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ABSTRACT

Visual object classification and detection are major problems in contemporary com-

puter vision. State-of-art algorithms allow thousands of visual objects to be learned

and recognized, under a wide range of variations including lighting changes, occlusion

and point of view etc. However, only a small fraction of the literature addresses the

problem of variation in depictive styles (photographs, drawings, paintings etc.). This

is a challenging gap but the ability to process images of all depictive styles and not just

photographs has potential value across many applications. This thesis aims to narrow

this gap.

Our studies begin with primitive shapes. We provide experimental evidence that

primitives shapes such as ‘triangle’, ‘square’, or ‘circle’ can be found and used to fit

regions in segmentations. These shapes corresponds to those used by artists as they

draw. We then assume that an object class can be characterised by the qualitative

shape of object parts and their structural arrangement. Hence, a novel hierarchical

graph representation labeled with primitive shapes is proposed. The model is learnable

and is able to classify over a broad range of depictive styles. However, as more depictive

styles join, how to capture the wide variation in visual appearance exhibited by visual

objects across them is still an open question. We believe that the use of a graph with

multi-labels to represent visual words that exists in possibly discontinuous regions of a

feature space can be helpful.
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CHAPTER 1

INTRODUCTION

Object recognition is one of the most fascinating abilities that humans possess. With

a simple glance at an object, humans are able to tell its identity or category despite of

the appearance variation due to change in pose, illumination, texture, deformation, and

under occlusion. Researchers are trying to push computer vision algorithms to achieve

human performance. However, a significant area is overlooked – humans are able to

recognise, locate and classify objects in a seemingly unlimited variety of depictions: in

photographs, in line drawings, as cuddly toys, in clouds.

In this thesis, we show it is possible to learn models of object classes that generalise

across different depictive styles. More specifically, we test the hypothesis that:

object class representation is the key to solve the cross-depiction

object recognition problem.

Visual object class modelling has been studied for many years. Significant effort has

been paid to developing representational schemes and algorithms aimed at recognising

objects in photographs. However, nearly all contemporary methods are premised upon

low variance in object features, which explains a significant drop in performance for

cross-depiction problems where the variance in features is wide.

To solve this problem we posit the use of shape, structure and multi-labels as rep-

resentational elements with which to describe a visual object class. Shape is a natural

representational element in art since artists draw initial sketches using simple shapes,

to lay out objects and scenes. We argue that simple primitive shapes are common

properties existing in both photo realistic images and paintings, thus they can be used

as a robust representation for cross-depiction modelling. Based on this assumption,

we test the hypothesis that a significant fraction of regions in segmentations can be

fitted by primitive shapes, such as ‘triangle’, ‘square’, or ‘circle’. Structural is also an

important global information which can not be ignored and it has been used in many
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Chapter 1. Introduction

(a) Lascaus (b) Bison (c) Petroglyphs

Figure 1-1: Some examples of cave painting. (a).Image of a horse from the Lascaux caves,
stone age. (b)Reproduction of a bison of the cave of Altamira. (c). Petroglyphs, from Sweden,
Nordic Bronze Age.

modelling methods. We then assume that an object class can be characterised by the

qualitative shape of object parts and their structural arrangement. Hence, a novel

hierarchical graph representation labeled with primitive shapes is proposed. However,

as more depictive styles are included, the local visual appearance variation becomes

wider. This variation is typically much wider than for lighting and viewpoint varia-

tions usually considered for photographic images. How to capture the wide variation in

visual appearance exhibited by visual objects across them is still an open question. We

argue that the use of a graph with multi-labels to represent visual words that exists in

possibly discontinuous regions of a feature space is of value and is more effective than

attempting characterize all the depictive styles in a monolithic model.

1.1 Motivation

The motivation of this thesis is not only to fulfil the gap of literatures (there is little

researches about cross-depiction problem, see Chapter 2.), but also for both scientific

and practical reasons.

Object recognition is a topic that has received continuous and consistent attention

within computer vision, pattern recognition and machine learning. It has been widely

used in many fields. For example, in the surveillance area, Content Based Image

Retrieval (CBIR) area etc. The neurobiologist Marr [95] claims that vision problems

can be attributed to ‘What is Where’ - what object is in which place. This is the

motivation of object recognition and it is concerned with determining the identity of

an object being observed in the image.

Painting has already appeared since the beginning of human civilization. Approx-

imately 40000 years ago, prehistoric people draw on rock, known as ‘Cave Painting’.

People, animals and natural elements are the main contents in their paintings. Figure

1-1 shows some examples of ‘Cave Painting’. Humans still are able to recognise objects

in these paintings even after dozens of centuries. Since then, with the change over age

2
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Figure 1-2: An example of simple visual abstraction performed by reducing the overall curva-
ture of the contour of Africa.

and region, styles of painting various a lot. According to [158], painting styles can be

classified based on different rules, such as areas, years and schools. In the East, we have

Chinese painting [152], Japanese Painting[154] Korea Painting[155] and Indian painting

etc. In the West, there are Modernism[156], Impressionism[153], Abstract styles[151],

Outsider art[157], Photorealism[159], Surrealism[160] and so on. The number of styles

are still increasing but interestingly, people always can recognise the objects in most of

these styles. Before the birth of camera (the first camera was made in 1839), painting

is the only way to record objects and events and people are still drawing nowadays.

However, as a such important source in human history and daily life, painting is ignored

by the computer vision, especially for object recognition. There are many reasons to

introduce paintings into object recognition.

1.1.1 Scientific Motivation

The scientific motivation for introducing paintings or art in computer vision is that art

is a visual abstraction that is parsimonious yet meaningful: that is, art works can and

do use very little information to represent things in such a way they can be recognised.

Parsimonious descriptions are a great value because they are efficient to store and use,

they tend to be robust and generalise well. In other words, they are the natural models

of objects.

Artists are experts in translating their observation, imagination and knowledge in an

abstract manner. They are able to convey visual expression through forms of paintings,

and are extremely good in delivering abstraction in their work. Famous artists such as

Van Gogh, Picasso to name a few, have created paintings that are not only aesthetic,

but also tell a story at a high level of abstraction. Many artists begin their paintings

with shapes or building blocks that eventually turn into masterpieces of fine detail.

The importance of cave art is that it shows the symbolisms used (ie the abstractions)

3
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Figure 1-3: Various styles can be abstracted as a stick man.

have not changed over tens of thousands of years. This is obvious when one considers

a child’s drawing of a car in which all four wheels are shown – the child draws what

they know of a car, not what is seen. In addition, a line drawing, for example, is

much more compact in terms of information content than a photograph – drawings are

abstractions in the sense that a lot of data is discarded, but information germane to

the task of recognition is (typically) kept. This suggests that visual class models used

in computer vision should exhibit a similarly high degree of abstraction.

Abstraction can be formed by reducing the information content of a concept or

an observable phenomenon, typically to retain only information which is relevant for

a particular purpose. The visual abstraction then can be defined as the process of

reducing the visual content of a given object progressively. For example, the contour

of the African continent can be abstracted by iteratively reducing the curvature of

the contour, as shown in figure 1-2. It can be seen that the contour reduces from a

complex structure with lots of jagged edges, to an ellipse-like shape. Although there is

significant loss of information, the shape in figure 1-2 (c) can be refereed to as a crude

approximation of that in figure 1-2 (a).

The importance of visual abstraction was also underlined by Picasso, when he de-

scribed art as “the elimination of the unnecessary”. Even though artwork is sometimes

highly abstracted, humans can still correctly perceive the objects in them and often in-

terpret the intended underlying meaning. It could be that art is a visual representation

of the way our brains encode the visual world. Moreover, the encoding is possible a

generative model. Hence, introducing paintings into current computer vision researches

has the potential value in a scientific view. It forces researchers to design the recogni-

tion system via studying how people understand the objects and motions depicted in
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(a) Centaurs (b) Pegasus (c) Medusa

(d) Minotaur (e) Griffin (f) Sphinx (g) Siren

Figure 1-4: Some examples of mythological creatures. These objects only can be observed in
art works.

art. In other words, it is the art to let people know that the abstraction can lead to

the robustness to non-salient variation and makes us to consider using simple primitive

shapes and structures to represent object class regardless of depictive styles. Figure 1-3

shows an example that various style people images can be abstracted as a stick man.

A second reason for being interested in extending the gamut of depictions available

to computer vision is that not all visual objects exist in the real world. Mythological

creatures (Figure 1-4), for example, have never existed but are recognisable nonetheless.

Most of these objects only exist in paintings and artworks. If computer vision is to

recognise such visual objects it must emulate the human capacity to disregard depictive

style with respect to recognition problems. Some similar situations also can be observed

in photos, for example, a man with a cartoon mask. How to detect and recognise these

assembly objects is still an open question and which is related to model objects class

across different depictive styles, since a more generative model might be required.

1.1.2 Practical Motivation

There are also many practical reasons for wanting visual class objects that generalise

across depictions. One reason is that computer vision should not discriminate between

visual class objects on the basis of their depiction - a face is a face whether photographed

or drawn. Given a picture of someone’s face as a query, a search over a database of

images should ideally return all portraits of them, no matter what style. Figure 1-5

5



Chapter 1. Introduction

Figure 1-5: Example faces depicted in various styles.

shows more faces depicted in various styles while figure 1-6 shows some failing cases

when using ‘Google Image’ to retrieval face images that depicted in different styles.

It is clearly shown that top responses are not faces, although they may have similar

colour pattern with the query images.

Non-photorealistic rendering (NPR) also can be benefit from introducing art into

object modelling, for example, synthesis art work from photographs using the object

class model, especially for the abstraction art. Song et al [129] proposed to use fit-

ted qualitative shape labels for the purpose of generating synthetic abstract art from

photographs.

Figure 1-6: Google image retrieval examples. Query images are displayed in the first column,
the retrieval results returned from Google are shown on the right side.
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Figure 1-7: Example images and their distribution in the feature space. The features are
generated by projecting the 5000-d BoW-SIFT features to 3-d space using PCA. Gray clouds
represent all categories in our Photo-Art-50 dataset. In the feature space, the art domain (blue)
and photo domain (red) of the same object class distribute differently, partially overlapped. The
art features tend to spread wider than the photo features, which is consistent with its higher
variation of visual appearance.

1.2 Challenges

Based on the motivations listed above, one can see that generalise to across depictions

in Computer Vision applications is of importance, in both scientific and engineered

view. Meanwhile, it is also a challenge one. Challenges mainly come from two folds.

At first, the problem itself is hard - due to the wide variation of local features. Secondly,

the dataset is hard to establish.

1.2.1 Wider Variation

Within our test, even the best classification and detection algorithms exhibit a signifi-

cant drop in performance when presented with images that are not photographic (see

section 5.2). Figure 1-7 provides a hint of the reason for such a performance drop. It

shows the distribution of visual features for two specific classes. It shows the separa-

tion of objects in the same class but different depictions can be less than the separation

between objects in different classes but the same depiction. This wide variation is a

property of all visual classes we have tested, and underpins the intuition that the un-

derlying difficulty in the cross-depiction problem is the seemingly unbounded number

of distinct depictive styles. We also calculate and compare the K-L divergency (more

details can be found in Chapter 5) of inter-depiction and inter-category for this two

specific category. Inter-depiction divergencies are calculated based on the same class

but depicted in different styles (such as photo and art) while the inter-category diver-
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Photo-Horse Art-Eiffel

Photo-Eiffel 1.42 2.75

Art-Horse 2.33 2.15

Table 1.1: Inter-depiction divergencies (in green cell) and inter-category divergencies (in blue
cell). The K-L divergencies are calculated based on 5000-d BoW-SIFT features of ‘Horse’ class
and ‘Eiffel-Tower’ class from Photo-Art-50 dataset.

gencies are measured based on the same depicted style but from different categories.

The divergencies table shows in table 1.1. From the table, it is shown that inter-

depiction divergencies (Photo-Horse VS Art-Horse and Photo-Eiffel VS Art-Eiffel)are

bigger than intra-category divergencies(Photo-Horse VS Photo Eiffel and Art-Horse VS

Art Eiffel), which means the depiction variation is a much bigger challenge than the

category variation usually considered in Computer Vision.

1.2.2 Dataset

Lacking of appropriate datasets and baselines makes our task much harder. There

are many datasets for object detection, classification and recognition. Caltech-101

[45] is the first general objects dataset for classification. It contains images of 101

categories of object, and is relatively widely used within the community for evaluation

object recognition. Caltech-256 [64] is build based on Caltech-101. It has 256 classes

and there are at least 80 images in each class. PASCAL VOC [44] starts from 2005,

updating every year, which is a dataset for classification, detection and segmentation.

The latest VOC dataset is VOC 2012, which contains 20 classes and more than 25000

objects. ImageNet [37] is a much larger dataset, containing 200 classes with nearly

500000 images. However, all these popular datasets are built based on photorealistic

images. Very rare artworks can be found in them. Doubtless, a dataset with artworks

(such as painting, drawing, cartoon) will benefit the community. And it is important

to the community to understand the performance of leading techniques in the context

of cross-depiction problem.

We believe the solutions of these challenges would be of genuine benefit to computer

vision. Advancing this area would provide a significant boost to current applications

such as image search over a database. For example, given a photograph of the Queen

of England, a search should return all portraits of her, ideally including the postage

stamps that capture her likeness in bas-relief. More importantly, a solution to the cross-

depiction problem forces us to consider ways to represent objects that are more general

than appearance-based approaches currently used, which is also the main motivation

of this thesis.
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(a) (b) (c)

Figure 1-8: (a) Picasso, Seated Woman with Wrist Watch. (b)Leger, Card Players.
(c)Picasso, Three Musicians

1.3 Our Contributions

Above sections highlight what problems we want to study in this thesis and why they

are important. The next step is to identify how we approach the solutions, in other

words, the technical contribution we made in this thesis. Our journey starts from

exploring the common properties sharing between photos and art works. Shape is

a good start since artists draw initial sketch using simple shapes to layout objects

and scenes. The structure of the object remains relatively invariant to depiction in

most object classes, and provides a description at a global level. After obtaining these

weapons, a hierarchical representation of object class is built to classify objets depicted

in different styles. To narrow the wide variation in visual appearance exhibited by visual

objects across depictive styles, a multi-labled graph representation is then developed.

1.3.1 Finding Common Simple Shapes

Shape plays an important role in computer vision, with applications in problems such as

matching, object recognition, and classification. However, to the best of our knowledge

the question as to whether there is a set of elementary planar shapes that appear

commonly in the world around us has never been asked within the literature. If such

a set exists, then the elementary shapes could play a similar role in shape analysis as

the primary colours do in colour analysis.

Our hypothesis, that images comprise combinations of primitive shapes, has its

roots in observation, in art, and in psychology. Observation suggests the visual world

can be described as an assembly of simple shapes: circles for wheels or faces, rectan-

gles for cars, windows, human torsos, triangles for eyes, cats ears, mountains. These

and similar primitives have been the basis of significant movements in 20th century

Western Art. Painters such as Picasso (e.g. Seated Woman with Wrist Watch), Leger

(e.g. Card Players) shown in figure 1-8, and schools such as Italian Futurism, Tubism,

and Orphism, depicted objects (and motions) as being composed of just a few basic
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Figure 1-9: Segmented regions classified by primitive shapes obtained from MIT database.

geometric forms: cones, cylinders, bricks, and so on. It is very common for artists to

make initial sketches using simple shapes to layout a scene, as any book on drawing

instruction will testify.

Despite the anecdotal nature of this evidence, the practice is widespread enough

and useful enough to suggest primitive shapes do regularly appear in real world images.

Empirical evidence that aligns with artistic intuition has existed since at least the 1970s,

when psychologists such as Rosch [113] showed simple shapes (specifically triangles,

squares, and circles) are easier for humans to recall other shapes. Psychologists have

explicitly used shape as a primitive to explain cognition in the form of Geons, a concept

which comes from Biederman’s theory [13]. Geons are the simple 2D or 3D forms such

as cylinders, bricks, wedges, cones, circles and rectangles corresponding to the simple

parts of an object of object recognition.

We describe an experiment designed to test the following hypothesis: some regions

in image segmentations can be classified and fitted as one of a few primitive shapes.

Not wishing to force regions into classes, we developed a classifier (with an input

bandwidth) designed to find clusters of a size greater than would be expected if the

shape of regions were randomly generated. We used two different “shape spaces” (i.e.

shape descriptors), three different segmentation methods, and three image databases.

The result was that primitive shapes (up to an affine transform) such as ‘triangle’,

‘square’, and ‘circle’ account for between 50% and 80% of regions. As Figure 1-9

shows, we can now classify image regions into qualitative shape classes (any region

that touched a picture boundary or which contained less than 100 pixels was removed

from consideration).

Our aim is to investigate whether primitive shapes exist in real world photographs,

and more particularly whether shape classes could be discovered with as less human

direction as possible. If this set exists, it can be used as a bridge between arts and

photos. More details of this work can be found in chapter 3.
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Figure 1-10: Spatial organisation of object parts plays an important role in the recognition of
objects. In the above example, three seemingly unrelated parts may be combined to form a face.
Humans are able to recognise the eggs as eyes, the strawberry as a nose and the sausage as a
mouth only when they are spatially arranged akin to a human face. [6]

1.3.2 A Hierarchical Structure as a Global Invariant

Structure of the object is another common properties share between photos and art-

works. Wikipedia defines structure as

“ a fundamental, tangible or intangible notion referring to the recogni-

tion, observation, nature, and permanence of patterns and relationships of

entities. ”

An object’s structure can be defined as the topology of its parts, with emphasis

on the relations between the object and its parts, and also those between the parts

themselves. The importance of structure has been highlighted by its use as a basis

for representation of objects [1, 46, 54, 174, 173], and has been used for matching and

detection.

11



Chapter 1. Introduction

An important hypothesis is that structure is class invariant and play a significant,

possibly even essential role in modelling objects across depictions. Biederman [13]

also emphasised that the spatial organisation of parts is important for recognising any

objects. Balikai presented a good example to show the importance of structure played

in object recognition in [6]. Consider the example shown in 1-10. In Figure 1-10(a),

one may not relate the three objects to form a single object, but when the element

of structure is introduced in Figure 1-10(b), humans can clearly relate the spatial

arrangement to a face. This simple example underlines the vital role that structure

plays towards recognition and understanding of objects invariant of their depiction [6].

In this thesis, we investigate a method for modelling visual objects classes in a

manner that is invariant to depictive style. The assumption we make is that an object

class is characterised by the qualitative shape of object parts and their structural

arrangement. Hence we use a graph of nodes and arcs in which primitive shapes such

as triangle, square, and circle to label the nodes. More exactly our model is a hierarchy

of levels, yielding a coarse-to-fine representation. Each level contains an undirected

graph of nodes and arcs. Nodes between levels are connected via parent-child arcs,

which are directed. Child nodes are nested inside their parent. We also use our model

on a cross-depiction image dataset. The experiments provide empirical evidence that

our model is more robust to cross-depiction object classification than an excellent Bag

of Words classifier. More details can be found in chapter 4.

However, structure may not exist in every category of object, for example, fluid like

water and smoke. Moreover, some structural information might vary a lot even they are

extracted from the same object category, such as buildings. The structure of different

buildings differs a lot with the changing of building genre, especially for the modern

buildings. In our research, we try to avoid including these object categories in our

dataset since they are out of scope of our research at this stage. After all, the problem

we interested in is how the depiction of object class affect the object recognition.

1.3.3 Multi-labeled Graph with Weights.

As we claimed in section 1.2, a challenge we want to address in this thesis is: how

to capture the wide variation in visual appearance exhibited by visual objects across

depictive styles. This variation is typically much wider than the lighting and viewpoint

variations usually considered for photographic images. Indeed, if we consider different

ways to depict an object (or parts of an object) there is a good reason to suppose that

the distribution of corresponding features form distinct clusters. Its effect can be seen in

Figure 1-11 where the currently accepted state-of-art method for object detection fails

when presented with artwork. The same figure highlights our contribution by showing

our proposal is able to locate (and classify) objects regardless of their depictive style.

We solve the problem of inter-depictive variation by using multi-labeled nodes to
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teddy−bear
zebra hot−air−balloon

face
horse

person

Figure 1-11: Learning a model to recognise objects. Our proposed multi-labeled graph modelling
method shows significant improvement for recognising objects depicted in variety styles. The
green boxes are estimated by using DPM [46], the red are predicted from our system. The
text above the bounding box displays the predicted class category over a 50-classes dataset. In
our each detected window, the object is matched with the learned model graph. In the matched
graph, each node indicates a part of the object, and larger circles represent greater importance
of a node, and darker lines denote stronger relationships.

describe objects parts. These multiple attributes are learned from different depictive

styles of images, which are more effective than attempting to characterize all attributes

in a monolithic model.

Moreover, in our model, a weight vector is learned automatically to encode the

importance of node and edge similarity. We refer to it as the discriminative weight

formulation for a part based model. This advantage will be demonstrated with evidence

in the experimental section. More details of this work can be found in chapter 5.

1.3.4 Summary of Contributions

The main technical contributions of this thesis are:

1. Providing empirical evidence that some regions in segmented images can be clas-

sified or fitted as one of a few primitive shapes, upon given appropriate region

descriptions and well-designed classifiers.

2. A classifier to fit primitive shapes to segmented regions of an object.

3. A computationally efficient classifier to categorise scenes based on ratio of prim-

itive shapes.
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4. A method for modelling visual objects classes in a manner that is invariant to

depictive styles, using a hierarchical representation at global level with primitive

shapes labeled in local level.

5. A modelling scheme (a framework) for visual class objects that generalise across a

broader collection of depictive styles, using a novel weighted multi-labeled graph

model.

Other contributions, includes:

1. A new agglomerative clustering method to cluster similar binary shapes.

2. A new challenge cross-depiction object dataset, Photo-Art-50, consisting of 50

classes, annotated with bounding boxes, designed specifically for the cross-domain

problem.

3. An evaluation of leading recognition and detection techniques and two state-of-

the-art domain adaptive methods for cross-depiction task.

1.4 A Road Map

Chapter 2 outlines the relevant background. It first provides a history and overview of

the state of the art in object recognition, showing that our problem is hardly studied.

We then reviewed the studies of shape, showing no one asked a question as we do –

‘whether common simple shapes exist in natural images’. After that, structural/graph

based modelling methods are reviewed, to compare with our novel methods designed

for cross-depiction problem. Finally, a couple of methods that study the problem of

depiction-invariant modelling method are reviewed in details.

Regions segmented from natural images can be classified into a collection of prim-

itive shapes (such as square, triangle, circle etc.). The experimental framework and

method with experimental results are presented in chapter 3. Additionally, a primitive

shape classifier and an application of scene classification application based on primitive

shapes is also reported in this Chapter. In appendix A, some further experiments into

the nature of shape description are carried out to show that the choices we make have

little impact on the conclusion that primitive shape classes do exist.

Chapter 4 includes two sections. One explains how to build a hierarchical graph

model to represent object classes, with nodes labelled by primitive shapes and edges

labelled with displacement vectors. The other section describes experiments on a cross-

depiction image dataset. The experiments provide empirical evidence that our model

is more robust to cross-depiction object classification than an excellent Bag of Words

classifier.
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In the chapter 5, a new challenge cross-depiction dataset is presented and a base-

line of leading recognition and detection techniques and two state-of-the-art domain

adaptive methods for cross-depiction task are provided. Then, we describe our novel

modelling scheme, and in particular introduces the way in which we account for the

wide variation in feature distributions. A visual class model (VCM ) is now a graph

with multi-labeled nodes and learned weights. Such novel visual class models can be

learned from examples via an efficient algorithm we have designed, and experimen-

tally are shown to outperform state-of-art deformable part models at detection tasks,

and state-of-art BoW methods for classification. All the experiments and results are

provided in this chapter.

The thesis concludes, in chapter 6, with a discussion and observation drawn from

experimental results. An overview of the possible future development and applications

is also pointed in this chapter.
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CHAPTER 2

LITERATURE REVIEW

Before reviewing related works, we want to first locate our literatures position in the

subject of object recognition. Object recognition is one of the most fundamental prob-

lems in computer vision as well as the most challenge one. The challenges can be

roughly divided to three levels, which are instance level, category level and semantic

level [74], as shown in figure 2-1.

Figure 2-1: Challenges of object detection and classification in different level. The depiction
variation we want to address in this thesis is an important challenge belongs to the intra-class
diversity under the category level.

Instance Level: Challenges from this level usually come from the different cap-

ture conditions. Significant effort has been paid to develop modelling schemes and algo-

rithms aiming at recognising generic objects in images taken under different conditions.
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Figure 2-2: Different examples of chairs

For example, many approaches have been implemented to handle the fact that the image

of the objects may vary somewhat in different view points [9, 46, 119, 138, 139], in many

different scales or even when they are translated or rotated [48, 93]. Some researches

focus on the problem when objects are partially obstructed from view [47, 161, 170].

Category Level: There are major three types of challenges at this level. At first,

the intra-class diversity, it is caused by different visual appearance of the same object

category. For example, chairs in figure 2-2, the visual appearance are so different.

Multi-components models [46] and sub-categories models [39] are designed to address

this problem. The depiction variation we want to address in this thesis is an important

challenge belongs to the intra-class diversity under this level. The second challenge is

called inter-class ambiguity, which is caused by the similarity between different object

classes, such as a wolf and a Husky. Deep learning models such as [84] and [173]

shows robustness in such kind of problems. The last challenge comes from the noise

of background. In practical situation, the background could be very complicated and

this will make the recognition much more challenging.

Semantic Level: This might be the hardest problem for object recognition -

same image with multiple meanings. For example, the left image in figure 2-3 can be

recognised as two against faces XOR a candle. The right image then can be explained

as a head of a duck XOR a rabbit. Different explanations may relate to the observer’s

personality and experience, which is the hardest part for computer vision.

Figure 2-3: Two examples of ambiguous image. Left: face or candle? Right: duck or rabbit?

Object recognition has been studied for more than five decades [95, 144]. Many
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researches, publications and applications are proposed to face and address the above

challenges. However, a relatively less addressed issue is that of recognising objects

regardless of their depiction.

