPR styles

    Artistic minimal rendering with lines and blocks

    Get PDF
    Many non-photorealistic rendering techniques exist to produce artistic effects from given images. Inspired by various artists, interesting effects can be produced by using a minimal rendering, where the minimum refers to the number of tones as well as the number and complexity of the primitives used for rendering. Our method is based on various computer vision techniques, and uses a combination of refined lines and blocks (potentially simplified), as well as a small number of tones, to produce abstracted artistic rendering with sufficient elements from the original image. We also considered a variety of methods to produce different artistic styles, such as colour and 2-tone drawings, and use semantic information to improve renderings for faces. By changing some intuitive parameters a wide range of visually pleasing results can be produced. Our method is fully automatic. We demonstrate the effectiveness of our method with extensive experiments and a user study

    Artistic minimal rendering with lines and blocks

    Get PDF
    Many non-photorealistic rendering techniques exist to produce artistic effects from given images. Inspired by various artists, interesting effects can be produced by using a minimal rendering, where the minimum refers to the number of tones as well as the number and complexity of the primitives used for rendering. Our method is based on various computer vision techniques, and uses a combination of refined lines and blocks (potentially simplified), as well as a small number of tones, to produce abstracted artistic rendering with sufficient elements from the original image. We also considered a variety of methods to produce different artistic styles, such as colour and 2-tone drawings, and use semantic information to improve renderings for faces. By changing some intuitive parameters a wide range of visually pleasing results can be produced. Our method is fully automatic. We demonstrate the effectiveness of our method with extensive experiments and a user study

    Cubist style rendering of 3D virtual environments

    Get PDF
    Ankara : The Department of Computer Engineering and the Graduate School of Engineering and Science of Bilkent University, 2012.Thesis (Master's) -- Bilkent University, 2012.Includes bibliographical refences.Cubism, pioneered by Pablo Picasso and Georges Braque, was a breakthrough in art, influencing artists to abandon existing traditions. In this thesis, we present a novel approach for cubist rendering of 3D synthetic environments. Rather than merely imitating cubist paintings, we apply the main principles of Analytical Cubism to 3D graphics rendering. In this respect, we develop a new cubist camera providing an extended view, and a perceptually based spatial imprecision technique that keeps the important regions of the scene within a certain area of the output. Additionally, several methods to provide a painterly style are applied. We demonstrate the effectiveness of our extending view method by comparing the visible face counts in the images rendered by the cubist camera model and the traditional perspective camera. Besides, we give an overall discussion of final results and apply user tests in which users compare our results very well with Analytical Cubist paintings but not Synthetic Cubist paintings.Arpa, SamiM.S

    Wholetoning: Synthesizing Abstract Black-and-White Illustrations

    Get PDF
    Black-and-white imagery is a popular and interesting depiction technique in the visual arts, in which varying tints and shades of a single colour are used. Within the realm of black-and-white images, there is a set of black-and-white illustrations that only depict salient features by ignoring details, and reduce colour to pure black and white, with no intermediate tones. These illustrations hold tremendous potential to enrich decoration, human communication and entertainment. Producing abstract black-and-white illustrations by hand relies on a time consuming and difficult process that requires both artistic talent and technical expertise. Previous work has not explored this style of illustration in much depth, and simple approaches such as thresholding are insufficient for stylization and artistic control. I use the word wholetoning to refer to illustrations that feature a high degree of shape and tone abstraction. In this thesis, I explore computer algorithms for generating wholetoned illustrations. First, I offer a general-purpose framework, “artistic thresholding”, to control the generation of wholetoned illustrations in an intuitive way. The basic artistic thresholding algorithm is an optimization framework based on simulated annealing to get the final bi-level result. I design an extensible objective function from our observations of a lot of wholetoned images. The objective function is a weighted sum over terms that encode features common to wholetoned illustrations. Based on the framework, I then explore two specific wholetoned styles: papercutting and representational calligraphy. I define a paper-cut design as a wholetoned image with connectivity constraints that ensure that it can be cut out from only one piece of paper. My computer generated papercutting technique can convert an original wholetoned image into a paper-cut design. It can also synthesize stylized and geometric patterns often found in traditional designs. Representational calligraphy is defined as a wholetoned image with the constraint that all depiction elements must be letters. The procedure of generating representational calligraphy designs is formalized as a “calligraphic packing” problem. I provide a semi-automatic technique that can warp a sequence of letters to fit a shape while preserving their readability

    Modelling Visual Objects Regardless of Depictive Style

    Get PDF

    Arty shapes

    No full text
    This paper shows that shape simplification is a tool useful in Non-Photorealistic rendering from photographs, because it permits a level of abstraction otherwise unreachable. A variety of simple shapes (e.g. circles, triangles, squares, superellipses and so on) are optimally fitted to each region within a segmented photograph. The system automatically chooses the shape that best represents the region; the choice is made via a supervised classifier so the “best shape” depends on the subjectivity of a user. The whole process is fully automatic, aside from the setting of two user variables to control the number of regions in a pair of segmentations—and even these can be left fixed for many images. A gallery of results shows how this work reaches towards the art of later Matisse, of Kandinsky, and other artists who favored shape simplification in their paintings
    corecore