Modelling visual object classes is an important step of relevance to object detection

and classification. In this chapter, we first take a look at a few state-of-art modelling

methods that is relevant to our work, including famous Bag of Words family to recently

popular deep learning methods.

As a part of the work presented in this thesis, we want to investigate the common

properties share between different depictions so that we can use them to capture the

wide variations across different depictive styles. Shape and structure are what we

have chosen and they have been applied individually in the past for modelling object

category. Literature relating to the above properties have been reviewed in this chapter.

We first look into prior works that relate to the shape study. Then, the following

section reviewed works that use structural information to model object class. Finally,

a couple of methods that study the problem of depiction-invariant modelling method

are reviewed in details.

2.1 State-of-art in Modelling Object Class

How to represent a visual object class is the key to detect and classify such an object in

an input image. For object classification, it is the task of finding whether a sort of object

exists in the image. Generally, algorithms of object classification describe entire image

through hand-crafted (such as HoG, LBP, SIFT) or self-learned features (such as Caffe

features) at first. Then, a classifier will be learned to estimate what sort of object

class features exist in those image features, in order to classify the image. Object

detection is much more complicated, which needs to answer the question of ‘what

object is in where’. Hence, except for the local features, object structural information

is also an important aspect for detection. In recent years, most researches of modelling

object class for classification is focused on learning feature representations, such as

Bag-of-Words models, deep learning models; while object detection is more focused on

structural learning, such as the pictorial structures framework. The family of these

state-of-art methods will be reviewed in the following sub-sections.

2.1.1 Bag-of-Words

The bag-of-words model (BoW) is initially used in natural language processing and

information retrieval. It is commonly used in methods of document classification,

where the frequency of occurrence of each word is used as a feature for training a

classifier. In 2004, it was adapted for computer vision applications by Csurka et al [33].

To represent an image using BoW model, an image can be treated as a document and
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Figure 2-4: Constructing the bag-of-words for image representation.[141]

a visual analogue of a word is used. It is based on the vector quantization process

by clustering low-level visual features (such as color, texture etc) of local points or

regions. Four steps are included to represent image using BoW model, which are feature

extraction, feature description, codebook generation and model learning. Figure 2-4

describes these steps to construct BoW model from images. We review works related

to these steps, separately, in the following paragraphs.

1). Feature Detection: There are two category methods to extract features, sparse

based and dense based. For those feature extraction of sparse interest point, they

are computed at pixels, edges, corners, blobs and so on. Most commonly used sparse

feature detectors include Harris corner detector [68], FAST(Features from Accelerated

Segment Test) corner detector [114], LoG(Laplacian of Gaussian), DoG(Difference of

Gaussian) [92] and MSER (Maximally Stable Extremal Regions) [97] etc. Sparse based

detector is efficient since only parts of the image features are detected and selected.

In recent years, with the increase of CPU computation capability, dense based feature

extractors become more and more popular. They extract large scale image features on

a dense grid of locations at a fixed scale and orientation. Dense based methods can

obtain much more information, although with high redundancy. However, with better

feature representations and encoding methods, dense descriptors have been proved to

perform better than sparse based ones [14, 81].

2). Feature Description: SIFT(Scale Invariant Feature Transform) descriptor [92] is

the most widely used local descriptor. It combines a scale invariant region detector and
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a descriptor based on the gradient distribution in the detected regions. A SIFT descrip-

tor is a 3-D spatial histogram of the image gradients in characterizing the appearance of

a key point. The gradient at each pixel is regarded as a sample of a three-dimensional

elementary feature vector, formed by the pixel location and the gradient orientation.

Samples are then weighed by the gradient norm and accumulated in a 3-D histogram,

which (up to normalization and clamping) forms the SIFT descriptor of the region. An

additional Gaussian weighting function is applied to give less importance to gradients

farther away from the key point centre. In most situation, the frame will be divided

into four by four grids, in each grid, there are 8 directions. So there will be 128 di-

mensions. Some other descriptors include HOG(Histogram of Oriented Gradient) [34],

LBP(Local Binary Pattern) [103] etc.

3). Codebook Generation: The next step for the BoW model is to convert vector

represented patches to ‘codewords‘, which also produce a ‘codebook‘. In general, the

k-means clustering algorithm is used for this task at first and then codewords are de-

fined as the centers of the learned clusters and the number of visual words generated

is based on the number of clusters. Hence, each patch in an image is mapped to a

certain codeword through the clustering process and the image can be represented by

the histogram of the codewords. This is known as vector quantization coding process

and which is the most commonly used one. One drawback of this codebook approach is

the hard assignment of codewords in the vocabulary to image feature vectors. The hard

assignment gives rise to two issues: codeword uncertainty and codeword plausibility.

Codeword uncertainty refers to the problem of selecting the correct codeword out of

two or more relevant candidates. The codebook approach merely selects the best rep-

resenting codeword, ignoring the relevance of other candidates. The second drawback,

codeword plausibility denotes the problem of selecting a codeword without a suitable

candidate in the vocabulary. The codebook approach assigns the best fitting code-

word, regardless the fact that this codeword is not a proper representative. Gemert et

al [145] propose an uncertainty modeling method for the codebook approach. In effect,

they apply techniques from kernel density estimation to allow a degree of ambiguity

in assigning codewords to image features. Some other feature encoding algorithms

include sparse coding [105], locality-constraint linear coding[149], salient coding [73],

fisher vector coding [107], super vector coding [172] and so on. The super vector coding

[172] and fisher vector coding [107] are the best performance coding methods in recent

years. They are very similar since they are coding the difference between local features

and visual words. For fisher vector, not like the classical coding ways, it records both

the first order and second order difference. And for super vector, it directly uses the

difference between local features and its nearest visual word to instead the previous

hard assignment.

To capture the spatial information in order to improve the limitations of the con-
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ventional BoW model, many studies have been proposed, in which spatial pyramid

matching introduced by Lazebnik et al. [86] has been widely compared as one of the

baselines. This technique works by partitioning the images into increasingly fine sub-

regions and computing histograms of local features inside each sub-region.

4). Model Learning: After the BoW feature is extracted from images, it is entered

into a classifier for training or testing. The most widely used and developed classifier

is based on support vector machines (SVM) [146].

2.1.2 Deep Learning Models

Deep learning models [11] aim at learning feature hierarchies with features from higher

levels of the hierarchy formed by the composition of lower level features. The main-

stream deep learning models include Auto-encoder [68], RBM(Restricted Boltzmann

Machine) [127], DBN(Deep Belief Nets) [69], CNN(Convolutional Neural Networks)

[87] etc.

Auto-encoder[68] is an artificial neural network proposed in 80s of last century,

which is widely used in dimensionality reduction and feature extraction. Auto-encoder

is composed by an encoder and a decoder. Encoder transforms the input to hidden

layer so that the representation can be reconstructed by the decoder. In the process,

the hidden units learn to project the input in the span of the first several principal

components of the data, achieving the dimensionality reduction and feature encoding.

Auto-encoder has achieved good performance in handwriting recognition and image

classification.

RBM [127] is an undirected bipartite graph model, which is a typical Enery-based

Model (EBM). As its name implies, RBM is a variant of Boltzmann Machine, with

the restriction that their neurons must form a bipartite graph. With that special

structure, a very efficient Gibbs sampling can be performed to obtain an estimator of

the log-likelihood gradient. RBM can be used as an unsupervised feature learning unit.

Hinton et al in the University of Toronto introduced Deep Belief Networks (DBNs)

[69], with a learning algorithm that greedy trains one layer at a time, exploiting an

unsupervised learning algorithm for each layer, a Restricted Boltzmann Machine. The

multi-layers architecture of DBN makes it possible to learn a hierarchical feature rep-

resentation to achieve feature auto-encoding. DBN has been successfully employed in

handwriting recognition, speech recognition, content based image retrieval and so on.

Convolutional Neural Networks might be the most widely used models for image

recognition. They are inspired by the visual system’s structure, and in particular by

the models proposed by [75]. The first computational models are found in Fukushima’s

Neocognitron [57], which are based on local conductivities between neurons and hierar-

chically organized transformations of the image. He recognized that when neurons with

the same parameters are applied on patches of the previous layer at different locations,
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Figure 2-5: A graphical depiction of a LeNet model. The lower-layers are composed to alter-
nating convolution and max-pooling layers. The upper-layers however are fully-connected and
correspond to a traditional MLP (hidden layer + logistic regression). The input to the first
fully-connected layer is the set of all features maps [87].

a form of translational invariance is obtained. Later, LeCun and his collaborators,

following up on this idea, designed and trained convolutional networks using the er-

ror gradient, obtaining state-of-the-art performance [87] on several pattern recognition

tasks. Figure 2-5 shows a graphical description of a leNet model. And more recently,

works based on these networks have achieved competition-winning numbers on large

benchmark datasets consisting of more than one million images, for image recognition

task.

2.1.3 Deformable Models

Deformable models of various types are widely used to model the object class for

detection tasks. On difficult datasets, deformable models are often outperformed by

simpler models such as rigid templates or bag-of-words. There is a significant body of

work on deformable models, including several kinds of deformable template models [28,

29] and a variety of part-based models [3, 30, 47, 46, 48, 55, 88].

In the constellation models from [48], parts are constrained to be in a sparse set

of locations, and their geometric arrangement is captured by a Gaussian distribu-

tion. In contrast, pictorial structure models [47], originally introduced by Fischlet and

Elschlarger [55], provide a statistical model of objects. The basic idea is to represent an

object by a collection of parts arranged in a deformable configuration. The appearance

of each part is modeled separately, and the deformable configuration is represented by

spring-like connections between pairs of parts. Using these pictorial structure models,

objects in an image can be recognized and their constituent parts can be located in the

image. Figure 2-6 shows a pictorial structural representation of human face, indicat-

ing parts and their linkages. The patchwork of parts model from [3] is similar, but it

explicitly considers how the appearance model of overlapping parts interact.

Deformable Part-based Model (DPM) [46] is the most successful one in the de-

formable models family and it is largely based on the pictorial structures framework

from [55]. They use a dense set of possible positions and scales in an image, and define
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Figure 2-6: A pictorial structural representation of human face, indicating parts and their
linkages.[55]

a score for placing a filter at each of these locations. The geometric configuration of

the filters is captured by a set of deformation of costs connecting each part filter to the

root filter, leading to a star-structured pictorial structure model. We will introduce

this model in more details in section 2.3, where proves that structure is an important

property to model object class across depictive styles.

2.1.4 Discussion

In above sections, we introduced some famous state-of-art for modelling object classes.

Some of them are based on the learning of feature representations (such as BoW and

Deep Learning) and some are based on deformable structures (such as DPM).

Although the BoW methods address many difficult issues, they tend to generalise

poorly across depictive styles. The explanation for this is the formation of visual code-

words in which clustering assumes low variation in feature appearance. To overcome

this drawback, researchers use alternative low-level features that do not depend on

photometric appearance, e.g., edgelets [123, 51] and region shapes [66, 76]. However,

even these methods do not generalise well.

For deep learning models, although they have been studied for nearly 30 years,

they are not widely used in object classification until very recently. To the best of our

knowledge, there is no systematic study to examine the performance of deep learning

models on a cross-depiction dataset, although it has been proved that they can be used

in domain adaption problems. Notice that the ‘domain’ here only means photos took

under different photographic conditions, which is not comparable with our photo-art

domain.

Deformable models, by modeling objects from different views with distinct models,
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Figure 2-7: An example of shape description using shape context [10]. This figure illustrate
the extraction of shape context using log polar bins for the contour point highlighted by the star.

it is able to detect large variations in pose. However, when the variance comes from

local parts, e.g. the same object depicted in different styles, it does not generalize well;

this is exactly the problem we address.

We argue that no single ‘monolithic’ feature will cover all possible appearances of

an object (or part), when depictive styles are considered. We commit ourselves to

find out the common properties of objects in photos and art works, and then we find

an appropriate way to model the object class across different depictive styles. In the

following sections, we will review some works related with ‘shapes’ and ‘structures’,

which are the shared properties between photos and arts.

2.2 Shapes

The literature studying planar shape is large and it covers many areas. Within image

processing and computer vision the shape literature is large and growing larger. Shape

representation is of use to many applications. Our interest in the subject is classification

using quantitative terms. Most of the literature develops quantitative measures, so we

will provide a brief, targeted background.

Boundary based descriptors permit a scale based representation [101]. There are

many features that depend on boundary descriptors of objects such as blending energy,

curvature etc. For an irregularly shaped object, the boundary is a better representation

although it is not directly used for shape descriptions like centroid, orientation, area

etc. Fourier descriptors are also a common example [108, 115, 110]. It measures the

regularity of a shape by analyzing its radial distance. Some other earlier works for

shape description are based on silhouettes, such as [100] and [120]. [100] is based on
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finding points of inflection on the curve at varying levels of details using path length

parameter and combining them to obtain the scale space image of the curve. [120]

propose that a symmetry-based representation is an intermediate representation that

retains the advantages of local, edge-based correlation approaches as well as of global,

deformable models.

However, as Belongie and Malik noted in [10], silhouettes are limited because they

ignore internal contours. Hence, some works represent shapes as loose collections of 2D

points (such as [27, 58]) or other 2D features ([42] and [50]). Other works propose more

informative structures than individual points as features, in order to simplify match-

ing. Belongie and Malik [10] propose the Shape Context, which has been populated

in several applications to find similarities between corresponding points in a pair of

images. Iteratively, every point in the image is used as a reference to build a log polar

distribution of all other points on the shape, giving rise to a point-wise feature vector

termed as shape context. Figure 2-7 shows an example. This shape description enables

the point-to-point matching between two shapes even under non-rigid deformations. In

effect, matching two shapes using shape context aligns them with each other, making

the method invariant to changes in pose.

Leordeanu et al. [89] encode relations between all pairs of edgels of shape to go

beyond individual edgels. Similarly, Elidan et al. [42] use pairwise spatial relations

between landmark points. Ferrari et al. [50] propose a family of scale invariant local

shape features formed by short chains of connected contour segments.

Figure 2-8: An example showing a shock graph as a combination of singularities obtained
during the evolution of the grassfire transform[125]

Shape skeletons are the dual of shape boundary, and also have been used as a de-

scriptor. For example, Rom and Medioni [112] suggest a hierarchical approach for shape

description, combining local and global information, to obtain skeleton of shape. Sun-

dat et al [131] use skeletal graph to represent shape and use graph matching techniques

to match and compare skeletons. Shock graph [125] is derived from skeleton models
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of shapes, and focus on the properties of the surrounding shape. Shock graphs are

obtained as a combination of singularities that arise during the evolution of a grassfire

transform on any given shape. In particular, the set of singularities consists of corners,

lines, bridges and other similar features. Shock graphs are then organised into shock

trees to provide a rich description of the shape. Figure 2-8 shows an example.

Region based descriptors are robust to noise when compared with either boundary

or skeletal descriptors. In region-based methods, all pixels within a shape region are

taken into account to obtain the shape representation. Common region-based methods

use moment descriptors to describe shape. Typical descriptors include geometric mo-

ments such as Hu [70], Zernike [134], and Chebyshev [109]. In general, moments are

constructed by using a set of complex polynomials which form a complete orthogonal

basis set defined on the unit disk. It is a certain particular weighted average (moment)

of the image pixels’ intensities, or a function of such moments, usually chosen to have

some attractive property or interpretation. Geometric moments representations inter-

pret a normalized gray level image function as a probability density of a 2D random

variable [171]. The first seven invariant moments, derived from the second and third

order normalized central moments, are given by Hu [70]. There is no general rule in

acquiring higher order invariants. And it has been shown [136] that Zernike moments

outperform other moments in terms of noise sensitive, redundancy and reconstruction

error. In [82], Zernike moments have been used for image retrieval and have shown

good results. Alternative region based descriptors also exist, such as [56], which com-

putes descriptor using the scale invariant feature transform (SIFT), with the resampled

MSER binary mask as input.

Shape has been put to use in many computer vision tasks not limited to match-

ing [10], classification [137], and retrieval [35]. Particularly, decomposing images into

regions and shapes of geometric parts has gained popularity in recent years. Tu et al

[143] define an image parsing framework by decomposing an image into its constituent

visual patterns and it outputs a ‘parsing graph’ that can improve image segmentation

on natural images of complex city scenes. In [67], Han and Zhu observe that many

man-made scenes in natural images can be decomposed hierarchically into a small

number of primitives arranged by a small set of spatial relations and they present a

simple attribute graph grammar as a generative image presentation to improve the

detection. However, they limited their fitted segmented regions to be rectangles and

only man-made scenes, while we do not set such limitations. Teboul et al [135] ad-

dress shape grammar parsing for facade segmentation using reinforcement learning and

Riemenschneider et al [111] provide feasible generic facade reconstruction by combining

low-level classifiers with high-level object detectors to infer an irregular lattice. In [43],

Eslami et al use a type of Deep Boltzmann Machine that they call a Shape Boltzmann

Machine (ShapeBM) for the task of modelling binary shape images. They show that the
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ShapeBM characterizes a strong model of shape, in that samples from the model look

realistic and it can generalize to generate samples that differ from training examples.

It is not possible, nor is it our purpose, to review the extensive shape related

literature here; the above is a small but representative sample. What is important to

this thesis is that none of the literature we know of asks as we do: “ is there a set of

shapes commonly present in natural images?” Intuitively we would expect such shapes

to be simple, but most of the existing literature — especially recent publications — use

relatively complex silhouettes of real objects (cups, horses, hands etc). This thesis tests

the proposition that simple (primitive) shapes exist in natural images — that they are

part of ‘the signal’.

The study of simple nameable shapes has lead to some promising applications in

representing object. For example, Balikai et al. [8] propose a method to describe any

images using a collection of known shapes, specifically: ellipses, rectangles, triangles

and convex hull. Similarly, Song et al. [129] show that classifying simple shapes is a tool

useful in non-photorealistic rendering from photographs. The classifier inputs regions

from segmentation and outputs the ‘best’ fitting simple shape such as circle, square, or

triangle. Although these works use simple shapes (such as triangles, rectangles, circles

etc.) as image features, the evidence of ‘why use these simples shapes, but not other

shapes? ’ is lacking, too. The missing of these researches motivated us to find out

whether common simple shapes objectively exist in natural images. If such a set exist,

it could play as a common property in both photos and art works.

To apply above reviewed shape descriptors, one first needs to obtain binary shape

of the depicted object. Segmenting the object into regions or salient parts is an option

to achieve this. Moreover, this option leads to the idea using object structure as a

global invariant for the differently depicted object class. The following section reviews

the literature that using structure to model visual object classes.

2.3 Structures

An object’s structure can be defined as the topology of its parts, with emphasis on

the relations between the object and its parts, and also those between the parts them-

selves. The study of object structure actually starts from psychology, according to

Gestalt’s Laws [83, 150], the human brain groups parts of an object to recognise a

holistic visualisation of the object. The parts are organised or grouped based on a set

number of rules, which in turn depend on the intrinsic properties of the parts and their

relationships. Rules include symmetry, similarity, proximity, closure and smoothness.

In any situation, one or more of these rules may be used to semantically perceive an

object. The fact that these rules are geometric and not particularly restricted in their

application to any one depiction style, encourage computer vision scientists to use such
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geometric rules for representing and interpreting objects.

In 1972, Biederman et al [13] stated that an object can be structured represented

as a combination of a relatively small set of simple 2D and 3D shapes. The theory

proposed that visual input is matched against structural representations of objects in

human brain. In some cases, even the same parts with different structural arrangement

may represent different object classes. For example, as Figure 2-9 shows, a cone on the

top of an sphere can be recognised as a toy’s head, conversely, a sphere on a cone is like

a ice-core. Moreover, they presented that human are able to identify objects correctly

Figure 2-9: Two cases of two interrelated geons, What does the reader imagine in each case?

if a subset of only two or three components are available and they are in the correct

spatial organization. Because of the importance of structural information to the object

recognition for human, it has been employed in many object modelling methods.

The neuroscientist, psychologist and the founder of the computer vision, David

Marr also stated that human interpret objects from 2D to 3D in three stages [95]:

• Primal Sketch (2D) is based on feature extraction of fundamental components

of the scene, such as edges, regions, etc., similar to a pencil sketch drawn quickly

by an artist as an impression.

• 2.5D Sketch where textures are included, similar to when the artist highlights

the sketch by shading or painting.

• 3D Model where the object is visualised as a continuous 3D map.

We can see how these theories play a major role even when a child draw an object

- they draw from what they have memorised but not they are seeing, because object

structure has been carved in their mind. All of the above theories and examples high-

light beyond doubt the vital and essential role played by the structure of object class.

Then we will review some works in computer vision that use the object structural

information as an object class invariant.

Structure can be extracted from shapes, some of works we reviewed in the previous

section can be extended for the purpose of defining structure. We have already seen an
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example of this in [125], where shock graphs are organised into shock trees, implicitly

encapsulating the structure of the object being described. Similarly, shape context [10]

also encapsulates structure by encoding relative spatial distributions of points on the

contour of the shape.

A more popular approach to obtain a structural representation of an object is to

break it into its salient parts and connect each other by edges. Pictorial structure

models are first introduced by Fischler and Elschlager [55]. The basic idea is to repre-

sent an object by a collection of parts arranged in a deformable configuration. While

the pictorial structure formulation is appealing in its simplicity and generality, several

shortcomings have limited its use:(i) the resulting energy minimization problem is hard

to solve efficiently, (ii) the model has many parameters, and (iii) it is often desirable

to find more than a single best (minimum energy) match. In [47], Felzenszwalb ad-

dressed these limitations, providing techniques that are practical for a broad range of

object recognition problems. He restrict the structural graph to be acyclic and the

relationships between connected pairs of parts be expressed in a particular form.

In [30], Crandall et al introduced a class of graphs called k -fans. Graphical models

defined by k -fans provide a natural family of spatial priors for part-based recognition.

The parameter k controls both the representational power of the models and the com-

putational cost of doing inference with them. At one extreme, k = 0, there is no

dependence between the locations of different object parts. When k = 1 the structure

is that of a star graph. By providing explicit control over the degree of spatial structure,

the models make it possible to study the extent to which additional spatial constraints

among parts are actually helpful in detection and localization, and to consider the

tradeoff in representational power and computational cost.

Kumar et al [85] extend pictorial structures in a number of ways: in particular,

both the outline and the enclosed texture of the part are included in its appearance

parameters and all parts are connected to each other to form a complete graph instead

of a tree structure. A properly normalized measure of the probability of a part being

present at a location is modelled using the PDF projection theorem.

Deformable part-based model developed by Felzenszwalb et al [46] is also based on

pictorial structure framework. In their proposed method, they use a star-structured

part-based model defined by a “root” filter plus a set of parts filters and associated

deformation models. The score of a star model at a particular position and scale within

an image is the score of the root filter at the given location plus the sum over parts

of the maximum, over placements of that part, of the part filter score on its location

minus a deformation cost measuring the deviation of the part from its ideal location

relative to the root. In DPMs, the part filters capture features at twice the spatial

resolution relative to the features captured by the root filter. Hence, it is actually a

hierarchical graph with two layers. To train models using partially labeled data they
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Figure 2-10: Detections obtained with a 2 component bicycle model. In this model the first
component captures sideways views of bicycles while the second component captures frontal and
near frontal views [46].

use the laten SVM (LSVM). In a latent SVM each example x is scored by a function

of the following form,

fβ(x) = max
z∈Z(x)

β · Φ(x, z) (2.1)

Here β is the concatenation of the root filter, the part filters, and deformation cost

weights, z is a specification of the object configuration, and Φ(x, z) is the concatenation

of subwindows from a feature pyramid and part deformation features. Moreover, by

modelling objects from different views with distinct models, it is able to detect large

variations in pose. Figure 2-10 shows detections obtained with a 2 component mixture

bicycle model.

Most recently, Lin et al [91] proposed a novel reconfigurable part-based model,

namely And-Or graph model, to recognise object shapes in images. The proposed

model consists of four layers: leaf-nodes at the bottom are local classifiers for detecting

contour fragments; or-nodes above the leaf-nodes function as the switches to activate

their child leaf-nodes, making the model reconfigurable during inference; and-nodes in

a higher layer capture holistic shape deformations; one root-node on the top, which is

also an or-node, activates one of its child and-nodes to deal with large global variations
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(e.g. different poses and views). Figure 2-11 shows an example of And-Or graph model.

A tree structure also can be obtained from segmentations. Nodes at upper levels

correspond to larger segments, while their children nodes capture embedded, smaller

details. This tree is named as Segmentation Tree(ST) [1]. However, ST cannot dis-

tinguish many different ways in which the same set of subregions may be spatially

distinguished within the parent region, giving rise to significantly different visual ap-

pearances, while their hierarchical properties remain fixed. Consequently, STs for many

visually distinct objects are identical.

Connected Segmentation Tree (CST) [2] is an extension of ST to represent object

using a hierarchical structural graph, which captures canonical characteristics of the

object in terms of the photometric, geometric, and spatial adjacency and containment

properties of its constituent image regions. CST is obtained by augmenting the object’s

segmentation tree (ST) with inter-region neighbor links, in addition to their recursive

Figure 2-11: It comprises four layers from bottom to top: the leaf-nodes (denoted by the solid
circles) at the bottom for localizing local contour fragments, the or-nodes (denoted by the dashed
blue circles) over the bottom specifying the activations of their child leaf-nodes, the and-nodes
(denoted by the solid squares) encoding the holistic (view-based) variances, and the root-node
(denoted by the dashed blue squares) on the top to switch the selection of its child and-nodes.
The horizontal links incorporate contextual interactions among parts. Note that the leaf-nodes
inherit the links that are defined between the layer of or-nodes. The nodes and links in red
indicate the activation of leaf-nodes during the detection. [91]
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Figure 2-12: Training images containing faces are represented by CSTs which capture the
recursive containment (black edges) and neighbor relationships (red edges) of regions. Similar
common subgraphs of the CSTs (faces), are registered and fused into the category model G. CST
of a new image is matched with G to simultaneously detect, recognize, segment, and explain face
occurrences. [2]

embedding structure already present in ST. This makes CST a hierarchy of region

adjacency graphs. A region’s neighbors are computed using an extension to regions

of the Voronoi diagram for point patterns. Unsupervised learning of the CST model

of a category is formulated as matching the CST graph representations of unlabeled

training images, and fusing their maximally matching subgraphs. Figure 2-12 shows a

face model learning from a sequence images and detections in a test image.

Song et al [128] proposed a method based on Laplacian Graph Energy to identify

semantic structures in image hierarchies. In this work, a segmentation tree (ST) is

first built based on hierarchical global-Pb edge maps, then, they use component-wise

Laplacian Graph Energy (cLGE) to filter out noisy levels in the hierarchy by removing

levels that do not contribute much to the overall complexity of the graph and that do

not change the overall meaning of the graph. The meaningful connections are left to

construct the semantic structure. Two examples are shown in 2-13.

Structure can be used as a visual class invariant to depictive style is first proposed

in [166]. In this paper, they believe the topology of an object’s parts is a class property

invariant to depiction. More specifically, a hierarchical structure of object is extracted

at first. The topological relationship between parts is then characterized with a feature

vector, using the normalized Laplacian function. In recent work, Balikai and Hall [7]

proposed a more general approach for describing objects invariant to depictive style.

They use structure at a global level, which is combined with a simple non-photometric

descriptor(SSD) at a local level.

2.4 Cross-depiction Studies

In the above sections, we first review the state-of-art in the area of object recognition,

including famous BoW and DPM. Then, important image descriptions such as shape
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Figure 2-13: How objects are broken into useful parts using Laplacian Graph Energy. [128]

and structure are examined in a historical way. It is obvious that cross-depiction prob-

lems are comparably less well-explored, although there are hundreds of paper published

in the area of object detection and classification every year. We review some important

works directly related to cross-depiction problems as following, both for specific styles

and general solutions.

2.4.1 Particular Styles

Some works only focus on particular styles, for example, Fidler et al [53] present an

approach that enables unsupervised learning of generic parts of object structure within

a hierarchical framework by exploiting the regularities present in the visual data. This

proposed hierarchical learning framework has been applied on a clip-art dataset, which

only covers limited depictive styles such as cartoons and line-drawings.

Sketch based image retrieval (SBIR) has attracted a lot of attentions. Bimbo and

Pala [36] present a technique which based on elastic matching of sketched templates

over edge maps in the image to evaluate similarity. The degree of matching achieved

and the elastic deformation energy spent by the sketch to achieve such a match are used

to derive a measure of similarity between the sketch and the images in the database

and to rank images to be displayed. Chans et al. [23] tokenize edge segments into

a string representation, encoding length, curvature, and relative spatial relationships.

Chale et al. [22] employ angular-spatial distribution of pixels in the abstract images to

extract features using the Fourier transform. The extracted features are rotation and

scale invariant and robust against translation. Chen et al [25] propose Sketch2Photo

- an interactive system in which keyword-annotated sketches are used to retrieve and
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Figure 2-14: Example query sketch, and their top ranking results (ranking from left to right)
over the Flickr15K dataset. Results produced using GF-HOG descriptor in a Bag of Visual
Words (BoVW) framework with vocabulary k = 3500 and histogram intersection distance.[72]

composite photograph fragments. In that system, keywords trigger a Google Image

search which returns possible images - the sketch is used only to crop the image using

coarse shape matching via Shape Contexts. While in [19], major curves of images are

first detected, based on which a curve-based algorithm is conducted to achieve precise

matching between sketch and image database. In [18], Cao et al proposed a novel in-

dex structure and the corresponding raw contour-based matching algorithm to calculate

the similarity between a sketch query and natural images, and make sketch-based im-

age retrieval scalable to millions of images. Different from well-known bag-of-features

representation in local feature-based image retrieval, where the visual vocabulary is

quantized in the visual space, they describe a visual word using a triple (x, y, θ) of

the position of an edge pixel (edgel) and the edgel orientation at that position. And a

matching algorithm called structure-consistent sketch matching is proposed to measure

the similarity between a sketch query and a database image.

Li et al [90] present a method for the representation and matching of sketches

by exploiting not only local features but also global structures, through a star graph.

Edge-based HoG was explored in [72] to retrieve photographs with a hand sketch query.

In order to encode the relative location and spatial orientation of sketches or Canny

edges of images, they represent image structure using a dense gradient field interpolated

from the sparse set of edge pixels. Figure 2-14 shows some sketch based image retrieval

examples using this method.

Other than sketches2photos, Russel et al [116] addresses the problem of automati-

cally aligning historical architectural paintings with 3D models obtained using multi-

view stereo technology from modern photographs. This is a challenging task because of

the variations in appearance, geometry, color and texture due to environmental changes
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Figure 2-15: Examples of alignment between the paintings and 3D model. For each example,
left: painting; middle: 3D model contours projected onto painting; right: synthesized viewpoint
from 3D model.[116]

over time, the non-photorealistic nature of architectural paintings, and differences in

the viewpoints used by the painters and photographers. This work combines the gist

descriptor with the view-synthesis/retrival to obtain a coarse alignment of the paint-

ing to the 3D models. Figure 2-15 shows some alignment results between historical

architectural paintings and 3D models.

2.4.2 General Solutions

Of the general solutions, Shechtman and Irani [121] propose to describe an image in

terms of local self-similarity descriptors (SSD) that are invariant across visual domains.

It is not to use the image feature appearance directly but instead to generate a cor-

relation surface of local self-similarities from intensity patterns across the image. By

comparing small patches extracted at each point in the image to their immediate neigh-

Figure 2-16: Extracting the local self-similarity descriptor [121]
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Figure 2-17: An example of deformable shape retrieval using SSD [24]

bourhood, the potential spatial description of image features which define the common

shape can be extracted. This self-similarity representation gives a kind of abstraction

when colour, texture and edges do not share between different objects, but share the

same pattern. Figure 2-16 shows an example of local SSD extracted from an image.

Chatfield and Zisserman [24] extend SSD [121] to enable matching despite changes

in scale. Further the descriptors are quantised to form a visual vocabulary, enabling

the use of a bags of words approach for image retrieval. Figure 2-17 shows an example

of shape retrieval using this method.

To break the restriction that SSD only can be applied locally, Deselaers and Ferrari

[38] argue that self-similarity can and should be used globally rather than locally to

capture long range similarities and their spatial arrangements. Figure 2-18 shows two

selected patches and their global self-similarity (GSS), as the patch correlation with

the entire image. Contiguous (patch 1) and repeating (patch 2) structures can be well

recognized. Patch 2 shows that GSS can capture long range similarities within an

image. The indirection characteristic of self-similarity results in similar patterns in the

GSS images, although the original images appear very different. One drawback of GSS

is that it is very expensive to compute if done directly, as every pixel in the image is

correlated with the entire image.

Figure 2-18: Global self-similarity: self-similarity of two image patches with their respective
images. [38]
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Figure 2-19: The building is unique (covered by white square). The sky is quite common
(covered by black square).

According to Shrivastava et al [124], they do not propose any new descriptor but

the main problem is: how to explore visual correspondence between two images that

would be more in accordance with ‘human expectations’. The solution is to design

a visual similarity function that can determine which parts of representations will be

used for matching. They hypothesize that the important parts of image are those that

are more unique or rare within the visual world. For example, according to figure 2-19 ,

the sky in the image is not that unique as they are quite common in the natural world.

It occurs everywhere; However, the building (Temple of Heaven) is more informative

as it is more unique. Hence it is the building that will be the specific feature which

can distinguish this image from the millions of natural world images. This is what the

idea of ‘data-driven uniqueness’ is.

Specifically, they treat the query image as the ‘positive sample’, and set the rest of

the images from natural world as the ‘negative sample’. The central problem of this

approach is to find the important feature of the ‘positive sample’ and use this feature

to match with similar images in the retrieval set. Hence, this problem becomes to

a discriminative learning problem. By using some gradient based feature descriptor

(such as HoG), the query image can be represented as a vector of feature, and then the

discriminative learning (such as SVM) produces a set of weights on these features of

the images. Finally, the visual similarity between an input image(Iq) and other natural

world images (Im) can be defined as :

S(Iq, Im) = W T
q Xm, (2.2)

In this equation, Wq is the query-dependent weight vector, Xm is the vector of the

nature images.

Impressive results have been obtained for matching similar images of different de-

pictions based on this study. Figure 2-20 shows some examples. However, there are

some failure cases. For example, if the query scene is so cluttered that it is difficult for
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Figure 2-20: Examples of searching results by using Data-driven uniqueness techniques [124].

this algorithm to decide which parts of the scene it should focus on. Moreover, speed

remains the central limitation of this proposed approach, because it requires training

an SVM with millions of negative examples at query time.

Auby and Russell [5] extend the idea of discriminative visual elements to a 3d

scene. In this work they seek to automatically align historical photographs and non-

photographic renderings, such as paintings and line drawings, to a 3D model of an

architectural site. This work defines a discriminative visual element to be a mid-level

patch that is rendered with respect to a given viewpoint from a 3D model with the

following properties: (i) it is visually discriminative with respect to the rest of the

“visual world” represented here by a generic set of randomly sampled patches, (ii) it

is distinctive with respect to other patches in nearby views, and (iii) it can be reliably

matched across nearby viewpoints. This definition is very close to the ‘data-driven

uniqueness’ proposed in [124].

Most recently, Crowley and Zisserman [31] propose a framework to retrieval objects

in paintings using discriminative regions. Similar to [124], they do not look the inside

properties of paintings. Instead, they extend the work of [5] - the mid-level discrimi-

native patches (MLDPS) and apply a RANSAC style algorithm to select a subsect of
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Figure 2-21: Example class images from the Paintings Dataset. From top to bottom row: dog,
horse, train. [31].

putative correspondences between the learned classifiers from MLDPS and objective

painting regions and to make they are spatially consistent. Finally, [31] also investi-

gates hybrid re-ranking strategies by using DPM detector [46]. With the help of DPM

re-ranking, they show some interesting retrieval results on a ‘Paintings Dataset’. How-

ever, we find the depiction styles in this dataset are quite single - only oil paintings are

included. Figure 2-21 shows example classes from the dataset.

In [20], an experiment paper, Carneiro et al present a new databse of monochro-

matic artistic images containing 988 images with a global semantic annotation, a local

compositional annotation, and a pose annotation of human subjects and animal types

and provide an evaluation of several algorithms including BoF(Bags of Features), Struc-

tural Learning, Label Propagation, Inverted Label Propagation, Matrix Completion etc

for image annotation and retrieval. Their experimental results show the Inverted Label

Propagation performs better in global annotation.

Xiao et al [166] focused on using structures to represent objects depicted in different

styles. They depend on spectral graph analysis of a hierarchical description of an image

to construct a feature vector of fixed dimension. Hence structure is transformed to a

feature vector, which can be classified using standard method such as GMM and SVM.

Figure 2-22 shows the structure of objects extracted using graph energy analysis in

[166].

Balikai and Hall [7] show great interests in depiction invariant image matching. In

this work, a state-of-art segmentation is employed to segment the image to a hierar-

chy of regions, which is then used to build a hierarchical graph ; nodes of the graph

are represented by the self-similarity descriptor (SSD). Then, an approach based on
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Figure 2-22: Examples objects and their parts, found using graph energy analysis. Facial parts
are identified; four legged animals have their head and legs separated from their body; flowers
have their centers extracted. [166].

Figure 2-23: Some examples of matched regions in image pairs depicted in different styles.
Each pair of images is colour-coded to show regions that have been matched [7].

maximising the overall quality of a Markov Random Field created by window search is

introduced to match the graph. Following figure 2-23 shows some matching results by

using this method.

Ginosar and Malik et al research on detecting people in Cubist Art. In [59], they

evaluate existing object detection methods on some abstract renditions of objects,

comparing human annotators to state-of-the-art object detectors on a corpus of Picasso

paintings. Their results demonstrate that while human perception significantly outper-

forms current methods, human perception and part-based models exhibit a similarly

graceful degradation in object detection performance as the objects become increasingly

abstract and fragmented, corroborating the theory of part-based object representation

in the brain. This conclusion keeps in line with the analysis we proposed in Chapter

5. Figure 2-24 shows some detection results for each method the authors compared in

[59].

Deep features also shows good performance in addressing cross-depiction problems
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Figure 2-24: Top ten detections for each method according to confidence from left to right.
First row: DPM. Second row: Poselets. Third row: R-CNN. Fourth row: D&T (HOG). False
positives are marked in blue. [59].

recently. In [32], Crowley and Zisserman show that object classifiers, learnt using

Convolutional Neural Networks (CNNs) features computed from virous natural images

sources, can retrieve paintings containing these objects with great success. Specifically,

a CNN network, which consists of 5 convolutional layers and 3 fully-connected layers,

is trained solely using ILSVRC-2012 (Large Scale Visual Recognition Challenge). A

feature vector of an image is obtained by passing it through the network and then the

output of the penultimate layer is recorded. Then, linear-SVM classifiers are learnt

using linear-SVM training data per class in a one-vs-the-rest manner.

2.5 Bridging the Literature Gap

Above sections first take a look at a few state-of-art methods in modelling visual object

classes, showing that although these methods perform excellent in photometric domain,

they do not consider the problem of recognising objects regardless of their depictions

and most of them suffer the challenges of wide variations.

Inspired by the way of people drawing (using simple shapes), we then investigate

the literature studying planar shapes in computer vision in 2.2. Although shape has

been put to use in many computer vision tasks not limited to matching, classification

and retrieval, none of the literature we know asks as we do: “ is there a set of shapes

commonly present in natural images?”. And we propose to use these simple common

shapes in cross-depiction objects modelling task.

For structure, human are able to classify objects because one can recognise object

structure in the brain. This finding has lead to the fashion in computer vision that
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of using a structural representation to model a visual object class. We reviewed some

representative works of this scope in the section 2.3, including DPM [46], a robust

part-based structural representation method. However, there are still limitations of

using DPM to represent object across different depictive styles, for example, the wide

variation of local features in different depictions is hard to be learned in a single model.

We propose to use a multi-label system to fill this gap.

Section 2.4 reviewed some studies on cross-depiction problems. Among these works,

some of them are only focused on one specific domain, such as [53, 72, 90] and some

designed local only descriptors [121, 24]. Some other works like [124, 5, 31] are learning

discriminative regions of an image instead of analysing properties of paintings.

In this thesis, we take the inspiration from human vision, painting methods and

psychology to investigate the common properties in both photos and art. Based on

the investigation, we propose a number of methods to model visual object classes

across different depictive styles and use the model to detect and classify objects in a

challenging photo-art dataset built by ourselves. We make our efforts to bridge the gap

between photos and art works in several tasks of Computer Vision.
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CHAPTER 3

PRIMITIVE SHAPES

3.1 Introduction

Shape has been well studied in many disciplines, yet to the best of our knowledge the

question as to whether there is a set of elementary planar shapes that appear commonly

in the world around us has never been asked. In this chapter, we describe an experi-

ment designed to test the following hypothesis: some regions in image segmentations

can be fitted as one of a few primitive shapes. Not wishing to force regions into classes,

we developed a classifier (with parameters such as bandwidth of clustering method) de-

signed to find clusters of a size greater than would be expected if the shape of regions

were randomly generated. We used two different “shape spaces” (i.e. shape descrip-

tors), three different segmentation methods, and three image databases. It concludes

that the most common of those found are familiar enough to be named: shapes such as

triangles, squares and circles (more exactly, these shapes up to affine transformation).

We propose to use qualitative shapes as features in future applications.

In Chapter 1, we stated that psychologists have explicitly used shape as a primitive

to explain cognition in the form of Geons, a concept which comes from Biederman’s

theory [13]. Geons are the simple 2D or 3D forms such as cylinders, bricks, wedges,

cones, circles and rectangles corresponding to the simple parts of an object of object

recognition. (These correspond almost exactly to art practice, especially that of Leger.)

The theory proposes that the visual input is matched against structural representations

of objects in the brain. These structural representations consist of Geons and their

relations (e.g., an ice cream cone could be broken down into a sphere located above a

cone).

In the early of 20th century, some schools of art and individual artists keen to

use simple regular shapes (in particular rectangles, ellipses and triangles) as basic

constructs for painting. The artists found theses primitive shapes are sufficient to
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describe the world producing abstract and figurative artworks. This not only happens

among artists, even people without any formal training of drawing can use simple

shapes to layout scenes or objects. For example, a simple representation of a face can

be constructed using circles alone and this idea can be extended to almost any objects

- bicycles, chairs, houses can all be represented using primitive shapes. This proves

that these shapes make a powerful but simple descriptive set.

Moreover, empirical evidence that aligns with artistic intuition has existed since at

least the 1970s, when psychologists such as Rosch [113] showed simple shapes (specif-

ically triangles, squares, and circles) are easier for humans to recall other shapes. It

is interesting to speculate that this may explain why humans have words to describe

these shapes, and it is also interesting that our experiments show it is exactly these

shapes that occur in natural images with a frequency which is well above that expected

by chance alone.

Some others also relished the important role the simple shapes played in bridging

the gap between photos and paintings, for example, Balikai et al [8] fit a shape drawn

from a selection of shape families to regions that segment an image, using a supervised

classifier. And then they use results from the classifier to match photographs and

artwork of particular objects using a few qualitative shapes. Figure 3-1 displays some

matching results from [8].

Figure 3-1: Parts of a drawn car and parts of a photographic of a car are matched in [8], as
shown by the colour coded regions.

Song et al [130] propose to use fitted qualitative shape labels for the purpose of gen-

erating synthetic abstract art from photographs. Figure 3-2 shows how a photograph

is rendered into a piece of artwork where paper cutouts were used as basic elements.

Contributions

Work presented in this chapter has been published in BMVC 2012 [163].

• Providing empirical evidence that some regions in segmented images can be clas-

sified or fitted as one of a few primitive shapes, upon given appropriate region
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Figure 3-2: Examples of photo to art transfer using simple shapes to fit segmented regions
[130]. Top: original photos. Bottom: paintings rendered as paper cutouts.

descriptions and well-designed classifiers.

• A classifier to fit primitive shapes to segmented regions of an object.

• A computationally efficient classifier to categorise scenes based on ration of prim-

itive shapes.

• A new agglomerative clustering method to cluster similar binary shapes.

In the following, we represent our experimental framework and method with experi-

mental results in section 3.2 and section 3.3, and the additional experiment in appendix

A. Section 3.4 reports an application, scene classification, based on our research and

the conclusion of this chapter is presented in section 3.6.

3.2 Experimental Method

Our experiment is designed to test the hypothesis that some of regions in image seg-

mentations can be classified as one of a few primitive shapes. Supervised methods for

training a classifier are ruled out, because our aim is to discover classes should they

exist rather than to force regions into classes. So we used an unsupervised classifier.

To guard against bias in shape description we use two different descriptors, Zernike

moments and Chebychev moments and experimented extensively with one of them to

show the choices we made have little or no impact (see Appendix A).
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Figure 3-3: Experimental Framework

We used a range of segmentation methods, none of which force any shape on regions.

We used three different databases, two publicly available, the other specifically designed

by us for our experiment. Our approach is to automatically cluster (with an data-

driven bandwidth selection scheme) regions that have been segmented from images,

and compare these clusters with those created from a database of randomly created

regions. Figure 3-3 illustrates our method.

No matter how we configured our experiment, we concluded that shapes classes we

can call triangles, squares, and circles do exist in natural images. Interestingly, the

ratio of these shapes in any given picture can be used to predict the class of the scene

as whole, that is we have an immediate application in scene categorisation, as explained

in Section 3.4.

3.2.1 Three Image Databases, and a Random Generator

Our experiments are based on three images databases, chosen because they offer a

diverse set of content. We also used a database of shapes created at random. Typical

images from these databases can be seen in Figure 3-4. The first two databases come

from MIT and Berkeley; the third has almost no human made objects – we call this

database ‘Bath Nature’.

The MIT database is publicly available [80]. Designed for eye tracking experi-

ments, the database contains 1003 images, including street scenes, buildings, animals

46



Chapter 3. Primitive Shapes

Figure 3-4: Regions produced by different segmentation algorithms over different image
databases.

and natural landscapes etc. We randomly chose 200 images as training data, and 100

for testing data.

The Berkeley Segmentation Database (BSDS500) [96] is a well known, pub-

licly available database often used for experiments in contour detection and image

segmentation. It includes 500 pictures, most of them are natural images, but also in-

cludes faces and animals. We randomly choose 200 images as training data, and 100

for testing data.

The Bath Nature Database has 50 pictures of outdoors; forest, field, seascapes

etc. There are very few human-made objects. Human made objects such as buildings,

cars, and indeed just about all other manufactured objects are often constructed using

primitive shapes: wheels, bricks, windows, etc. Our database tries to avoid such objects

to eliminate such bias.

In addition to fixed databases we generate Random Regions so that we have a

baseline for the size of classes formed by clustering random regions. The purpose of
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Figure 3-5: Typical random shapes. Upper-side row shows the regions produced by our random
shape generater. Lower-side row shows regions harvested from different segmentors.

generating random regions is to help to identify the primitive shape classes. To create

random regions we developed the following algorithm:

(i) Create an N ×N image of independent random numbers.

(ii) Choose the central pixel to be the current region centre.

(iii) Mask all pixels that form the outer border of the current 4-connected region, and

add the masked pixel with the highest random number to the region.

(iv) Continue until the region has the required number of pixels.

The halting number is randomly drawn from a uniform distribution over [100, 600].

The lower bound is used because we filter out regions with less than 100 pixels, the

upper bound represents the size of a typical middle sized region in segmented image

regions.

Figure 3-5 shows the regions generated at random by using the above algorithm,

and regions classified as random shapes from image segmentations by using a shape

classifier implemented in Section 3.4.1. It suggests that random regions produced by

our generator are close to those in the real image datasets.

3.2.2 Three Segmentation Algorithms

To offset bias regarding any particular segmentation algorithm we used three; one

very simple, one popular, one state of art. In each case any region that touched a

picture boundary or which contained less than 100 pixels was removed from further

consideration. The first was to remove any bias introduced by straight boundary edges,

the second to remove noise — needed primarily for segmentation by thresholding.

Typical segmentation output can be seen in Fig 3-4. We harvested about 104 regions

from each database, for each segmentation algorithm.

Thresholding is perhaps the simplest methods for image segmentation. A grayscale

image, I maps to a binary image: b = I > τ , for threshold τ . Assuming gray values in

[0, 1], we set τ = 1/2. We used both black and white regions.

Maximally Stable Extremal Regions (MSER) are regions found by analysis

of successive threshold images [97]. The MSER algorithm extracts from an image I a
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number of co-variant regions, called MSERs. An MSER is a stable connected region of

some level sets of the image I. The formal definition of MSER can be found in [97]. In

the original formulation, MSERs are controlled by a parameter ∆, which controls how

the stability is calculated. With the increase of ∆, fewer stable regions are detected. We

set ∆ = 1 in our experiment. Other parameters are settled following [147], maximum

variation is 0.25, minimum diversity of region 0.2. And both dark-on-bright regions

and bright-on-dark regions are detected.

The Berkeley Segmentation Engine(BSE) is based on the probability of bound-

ary (Pb) maps introduced by Arbelaez et al [4]. It is considered as one of the most

successful segmentation techniques because it compares very well against human pro-

duced ground truth using the Berkeley Segmentation Dataset (BSDS-500). Probability

boundary predicts the posterior probability of a boundary with orientation at each im-

age pixel by measuring the difference in local image brightness, color, and texture

channels. In order to detect fine as well as coarse structures, they consider gradients

at three scales, then they linearly combine these local cues into a single multi-scale ori-

ented signal and maximize over orientations yields a measure of boundary strength at

each pixel. Finally, with a simple linear combination of the most salient curves signal,

global probability boundary is generated. We follow [4] to use the default parameters

setting for BSDS500, which has produced best boundary estimation results against the

ground truth.

Before we go to the next step, we want to first verify our artificial generated random

shapes share the similar distribution with those regions segmented from natural images

by using above three segmentations, we examine the spectrum for each image database

that we used and our random shape database. This is valuable since if the spectra can

not be matched, it means the dataset of random shapes is a different distribution in

the statistical sense with the real image datasets. Then, comparing the natural images

with random shape to find the significant shapes will be meaningless. We design the

further experiment to test this.

Matching the Spectrum

We use the Fourier transform to transfer the shapes to spectra at first. Let si be a

binary shape mapped to the unit disc and let f(si) be its 2D fourier transform. Then

the average absolute spectrum is

fa =
1

N

N∑
1

|f(si)| (3.1)
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Figure 3-6: The log of average and standard deviation of 2D fourier transform of random
dataset and other database. The RMS distance from the random spectrum to the database
spectrums. Table 3.1

and the standard deviation is

fs =

√√√√ 1

N

N∑
1

(f(si)− fa)2 (3.2)

We compute the fa and fs for each database and different segmentation methods

and random shape database. Then, we display the log of the result for each dataset,

showing in figure 3-6. we can find that all the datasets, including random shape

datasets, have very approximate average and standard deviation. This suggests the

spectrum for each image database and each segmentation method and random shapes

may be matched. We also quantified this similarity by using the Chernoff distance.

In statistics, the Chernoff distance measures the similarity of two discrete or con-

tinuous probability distributions. It reflects the probability that two distributions are

the same. If the Chernoff distance is 1, then the two distributions are the same. And

while the distance is 0, there will be nowhere intersect between two distributions.

The table 3.1 shows the Chernoff distance between segmented shapes by using dif-

ferent segmentation methods. A value of 0.8 or so means that about 80% of the time we
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BSE MSER Threshold Random

BSE 1 0.8366 0.8562 0.5013

MSER 0.8366 1 0.9807 0.8307

Threshold 0.8562 0.9807 1 0.8219

Random 0.5013 0.8307 0.8219 1

Table 3.1: The Chernoff distance between each dataset.

will confuse the spectrum of random shapes for the spectrum of segmented shapes. And

this means the spectrum of these datasets are very similar. And an interesting obser-

vation is that the distribution of shapes which are generated by Berkeley segmentation

does not have as high similarity as other distributions. This suggests that Berkeley

segmentation is good at generating more regular shapes than other segmentors (see

figure 3-4).

3.2.3 A Whitening (Affine) Transform and Re-sampling

We normalise each region (shape) before computing its description. We apply a whiten-

ing transform that brings the region into the unit disc, as follows. Let X = {xi} be

points of a region, with x̄ their centroid and C = ULUT their covariance. Then

yi = L−1/2UT (xi − x̄) (3.3)

is a whitening transform, which applies an affine transform to the shape by centering it

at the origin, rotating it to a canonical frame and differential scaling over each eigenaxis.

This will map any triangle into equilateral form, any rectangle into a square, and any

ellipse into a circle.

The new shape will have a unit covariance in each eigendirection, so we scale by the

point most distant from the origin to map the shape into the unit disc. Scaling into

the unit disc changes the effective sample rate. To make sure that this plays no role

in moment computations, we re-sample the shapes into a 502 regular grid. To make a

binary image of the original shape we consider each point xi in the original to be the

centre of a radially symmetric Gaussian of width 1. This maps to an elliptical Gaussian

with eigenaxis U and covariance L/s2. An anti-aliased version of the transformed region

is now given by

f(y) =

N∑
i=1

exp

(
− 1

2s2
(y − yi)TULUT (y − yi)

)
. (3.4)

where s = maxj |yj |2 and yi ← yi
s . We threshold this to obtain a binary region and

f(yi) = 1 if f(yi) > f̄ . In which f̄ is the average value of f(y). It is these binary

regions that we describe with a standard descriptor, then classify.
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3.2.4 Two Shape /Region Descriptors

There are many shape descriptors to choose from; we opted for Zernike moments [82]

and Chebyshev moments [109]. These moments operate over sets of points, so are

useful for describing solid regions of the kind produced by typical image segmentation

algorithms. They are fast to compute, again useful when faced with many regions in

an image segmentation. The forms of these moments we use are invariant to rotation

and robust to noise.

Zernike moments

Zernike moments [82] are constructed by using a set of complex polynomials which form

a complete orthogonal basis set defined on the unit disk. They are parameterised by

two integers; n ≥ 0, and m such that |m| ≤ n and n−|m| is even. In polar coordinates,

(ρ, θ), the (n,m)th Zernike basis function, Vnm(ρ, θ), defined over the unit disk is

Vnm(ρ, θ) = Rnm(ρ) exp(jmθ), ρ ≤ 1, (3.5)

in which j =
√
−1. The Zernike radial polynomials, Rnm(ρ), are defined as:

Rnm(ρ) =

(n−|m|)/2∑
s=0

−1s
(n− s)!

s!( (n+|m|)
2 − s)!( (n−|m|)

2 − s)!
ρn−2s (3.6)

For a binary image f(x, y), the mnth Zernike moment is

Zmn =
n+ 1

π

∑
x

∑
y

f(x, y)V ∗nm(ρ, θ), (3.7)

with ρ = x2 + y2 ≤ 1. We use all moments up to n = 6. (This choice is justified in

Appendix A), and m ∈ [−n, n], giving (n+ 1)(n+ 2)/2 basis functions.

We normalise the Zernike moments as follows: (i) we use the absolute value, so that

the moments are invariant to rotation; (ii) we divide by the zeroth order moment, so

that the moments are invariant to pixel area.

Chebyshev moments

Chebyshev moments [109] depend on Chebyshev radial polynomials of the second kind

are defined as:

Rn(ρ) =

√
8

π
(
1− r
ρ

)1/4

n/2∑
s=0

(−1)s
(n− s)!
s!(n− 2s)!

(2(2ρ− 1))n−2s (3.8)
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where n is a non-negative integer. Then, the Chebyshev moment is defined by:

Cmn =

∫
unit disk

Rn(ρ)f(ρ, θ) dρdθ (3.9)

in which f(ρ, θ) is a binary image in radial polar coordinates.

3.2.5 Clustering

The problem now is to find clusters in a collection of shapes, in a fully unsupervised

way. We proposed an agglomerative clustering based on shape correlation. However,

it is intractable for agglomerative to cluster 104 shapes as it depends on pair-wise

interactions. Hence, a coarse clustering has to be done to reduce the number of pairs.

We choose mean shift clustering, which is fast, well known, and is non-parametric. We

locate mean shift clusters that are statistically significant, typically about 30 to 40

clusters, each with an associated canonical shape. It reduces the number of pairs from

about (104)2 to a more manageable 352, approximately. The procedure of clustering is

outlined below (Seeing Algorithm 1).

Mean Shift Clustering

Mean Shift is a tool for finding modes in a set of data samples, manifesting an underlying

probability density function (PDF). It is a nonparametric clustering technique which

does not require prior knowledge of the number of clusters, and does not constrain the

shape of the clusters.

Given n data points xi, i = 1, ..., n on a d -dimensional space Rd, the multivariate

kernel density estimate obtained with kernel k(x) and window radius h is

f(x) =
1

nhd

n∑
1

k(
x− xi
h

) (3.10)

For radially symmetric kernels, it suffices to define the profile of the kernel k(x) satis-

fying

K(x) = ck,dk(||x||2) (3.11)

where ck,d is a normalization constant which assures K(x) integrates to 1. The modes

of the density function are located at the zeros of the gradient function ∇f(x) = 0.

The gradient of the density estimator is

∇f(x) =
2ck,d
nhd+2

n∑
i=1

(xi − x)g(||x− xi
h
||2)

=
2ck,d
nhd+2

[

n∑
i=1

g(||x− xi
h
||2)][

∑n
i=1 xig(||x−xih ||

2)∑n
i=1 g(||x−xih ||2)

− x]
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where g(s) = −k′(s). The first term is proportional to the density estimate at x

computed with kernel G(x) = cg,dg(||x||2) and the second term

mh(x) =

∑n
i=1 xig(||x−xih ||

2)∑n
i=1 g(||x−xih ||2)

− x (3.12)

is the mean shift. The mean shift vector always points toward the direction of the

maximum increase in the density. The mean shift procedure, obtained by successive

computation of the mean shift vector mh(xt) and translation of the window xt+1 =

xt+mh(xt), is guaranteed to converge to a point where the gradient of density function

is zero.

To use mean-shift we project all of the descriptors into a deflated eigen-space (aka.

principal component analysis) to reduce the original 27-dim descriptor to about 17

dimensions (keeping 97% eigenenergy ). A whitening transform ensures the data exhibit

a unit standard deviation in each eigen-direction: now a single number can control the

bandwidth of a mean shift clustering algorithm, because the data are equally spaded in

all directions. Even though mean-shift is a non-parametric algorithm, it does require

the bandwidth parameter h to be tuned. However, other than setting a fixed bandwidth,

we apply a data-driven scheme to decide the value. The bandwidth is automatically

set to be

ρ =
1

3

( v
N

)1/n
, (3.13)

in which v is the hyper-volume of the bounding box enclosing the N data points, which

exist in a n dimensional space. This is the characteristic radius of a hyper-sphere

surrounding each datum, assuming they are uniformly distributed, but scaled because

we observed that most of the points were clustered in about 1/3 of the hyper-volume,

in each direction.

Mean shift yields many clusters of different sizes. Some clusters contain hundreds

or even thousands of shapes, others contain just one or two. In order to decide which

clusters are statistically significant we produce 104 random shapes, seeing Section 3.2.1.

We clustered the random shapes using mean shift, and found that no cluster size

exceeded about 10; the vast majority were singletons, seeing Figure 3-7. This suggests

that the segmented regions clusters can be discriminated from generated random region

clusters.

Given this result, to locate statistically significant clusters in shapes drawn from

an image database we count the total number of shapes in a cluster of a given size

to get p(m|D), which is the probability of observing a cluster of size m, given source

D ∈ {Image Database,Random}. We keep only those clusters of size m for which

p(m|Image Database) > p(m|Random). (3.14)
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Figure 3-7: The probability of number of shapes in a group of a given size for different
databases using threshold segmentation and Zernike moments. Random shapes do not create
clusters of more than about 10 shapes.

There are typically around 30 to 40 such clusters, which together contain between 35%

and 80% of all shapes, depending on the image database and segmentation method,

seeing Table 3.2 and Table 3.3.

Given the additional experiments regarding choice of moment descriptors, in ap-

pendix A, this result is enough to have confidence that our hypothesis is true: simple

shapes do exist to a statistically significant degree in real-world images, upon given

appropriate region descriptions and well-designed classifiers.

Agglomerative Clustering

Mean-shift yields a few tens of clustered shapes, that number can be reduced to less

than ten by agglomerative clustering, using a method developed by ourselves. We begin

by rotating all (whitened) shapes in a cluster to the first. Now s(x, y, i, j) denotes a

point in the ith aligned shape in the jth cluster. It is now easy to compute the mean

shape, and to estimate the spatial error distribution:

m(x, y, j) =
1

Nj

Nj∑
i=1

s(x, y, i, j) (3.15)

e(x, y, j) =

 1

Nj

Nj∑
i=1

(s(x, y, i, j)−m(x, y, j))2

1/2

(3.16)

where Nj is the number of shapes in class j. The error image, e, locates where the

class varies most — which invariably is at the boundary. We normalise e so the image
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(a)

(b)

Figure 3-8: (a) Average shapes from mean shift clusters. (b) Some shape examples from
different mean shift clusters, the column number corresponds to the marking number of clusters
in (a).

sums to unity. The thresholded mean shape

icon(x, y, j) = m(x, y, j) ≥ mean[m(x, y, j)] (3.17)

acts as an icon for the binary shapes in the class. Typical mean shapes coming from

mean shift can be seen in Figure 3-8 (a), which informally suggests regions of similar

shape form clusters. We must now combine classes, so need a class descriptor. And

Figure 3-8 (b) shows shape examples from different mean shift clusters.

Our class descriptor uses the boundaries pixels of the icons, calling these b(x, y, j).

We rotate a boundary image about its centre and at each angle, θ, computing its

similarity to the error image in the same class using

φ(θ, j) =
∑
xy

e(x, y, j)b(x, y, j, θ) (3.18)

φ(., .) is now a one-dimensional signal that characterises an icons rotational symmetry
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Algorithm 1: Clustering (Mean shift and Agglomerative)

Input : Image Database Z, Random Shape Data R
Output: Primitive Shape Classes P

1 run mean shift clustering on Z and R
2 for i := 1 to num clusters Z do
3 if p(m|Z) > p(m|R) then
4 Add cluster ci to the Primitive Shape Classes P
5 end

6 end
7 repeat
8 for j := 1 to size(P) do
9 calculate φ(θ, j) (Eq.3.18)

10 end
11 calculate inter-class similarity matrix (Eq.3.19)
12 merge process (Eq.3.20) and update P

13 until size(P) not change;

against its own error set. Next, we compute the maximum of the normalised cross

correlation between pairs of classes, to obtain an inter-class similarity score:

c(j, k) = max
α

∑
θ(φ(θ, j)− φ̄(θ, j))(φ(θ − α, k)− φ̄(θ, k))

(
∑

θ(φ(θ, j)− φ̄(θ, j))2)(
∑

θ(φ(θ − α, k)− φ̄(θ, k))2)
(3.19)

This is not a symmetric function, so that c(j, k) 6= c(k, j) in general. We set c(i, i) = 0.

We merge classes j and k only if their inter-class scores are such that they share a

mutually maximal class:(
arg max

i
c(j, i) = arg max

i
c(i, j)

)
=

(
arg max

i
c(k, i) = arg max

i
c(i, k)

)
(3.20)

This ensures the pair of classes are tightly bound. In practice, we can group several

clusters simultaneously because a single icon may be mutually maximal with several

others, so that this form of agglomerative clustering is very efficient. All shape classes

within a single group are bundled into one, aligned, and a new mean and error image

is computed by weighted sums. For example

m(x, y, j′) =
∑
j

Njm(x, y, j)∑
j Nj

, (3.21)

similarly for error images. Agglomerative clustering halts when there is no change in

the number of shape classes.
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(a) (b) (c)

(d) (e) (f)

Figure 3-9: Matrices of final results ( Upper: Zernike Moments, Lower: Chebyshev Mo-
ments). In each matrix element the shapes are ordered by descending frequency from top-left
to bottom-right. (a,d) Each entry shows the shape icons yielded by different databases, dif-
ferent segmentation methods. (b,e) Shape icons for different segmentation methods yielded by
combining all three databases, different segmentation methods. (c,f) Final grouping result by
combing all databases and segmentations. The number of each primitive shape is plotted in each
corresponding icon.

3.3 Experimental Results

Final shapes for each database and each segmentation method can be seen in Figure

3-9. The shapes tend to be simple — and nameable shapes such as circles, squares

and triangles are common. In some cases we also see a square under a homography,

which lies between square and triangle in feature space, and a simple shape lies between

the square and circle, we conjecture it is a composite of higher order regular polygons.

There are some irregular looking shapes too, but these are not often observed compared

to the regular shapes. The fractional number of these ‘primitive’ shapes depends on

segmentation and database, but is consistently high; as Table 3.2 and Table 3.3 shows,

over 1/2 of all segmented regions fall into one of the discovered categories.

We also display the random shapes data and primitive shapes classes data in the
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Zernike Thresholding MSER Berkeley

MIT 66.65% 67.12% 81.45%
BSDS 59.92% 54.60% 80.65%

Natural 62.64% 36.24% 60.36%

Classified Shapes 37039

Un-Classified Shapes 19953

Classification Fraction 64.99%

Table 3.2: Results obtained using Zernike moments. Upper: The percentage of ’primitive
shapes’ we detected as being statistically significant amongst total shapes detected from the
MIT,BSDS500 and our Natural database, by using different segmentation algorithms. Lower:
Number of classified and un-classified shapes from all three database, and the fraction of clas-
sified shapes with total shapes.

Cheby Thresholding MSER Berkeley

MIT 52.55% 57.57% 52.06%
BSDS 44.90% 49.89% 46.86%

Natural 49.93% 48.38% 64.30%

Classified Shapes 32507

Un-Classified Shapes 24485

Classification Fraction 57.04%

Table 3.3: Results obtained using Chebyshev moments. Upper: The percentage of ’primi-
tive shapes’ we detected as being statistically significant amongst total shapes detected from the
MIT,BSDS500 and our Natural database, by using different segmentation algorithms. Lower:
Number of classified and un-classified shapes from all three database, and the fraction of clas-
sified shapes with total shapes.

Figure 3-10: All the data in the feature space. Features are the first three components of the
PCA. Purple Star: Circles. Cyan Point: Polygons (R2C). Red Circles: Rectangles. Blue plus:
Convex Quadrangle (R2T). Green Star: Triangles. Black Diamond: Random shapes
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(a)

(b) (c)

Figure 3-11: Distribution of primitive shapes’ data in the feature space from MIT database
by using different segmentation methods. (a) Thresholding (b) MSER (c) BSE.

same feature space. As Figure 3-10 shows, the random shapes are apart from the

primitive shapes classes. This suggests that primitive shapes are distinctive with the

random shapes even in the signal world.

In the meantime, the distribution of primitive shapes’ data in the feature space is

also interesting and a regular pattern can be easily found. All the data of primitive

shapes lie on a curve, as we drawn in Figure 3-11. Squares are always in the middle of

feature space and circles in one side, while the triangles lie on the other side. Between

these basic shapes, there are also some transitive shapes, which corresponding to blue

and yellow part in the result, as shown in Figure 3-11.
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Figure 3-12: An example of shape classification, from left to right: (a) original image. (b)
segmentation (shape production). (c) any region that touched a picture boundary or which
contained less than 100 pixels was removed from further consideration. (d) shape classification,
the colourful parts are the regions classified as primitive shapes. The black parts are the regions
can not be classified into any shape classes, known as random shapes.

3.4 Application

3.4.1 Classify Regions into Primitive Shapes

Having found primitive shapes, we now make use of them. One obvious application is

to classify regions in a new segmentation. To do this we construct a Gaussian mixture

model (GMM) of the density of shape moments for each class that it outputs by the

clustering algorithm. In addition, we construct a GMM over all the random shapes.

Using random shape classes allows for the possibility that a given segmented region

is not classified as a primitive shape. For a shape class S, let Ω = (N, {µi, Ci}) be a

GMM with means µi and covariance matrices Ci, then p(x|S) =
∑N

i=1 p(x|Ωi)p(Ωi).

The posterior that shape x belongs to class S follows from Baye’s rule

p(S|x) =
p(x|S)p(S)∑

T∈S∪R p(x|T )p(T )
(3.22)

where S is the set of primitive shape class, and R is the random shape class. The

priors p(T ) are the proportion of shapes clustered into class T from the image database

being used; typically p(T ∈ R) ≈ 0.5. Typical output can be seen in Figure 1-9 and

Figure 3-12.

3.4.2 Scene Classification

We noticed that the priors on different primitive shapes depend on the database used,

and these contain different sorts of photograph. The MIT database, for example con-

tains street scenes, where as our natural database is exclusively landscapes, forests,

coastal scenes etc. This suggests a scene classification application. Scene recognition

is one of the most classic and challenging problems in computer vision. Many stud-

ies have presented approaches to classify indoor versus outdoor, urban versus coun-

try, sunset versus forest etc using global cues (e.g. power spectrum, color histogram

information)[132, 98]. Oliva and Torralba [104] then proposed the idea that using
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(a) Coast (b) Forest (c) Highway (d) Inside City

(e) Mountain (f) Open Country (g) Street (h) Tall Building

Figure 3-13: Typical pictures from MIT Scene Classification database [104].

global frequency with local spatial constraints (known as Spatial Envelope) to repre-

sent scenes, which are labelled with respect to local and global properties by human

observation.

Our classifiers learn the ratio of prime shapes (and random shapes) associated with

a given category of scene. We assume the ratio of priors for a given category is Dirichlet

distributed, because the ratios for any given image sum to unity and are a multinomial

distribution. Suppose h1 is the number of circles, h2 is the number of squares, the

pi = hi/sumi is the multinomial. For each class we have many histograms and each

histogram in a same class is little different but it is distinguished from those histograms

that are not in the same class. Now we can treat each class as a collection of histograms,

which is a distribution of multinomials. Dirichlet process controls the distribution of

multinomials using just a few parameters, which can be find by fitting. And when a

new histogram comes in, the dirichlet process will give the probability which class it

belongs to. That is, if z is the ratio of priors then

p(z) ∼ D(β1, ..., βK) =
Γ(Σkβk)∏K
k Γ(βk)

K∏
k

zβk−1
k , (3.23)

where Γ denotes the gamma function, and β are the Dirichlet parameters found by

fitting [99]. Each distinct scene category, C has a distinct vector of β values. Given a

new scene it is then easy to compute its ratio of prime shapes (and random), z, and

hence compute p(z|C) and therefore the posterior p(C|z).
We used MIT scene classification database [104], partitioning the data into 800
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T I S H C O M F

tal 80 0 0 11 0 0 0 9

ins 0 85 3 5 0 5 2 0

str 2 42 20 15 3 0 17 1

hig 7 1 9 83 0 0 0 0

coa 3 0 3 19 75 0 0 0

ope 17 0 4 0 17 2 47 13

mou 1 0 0 0 9 0 90 0

for 11 0 1 0 4 1 31 52

T I S H C O M F

tal 82 9 2 0 0 0 5 1

ins 3 90 3 1 0 1 0 0

str 1 5 89 2 0 1 2 1

hig 0 3 2 87 4 4 1 0

coa 0 0 0 8 79 12 1 0

ope 0 0 2 5 13 71 6 3

mou 1 0 2 2 2 5 81 7

for 1 0 0 0 0 1 6 91

Table 3.4: Confusion Matrix.(Top):Our Proposed Method (Green: Urban Scene, Yellow: Nat-
ural Scene),(Bottom):Spatial Envelope [104]

training images and 800 test images. The test set images have given ground-truth

categories, so we could produce the confusion matrix seen in Table 3.4 — next to

results from [104] for comparison, which is representative of state of the art. Our result

is not quite as strong as [104], but strong nonetheless; broad classes such as ’Urban’

and ’Natural’ are very well classified. Given our approach uses much less information

and is a simpler algorithm than any state of the art alternative, we found this to be a

surprising result. In our results, most of the ‘Street’ scenes are classified as ’Inside City’

because the ratios of primitive shapes between these two classes are very similar - there

are many rectangles (squares) in these kinds of scene, such as buildings, windows, doors

etc. This leads to a dramatically decrease of ‘Street’ category. The same case can be

observed between ‘Open Country’ and ‘Mountain’ scenes - there are more ‘triangles’ and

random shapes share between these two categories. Thus most of the ‘Open Country’

confused with the ‘Mountain’ class. However, the subject of this chapter is not scene

classification and we are not motivated here to add more information that will bring

us to match or exceed state of the art.

3.5 Limitation and Discission

In this work, we have tried our best to avoid introducing human interactions, in order to

proving that primitive shapes such as square, triangle, circle etc emerge naturally from
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images. However, in the practice, several parameters have to be introduced due the

technical limitation. For example, the moment order n in equation 3.7 and bandwidth

for mean-shift clustering in equation 3.13.

The perspective effects on the shape regions is another issue we ignored in this work.

However, after some investigation on the segmented regions in original images, we find

that those regions who are classified as ‘Trapezium’ are actually rectangles but observed

in other perspectives. This means some of the shapes in ‘Trapezium’ are misclassified.

They actually belong to the ‘Square’ class. We believe this problem is caused by the

descriptor we are using, the moment, which is only scale/rotation invariant, but not

perspective projection invariant.

Moreover, other than the primitive shapes we discussed in this work, we believe

that edges, contours and curves might form part of a depiction basis, and these features

should be used in the cross-depiction object modelling process. This is not only because

there are large amount of artworks are depicted as line drawings, but also there are

many objects and scenes only can be described by using edges and curve features,

such as waves, winds and so on. There are many works focusing on using edges to

model object classes across different depictive styles. For example, in [18], Cao et al

proposed a novel index structure and the corresponding raw contour-based matching

algorithm to calculate the similarity between a sketch query and natural images, and

make sketch-based image retrieval scalable to millions of images. This method also

works on cartoon and clip art, whose contours features are very distinct and clear.

Hence, combing different local features such as edges, shapes, contours to model visual

object class across different depictive styles is a potential direction.

3.6 Conclusion

The discovery of this work is unique, so far as we know: regions in image segmentations

naturally form classes that correspond to simple, easily recognisable shapes, upon given

appropriate shape descriptors and well-designed classifiers.

Clustering and other details such as alignment and noise handling can no doubt be

improved, perhaps to sharpen the output icons. Also, we may want to consider for per-

spective projection, meaning creating shapes under a homography rather than an affine

transform. Yet the results clearly show primitive shapes emerging from segmentations:

they are ‘features in the signal’, and as such may be of use to many applications in

computer vision and maybe elsewhere, not just scene and object classification.

In the next chapter, we present an application of modelling visual object class

regardless of depictive styles based on primitive shapes we found in this research, go

with a hierarchical graph model.
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CHAPTER 4

A HIERARCHICAL GRAPH DESCRIPTION OF OBJECT

CLASSES

4.1 Introduction

The fact that objects can be visualised in a wide variety of depictive styles, yet remain

recognisable, leads us to the question: what properties of an object class are invariant

to depiction? This is an important question for Computer Vision, because it directly

affects performance in applications such as image retrieval, image matching, and object

classification. With few exceptions, the models used in Computer Vision are trained

and tested on a single depictive style. Yet models learned exclusively from photographs

typically do not generalise well to other depictive styles; it can be said that such models

are over-fitted. Such models are necessarily limited in their utility to applications – it

becomes difficult to access both photographs and artwork in a library of portraits, for

example. Additionally, recognisable objects exist for which there are no photographs

(eg the Gryphon).

We argue that models of visual objects should not be premised, even tacitly, on

photo-real appearance or indeed on any particular depictive style at all. Rather, visual

object models should be based on quasi-invariant properties of the objects in a class. A

similar argument is made by those who advocate part-based representations for image.

We go further by saying that such models should generalise across depictive styles.

This means that if a model is constructed using images in one style, the same object

should also be classifiable even when depicted using a different style. This is also the

main target of this thesis.

In the previous chapter, we have empirically show that the collection of ‘primitive

shapes’ is a common property existed in both photos and art works, and they can

be used as features to represent image. In this chapter, we investigate a method for
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Figure 4-1: The corner of an eye. The variance in appearance over photographs may be
small enough to warrant the construction of a visual word, but a corresponding feature drawn
from artwork may not lie within the cluster around that “photographic” word, due to the wide
variation.

modelling visual objects classes in a manner that is invariant to depictive style. The

assumption we make is that an object class is characterised by the qualitative shape

of object parts and their structural arrangement. Hence we use a graph of nodes and

arcs in which qualitative shapes such as triangle, square, and circle to label the nodes.

More exactly our model is a hierarchy of levels, yielding a coarse-to-fine representation.

Each level contains an undirected graph of nodes and arcs. Nodes between levels are

connected via parent-child arcs, which are directed. Child nodes are nested inside their

parent.

In the Chapter 2, we have reviewed the bag-of-words family, one of the most popular

visual object class modelling methods. Although the BoW methods address many

difficult issues, they tend to generalise poorly across depictive styles. This means that

models trained on photographs will tend to misclassify objects in another depictive

style. The explanation for this is the formation of visual words, which are typically

identified by clustering feature vectors that describe the appearance of image patches

(e.g. SURF, SIFT). These feature vectors are designed to be robust to variations

in lighting, affine transforms, colour changes etc. Finding visual words by clustering

implies a tacit assumption: a sufficiently narrow variance in the appearance. This

assumption explains why BoW models do not generalise well in cross-style problems

(see our results in section 4.3 for direct empirical evidence). Consider, for example,

a semantic feature such as the corner of an eye (see figure 4-1). The variance in

appearance over photographs may be small enough to warrant the construction of a

visual word, but a corresponding feature drawn from artwork may not lie within the

cluster around that “photographic” word. This problem has been acknowledged by

others, who respond by using geometric based features as words: Gu et al. use region

shape [66]; Shotton at al use edgelets [123] as do Ferrari et al. [51]. Even so, many

works of art remain beyond these classifiers. We do not use edge data, but do use region

shape. However, rather than using complicated shapes for regions (as others do), or

just using (a hierarchy of) Gaussian blobs [122], we use a collection of primitive shapes
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(eg circle, square, triangle). The idea is that abstracting region shape into one of a few

classes brings greater robustness to non-salient variations. Anecdotal support for this

is found in the fact that many artworks comprise simple shapes, and even sophisticated

artists often paint over a skeleton comprising simple shapes.

Our model is a hierarchical graph, in which simple shapes label nodes. We are not

alone in using a parts based hierarchy to model objects and object classes. Hierarchy of

shapes or object regions are used to learn object class models , for example [2, 46]. These

build object class models, and most are motivated by a view we share: that such models

should reflect the underlying object rather than its appearance. Many hierarchies make

use of spatial data [106, 102], as we do by labelling arcs with displacement vectors.

None of the above use a median graph, as we do, to represent a visual object class. We

construct a median graph via embedding [52]. Others construct a class specific graph

prototype [165], but this is not the median graph and is labelled with SIFT features

rather than qualitative shape.

Contributions

Work presented in this chapter has been published in BMVC 2013 [164].

Our technical contribution is to show that it is possible to learn models of object

classes that generalise across depictive styles, in the sense that it is possible to learn a

model using one style but classify objects depicted in other styles. The chapter has two

main sections:

• Section 4.2 explains how to build a hierarchical graph model to represent ob-

ject classes, with nodes labelled by qualitative shape and edges labelled with

displacement vectors.

• Section 4.3 describes experiments on a cross-depiction image dataset. The experi-

ments provide empirical evidence that our model is more robust to cross-depiction

object classification than an excellent Bag of Words classifier.

The paper concludes, in Section 4.5, with a discussion of the limitations of our modelling

scheme, and points to future developments and applications.

4.2 Learning Model

We learn visual class models from input images, each labelled with the object they

contain. There are three major steps: (i) build an “image graph” for each image in the

training set; (ii) compute the class model as the median graph of the image graphs, and

(iii) refine the class model by maximising classification performance over the training

set. Figure 4-2 presents a framework of the proposed method. The steps are now

discussed in detail.
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Figure 4-2: Constructing a class model, from left to right. (a): An input collection (possibly
different depictions) used for training. (b): Probability maps for each input image, and graph
models for each map. (c): The median graph model for the whole class. (d): The refined median
graph as the final class model.

4.2.1 Build Image Graphs, one for each image.

Our modeler uses a state of the art segmentation algorithm from Berkeley that auto-

matically yields a hierarchical description of an input image at first.

Given an image, the well known gPb (Global Probabilities at Boundaries) [94]

is used to obtain the contour signal S(x, y, θ), which predicts the probability of an

image boundary at location (x, y) and orientation θ. Based on the contour signal

input, the hierarchical regions are constructed after performing two transformations,

the Oriented Watershed Transform (OWT) and Ultrametric Contour Map (UCM). In

order to compute the OWT of an image, watershed arcs are then approximated to line

segments, whose slopes determine orientations between neighbouring regions. At the

same time, consistency of contours is maintained by ensuring that only the maximal

contour response over the space of all orientations is retained at every pixel. Afterwards,

the UCM is computed by weighting every contour in the transformed image, according

to the similarity between interesting edges of the regions separated by the contour.

Given a sequence of contour strengths, the region hierarchy is constructed by a greedy

graph-based region merging algorithm which will merge the most similar regions. This

outputs a sequence of segmentations indexed by thresholding over a probability map

over region boundaries. The segmentations are ordered coarse-to-fine; smaller regions

are nested inside larger ones.
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However, one disadvantage of the hierarchies produced by the above algorithm

is the large layer size. It contains far more data than it is required for an efficient

descriptor, which is necessary for the further graph matching process. Their number

can be reduced to about ten or so, without loss of information, by a graph based

filtering process [128]. The reduced hierarchies preserve the semantic interpretation

in terms of objects and object parts; the number of levels of the reduced hierarchies

are typically an order of magnitude less than the original. The principle in solving the

problem of filtering hierarchy is to choose those levels that are lower in complexity than

their neighbors. The Laplacian graph energy is used to measure the complexity. Let

G be a graph of n vertices and m edges. Let A and D be its adjacency matrix and

corresponding degree matrix. Then L = D−A is the graph Laplacian. The Laplacian

graph energy is defined by

L E (G) =
n∑
j=1

|µj − 2m/n| (4.1)

where µj is the eigenvalues of L and 2m/n is the average vertex degree. In [128], the

affinity matrix is specially defined as A = {aij |aij = exp(−wij/wmax)} where wij is the

average boundary strength between regions i and j, and wmax is a decay factor set to

the maximum over all wij . Another extension, called the component-wise Laplacian

graph energy is introduced in [128]. For a graph with k disconnected components, the

cLGE is defined as

cL E (G) = K
k∑
i=1

L E (Gi)

|ni|
(4.2)

in which Gi is the i th connected component (or sub-graph) of |ni| nodes, and K is

the number of nodes in the whole graph. The cLGE at every level in the hierarchy

is computed independently using graphs built from the primitives at the lowest level.

At the bottom level of the hierarchy, each primitive is an 1-node subgraph on its

own, whereas the top level forms a single connected graph. At intermediate levels, as

segmentations become coarser, subgraphs are merged to create larger ones, and so the

number of disconnected components will fall. cLGE for the level as a whole can rise or

fall, depending on the way these primitives are connected. So only those levels, at which

cLGE is locally minimal, are kept in the filtered hierarchy [128]. Figure 4-3 displays

the comparison between the gPb-owt-ucm tree and the hierarchies after filtering by

method proposed in [128].

After the structural hierarchies construction, we transfer them to a attributed re-

lational graph. Building a graph G =< V,E > from the segmentation hierarchy is

straight-forward. Each segmented region in the hierarchy is represented as a ver-

tex(node) v ∈ V , where V is the set of all vertices. The set of edges E contains

edges {eij = vivj |vi, vj ∈ V } that connect vertices vi and vj . In our case, vi and vj
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(a) (b)

Figure 4-3: (a) All levels of a gPb-owt-ucm hierarchy.(b) The levels remain after filtering
[128]

belong to the same level, or neighbouring levels of the hierarchy. Nodes at the same

level are connected by an edge if their corresponding regions share a boundary in the

segmented regions (the black segments in the figure 4-4). Parent-children connectiv-

ity is decided by checking regions that intersect across two neighbouring layers of the

hierarchy (the colorful segments in the figure 4-4). Graph G now contains an efficient

representation of the spatial arrangement of segmented regions, and encapsulates rela-

tions of adjacency and containment between regions. This graph is our starting point.

Typical examples of graph models can be seen in Figure 4-5.

We label graph nodes with qualitative shape, that is shape class, and arcs with

relative displacement vectors. The displacement vectors link the centroid of one region

Figure 4-4: Relational graph model in schematic form.
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(a)

(b) (c)

Figure 4-5: A graph model (a) a bat (b) an American flag (c) a teddy bear. Parent-child arcs
in blue, neighbour arcs in green.

to the centroid of a neighbour, so are easy to compute. Qualitative shape is a class

label (S = {circle, polygon, square, trapezium, triangle, random}) found by directly

classifying the region obtained from segmentation based on clustering the density dis-

tribution of (the absolute value of) Zernike moments. The classifier explicitly model

the density of regions that do not belong to one of the named classes, we call this

class random; it is the sixth of the shape classes we use. See 3.2 for details on shape

classification. “Polygon” captures pentagons, hexagons, etc.

More exactly, we label nodes with probability vectors over S. The shape classifier is

a mixture model over a feature space of (the absolute value of) Zernike moments. Each

mixture component is itself a Gaussian Mixture Model. For each shape class S ∈ S
we specify a GMM (NS , {αsi, µSi, CSi}Ni=1), with NS the number of GMM components,
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(a)

(b) (c)

Figure 4-6: (a) Primitive shape classes (other than random) (b) An American flag broken in
primitive shapes. (c) A teddy bear likewise decomposed.

and αSi, µSi, CSi being the prior, mean, and covariance of each. For a region x we

denote the density of the shape class by p(x|S), which is readily computed using the

standard form for a GMM,

p(x|S) =

NS∑
i=1

p(x|µSi, CSi)αSi. (4.3)

We label the corresponding graph node with a 6 elements-vector of MAP estimate of

shape-class membership:

p(S|x) =
p(x|S)p(S)∑
T∈S p(x|T )p(T )

. (4.4)

If an application requires a single shape, we use S∗ = arg maxS p(x|S). The shape-

class prior, p(S) is taken to be the relative number of shapes classified as shape S.
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All parameters used are provided by the shape classifier after training on about 40000

regions. Figure 4-6 illustrates the shape classes we use, and the shape classes used to

label nodes at each level of a hierarchy. This completes our construction of an image

graph.

4.2.2 Compute an Initial Visual Class Model.

Given a set of image graphs, the next step is to compute the median graph model as the

visual class model. The median graph, introduced into structural pattern recognition

by Jiang etal [78], is a useful concept that can be used to represent a set of graphs. A

single prototype is extracted from a collection of graphs.

Let G = {G1, ...Gn} be a set of graphs and let d(Gi, Gj) be some distance function

to measure the dissimilarity between graphs Gi and Gj . A simple approach to finding

a median graph is to find the graph Gk ∈ G that minimises the sum of d(., .) over G.

A better approach is to choose the median graph, Ḡ from the set of all graphs that can

be constructed from all combinations of all subgraphs of all graphs G ∈ G. This vast

set is denoted U, and the median graph we use is defined using it:

Ḡ = arg min
Ḡ∈U

n∑
Gi∈G

d(Ḡ,Gi). (4.5)

This is far too large a problem to solve directly. In this paper we use an approximate

algorithm for median graph computation proposed in [52].

For a set of image graphs generated as the section 4.2.1, G = {G1, G2, ...Gn}, we

first compute the graph edit distance (equal to the cost of a sequence of optimal edit

operations, see section 4.2.2) between every pair of graphs in G. Hence, an n × n

distance matrix will be generated. Then, each row/column of the matrix can be seen

as an n-dimensional vector, corresponding to each graph in G. This embeds graphs

into an n-dimensional feature space. Secondly, a median vector will be generated by

computing the Euclidean Median of all the data points in the feature space. Finally,

we transfer this median vector to a graph representation. This transformation process

involves a triangulation procedure, more details can be found in the following section.

The result is our first approximation of the visual class model.

Graph Edit Distance

The graph edit distance, d(G1, G2), of two graphs is equal to the cost of an optimal ecgm

(error-tolerant graph matching) [16]. Formally, let G1 = (V1, E1) and G2 = (V2, E2) to

be two graphs, and the number of vertices of two graphs is not necessary equal. An

error-correcting graph matching (ecgm) from G1 to G2 is a bijective mapping X : v̂1 ↔
v̂2, where v̂1 ∈ V1 and v̂2 ∈ V2, so the number of vertices of two matched sub-graph
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|v̂1| = |v̂2|. Then,

d(G1, G2) = c(X∗) (4.6)

The cost function c(X∗) here is the sum of distance of the edit operations implied by

X∗, which is the optimal ecgm mapping and can be obtained by a global optimization

process. The mapping X∗ directly implies an edit operation on each node in G1 and

G2. For example, we say that node x ∈ v̂1 is substituted by node y ∈ v̂2 if X∗xy = 1.

Any node from V1− v̂1 is deleted from G1, and any node from V2− v̂2 is inserted in G2

under mapping X∗. Additionally, the mapping X∗ indirectly implies edit operations

on the edge of G1 and G2.

We formulate the mapping process into a graph matching scheme. Given a pair of

graphs, G1 and G2, the graph matching problem consists in finding a correspondence

between nodes of G1 and G2 that maximise the following score of global consistency

given as

E(X;G1, G2) =
∑

i∈V1,j∈V2

xijΦi,j +
∑

i1,i2∈V1,j1,j2∈V2

xi1j1xi2j2Θe1e2 , (4.7)

where each X is a binary matrix that denotes the node-node correspondence and e1 =

(i1, i2) ∈ E1, e2 = (j1, j2) ∈ E2. Maximising E gives an optimal edit path between

two graphs, X∗. The two similarity matrices, Φ and Θ, measure the similarity of each

node and each pair of edge respectively. We follow Torresani et al [140], who proposed

a dual decomposition approach to solve this NP-hard programming in Eq.4.7.

Then we can let the graph edit distance

d(G1, G2) = c(X∗) = exp(−E(X;G1, G2)) (4.8)

We specify Φ as the probability that two segmented regions are the same underlying

simple shape. Suppose we have region i in graph G1 and region j in G2, then p(S|i, j)
denotes the probability that both are simple shape S. We specify

Φij := max
S∈S

p(S|i, j) = max
S∈S

p(S|i)p(S|j), (4.9)

which assumes that regions are iid. This makes it easy to compute Φij via equation

4.4.

The similarity of a pair of edges from two graphs, Θ, is obtained by evaluating how

well the edge e1 in graph G1 matches the edge e2 in graph G2, in terms of both length

and direction. Following [140] we specify edge similarity as

Θe1e2 := exp(η(1− exp(δ2
e1e2/σ

2
ι )) + (1− η)(1− exp(α2

e1e2/σ
2
α))) (4.10)
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in which, using p1, p2 and q1, q2 to denote region centroid of i1, j1, i2, j2:

δe1,e2 =
|||p1 − q1|| − ||p2 − q2|||
||p1 − q1||+ ||p2 − q2||

and αe1,e2 = arccos

(
p1 − q1

||p1 − q1||
· p2 − q2

||p2 − q2||

)
. (4.11)

The parameter η is a scalar value trading off the importance of preserving distance

versus preserving directions, we set η = 0.5. Variance values σ2
ι and σ2

α could (in

principle) be learned from ground truth correspondences, but we set σ2
ι = 0.5 and

σ2
α = 0.9 as the initialized value given by [140].

Median Graph Generation

Given a set of graphs G, we compute the graph edit distance between every pair using

above equations. These distances are arranged in a distance matrix. Each row/column

of the matrix can be seen as an n-dimensional vector. Since each row/column of the

distance matrix is assigned to one graph, such an n-dimensional vector is the vectorial

representation of the corresponding graph. Once all the graphs have been embedded

in the vector space, the median vector is computed, using Euclidean Median.

Euclidean median = arg min
y∈Rn

m∑
i=1

||xi − y|| (4.12)

where ||xi − y|| denoted the Euclidean distance between the points xi, y ∈ Rn. The

Euclidean Median, is a point y ∈ Rn that minimizes the sum of the Euclidean distance

to all the points in X.

To approximate a median graph, we employ a triangulation procedure, illustrated

in figure 4-7, works as follows. Given the n-dimensional points representing every

graph in G (the white dots in figure 4-7 (a)) and the Euclidean Median vector vm (the

grey dots in figure 4-7 (a)) computed in the last step, we first select the three closest

points to the Euclidean median (v1 to v3 in figure 4-7 (a)). Notice that we know the

corresponding graph of each these points. Then, we compute the median vector v′m of

these three points (the black dot in figure 4-7 (a)). v′m is in the plane formed by v1,

v2 and v3. With v1 to v3 and v′m at hand (figure 4-7 (b)), we arbitrarily choose two

out of three points (without loss of generality we can assume that we select v1 and v2)

and we project the remaining point (v3) onto the line joining v1 and v2. In this way,

we obtain a point vi in between v1 and v2 (figure 4-7 (c)). With this point at hand, we

can compute the percentage of the distance in between v1 and v2 where vi is located

(figure 4-7 (d)). As we know the corresponding graph of the points, we can obtain the

graph gi corresponding to vi by applying the weighted mean procedure [17]. Once gi is

known, then we can obtain the percentage of distance in between vi and v3 where v′m

is located and obtain g′m applying again the weighted mean procedure(figure 4-7 (f)).

Finally, g′m is chosen as the approximation for the generalized median of the set G.
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(a) (b) (c)

(d) (e) (f)

Figure 4-7: Triangulation Procedure [52]: (a): Given the n-dimensional points representing
every graph in G and the Euclidean Median vector vm, we first select the three closest points
to the Euclidean median. Then, we compute the median vector v′m of these three points. v′m is
in the plane formed by v1, v2 and v3. (b): With v1 to v3 and v′m at hand. (c): we arbitrarily
choose two out of three points and we project the remaining point (v3) onto the line joining v1
and v2. In this way, we obtain a point vi in between v1 and v2. (d): With this point at hand,
we can compute the percentage of the distance in between v1 and v2 where vi is located. (e): As
we know the corresponding graph of the points, we can obtain the graph gi corresponding to vi
by applying the weighted mean procedure [17]. (f): Once gi is known, then we can obtain the
percentage of distance in between vi and v3 where v′m is located and obtain g′m applying again
the weighted mean procedure. Finally, g′m is chosen as the approximation for the generalized
median of the set G.

4.2.3 Refine the Visual Class Model.

The median graph contains nodes and arcs that derive from visual clutter in background

of images in the training set. Hence, we developed a cleaning algorithm to remove such

elements, and so refine the visual class model (vcm).

We begin by matching the median graph back into each training image, to count

the number of times a given node in the model appears in the training data. This

frequency count indicates the relevance of a node to the visual class. Next, we delete

all nodes below a frequency threshold – we compute the matching score (using equation

4.7) between the edited vcm and each image in the training set. The threshold is then
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Figure 4-8: Examples of three graph models generated from 3 categories of objects, which are
horses, bicycles, and butterflies. The visualization shows of selected levels below the correspond-
ing model, with the simple shapes fitted. Child-parent arcs are in blue, adjacencies between the
nodes in the same level are green.

incremented, and the process repeats until the total match score is maximised. The

nodes that remain define the final vcm. Figure 4-8 shows some final results.

4.3 Experiments and Results

Our visual class model (vcm) has the potential to be used in many applications, here

we use classification – and cross-depiction classification in particular. Like any classi-

fication task, ours consists of two main steps, training and testing. Training comprises

building a vcm, as described in Section 4.2. The testing process involves matching
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Figure 4-9: Some example pictures from our own dataset that augments CalTech 256.

each vcm (one for each visual class under consideration) into the image graph that

corresponds to an input test image. More formally, for n categories of object, we have

a set of vcms with index set N = {i}n1 . Given an input image I we have its image graph

G[I], we compute

i = arg max
i∈N

E(X;G[I], Gi) (4.13)

as the index number of the class to which the query image belongs. The similarity

measure function is given by equation 4.7; notice that it ignores clutter nodes in G[I].

To fulfil the cross-style object classification task, we augmented the Caltech-256

Object Category Dataset[64] with a parallel database that widens the variation in

depictive style, see Figure 4-9. There are 20 categories of object this dataset.

Using our expanded version of CalTech-256 we conduct experiments designed to

test how well a visual class model generalised from across depictive styles. Specifically

we: (1i) train on photographs alone and test on photographs; (1ii) train on artwork

alone and test on artwork; (2i) train on photographs alone and test on artwork; (2ii)

train on artwork alone and test on photographs; (3i) train on photo and test on both

photographs and artwork; (3ii) train on artwork and test on both photographs and

artwork; (4) train on both and test on both.

For comparison with alternative visual class models we conduct the above experi-

ment using not just our vcm but with two others also. The first is a BoW classifier,

chosen because it performs well and will help us assess the performance of such a popular

approach to the problem of cross-depiction classification. The BoW we use is proposed

in [147], it uses PHOW features [15] (dense multi-SIFT descriptors ) and K-means for

visual word dictionary construction. Finally, it uses a linear SVM for classification.

Here we set the number of words in vocabularies at 600. And the other parameters
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are the same as [147] used, which can achieve 64% performance on Clatech101 dataset.

The second vcm alternative we experiment with uses structure alone as a model [167]

and is relevant because it explicitly sets out to classify in a cross-depiction domain.

It uses the first few eigenvalues of the Laplacian matrix of the object structure as the

feature vector, which embeds graphs in a pattern space. A GMM is employed as the

classifier. We use our hierarchical graph structure as the input of this algorithm to

compute its Laplacian matrix. Experimental results are shown in the following section.

4.3.1 Results and Discussion

Classification accuracy of different methods in various Training/Test cases, shown in

table 4.1 (the deeper the color, the better the performance). The training and test

images were selected to show objects on uncluttered backgrounds, which is also a

limitation of this work. The numbers of images in the table are per-class figures, the

rates are averaged over 20 classes. In total our test used 800 images, including our

extension to CalTech 256.

case 1: Training 3a 5a 3p 5p

case 1: Testing 15a 15a 15p 15p

Dense SIFT [147] 57% 59% 66% 70%

Structure Only [167] 15% 19% 13% 16%

Proposed Method 59% 62% 60% 61%

case 2: Training 3p 5p 8p 10p 3a 5a 8a 10a

case 2: Testing 15a 15a 15a 15a 15p 15p 15p 15p

Dense SIFT [147] 34% 38% 43% 47% 35% 42% 49% 51%

Structure Only [167] 15% 15% 19% 23% 11% 15% 22% 25%

Proposed Method 52% 60% 63% 64% 56% 59% 64% 67%

case 3: Training 3a 5a 3p 5p

case 3: Testing 30m 30m 30m 30m

Dense SIFT [147] 46% 50% 50% 54%

Structure Only [167] 13% 16% 14% 16%

Proposed Method 58% 61% 56% 61%

case 4: Training 6m 10m

case 4: Testing 30m 30m

Dense SIFT [147] 60% 61%

Structure Only [167] 21% 24%

Proposed Method 62% 65%

Table 4.1: Classification accuracy for different cases. From top to bottom: (case 1:) single
depiction task. (case 2:) cross depiction task. (case 3:) single to mixture depiction task, and
(case 4:) mixture to mixture task. The character ’p’ is ’photos’, ’a’ is ’art’ and ’m’ is ’mixture’.
The deeper the color, the better the performance.The numbers of images in the table are per-
class figures, the rates are averaged over 20 classes. In total our test used 800 images, including
our extension to CalTech 256.

From the results, it is clear shown that our proposed method performs better than

both traditional bag-of-words method and structure only method in terms of cross-
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(a) (b)

Figure 4-10: Performance trend when using different numbers of training images in case 2,
the single cross depiction task. (a) Photos to artwork classification task. (b) Artwork to photos
classification task. Our method (the blue one) out performs the other two method obviously.

depiction generalisation. This is most obvious when training in one depiction and

testing in another: the accuracy of our method is nearly 20 percent points higher than

the method using dense SIFT, and nearly 50 percentage points higher than structure

alone. The traditional BoW method is superior by up to 9% when photographs are

used for both training and testing – which is the kind of result we anticipated since

BoW models are tuned to low-variance features whereas we set out to allow for wider

variation. The low score of the structure-only method may be explained by our use of

more complex structures than the original [167].

The case of training on both photographs and artwork is interesting. When pho-

tographs are the test case BoW and our method perform about equally, but our method

performs the better when artwork is used to test. It is notable that “artwork” in fact

covers a broad variety of depictions. This result suggests that word formation inside

BoW is biased towards ”photographic words”, where we would expect the densest con-

centration of features. This is underlined by the fall in performance of BoW when

the number of artworks in the training set rises. When all cases are taken into ac-

count, our method is much more stable in performance (from 52% to 67%) compared

to BoW (34 % to 70%). Our rates compare favourably to CalTech 256 benchmarks

using only photographs (see [64] and [147]). We are taking a first step towards widening

the classification problem. Figure 4-10 show the performance trend when using differ-

ent numbers of training images in case 2, the single cross depiction task, comparing

with other two methods. And the confusion matrix for each test cases are provided in

Appendix B.

Our system is implemented by matlab, running on a Core i7CPU 2.67GHz machine.

The average training time for a single class is 3 hours. It takes such a long time due
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to the pair-wise graph matching process during the median graph generation process.

The average testing time of single time is 30 to 40 seconds.

4.4 Limitations

There are still some limitations of this current system, for example, the methods fail

when object is relatively small with complicated background, because our method is

highly relied on the segmented regions. Too crowd background would produce too

many segmented regions, which will produce a highly complex candidate graph. And

the objects have to be presented in canonical pose, for example, we only can accept

the horse images which are captured in the side-view. The multi-view model is not

considered in this work, but we popose a new modeling process which can handle

multi-view instances in Chapter 5.

Moreover, the dataset is small, especially the number of positive examples. This

is mainly due to the difficulty of collecting data. And we do not yet localise objects

in images, such an ability would improve our ability to learn. Our class exemplars

exhibit a complex structure that would benefit from further simplification, eg using

graph prototypes rather than median graphs. Additional labelling (for example texture

on nodes, and affine maps) may also improve classification performance. We cannot

model objects that exhibit high variation in structure and/or shape, eg buildings as

a general class, such broad classes are a challenge to many classifiers. Our method

depends on matching and so can be slow, faster algorithms – perhaps via a hierarchy

of classes – are desirable. Nonetheless, our results are a first step towards depiction

invariant modelling.

4.5 Conclusion

The ability to generalise to new depictive styles is important, not least because the

number of depictive styles is seemingly unbounded. No training procedure can capture

them all and so a class model that is able to generalise to unseen depictive styles is

of value. In this chapter , we proposed a hierarchical graph model, with qualitative

shapes such as triangle, square, and circle to label the nodes. Experiments show that

our proposal method performs better than the traditional visual appearance based

method in cross-depiction problems (including to unseen depictive styles), in mixed

problems, and in art-only problems.

With more depictive styles joined in and the image background became more com-

plicated, how to capture the wide variation between different styles is still an open ques-

tion. In the next chapter, we propose a cross-depiction visual object class modelling

method to capture the wide variations, based on a more challenging cross-depiction
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image dataset. Moreover, other that classification, we also use our proposed model in

detection and recognition.
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CHAPTER 5

LEARNING GRAPHS TO MODEL VISUAL OBJECT ACROSS

DIFFERENT DEPICTIVE STYLES

5.1 Introduction

In the previous two chapters, we focused on the question of ‘finding properties invariant

to depiction of objects’ and we have proven that a combination of global structural

information and local regions (fitted by simple primitive shapes) could be useful in

modelling objects regardless of different depictive styles. However, the limitation of

this kind of representation is also obvious, for example, there is no striking structure

can be detected in some object such as water, smoke and some modern buildings.

Although these objects are out of the scope that we want to address in this thesis, as

more depictive styles are included, the question of ‘ how to capture the wide variation

in visual appearance exhibited by visual objects across depictive styles’ is still needed

to be answered.

Before pursing the answer, a more challenging public dataset is important for com-

paring current techniques, as this new area develops. We provide such a dataset in

this chapter and we use our dataset to confirm by experiment the intuition that the

cross-depiction problem is difficult because the variance across photo and art domains

is much larger than either alone. We then extensively evaluate classification, domain

adaptation and detection benchmarks for leading techniques, demonstrating that none

perform consistently well given the cross-depiction problem.

Then, we provide a modelling scheme for visual class objects that generalises across

a broad collection of depictive styles. Not like the primitive shape and graph based

method we proposed in Chapter 4, in this work, the Primitive Shape features are

dropped. Instead, we employed more powerful HoG features, which is also proved ef-

fective in cross-domain image matching [124]. The reason that the Primitive Shape
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features are replaced is mainly because limitations we discussed in Section 4.4 have not

been addressed, ie. the primitive shape producer are highly relied on image segmen-

tations and how to screen out those regions only related to target objects from crowd

background segmentations is difficult. In other words, although primitive shapes can

highly abstract the object it does bring more noise than well-designed hand crafted

features, such as SIFT and HoG. Moreover, since we are planning to use graph-based

modelling method, but shape-level feature extractor produces too many nodes, which

will lead to a too large graph. This causes large pressure for the further learning and

mathcing.

The assumption we make is that a mixture model at the parts level - mixed within

each part but depicted in different styles - can be used to characterise an object class of

mixture depictive styles. Here, we propose to learn a model graph for each visual object

class, based on a particular, but rather a general, graph representation, with histogram-

based attributes for nodes and edges. Instead of using a single ‘label’ in each node of

the graph, we use multi-labeled nodes to construct the graph model. These multi-labels

corresponds to different depictive styles of each object part. Moreover, encouraged by

[26] we use a max-margin framework to learn the weight for each part(node) and edge

of our model graph to present different nodes and edges contributions, leading to better

detection and matching results.

Contributions

Work presented in this chapter has been published in ECCV 2014 [162]. Our contri-

butions of this chapter can be summarised as following:

1. We introduce a new photo-art dataset, Photo-Art-50, announced with bounding

boxes, designed specifically for the cross-domain problem. Based on this new

dataset, we evaluate leading recognition and detection techniques and two state-

of-the-art domain adaptive methods for cross-depiction task (see section 5.2).

2. We introduce a new way in which we account for the wide variation in feature

distributions, specifically - the use of multi-labels to represent visual words that

exists in possibly discontinuous regions of a feature space. (see section 5.3)

3. We employ an SSVM method to learn the weights to encode the importance of

nodes and edges similarities. (see section 5.3)
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Figure 5-1: Our photo-art dataset: Photo-Art-50, containing 50 object categories. Each
category is displayed with one art image and one photo image.

5.2 A New Dataset and A Baseline

5.2.1 A New Dataset - Photo-Art-50

We provide a challenging, annotated image dataset for researchers to evaluate their

cross-depiction techniques. This dataset contains 50 object categories, 90 to 138 images

for each object with approximately half photos and half art images. These 50 objects

all appear in Caltech-256 and a few also appear in PASCAL VOC Challenge [44] and

ETHZ-Shape dataset [51], as shown in Fig 5-1. Part of the photo images are copied

from Caltech-256, the rest are from Google search. Art images are searched by a

few keywords to cover a wide gamut of depiction styles, e.g., ‘horse cartoon’, ‘horse

drawing’, ‘horse painting’, ‘horse sketches’, ‘horse kid drawing’, etc. Then we manually

select images with a reasonable size of a meaningful object area. We further manually

provide the ground-truth bounding boxes.

From the dataset we provided, it is not difficult to find there is a big difference in

visual appearance exhibited by visual objects across depictive styles. This variation is

typically much wider than for lighting and viewpoint variations usually considered for

photographic images. Indeed, if we consider different ways to depict an object (or parts

of an object) there is good reason to suppose that the distribution of corresponding

features form distinct clusters.

To visualise how the photos and artworks are distributed, we display a few samples

from horse and Eiffel Tower images in Fig 1-7. Differences between photo images and

art images are significant, though human can easily recognise an object no matter how

it appears in photo or in any kinds of art format. One may notice that the art domain

exhibits larger diversity than photo images in the visual appearance. Such diversity is

demonstrated with its larger variance in the feature space as shown in Fig 1-7.

K-L Divergence: In order to discover how much statistical difference exists be-

tween the feature distributions on the photo and art domains – and to make sure
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Cross-domain datasets [62, 117] Photo-Art-50

C-A C-D A-W D-A D-W Photo-Art

0.079 0.271 0.239 0.292 0.047 0.466

Table 5.1: Comparison of K-L divergence D(P1, P2) between domain pairs. Four domain sets
in [117, 62]: C - Caltech-256, A - Amazon, W - WebCam, D - DSLR.

our dataset is of value to the cross-depiction problem – we compute the symmetric

Kullbeck-Liebler divergence between art and photo feature distributions.

We represent each image as a 5000-d BoW histogram with dense SIFT descriptors,

which are then projected to a lower dimensional (d = 10) subspace using principle

component analysis (PCA), and approximate the distributions using Gaussian densities

P1 = N (.|µ1,Σ1) and P2 = N (.|µ2,Σ2), respectively. The K-L divergence of P2 from

P1 is defined as

DKL(P1||P2) =
1

2
(tr(Σ−1

2 Σ1) + (µ2 − µ1)TΣ−1
2 (µ2 − µ1)− d− ln(

det Σ1

det Σ2
)). (5.1)

We adopt the symmetrical K-L divergence, which is

D(P1, P2) = (DKL(P1||P2) +DKL(P2||P1))/d. (5.2)

A small D(P1, P2) means that the two distributions are similar.

Table 5.1 illustrates the K-L divergences between photo and art images in Photo-

Art-50. To create a reference by which these divergences can be understood, we also

compute the K-L divergences for domain pairs [62, 117] under different photographic

conditions. The most similar domains are Caltech-Amazon and DSLR-Webcam, and

the other three pairs are distributed very differently, which is consistent with the ob-

servation in [62]. However, even the largest K-L divergence in the cross-domain dataset

is still not comparable with the photo-art divergence. This clearly tells that the photo-

art distributions differ much more than distributions of photos capturing in different

conditions.

5.2.2 Evaluation of Classification Baselines

We evaluate three baseline methods on our dataset. The first is bag-of-words (BoW),

chosen because it is well known, widely used, and performs well on standard image clas-

sification problems. We assess the performance of this popular framework with different

local descriptors, including the well-known self-similarity descriptor [121] designed for

solving the cross-depiction matching problem.

The second baseline is the Fisher Vector(FV) [107] which extends BoW by going

beyond count statistics. It has been shown to outperform BoW in most classification

datasets.
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Third, in order to investigate whether domain adaptation techniques help solve

the cross-depiction problem, we evaluate two recent state-of-the-art domain adaptation

techniques, called Geodesic Flow Kernel (GFK) [62] and Subspace Alignment (SA) [49].

Bag of Words

Using Bag of Words (BoW), each image is represented by the distribution of codeword

occurrences.

Given a set of labelled training images, local descriptors are computed on a regular

grid with multiple-sized regions. A codebook is constructed by vector quantisation of

local descriptors with k-means clustering (k = 1000). Each image is first partitioned

into L levels of increasingly fine cells (L = 2 in our experiments). A histogram of code-

word occurrences is built for each cell. By concatenating all these histograms, each

image is coded by a 5000 dimensional vector. A one-versus-all linear SVM classifier is

then trained on a χ2-homogeneous kernel map [148] of all training histograms. Given

a test image the local features are extracted in the same way as in the training stage,

mapped onto the codebook to build a multi-resolution histogram, which is then clas-

sified with the trained SVM. To explore the potential of different local features in the

cross-depiction problem, we compare five types of local features.

• The popular SIFT [92] is a 128-dimensional vector created by stacking 8-bin

orientation histograms on 4 × 4 cells weighted by an additional 2-D Gaussian

function. We use the implementation of dense-SIFT in [147] and sample SIFT

with four region sizes on a regular grid with 3 pixels step.

• Geometric Blur (GB) [12] describes local regions by geometrically blurring ori-

ented edge maps. It is able to match object parts with very different appearance

in two images, so we evaluate it on our cross-depiction dataset. Different from

the densely sampling of SIFT, GB is extracted on regions centred on edge points.

We randomly sample a few thousands edge points in 5 scales. The coefficients

follow the original setup in [12].

• Self-similarity descriptors (SSD) [121] measure local self-similarity patterns

by correlating a tiny local patch (typically 5× 5) within a larger local region. It

computes local correlations of patches rather than pixel values, and performance

well at matching similar objects invariant to depictive styles. We include it in

the BoW framework to see its behaviour in cross-depiction classification. We

follow the default parameter settings from [24] except that we use 4 region sizes

to capture a wider variation of local patterns. Instead of one single region size of

radius 40, we extract SSIM with 4 radius sizes (28, 36, 44, 56) to capture wider

variation of local patterns.
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model BoW FV

train test SIFT GB SSD HOG edgeHOG SIFT

Photo Photo 83.69 ± 0.6 76.83±1.4 66.48±1.3 72.40±0.8 70.04±1.0 87.42±0.5
A+P Photo 80.38 ± 1.1 71.94±1.1 57.85±0.9 64.67±1.4 63.25±1.3 83.53±0.7
Art Photo 63.93 ± 1.1 59.90±0.8 38.89±1.6 42.45±1.1 50.13±1.4 65.67±0.5
Art Art 74.25 ± 1.1 72.05±1.4 49.03±1.4 55.13±0.6 59.55±0.6 76.74±0.5

A+P Art 69.47 ± 1.1 67.08±0.6 45.27±2.1 49.87±1.0 56.07±2.0 72.82±1.0
Photo Art 43.78 ± 0.6 50.42±1.4 31.16±1.0 28.99±1.4 39.91±1.6 47.35±1.2

Table 5.2: Comparison of categorisation performance on our proposed Photo-Art-50 dataset,
with 30 images per category for training. Average correct rates are reported by running 5 rounds
with random training-test split. ‘A+P’ stands for a mixture training set of 15 photo images
and 15 art images.

• The Histogram of Oriented Gradient (HOG) [34] is a vector of normalised

histograms from tiled block regions. It is the most effective feature in the context

of object detection and also the most favoured local feature in the context of

sketch-based retrieval [90, 40, 41]. We compute HOG using the VLFeat [147]

implementation. The gradients are quantised into 9 orientations and four cell

sizes are used.

• We also include edgeHOG for comparison due to its effectiveness in sketch-based

retrieval [71]. Unlike standard HOG which extracts the descriptor on the original

image map, edgeHOG computes the gradient orientation histograms over edge

maps. This helps improve matching performance between sketches and photo

images.

We repeat the experiment 5 times, randomly selecting 30 images for training, using

the rest for testing. Table 5.2 summarises the categorisation performances with BoW

using different local features.

Discussion: Comparing different local descriptors, we can see that BoW with

dense SIFT is the winner for all training-test combinations except ’Photo-Art’ setting.

Surprisingly, though SSD is designed for matching a common ’shape’ regardless of their

appearance, it performs poorly in classification on both same domain and different

domains. Actually, SSD’s inferior performance to HOG has also previously observed in

the sketch-based classification task [72, 90]. EdgeHOG outperforms the standard HOG

when art images are involved, which is consistent with the observation of [40, 71]. This

may also explain the good performance of BoW-GB which also computes the descriptor

on the edge map. When testing on the art domain, BoW-GB performs competitively

and even outperforms BoW-SIFT when training on photo domain. This might result

from the fact that edges posses some invariance across photo and artworks.

The same general trend appears across all descriptors; it can be explained by the de-

gree of variation in the features, as evidenced in the KL-divergence Table 5.1. Training
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on photos and testing on photos consistently returns the highest rates for all descrip-

tors. Training on Art and testing on Art suffers some loss of performance, as expected.

Yet what is most noticeable is all descriptors show a significant drop when trained

on one depiction style and tested on another. This is evidence that BoW does not

generalise well across depictive styles.

Fisher Vector

Fisher Vector (FV) is frequently used as a global image descriptor in visual classifi-

cation. Instead of counting the codewords occurrence in BoW, it records the statistic

information of local features inside each cluster.

Given a set of local feature vectors (we use SIFT) extracted from training images, let

a K-component (K = 256 in our experiment) GMM fits the distribution of descriptors

at first. The FV of an image is the stacking of the mean and covariance deviation

vectors for each of the K clusters in the Gaussian mixture. We follow the improvement

suggestions in [107] to apply the Hellinger’s kernel to each dimension of the Fisher

vector followed by l2-normalisation. Like BoW, spatial pyramid is also applied in this

experiment. The pyramid setting is the same as BoW. Then, a one-versus-all linear

SVM classifier is trained on the Fisher vectors obtained from all training images.

Discussion: The performance of Fisher vector with SIFT is displayed in Table 5.2.

Consistent with the observation in [107], it outperforms BoW-SIFT by 2-3% in all

‘train-test’ settings. In spite of such an improvement, FV still suffers from significant

performance drop in the condition of different training and test depiction domains.

Due to the very different distribution of photo and art domains, it is natural to resort

to the domain adaptation techniques. In the following section, we will investigate how

well the domain adaptation could bridge the gap.

Domain Adaptive Benchmarks

In dealing with mismatched distributions between the training set and the test set,

domain adaptive methods [63, 62, 49, 117, 61] have shown clear benefits. However, all

these methods have been tested only on datasets containing photographs with different

capture conditions. Intuitively, the distribution between photographs and artworks

would have a greater variability. This intuition has been verified by the higher K-L

divergency than standard cross-domain problem in Sec. 5.2. It is unclear if the current

domain adaptive methods can handle such diversity between photos and artworks.

To find the answer, two state of the art methods are evaluated on our dataset:

• Geodesic Flow KernelGFK [62] models the source domain S and target do-

main T with lower dimensional linear subspaces and embeds them onto a Grass-

mann manifold G(d,D). Let PS , PT ∈ RD×d denote the basis of the PCA sub-
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spaces for the two domains, respectively. The collection of all d-dimensional sub-

spaces forms the Grassmann manifold G(d,D). The geodesic flow is parameter-

ized as a curve Φ(t), t ∈ [0, 1] between these two subspaces on the manifold, with

Φ(0) = PS and Φ(1) = PT . Thus this curve models the continuous deviation from

the two domains. Different from [63], which only samples a number of intermedi-

ate subspaces, the original feature is projected into all these subspaces and con-

catenated into an infinite-dimensional feature vector: z∞ = {Φ(t)Tx : t ∈ [0, 1]}
which does not bias on either source or target domain. By using ’kernel trick’,

the similarity between two projected features is defined by their inner product as

follows.

< z∞i , z
∞
j >=

∫ 1

0
(Φ(t)Txi)

T (Φ(t)Txj))dt = xTi

∫ 1

0
Φ(t)TΦ(t)dtxj = xTi Gxj

(5.3)

where G ∈ RD×D is a positive semi-definite kernel matrix. The matrix G can be

computed efficiently using singular value decomposition. Since the similarity or

kernel is defined, we may classify images using either nearest neighbour or SVM

classifier.

Similar to [62], the original features xi are bag-of-words histograms. 5000-bin

histograms are generated as in the previous section that used the SIFT descrip-

tor, then normalised to have zero mean and unit standard deviation in each

dimension. We project the original features onto 49 dimensional subspaces using

PCA on each domain, i.e., PS , PT ∈ R5000×49. Follow the procedures of [62], we

generate two variants of GFK kernels: GFK PCA and GFK LDA. GFK PCA

means that the original features are projected onto the 49 dimensional subspaces

with PCA on each domain, i.e., PS and PT . In contrast, GFK LDA replaces

PS with a supervised dimension reduction method - linear discriminant analysis

(LDA) on source domain, and still PCA on the target domain. As LDA takes

label information into account in the training stage, the source domain subspace

possesses more discriminability for classification.

• Subspace Alignment (SA) [49] projects each source domain S and target do-

main T to its respective subspace Xs and Xt. Then, a linear transformation

function is learned to align the source subspace coordinate system to the target

one. To achieve this task, they use a Subspace Alignment approach. Basis vectors

are aligned by using a transformation matrix M from Xs to XT . M is learned by

minimizing the following Bregman matrix divergence:

F (M) = ||X ′SXSM −X ′SXT ||
2
F = ||M −X ′SXT ||

2
F (5.4)

where |||̇|2F is the Frobenius norm. The optimal M∗ is obtained as M∗ = X ′SXT
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and this implies that the new target aligned source coordinate system is equivalent

to Xa = XSX
′
SXT . See Fernando et al [49] for mathematical details.

Other than the original features (OrigFeat), we also compare GFK and SA with an-

other two no-domain-adaptation methods, the projected features with PCA bases from

the source domain (PCA S) and from the target domain (PCA T), respectively. For

the classifier, we implement both the simple First Nearest Neighbour (1-NN) and the

more powerful SVM. In our experiment, the original features are 5000-bin histograms

generated with BOW and SIFT descriptor as in the previous section.

Discussion: Fig. 5-2 compares domain adaptation methods with no-adaptation

methods. As expected the SVM classifier consistently outperforms 1-NN. Features

projected with PCA bases of target domain (PCA T) always produce higher accuracies

than those projected on the source domain (PCA S), due to the better approximation of

the distribution in the target domain. Using NN, the original feature yields the lowest

accuracy and GFK LDA the highest. However, the gain of GFK LDA with either

classifier is very little compared with PCA T. Regarding SVM, the original feature

surprisingly outperforms all the the other projected features, even the domain adaptive

methods. The subspace alignment (SA) approach produces slightly lower results than

GFK PCA, no matter using NN or SVM. We also test higher dimensional projections,

they yield slightly higher accuracies, but their performance rank remains the same.

Given these results, we conclude that state of the art domain adaption techniques

(at least GFK [62] and SA [49]) show no improvement over PCA in the cross-depiction

problem. As for BoW and DPM, this is likely due to the high dissimilarity between

photo features and artworks features. Such dissimilarity has been measured with K-

L divergence in Table 5.1. Since the main difference between artworks and photos

originates in the local textures, it may cause the image presentations (histogram of SIFT

words) to differ too much, This difference leads to either the case that no such smooth

manifold exists or that the two subspaces are located too far apart on the manifold.

Negative effects might occur with direct domain adaptation in such situations.

In the following section, we introduce a object class modelling way of using multi-

labels to represent visual words and to capture the wide variations.

5.3 Models

Our model of a visual object class is based around a graph of nodes and edges. Like

Felzenszwalb et al [46], we label nodes with descriptions of object parts, but we dif-

fer in two ways. Unlike them, we label parts with multiple attributes, to allow for

cross-depiction variation. Second, we differ in using a graph that defines the spatial

relationship between node pairs using edge labels, rather than a star-like structure in

which nodes are attached to a root. Furthermore, we place weights on the graph which
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Figure 5-2: Classification accuracies without (OrigFeat, PCA S and PCA T) and with
(GFK PCA, GFK LDA, SA) domain adaptive methods on Photo-Art-50. Left: training on art-
works, test on photographs. Right: training on photographs, test on artworks. The experiments
are carried out with 30 images per class for training, repeated 5 times with random training-test
split. ‘OrigFeat’ means classifying with the original 5000-bin BOW-SIFT histograms. Except
OrigFeat, the rest methods are with 49 dimensional projected features.

are automatically learned using a method due to [26]. These weights can be inter-

preted as encoding relative salience. Thus a weighted, multi-labeled graph describes

objects as seen from a single viewpoint. To account for variation in points of view we

follow [46, 65, 39] who advocate using distinct models for each pose. They refer to each

such model as a component, a term we borrow in this paper and which should not be

confused with the part of an object.

We solve the problem of inter-depictive variation by using multi-labeled nodes to

describe objects parts. These multiple attributes are learned from different depictive

styles of images, which are more effective than attempting to characterize all attributes

in a monolithic model, since the variation of local feature is much wider than the

changes usually considered for photographic images, such as lighting changes etc.

Moreover, it does not make sense that the parts of an object should be weighted

equally during the matching for a part-based model. For example, for a person model,
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Figure 5-3: Head is more discriminative than other parts in the matching - a person’s arms
are easily confused with a quadruped’s forelimbs, but the head part’s features are distinctive. In
our model, parts are weighted according to its discriminatively.

the head part should be weighted more than other parts like limbs and torso, because

it is more discriminative than other parts in the matching - a person’s arms are easily

confused with a quadruped’s forelimbs, but the head part’s features are distinctive.

Such an example is shown in Figure 6.2.2. Beside the discrimination of node appear-

ance, the relative location, edges, should be also weighted according to its rigidity.

For instance, the edges between the head and shoulder should be more rigid than the

edges between two deformable arms. Hence, in our model, a weight vector β is learned

automatically to encode the importance of node and edge similarity. We refer to it as

the discriminative weight formulation for a part based model. This advantage will be

demonstrated with evidence in the experimental section.

5.3.1 A Multi-labeled Weighted Graph Model

Our models are defined by a structural multi-labeled graph that approximately covers

an entire object and nodes that cover smaller parts of the object.

A multi-labeled graph is defined as G∗ = (V ∗, E∗, A∗, B∗), where V ∗ represents a

set of nodes, E∗ a set of edges, A∗ a set of multi-labeled attributes of the nodes and

B∗ a set of attributes of edges. Specifically, V ∗ = {v∗1, v∗2, ..., v∗n}, n is the number of

nodes. E∗ = {e∗12, ..., e
∗
ij , ..., en(n−1)∗} is the set of edges. A∗ = {A∗1, A∗2, ..., A∗n} with

each A∗i = {a∗i1, a∗i2, ..., a∗ici} consists of ci attributes. It is easy to see that a standard

graph G is a special case of our defined multi-labeled graph, which restricts ci = 1.

A visual object class model M =< G∗, β > for an object with n parts is formally

defined by a multi-labeled model graph G∗ with n nodes and n×(n−1) directed edges.
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Figure 5-4: Our multi-labeled graph model with learned discriminative weights, and detections
for both photos and artworks. The model graph nodes are multi-labeled by attributes learned
from different depiction styles (feature patches behind the nodes in the figure). The learned
weight vector encodes the importance of the nodes and edges. In the figure, bigger circles
represent stronger nodes, and darker lines denote stronger edges. And the same color of the
nodes indicates the matched parts.

And the weight vector β ∈ Rn2×1 encodes the importance of nodes and edges of the

G∗. And in this case, the A∗, a set of multi-labeled attributes of the nodes, describe

the same part of the object but with a different instance, in practical terms, different

depictive styles such as photos, paintings and cartoons. In other words, our model is

a mixture model at the part level with a global graph structure of the arrangements

of these parts. This bring us more robustness on the cross domain object detection

and classification than normal part-based model. Both the model graph G∗ and the

weights vector β are learned from a set of labeled example graphs. Figure 5-4 shows

two example models with their detections from different depictive style. The learning

process depends on scoring and matching, so a description is deferred to Section 5.4.

We define a score function between a visual class model, G∗, and a putative object

represented as a standard graph G, following [26]. The definition is such that the

absence of the VCM in an image yields a very low score. Let Y be a binary assignment
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matrix Y ∈ {0, 1}n×n′ which indicates the nodes correspondence between two graphs,

where n and n′ denote the number of nodes in G∗ and G, respectively. If v∗i ∈ V ∗

matches va ∈ V , then Yi,a = 1, and Yi,a = 0 otherwise. The scoring function is defined

as the sum of nodes similarities (which indicate the local appearance) and the edges

similarities (which indicate the spatial structure of the objects) between the visual

object class and the putative object.

S(G∗, G, Y ) =
∑

Yi,a = 1

SV (A∗i , aa) +
∑

Yi,a = 1

Yj,b = 1

SE(b∗ij , bab), (5.5)

where, because we use multi-labels on nodes we define

SV (A∗i , aa) = max
p ∈ {1, 2, ..., ci}

SA(a∗ip, aa), (5.6)

with a∗ip, the pth attribute in A∗i = {a∗i1, a∗i2, ..., a∗ip, ...a∗ici}, and SA is the similarity

measure between attributes.

To introduce the weight vector β into scoring, like [26], we parameterize Eq. 5.5

as follows. Let π(i) = a denote an assignment of node v∗i in G∗ to node va in G, i.e.

Yi,a = 1. A joint feature map Φ(G∗, G, Y ) is defined by aligning the relevant similarity

values of Eq. 5.5 into a vectorial form as:

Φ(G∗, G, Y ) = [· · · ;SV (A∗i , aπ(i)); · · · ;SE(b∗ij , bπ(i)π(j)); · · · ]. (5.7)

Then, by introducing weights on all elements of this feature map, we obtain a discrim-

inative score function:

S(G∗, G, Y ;β) = β · Φ(G∗, G, Y ), (5.8)

which is the score of a graph (extracted from the target image) with our proposed

model < G∗, β >, under the assignment matrix Y .

5.3.2 Detection and Matching

To detect an instance of a visual class model (VCM ) in an image we must find the

standard graph in an image that best matches the given VCM. More exactly, we seek

a subgraph of the graph G, constructed over a complete image, and is identified by the

assignment matrix Y +. We use an efficient approach to solve the problem of detection,

which is stated as solving

Y + = arg max
Y

S(G∗, G, Y ;β), (5.9a)
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Figure 5-5: Detection and matching process. A graph G will be firstly extracted from the
target image based on input model < G∗, β >, then the matching process is formulated as a
graph matching problem. The matched subgraph from G indicates the final detection results.
φ(H, o) in the figure denotes the attributes obtained at position o.

s.t.
{
Y ∈ {0, 1}n×n′ ,

∑n
i=1 Yi,a ≤ 1,

∑n′

a=1 Yi,a ≤ 1 (5.9b)

where Eq.(5.9b) includes the matching constrains - only one node can match with

at most one node in the other graph. To solve the NP-hard programming in Eq.5.9

efficiently, Torresani et al. [140] propose a decomposition approach for graph matching.

The idea is to decompose the original problem into several simpler subproblems, for

which a global maxima is efficiently computed. Combining the maxima from individual

subproblems will then provide a maximum for the original problem. We make use of

their general idea in an algorithm of our own design that efficiently locates graphs in

images.

The graph G in Eq.(5.9a) is extracted from the target image and it varies with

the input model graph G∗. For a target image, we first compute a dense multi-scale

feature pyramid. The sampling scale in a feature pyramid is determined by a 3-tuple

(λ, θmin, θmax), in which λ defining the number of levels of the pyramid, and (θmin, θmax)

are used to define the maximal and minimal sampling scale, which are also relevant

to the target image size SIM , then we define scalemin =
√
SIM/θmax, scalemax =√

SIM/θmin. These two values also imply the maximal and minimal part of the object

in the target image we are able to detect. Then, the sampling scale at level l ∈ λ can
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be computed as

scale(l) = (l − 1)× [
scalemax − scalemin

λ− 1
] + scalemin. (5.10)

In practical, we set λ = 10, θmin = 10, θmax = 120, which can cover a broad sampling

scales range. Let H be a feature pyramid and o = (x, y, l) specify a node position in

the l − th level of the pyramid. Let φ(H, o, scale(l)) denote the vector obtained con-

catenating the feature vectors in the scale(l)2 subwindow of H with top-left corner at

n in row-major order. Below we write φ(H, o) since the subwindow scale are implicitly

defined by the level l. Then, for each node vi of the model graph G∗, we select kNN

nodes from the feature pyramid H based on the similarity function SV (A∗i , φ(H, o)) as

the nodes of hypothesis graph G. These possible locations are used to create a graph of

the image. The ‘image graph’ is fully connected; corresponding features from H label

the nodes; spatial attributes label the edges. This creates graph G.

Having found G the next step is to find the optimal subgraph by solving Eq. 5.9.

During this step, we constrain the node v∗i of the model graph G∗ to be assigned (via

Y ) only to one of the k nodes it was associated with. In our experiments, to balance

the matching accuracy and computational efficiency, we set k = 10. The optimal

assignment matrix Y + between the model < G∗, β > and the graph G, computed

through Eq. (5.9), returns a detected subgraph of G that indicates the parts of the

detected object. A detection and matching process is illustrated in Fig 5-5.

5.3.3 Mixture Models

Our model also can be mixed using components as defined above and used in [46, 65, 39],

so that different point of view (front/side) or poses (standing /sitting people) can be

taken into account. A mixture model with m components is defined by a m-tuple,

M = M1, ...,Mm, where Mc =< G∗c , βc > is the multi-labeled VCM for the c-th

component.

An object hypothesis for a mixture model specifies a mixture component, 1 ≤
c ≤ m and a matching result of model Mc. The score of this hypothesis is the score

of the hypothesis graph G for the c-th model component. To detect objects using a

mixture model we use the matching algorithm described above to find the best matched

subgraph that yield high scoring hypothesis independently for each component.

5.4 Learning Models

Given images labeled with n interest points corresponding to n parts of the object, we

consider learning a multi-labeled graph model G∗ and weights β that together represent

a visual class model. Because structure does not depend on fine-level details, we do not
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Figure 5-6: Learning a class model, from left to right.(a): An input collection (different
depictions) used for training. (b): Extract training graphs. (c): Learning models in two steps,
one for G∗, one for β. (d): Combination as final class model

(nor should we) train an ssvm using depiction-specific features. The model learning

framework is shown in Figure 5-6 and the learning procedure is shown in 2.

5.4.1 Learning the Model Graph G∗

For the convenience of description, consider a class-specific reference graph G4 (note

that a reference graph is not created but is a mathematical convenience only, see [26]

for details) and a labeled training graph set T = (< G1, y1 >, ..., < Gl, yl >) obtained

from the labeled images. In each < Gi, yi >∈ T , we have n nodes, n×(n−1) edges and

their corresponding attributes, defined as Gi = (Vi, Ei, Ai, Bi), and yi is an assignment

matrix that denotes the matching between the training graph and the reference graph

G4. Then, a sequence of nodes which match the same reference node v4j ∈ G4 are

collected over all the graphs in T . We define these nodes as V T
j = {vTj,1, vTj,2, ..., vTj,l} in

which vj,i means the j-th node in training graph Gi. Then, the corresponding attributes

set ATj can be extracted from the corresponding Gi to be used to learn the model graph

G∗ via the following process.

To learn a node V ∗j in the model graph G∗, there are l positive training nodes V T
j

with their attributes ATj . All the attributes in ATj are labeled according to depictive

styles. Instead of manually labelling the style for each image, we use K-means clustering

based on chi-square distance to build cj clusters automatically, Cji denotes the i-th

98



Chapter 5. Learning Graphs to Model Visual Object Across Different Depictive Styles

cluster for ATj , and attributes in the same cluster indicate the similar depictive styles.

Accordingly, the attributes A∗j for the node V ∗j ∈ G∗ actually include cj elements,

A∗j = {a∗j1, a∗j2, ..., a∗jcj}. For each a∗ji, it is learned by minimizing the following objective

function:

E(a∗ji) =
λ

2
‖a∗ji‖2 +

1

N

N∑
s=1

max{0, 1− f(as) < a∗ji, as >} (5.11)

from N example pairs (as, f(as)), s = 1, ..., N , where

f(as) =

{
1 if as ∈ Cji
−1 if as ∈ Nj

(5.12)

where Nj is the negative sample sets for the node V ∗j and as is a node attributes from

the training set. In our experiments, we use all the attributes that are in T but do not

belong to ATj , and the background patch attributes to build the negative samples set.

Hence, this learning process transfers to an SVM optimization problem, which is solved

by using stochastic gradient descent [126]. Edges E∗ and corresponding attributes B∗

also can be learned in a similar way. We account for different depictive styles by

constructing a distinct SVM for each one; so in effect the multi-labeled nodes in G∗ are

in fact multiple SVMs.

5.4.2 Learning the parameter β

The aim of this step is to learn a weight vector β to produce best matches of the

reference graph G4 with the training examples T = (< G1, y1 >, ..., < Gl, yl >) of

the class. Let ŷ denote the optimal matching between the reference graph G4 and a

training graph Gi ∈ T given by

ŷ(Gi;G
4, β) = arg max

y∈Y (Gi)
S(G4, Gi, y;β), (5.13)

where Y (Gi) ∈ {0, 1}n×n
′

defines the set of possible assignment matrix for the input

training graph Gi. Inspired by the max-margin framework [142] and following [26], we

learn the parameter β by minimizing the following objective function:

LT (G4, β) = r(G4, β) +
C

l

l∑
i=1

∆(yi, ŷ(Gi;G
4), β). (5.14)

In this objective function r is a regularization function, ∆(y, ŷ) a loss function, drives

the learning process by measuring the quality of a predicted matching ŷi against its

ground truth yi. In our case, since all the nodes have been arranged with the same

order of the reference graph, we have yi = I, an identity matrix with size n × n. The

parameter C controls the relative importance of the loss term.
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To optimize this function, we first separate the graph G4 from joint feature map

Φ(G4, G, y). Since G4 is a single-labeled graph, from Eq. (5.7) we have

Φ(G4, G, Y ) = [· · · ;SA(a4i , af(i)); · · · ;SE(b4ij , bf(i)f(j)); · · · ]. (5.15)

We define similarity functions SA and SE are dot products of two attributes vectors:

SA(a4i , af(i)) = a4i · aa, SE(b4ij , bf(i)f(j)) = b4ij · bf(i)f(j) (5.16)

where a4i and b4ij correspond to the node and edge attributes of the reference graph

respectively. Further, we define the attribute vector Θ(G4) and Ψ(G, y) as:

Θ(G4) = [· · · ; a4i ; · · · ; b4ij ; · · · ],

Ψ(G, y) = [· · · ; af(i); · · · ; bf(i)f(j); · · · ]
(5.17)

where Θ(G4) represents all the attributes of G4 and Ψ(G, y) describes the corre-

sponding attributes of G, according to the assignment y. This enables the attributes

of Φ(G4, G, Y ) to be factorized into Θ(G4) and Ψ(G, y), and then the score function

can be rewritten as:

S(G4, G, y;β) = β · Φ(G4, G, Y )

= β · (Θ(G4)�Ψ(G, y))

= (β �Θ(G4)) ·Ψ(G, y)

(5.18)

where � denoted the element-wise product. By substituting w = β �Θ(G4) into Eq.

(5.13), we obtain a linear form for the optimal assignment:

ŷ(G;w) = arg max
y∈Y (G)

w ·Ψ(G, y), (5.19)

This transforms the learning objective in Eq. (5.14) into a standard formulation of the

structured support vector machine (SSVM):

LT (w) =
1

2
‖w‖2 +

C

l

l∑
i=1

∆(yi, ŷ(Gi;w). (5.20)

This function can be minimized by various optimization approaches to estimate the

parameters w [142, 79, 133], which leads to the weight vector β.

Loss function. The loss function ∆(y, ŷ) drives the learning process by measuring

the quality of a predicted matching ŷ against its ground truth y. We follow [26] to

define

∆(y, ŷ) = 1− 1

‖y‖2F
y · ŷ, (5.21)
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Algorithm 2: Model Learning Procedure.

Input : Positive Examples P = {(I1, B
1
1 , B

2
1 , ..., B

n
1 ), ..., (Il, B

1
l , B

2
l , ..., B

n
l )},

Negative Images N = {J1, J2, ..., Jm}
Output: Model M =< G∗, β >

1 run Graph Extraction on P to produce T = (< G1, y1 >, ..., < Gl, yl >)
2 for j := 1 to n (number of nodes) do
3 for i := 1 to l (number of positive examples) do

4 extract features from part bounding box Bj
i

5 Add to Cj
6 end
7 run k −means(Cj , k), producing k clusters, denote as cjk.
8 for s := 1 to k do
9 run Eq. 5.11 on the data of cjk to learn a∗js as the sth label for jth node

in G∗.
10 end

11 end
12 Output G∗.
13 learning β from T via. Eq. 5.14 and Eq. 5.20.
14 Output M =< G∗, β >

where ‖ · ‖2F is the Frobenius norm.

Optimization. Many approaches have been proposed to train SSVM. This problem

amounts to solving a convex quadratic program with an exponentially large number of

constrains. Solutions for this optimization problem either: (i) reduce it to an equiva-

lent polynomial-size reformulation and use methods like SMO [133] or general-purpose

solvers: or (ii) work with the original problem by considering a subset of constrains,

and employ cutting plane or stochastic sub-gradient methods. For solving the problem

in Eq. (5.20), we use the efficient cutting plane method proposed by Joachims et al.

[79]. This method differs from other SVM training approaches by considering individ-

ual data points as well as their linear combinations as potential support vectors. This

leads to a smaller set of cutting plane models, and thus more efficient training.

5.4.3 Features

In general, any graph representation satisfying the condition of dot product similarity

of Eq. 5.16, which leads to the linearization in Eq. 5.18, can be learned with the above

learning approach. In this work, we use histogram distributions to represent the nodes

and edges features in our graph model. The similarity value between two attributes in

this graph is then computed as their dot product.

Node Attributes. For node attributes a, describing the local appearance of node v,

we could adopt the histogram of gradient bins such as SIFT [92], HOG [34], and their

variants, given their effectiveness. In our proposed model, we used a 31-dimension HOG
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descriptor, following [46], which computes both directed and undirected gradients as

well as a four dimensional texture-energy feature. The image patch is first divided into

6× 6 non-overlapping cells. For each cell, a 1D histogram of gradient orientations over

pixel in that cell is accumulated. Then, the gradient at each pixel is described into one

of nine orientation bins, and each pixel votes for the orientation of its gradient, with

a strength that depends on the gradient magnitude at that pixel. For colour image

the channel with the largest gradient at that pixel is used. This leads to a directed

orientations histogram. A second histogram of undirected orientations of half the size

is obtained by folding the directed one into two. After that, both the directed and

undirected histograms of each cell are normalized with respect to the gradient energy

in a neighborhood around it. Let a block of the given HOG cell be a 2 ∗ 2 sub-array

of cells, four normalisation factors are then obtained as the inverse of the norm of

the four block that contain the cell. This leads to a 4 × (2 + 1) × 9 dimension vector

and then the resulting vector is projected down to (2 + 1) × 9 elements by averaging

corresponding histogram dimension. In addition, a four dimensional texture-energy

feature is computed, for a total of 4 + 3 × 9 dimensional vector representing the local

gradient information inside a cell.

Edge Attributes. We follow [26] to use the histogram of log-polar bins edge attribute

to describe the geometric relationship between two nodes, as illustrated in figure 5-7.

Consider an edge eij from node vi to node vj . The vector from vi to vj can be

expressed in polar coordinates as (ρij , θij). Two histograms - one for length and another

for angle - are build and concatenated to quantize the edge vectors. For length, we use

uniform bins of size nl in the log space with respect to the position of vi, making the

histogram more sensitive to the position of nearby points. The log-distance histogram

Lij is constructed on the bins by a discrete Gaussian histogram centred on the bins for

ρij :

Lij(k) = tL(k −m), s.t. tL(x) = N (0, σL), ρi,j ∈ binρ(m) (5.22)

where N (0, σL) represents a discrete Gaussian window of size σ centred on µ, and

binρ(k) denotes the kth log distance bin from the center of vi. For angle, we use

uniform bins of size 2π/nP . The polar-angle histogram Pij is constructed on it in a

similar way, except that a circular Gaussian histogram centered on the bin for θi,j is

used:

Pij(k) = tP (k −m), s.t. tP (x) = N (0, σP ) +N (±nP , σP ), θi,j ∈ binθ(m) (5.23)

where additional Gaussian terms in tP (x) include the circular bins for angle. Then, the

final histogram composed by concatenating the log-distance Lij and the polar-angle

Pij , histograms is defined as the attributes for edges eij , so that bij = [Lij ;Pij ], which

is asymmetric (bij 6= bji). In this work, we used nL = 9, nP = 18 and σL = σP = 5.
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Figure 5-7: Histogram of log-polar bins for edge attributes. Each histogram is represented by
a discrete Gaussian window centered at a bin. (a) Log-distance ρij (left) and its histogram with
9 bins (right). (b) Polar-angle θij (left) and its histogram with 18 bins (right).[26]

5.5 Experimental Evaluation

Our class model has the potential to be used in many applications, here we use detection

and classification - and cross-depiction detection and classification in particular. All

the experiments are evaluated on our Photo-Art-50 dataset.

5.5.1 Detection

In the detection task, we split the image set for each object class into two random

partitions, 30 images for training (15 photos and 15 art) and the rest are used for

testing. The dataset contains the groundtruth for each image in the form of bounding

boxes around the objects. During the test, the goal is to predict the bounding boxes for

a given object class in a target image (if any). The red bounding boxes in Fig. 1-11 are

predicted in such way. In practice the system will output a set of bounding boxes with
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corresponding scores, and we can threshold these scores at different points to obtain a

precision-recall curve across all the test set. For a particular threshold the precision is

the fraction of the reported bounding boxes that are correct detections, while recall is

the fraction of the objects found. One scores a system by the average precision (AP)

of its precision-recall curve across a test set. mAP(mean of the AP) is s the average

AP over all objects.

Since our learning process (in Sec. 5.4) needs pre-labeled training graphs, n dis-

tinctive key-points have to be identified in the target images. In our experiment, we set

n = 8. In order to ease the labelling process, rather than using the manually labeling

process, we instead use a pre-trained DPM model to locate the object parts across the

training set, as only an approximate location of the labeled parts is enough to build

our initial model. This idea is borrowed from [169], which uses a pictorial structure

[118] to estimate 15 key-points for the further learning of a 2.5D human action graph

for matching. Also notice that DPM is only used to ease the training data labelling

process, it is not used in our proposed learning and matching process. During the test

process, we match each learned object class model with the hypothesis graph extracted

from an input test image, as detailed illustrated in Sec 5.3.2. However, we do admit

that our success depend on the DPM performing well in the cross-depiction task when

applying the DPM model directly on the training data (we need this step because we

need part-location information in our training process). But if we can obtain ground-

truth of the part locations of the training data, we do not need the DPM anymore

and we believe our algorithm will be benefit from the more accurate training parts

information.

The detection score is computed via Eq. (5.9) and the predicted bounding box is

obtained by covering all the matched nodes.

We trained a two component model, where the ‘component ’ is decided by the ground

truth bounding box ratio as in DPM [46]. Each node in the model is multi-labeled by

two labels (split automatically by K-means as illustrated in Sec. 5.4.1), that correspond

to the attributes of the photo and art domains. Figure 5-8 shows some detections we

obtain using our learned models. These results show that the proposed model can

detect objects correctly across different depictive styles, including photos, oil paintings,

children’s drawings, stick-figures and cartoons. Moreover, the detected object parts are

labeled by the graph nodes, and larger circles represent more important nodes, which

are weighted more during the matching process, via β.

We evaluated different aspects of our system and compared them with a state-of-

art method, DPM [46], which is a star-structured part-based model defined by a ‘root’

filter plus a set of parts filters. A two component DPM model is trained for each

class following the setting of [46]. To evaluate the contribution of the mixture model

and the importance of the weight β, we also implemented other two methods, multi-
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Person

Car
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Giraffe

Bottle
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Bike

Horse

Figure 5-8: Examples of high-scoring detections on our cross-depictive style dataset, selected
from the top 20 highest scoring detections in each class. The framed images (last one in each
class) illustrate false positives for each category. In each detected window, the object is matched
with the learned model graph. In the matched graph, each node indicates a part of the object,
and larger circles represent greater importance of a node, and darker lines denote stronger
relationships.
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Figure 5-9: Precision/Recall curves for models trained on the horse, person and giraffe cate-
gories of our cross-domain dataset. We show results for DPM, a single labeled graph model with
learned β, our proposed multi-labeled model graph with and without learned β. In parenthesis
we show the average precision score for each model.

labeled graph without weight (Graph+M-label) and single-labeled graph with weight

(Graph+β). The weight β can not be used on the DPM model, because it encodes no

direct relation between nodes under the root.

Table 5.4 compares the detection results of using different models on our dataset.

Our system achieves the best AP scores in 42 out of the 50 categories. Furthermore, our

final mAP (.891) outperforms DPM (.835) by more than 5%. Figure 5-9 summarizes

the results of different models applied on the person, horse and giraffe categories, chosen

because these object classes appear commonly in many well-known detection datasets.

The PR-curve of other classes can be found in the Appendix C. We see that the

use of our multi-labeled graph model can significantly improve the detect accuracy.

Further improvements are obtained by using discriminative weights β.

5.5.2 Classification

Our proposed model can also be adapted for classification. Like any classification task,

ours consists of two main steps, training and testing. Training requires of learning a

class model, exactly the same procedure as in the previous section. The testing process

determines the class by choosing the class which has the best matching score with the

query image.

Using our dataset we conduct experiments designed to test how well our proposed

class model generalised across depictive styles. Like the detection experiments, we

randomly split the image set for each object class into two partitions, 30 images for

training (15 photos and 15 artworks) and the rest are used for testing. Unlike from the

detection task, we test on photos and artworks separately to compare the performance

on these two domains. The classification accuracy is determined as the average over 5

random splits.
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Methods Art Photos

BoW[147] 69.47± 1.1 80.38± 1.1
DPM[46] 80.29± 0.9 85.22± 0.6

Our 89.06± 1.2 90.29± 1.3

Table 5.3: Comparison of classification results for different test cases and methods.

For comparison with alternative visual class models we compare with two other

methods: BoW and DPM. BoW classifier is chosen because it performs well and will

help us assess the performance of such a popular approach to the problem of cross-

depiction classification. We follow Vedaldi et al [147] using dense-sift features [15] and

K-means (K = 1000) for visual word dictionary construction. Finally, it uses a SVM

for classification. The second is the DPM [46], adapted to classification. Given a test

image, the object with highest score among 50 class models is the output class label.

Classification accuracy of different methods in various testing cases, are shown in

table 5.3. It shows that our method outperforms the BoW and DPM method in all

cases, especially when the test set are artworks only. Our multi-labeled modelling

method effectively train nodes of the graph in separately depictive styles and then

combine them in a mixture model to global optimization. Experimental results clearly

indicate that our mixture model outperforms state of the art methods which attempt to

characterize all depiction styles in a monolithic model. We also made tests on some of

the cross-domain literature we cited such as [121, 164] and a method that is not depend

on photometric appearance, using the edgelets [51]. But none of them work well on

such a high-variety depiction dataset. We report DPM and BoW (with Dense-SIFT)

only because they consistently out-perform those methods, with no additional input

from us.

Our system is implemented by matlab, running on a Core i7 CPU@2.67GHz×8

machine. The average training time for a single class is 4 to 5 minutes (parts labelling

process is not included). The average testing time of a single image is 4.5 to 5 minutes,

since the graph matching takes long time.

5.6 Discussion and Conclusion

We make three conclusions for this chapter, one in line with prior art, the other we have

not seen elsewhere. The “in-line” conclusion is that structural information is important,

even in a single domain. This is not new, but our experiment on classification provides

further evidence that a graph model which captures inter-nodes relations directly is of

value: the star-like graph of DPM out-performs BoW in classifying photographs alone,

and we out-perform DPM in the same task. More importantly, our paper provides

evidence that multi-label nodes are useful representations in coping with features that
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exhibit very wide, possibly discontinuous distributions. There is no reason to believe

that such distributions are confined to the problem of local feature representation in art

and photographs; it could be an issue in many cross-domain cases. Our final conclusion

is then: computer vision is likely to benefit both theoretically and in applications, if

the question of recognition regardless of depiction is more fully understood.

Our models are already capable of representing highly variable object classes de-

picted in wide styles by using a deeper part hierarchies, but we would like to move

towards richer models. In the future, we would like to build a model whose parts or

nodes are reusable among different object models. A new model can be assembled from

several pre-trained models, then used for detecting and classifying the new object. This

will be discussed in the future work.
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G+ml .794 .982 .774 .899 .911 .961 .965 .886 .858
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Table 5.4: Detection results on our cross-depictive style dataset (50 classes in total): average
precision scores for each class of different methods, DPM, a single labeled graph model with
learned β, our proposed multi-labeled model graph with and without learned β. The mAP (mean
of average precision) is shown in the last column.
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CHAPTER 6

CONCLUSIONS

Cross-depiction object recognition is significantly under-explored by the Computer Vi-

sion community. Yet there is a deep appeal in not discriminating between depictive

styles, not just because it echoes an impressive human ability but also because it opens

new applications. Providing machines with the ability to deal with objects regardless of

the way in which they are depicted forces us to consider representations of objects that

are more general than appearance in any one depictive style (including photography).

In this thesis we examined models for recognising objects across different depictive

styles. Specifically, we tested the hypothesis that

object class representation is the key to solve the cross-depiction

object recognition problem.

Evidence supporting this hypothesis is found in the significant accuracy drop exhib-

ited by state-of-art – especially when training and testing across different depictions

(see Chapter 4 and Chapter 5). However, our representation exhibits no such fall,

remaining stable across depictions.

The drop of state-of-art is because Computer Vision is premised on (photographic)

appearance. For example, the formation of visual codewords in Bag-of-Words assumes

low variation in feature appearance and is biased towards ‘photographic words’. How-

ever, appearance exhibits a much wider variation in the cross depiction problem and

evidence is given in Chapter 1 - we show the inter-depiction divergencies are bigger

than inter-category divergencies.

Humans are able to recognise objects in a seemingly unlimited variety of depictions.

For example, the stick-man in Figure 1-3 and the breakfast-face shown in Figure 1-10.

Both these examples suggest that the topology is important for recognition. We use

graphs to represent topological structures. In Chapter 4, we use a median graph model,

and a weighted graph is proposed in Chapter 5.
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However, structure alone only defines very wide classes [167]. Hence, other informa-

tion is needed for finer-grade classification. Shape is a natural representational element.

We showed that an object class can be characterised by the qualitative shape of object

parts and their structural arrangement. However, this model is still not strong enough

when more depictive styles are included. To account for the wider variation in visual

appearance distributions, we use multi-labeled graphs.

The above representation is stable for most rigid objects. But we acknowledge that

these representational elements may not work with some natural objects such as water,

smoke etc. Then there must be some other ways to represent these kind of objects.

In the following sections, we summarized the technical works followed by a future

plan and final listing of the conclusions of this thesis.

6.1 Summary of Work

With the challenges raised in Chapter 1, we first reviewed the state of the art in

object recognition in Chapter 2, showing that although many algorithms have been

proposed to address the object detection and classification, there is very little research

in computer vision on the problem of recognising objects regardless of depictive style.

In this thesis, we make an effort to fill this literature gap.

Our first attempt motivated by the artistic methodology and psychology. We em-

ployed pattern recognition technology in Chapter 3 to find out whether common sim-

ple shapes exist in natural images. The discovery of the work is unique, so far as

we know: regions in image segmentation naturally form classes that correspond to

simple, easily recognised shapes, upon given appropriate region descriptions and well-

designed classifiers. We employed two shape descriptors and three different shape

producers(segmentation methods). And mean-shift and a self-designed clustering al-

gorithm are used to classify regions into primitive shapes. In short, we have provided

empirical evidence to suggest that some of regions in segmentations can be classified as

primitive shapes, upon given appropriate region descriptions and well-designed classi-

fiers.. They are ‘features in the signal’, and as such can be of use to many applications

in computer vision. An application of scene classification is implemented based on this

research.

We argue that an object class can be characterised by the qualitative shape of

object parts and their structural arrangements in Chapter 4. Hence we used a graph of

nodes and arcs in which qualitative shapes such as triangle, square, and circle to label

the nodes. More exactly our model is a hierarchy of levels, yielding a coarse-to-fine

representation. Each level contains an undirected graph of nodes and arcs. Nodes

between levels are connected via parent-child arcs, which are directed. Child nodes are

nested inside their parent. We took the lead in showing that it is possible to learn models
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of object classes that generalise across depictive styles, in the sense that it is possible to

learn a model using one style but classify objects depicted in other styles. Experiments

we presented in Chapter 4 show that our proposal method performs better than the

traditional visual appearance based method in cross-depiction problems (including to

unseen depictive styles), in mixed problems, and in art-only problems.

With a much more challenging cross-depiction dataset was established in Chapter

5. It forced us to explore ways to capture the wide variation in visual appearance

exhibited by visual objects across depictive styles. In this chapter, we first showed the

gap between photorealist images and artworks exists both visually and statistically.

Based on this new dataset, we evaluated leading recognition and detection techniques

and two state-of-the-art domain adaptive methods for cross-depiction tasks; no one

performs well. We then introduced a weighted multi-labeled graph model in which we

account for the wide variation in feature distribution and experiments show that our

representation is able to improve upon Deformable Part Models for detection and Bag

of Words models for classification.

After several experiments, we draw two conclusions, one is consistent with prior art,

the other we have not seen elsewhere. The “in line” conclusion is that structural infor-

mation is important, even in a single domain. This is not new, but our experiment on

classification provides further evidence that a graph model which captures inter-nodes

relations directly is of value: the star-like graph of DPM out-performs BoW in classify-

ing photographs alone, and we out-perform DPM in the same task. More importantly,

our paper provides evidence that multi-label nodes are useful representations in coping

with features that exhibit very wide, possibly discontinuous distributions. There is no

reason to believe that such distributions are confined to the problem of local feature

representation in art and photographs; it could be an issue in many cross-domain cases.

6.2 Future Work

Previous chapters have shown that we made our efforts to explore and study this new,

challenge and important area in several aspects. We try to open a new area but not

to close one. Our research and results are a first step towards depiction invariant

modelling. There are several works need to be done in the future. For example, we

need to more fully investigate the way in which the distribution of the description of a

single object part is represented. Currently we use multi-label nodes, which is a discrete

and frequentist approach to what is a potentially continuous and Bayesian problem;

whether the additional computational costs of a more principled approach is of value

is an open question, and one that can only be properly investigated with a much larger

database than is available to anyone at present.

Moreover, the number of nodes in our current graphical model is fixed to 8, to
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balance the accuracy and efficiency. We plan to vary the number of nodes for each

model on a per-class basis. Some simple objects like bottles, cups may need less parts

to represent, while some complicated objects such as person, cars and bicycles needs

more parts. We suspect this may be related to the changing rate of object boundary,

but more experiments and observation are needed.

Deformable part-based model [46] is an elegant framework to model visual object

class. Its effectiveness in cross-depiction object detection and classification has been

shown in table 5.3 and 5.4. Although it performs not as good as ours, we believe the

main reason is caused by the single labelled part filters. Hence, if we can join our

multi-labeled theory with the DPM, ie, multi part filters at each part location in each

DPM model, we believe the results will be boosted, not to mention that the latent

SVM optimization is a much more faster process than graph matching. Most recently,

we found Yang et al proposed a DPM model allow for flexible mixtures-of-parts [168],

which can be used as a good start to implement multi-labels DPM.

Primitive shapes can also be included in our current multi-labelled model. In this

way, both the abstraction information of the region and the fine detailed local features

are included in our model. Based on the conclusion we made in Chapter 4 – abstraction

brings more robustness to non-salient variations, the improved model may improve the

performance on cross-depiction object detection and classification.

And some other interesting directions for the future would be in applications, we

list some showing as following sub-sections.

6.2.1 Incremental learning of Models

In the current work, we are applying an off-line training strategy, which means the

object class model is learned from fixed number of training images once. However, as

we know, there seems no bounding of depictive styles, so we want an visual class model

can be updated when new data come in. In other words, we want an incrementally

way to learn the visual class models.

To fulfill this task, at least three challenges have to be addressed. At first, updating

the appearance model. The part appearance templates in our current model are learned

using a leaner SVM. So if we want to learn the appearance model incrementally, we need

an incrementally SVM. Current state-of-the-art of incremental support vector machine

learning is proposed by Cauwenberghs and Poggio [21]. They consider incremental

learning as an exact on-line method to construct the solution recursively, one point

at a time. The key is to retain the Kuhn-Tucker (KT) conditions on all previously

seen data, while “adiabatically” adding a new data point to the solution. The second

challenge is to update the structure. Since the structural information of our model is

learned using SSVM, we need an incrementally SSVM. To our knowledge, incrementally

SSVM is still a blank in computer vision and machine learning. The third problem
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need to be addressed for incremental learning models is how to decide the styles of the

incrementally input images. The essence of our model is ‘multi-labels’ - we learn the

object part templates separately according to the depicted styles. When a new data

comes in, we need to decide which style it belongs to or it might be a new style we have

never seen before in the model. Hence, a style classifier is required and it also need to

has the ability to detect new styles.

6.2.2 Assembly Modelling and Generalised Matching

Assembly modelling is a technology used by CAD (computer-aided design) system to

handle multiple parts within a product. The parts within an assembly are represented

as solid models. Wouldn’t it be useful if a new visual class model can be assembled

by the parts of other pre-trained models? In other words, parts are reusable among

different object models.

Our models are already capable of representing highly variable object classes de-

picted in wide styles by using a deeper part hierarchies, but we would like to move

towards richer models. In the future, we would like to build a model whose parts or

nodes are reusable among different object models. A new model can be assembled from

several pre-trained models, then used for detecting and classifying the new object. We

call this as “generalised matching”, by which means we can detect the presence of new

objects we have not trained on.

This application will be useful when one wants to detect some ‘unusual’ objects,

such as a ‘people with horse mask’ or a ‘people with bull head’ as we shown in the

Figure . The number of this kind of objects is limited, so it is hard to find enough such

objects to train a model. Then, assembly modeling will be helpful - such a model can

be assembled by a ‘people body part’ model and a ‘horse head part’ model. It will also

be very helpful when people want to detect and recognise the visual objects not existed

in the real world, Mythological creatures (Figure 1-4), for example, have never existed

but are recognisable nonetheless. Most of these objects models can be assembled by

several other real existing objects’ parts. These objects are the target of generalised

matching.

Moreover, this research will extend our work from the challenges of ‘Category Level’

to the ‘Semantic Level’, ie, to address the ambiguous meanings of the same image.

There are mainly two reasons to cause the ambiguous. The first one is because of

the occlusion. Take the rabit/duck head in Figure 2-3 as an example, if the body

part (either a rabbit body or a duck body)is also shown, there will be no ambiguous

anymore. This is also true for the face/candle example. Another reason that cause the

ambiguous is the multiple high response between the query image and trained models.

This actually happens in both human and computer vision. For human, when we

observe an ambiguous image, there must be multiple models in our memory have been
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recalled. For a computer, there must be multiple pre-trained models which are matched

with the query image with very close and high recognise score. For example, the input

of duck/rabit head can at least match a duck and a rabbit model with high response.

A normal way we deal with this problem in computer vision is simply to choose the

highest one or set a threshold to avoid the ambiguous. However, it is worthy to think

about how to address this in an alternative way. Our generalised model provides an

option since we allow for multiple responses for a query.

6.2.3 Convolutional Neural Networks for Cross Depiction Object Mod-

elling

Deep convolutional networks have a long history in computer vision. More recently,

these networks have achieved competition-winning numbers on large benchmark datasets

consisting of more than one million images. Deep convolutional activation features (De-

CAF) [77] is a new visual feature defined by convolutional network weights learned on

a set of pre-defined object recognition tasks. It is also famous because of its domain

adaptation performance so it is good to see how deep feature performs on our such

tasks.

Some researches have been done in this area actually, for example, in [32], Crowley

and Zisserman show that object classifiers, learnt using Convolutional Neural Networks

(CNNs) features computed from virous natural images sources, can retrieve paintings

containing these objects with great success. Specifically, a CNN network, which consists

of 5 convolutional layers and 3 fully-connected layers, is trained solely using ILSVRC-

2012 (Large Scale Visual Recognition Challenge). A feature vector of an image is

obtained by passing it through the network and then the output of the penultimate

layer is recorded. Then, linear-SVM classifiers are learnt using linear-SVM training

data per class in a one-vs-the-rest manner.

We use the exactly same configuration in [32] to test on our cross-depiction dataset,

producing results in table 6.1.

From the results, it clearly shows that deep features behave incredibly well in our

dataset and it shows great potential that the cross-depiction problem can be addressed

via CNNs-based framework. We are planning to build a bigger and more challenge

cross-depiction dataset which allow us to run more test. And may be a fine-tuning

process can be added as Girshick et al did in [60].

6.2.4 Artistic Theme Understanding

There is always a reason (may be not single reason) why artist draw some things or

scenes. Artists want to send a message to the viewers through paintings or art works.

Some artists may want to present their own mood in the painting, some others may

just want to represent a historical events. And many art works are created because
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model BoW FV DPM Our CNNs-fc6[32]

train test SIFT SIFT - - -

Photo Photo 83.69 87.42 87.78 - 96.95
A+P Photo 80.38 83.53 85.22 90.29 96.23
Art Photo 63.93 65.67 77.59 - 90.50

Art Art 74.25 76.74 83.02 - 89.24
A+P Art 69.47 72.82 80.29 89.06 87.13
Photo Art 43.78 47.35 68.30 - 72.54

Table 6.1: Comparison of categorisation performance on our proposed Photo-Art-50 dataset,
with 30 images per category for training. ‘A+P’ stands for a mixture training set of 15 photo
images and 15 art images. The BoW and FV results are from section 5.2.2. DPM and our
results from section 5.5. Please note that we didn’t evaluate our method on ‘single domain
training’ case, such as Photo-Photo, Art-Photo, Art-Art and Photo-Art because our method
is designed to have multiple depictive styles input. CNNs-fc6 means the features are from the
fully-connect layer 6 in the AlexNet, more details can be found in [32].

of revisionary, political or social issues. Not to mention that there are some paintings

are about nature or human experience. And of course some works are just for visual

delight.

Human have the ability to crack and receive the message from art works. Although

one thousand people may have one thousand different deep understandings, there will

be no controversy when comes to the border artistic themes, such as politics vs social

order, religions vs realism, histories vs nature.

We claim that computer vision should be able to translate an art work to a message,

saying, understand the theme of a painting. Our previous work have provided a large

art work dataset for research and the learning of the common properties between photos

and art works may also help. This will be a totally new application and we believe the

community of computer vision will benefit a lot from this research.

6.3 Conclusions

I will now finish this thesis by listing all the conclusions I have reached, ranked based

on importance, from high to low.

1. Models of visual objects should not be premised, even tacitly, on photo-real ap-

pearance or indeed on any particular depictive style at all. Rather, visual object

models should be based on quasi-invariant properties of the objects in a class.

2. Structure is an important information to model the visual object class. Evidence

in Chapter 4 shows an object class can be characterised by the qualitative shape

of object parts and their structural arrangement. Results in Chapter 5 shows

that a model with inter-nodes relations performs better than a star-like graph

such as DPM.
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3. Multi-label nodes are useful representations in coping with features that exhibit

very wide, possibly discontinuous distributions and experiments in Chapter 5

show it is better than using a monolithic model to capture such wide variations.

4. Segmented regions can be categorised as some primitive shapes such as ‘triangle’,

‘square’, or ‘circle’ at a higher rate than randomly generated regions, upon given

appropriate descriptors and well-design classifers : see Chapter 3.

Our final conclusion is then: computer vision will be definitely benefit both theo-

retically and in practically, if the question of recognition regardless of depiction is more

fully understood. This thesis just a start of this new area and it will be glad to see

more computer vision people researching based on our work.
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APPENDIX A

CHOOSING THE ORDER AND RESOLUTION OF ZERNIKE

MOMENTS

The results in the main section of this paper use Zernike moments of order 6, re-

sampled onto a discrete 50 × 50 regular grid of pixels. This choice is justified by

extensive experiments, which are described in this appendix.

We used 3 databases and 3 segmentation algorithms (region producers), so we can

generate 9 region sets. In addition we are also able to create random regions. During

these experiments we used two grid resolutions, 1002 and 502. All regions taken from

real images were subject to a whitening transform and re-sampling onto a grid of

appropriate size, as explained in Sect 3.2.3. Random regions were generated directly

at the correct resolution. We now have 18 sets of regions, harvested from images,

re-sampled at 2 resolutions; and randomly generated regions, which is the same set

but resized at 2 resolutions. We used 8 different orders of Zernike moment, specifically

{4, 6, 8, 10, 12, 15, 30}. In each case we classified using the normalised form as described

in section 3.2.4; that use the absolute value of each element (which removes orientation

dependence) and scale by the first element (which allows for different number of binary

points). This was followed by projection into an eigenframe using PCA; we retained

97% of the eigenenergy.

The next step is clustering. We initiate clustering using meanshift, with bandwidth

automatically set as in section 3.2.5. We complete clustering using agglomerative clus-

tering described in section 3.2.5.

Table A.1 shows the order of Zernike moment used, the full dimension of the Zernike

feature space, the reduced PCA dimension, the bandwidth, and the percentage of re-

gions we were able to classify. The table reports mean figures for the reduced dimension

(rounded to the nearest integer) and for the faction of regions classified. The actual

fraction of regions classified in each particular case can be read from Figure A-1. It can
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Z-order 4 6 8 10 12 15 30

Dimension 14 27 44 65 90 135 495

Reduced-dimension 6 11 18 26 35 66 2

regions classified 0.60 0.63 0.64 0.66 0.67 0.67 1

Table A.1: Zernike moment order (independent variable), dimension of raw feature space,
reduced PCA dimension when keeping 97% of the eigenenergy, and fraction of regions classified;
the latter two being averaged over all nine cases (see text).

be seen that the worst case result occurs when the Bath images (of natural scenes) is

segmented using MSER, where only about 1/3 of regions are classifiable – but compared

to random this is a high value. The highest fraction observed is 1, which occurs for all

cases whenever the Zernike moment order rises above about 30. This is an anomaly

threat which requires an explanation.

Figure A-1: The fraction of significant shapes of different datasets with different segmentors
on different Zernike moment order. The icon pixel size is 50 ∗ 50.

These results show that the fraction of classifiable regions is stable for many orders

of Zernike moments (less than 15). This stability is clearly visible in Figure A-1, which

plots the fraction of regions classified as a function of Zernike moment order.

Unacceptable results are obtained if the moment is too high (30 or more). In these

cases the PCA dimension falls dramatically, and all regions are clustered into a single

class. An explanation of this result will be given in the following section. Interestingly,

the answer is not the resolution of the re-sampling grid: we obtained nearly identical

results for the 1002 case.
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Figure A-2: Zernike Polynomials, for order 0,1,2,3,4; arranged into groups. Top row shows
the absolute value of the polynomial, lower row is the complex phase.

A.1 Anomalous Results for High Order Zernike Moments

In the above experiments, we observed that when the order of moment is bigger than

30 or more, the data will be crowded into one or two dimension after using PCA. This

requires an explanation.

Zernike moments up to order 4 are shown in Figure A-2. Each order, n, has n+ 1

basis, for m = −n,−n + 2, ...n − 2, n. Moments of even order have some component

such that m = 0, which are easily identified in Figure A-2 because the complex phase

appears as a flat white colour, showing it to be constant. We will explain the sudden

fall in PCA dimension using only these components, because they are representative of

the order as whole.

Figure A-3: Cross-section through n = 20,m = 0 at resolution 500 (blue), and 50 (red). The
effect of aliasing is clearly visible close to the edges of the polynomial (close to ±1).

As seen in Figure A-3, a cross-section through these basis functions shows that

are rectified waveforms. Comparison with Figure A-2 confirms that the frequency of

oscillation rises with distance from the origin at 0. This results in aliasing that is most

noticeable at the perimeter of the disc – clearly visible in Figure A-3. On a discretely

sampled plane, these basis functions alias badly close to the perimeter of the unit

disc. This is clearly seen in Figure A-4, which reconstructs two simple shapes from
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Figure A-4: Reconstruction icons of the Zernike moment by using moments 6, 10, 20, 30, 40, 50.
The original regular shapes (triangle and square) are shown on the left. The top two rows are
502 image, the bottom two 5002 images. When the moment order is bigger than 40, the aliasing
occurs; then all shapes are reconstructed with a surrounding ring.

Zernike moments of increasing order. At high orders the aliasing effects dominate the

reconstruction – both are reconstructed as a ring like object. This explains why we

observe a fall in the PCA dimension for high order Zernike moments: aliasing means

that they encode ring-like objects.

This conclusion is re-enforced when we consider RMS reconstruction error.

RMSErrors =

√∑n
i=1 (ŷi − yi)2

n
(A.1)

in which ŷi is the reconstruction shape pixel, yi is the original shape pixel and n is the

number of pixels of this shape. Figure A-5 shows the reconstruction error for a triangle

Figure A-5: The error as a fraction of original shape (a triangle) with the increasingly moment
order. The red curve is the 100*100 resolution one and the green curve is 200*200.

124



Appendix A. Choosing the Order and Resolution of Zernike Moments

on two grid sizes (1002 and 2002). This is seen to fall as the order of the moment rises

from 1 to a minimum at about 45, after which the error rises sharply.

The exact location of the minimum depends on the shape of the region – triangles

are quite robust. Repeating the experiment on 10808 regions harvested from the MIT

database using thresholding segmentation method, we found the minimum occurs as

low as order 10 for some shapes, and as high as 59 for others.

A.2 Appendix Conclusion

These results show that choosing a Zernike moment of 6 and grid resolution of 502 make

little difference to our classifier. The choice represents a balance between computational

efficiency representational accuracy.
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APPENDIX B

CONFUSION MATRIX FOR EACH TEST CASE IN

CHAPTER 4

B.1 Training on Photos Alone

In this experiment, only photos (real object photos) are trained, with different numbers.

And we test on photos and artwork separately. Three methods are used.
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Confusion matrix (60% accuracy)
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Figure B-1: Train on 3 photos each class, test on 15 photos each class, using (a): Dense
SIFT [147]. (b): Structure Only[167]. (c): Proposal Method

Confusion matrix (70% accuracy)
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Confusion matrix (16 % accuracy)
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Confusion matrix (61% accuracy)
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(c)

Figure B-2: Train on 5 photos each class, test on 15 photos each class, using (a): Dense
SIFT [147]. (b): Structure Only[167]. (c): Proposal Method
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Confusion matrix (34 % accuracy)
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Confusion matrix (52 % accuracy)
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Figure B-3: Train on 3 photos each class, test on 15 artwork each class, using (a): Dense
SIFT [147]. (b): Structure Only[167]. (c): Proposal Method

Confusion matrix (38 % accuracy)
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Figure B-4: Train on 5 photos each class, test on 15 artwork each class, using (a): Dense
SIFT [147]. (b): Structure Only[167]. (c): Proposal Method

Confusion matrix (43 % accuracy)
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Confusion matrix (19 % accuracy)
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Confusion matrix (63 % accuracy)
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Figure B-5: Train on 8 photos each class, test on 15 artwork each class, using (a): Dense
SIFT [147]. (b): Structure Only[167]. (c): Proposal Method

Confusion matrix (47 % accuracy)
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Confusion matrix (23 % accuracy)
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Confusion matrix (64 % accuracy)

 

 

1 2 3 4 5 6 7 8 9 1011121314151617181920

001.american−flag

002.fried−egg

003.beer−mug

004.face

005.butterfly

006.car−side

007.horse

008.baseball−bat

009.covered−wagon

010.desk−globe

011.elephant

012.goldfish

013.bike

014.palm−tree

015.pyramid

016.starfish

017.teapot

018.teddy−bear

019.unicorn

020.zebra
0

5

10

15

(c)

Figure B-6: Train on 10 photos each class, test on 15 artwork each class, using (a): Dense
SIFT [147]. (b): Structure Only[167]. (c): Proposal Method
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B.2 Training on Artwork Alone

In this experiment, only Artwork (paintings, line drawings .etc) are trained, with dif-

ferent numbers. And we test on photos and artwork separately. Three methods are

used.

Confusion matrix (57 % accuracy)
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Confusion matrix (59 % accuracy)

 

 

1 2 3 4 5 6 7 8 9 1011121314151617181920

001.american−flag

002.fried−egg

003.beer−mug

004.face

005.butterfly

006.car−side

007.horse

008.baseball−bat

009.covered−wagon

010.desk−globe

011.elephant

012.goldfish

013.bike

014.palm−tree

015.pyramid

016.starfish

017.teapot

018.teddy−bear

019.unicorn

020.zebra
0

5

10

15

(c)

Figure B-7: Train on 3 artwork each class, test on 15 artwork each class, using (a): Dense
SIFT [147]. (b): Structure Only[167]. (c): Proposal Method

Confusion matrix (59 % accuracy)
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Confusion matrix (19 % accuracy)
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Confusion matrix (62 % accuracy)
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Figure B-8: Train on 5 artwork each class, test on 15 artwork each class, using (a): Dense
SIFT [147]. (b): Structure Only[167]. (c): Proposal Method

Confusion matrix (35 % accuracy)

 

 

1 2 3 4 5 6 7 8 9 1011121314151617181920

001.american−flag

002.fried−egg

003.beer−mug

004.face

005.butterfly

006.car−side

007.horse

008.baseball−bat

009.covered−wagon

010.desk−globe

011.elephant

012.goldfish

013.bike

014.palm−tree

015.pyramid

016.starfish

017.teapot

018.teddy−bear

019.unicorn

020.zebra
0

5

10

15

(a)

Confusion matrix (11 % accuracy)
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Confusion matrix (56 % accuracy)
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Figure B-9: Train on 3 artwork each class, test on 15 photos each class, using (a): Dense
SIFT [147]. (b): Structure Only[167]. (c): Proposal Method
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Confusion matrix (42 % accuracy)
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Confusion matrix (15 % accuracy)
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Confusion matrix (59 % accuracy)
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Figure B-10: Train on 5 artwork each class, test on 15 photos each class, using (a): Dense
SIFT [147]. (b): Structure Only[167]. (c): Proposal Method

Confusion matrix (49 % accuracy)
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Confusion matrix (22 % accuracy)
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Confusion matrix (64 % accuracy)

 

 

1 2 3 4 5 6 7 8 9 1011121314151617181920

001.american−flag

002.fried−egg

003.beer−mug

004.face

005.butterfly

006.car−side

007.horse

008.baseball−bat

009.covered−wagon

010.desk−globe

011.elephant

012.goldfish

013.bike

014.palm−tree

015.pyramid

016.starfish

017.teapot

018.teddy−bear

019.unicorn

020.zebra
0

5

10

15
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Figure B-11: Train on 8 artwork each class, test on 15 photos each class, using (a): Dense
SIFT [147]. (b): Structure Only[167]. (c): Proposal Method

Confusion matrix (51 % accuracy)
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Confusion matrix (25 % accuracy)
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(b)

Confusion matrix (67 % accuracy)
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Figure B-12: Train on 10 artwork each class, test on 15 photos each class, using (a): Dense
SIFT [147]. (b): Structure Only[167]. (c): Proposal Method
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B.3 Training a Mixture

In this experiment, both artwork (paintings, line drawings .etc) and photos are trained

as a mixture, with different numbers. And we test on photos and artwork separately.

Three methods are used.
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Figure B-13: Train on 3 artwork+3 photos each class, test on 15 photos each class, using (a):
Dense SIFT [147]. (b): Structure Only[167]. (c): Proposal Method

Confusion matrix (66 % accuracy)
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Figure B-14: Train on 5 artwork+5 photos each class, test on 15 photos each class, using (a):
Dense SIFT [147]. (b): Structure Only[167]. (c): Proposal Method

Confusion matrix (54 % accuracy)

 

 

1 2 3 4 5 6 7 8 9 1011121314151617181920

001.american−flag

002.fried−egg

003.beer−mug

004.face

005.butterfly

006.car−side

007.horse

008.baseball−bat

009.covered−wagon

010.desk−globe

011.elephant

012.goldfish

013.bike

014.palm−tree

015.pyramid

016.starfish

017.teapot

018.teddy−bear

019.unicorn

020.zebra
0

5

10

15

(a)

Confusion matrix (20 % accuracy)

 

 

1 2 3 4 5 6 7 8 9 1011121314151617181920

001.american−flag

002.fried−egg

003.beer−mug

004.face

005.butterfly

006.car−side

007.horse

008.baseball−bat

009.covered−wagon

010.desk−globe

011.elephant

012.goldfish

013.bike

014.palm−tree

015.pyramid

016.starfish

017.teapot

018.teddy−bear

019.unicorn

020.zebra
0

5

10

15

(b)

Confusion matrix (59 % accuracy)
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Figure B-15: Train on 3 artwork+3 photos each class, test on 15 artwork each class, using (a):
Dense SIFT [147]. (b): Structure Only[167]. (c): Proposal Method
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Confusion matrix (55 % accuracy)
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Confusion matrix (63 % accuracy)
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Figure B-16: Train on 5 artwork+5 photos each class, test on 15 artwork each class, using (a):
Dense SIFT [147]. (b): Structure Only[167]. (c): Proposal Method
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APPENDIX C

PRECISION AND RECALL CURVES FOR DETECTION ON

PHOT-ART-50

In this section, we show the Precision/Recall curves for models trained on the 50

categories of our cross-domain dataset. We show results for DPM, a single labeled

graph model with learned β, our proposed multi-labeled model graph with and without

learned β. In parenthesis we show the average precision score for each model.
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MORE DETECTION RESULTS

More detection results are shown in this appendix.

137



Appendix D. More Detection Results

138



Appendix D. More Detection Results

139



Appendix D. More Detection Results

140



Appendix D. More Detection Results

141



Appendix D. More Detection Results

142



Appendix D. More Detection Results

143



Appendix D. More Detection Results

144



Appendix D. More Detection Results

145





BIBLIOGRAPHY

[1] N. Ahuja and S. Todorovic, Learning the taxonomy and models of categories

present in arbitrary images., in ICCV, 2007, pp. 1–8.

[2] N. AHUJA and S. Todorovic, Connected segmentation tree-a joint represen-

tation of region layout and hierarchy, in Computer Vision and Pattern Recogni-

tion, 2008. CVPR 2008. IEEE Conference on, IEEE, 2008, pp. 1–8.
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