18,740 research outputs found

    Transfer learning for operator selection: A reinforcement learning approach

    Get PDF
    In the past two decades, metaheuristic optimisation algorithms (MOAs) have been increasingly popular, particularly in logistic, science, and engineering problems. The fundamental characteristics of such algorithms are that they are dependent on a parameter or a strategy. Some online and offline strategies are employed in order to obtain optimal configurations of the algorithms. Adaptive operator selection is one of them, and it determines whether or not to update a strategy from the strategy pool during the search process. In the field of machine learning, Reinforcement Learning (RL) refers to goal-oriented algorithms, which learn from the environment how to achieve a goal. On MOAs, reinforcement learning has been utilised to control the operator selection process. However, existing research fails to show that learned information may be transferred from one problem-solving procedure to another. The primary goal of the proposed research is to determine the impact of transfer learning on RL and MOAs. As a test problem, a set union knapsack problem with 30 separate benchmark problem instances is used. The results are statistically compared in depth. The learning process, according to the findings, improved the convergence speed while significantly reducing the CPU time

    Building body identities - exploring the world of female bodybuilders

    Get PDF
    This thesis explores how female bodybuilders seek to develop and maintain a viable sense of self despite being stigmatized by the gendered foundations of what Erving Goffman (1983) refers to as the 'interaction order'; the unavoidable presentational context in which identities are forged during the course of social life. Placed in the context of an overview of the historical treatment of women's bodies, and a concern with the development of bodybuilding as a specific form of body modification, the research draws upon a unique two year ethnographic study based in the South of England, complemented by interviews with twenty-six female bodybuilders, all of whom live in the U.K. By mapping these extraordinary women's lives, the research illuminates the pivotal spaces and essential lived experiences that make up the female bodybuilder. Whilst the women appear to be embarking on an 'empowering' radical body project for themselves, the consequences of their activity remains culturally ambivalent. This research exposes the 'Janus-faced' nature of female bodybuilding, exploring the ways in which the women negotiate, accommodate and resist pressures to engage in more orthodox and feminine activities and appearances

    Factors shaping future use and design of academic library space

    Get PDF
    COVID is having immediate and long-term impacts on the use of libraries. But these changes will probably not alter the importance of the academic library as a space. In the decade pre COVID libraries saw a growing number of visits, despite the increasing availability of material digitally. The first part of the paper offers an analysis of the factors driving this growth, such as changing pedagogies, diversification in the student body, new technologies plus tighter estates management. Barriers to change such as academic staff readiness, cost, and slow decision making are also presented. Then, the main body of the paper discusses emerging factors which are likely to further shape the use of library space, namely: concerns with student well-being; sustainability; equality, diversity and inclusion, and decolonisation; increasing co-design with students; and new technologies. A final model captures the inter-related factors shaping use and design of library space post COVID

    Data-to-text generation with neural planning

    Get PDF
    In this thesis, we consider the task of data-to-text generation, which takes non-linguistic structures as input and produces textual output. The inputs can take the form of database tables, spreadsheets, charts, and so on. The main application of data-to-text generation is to present information in a textual format which makes it accessible to a layperson who may otherwise find it problematic to understand numerical figures. The task can also automate routine document generation jobs, thus improving human efficiency. We focus on generating long-form text, i.e., documents with multiple paragraphs. Recent approaches to data-to-text generation have adopted the very successful encoder-decoder architecture or its variants. These models generate fluent (but often imprecise) text and perform quite poorly at selecting appropriate content and ordering it coherently. This thesis focuses on overcoming these issues by integrating content planning with neural models. We hypothesize data-to-text generation will benefit from explicit planning, which manifests itself in (a) micro planning, (b) latent entity planning, and (c) macro planning. Throughout this thesis, we assume the input to our generator are tables (with records) in the sports domain. And the output are summaries describing what happened in the game (e.g., who won/lost, ..., scored, etc.). We first describe our work on integrating fine-grained or micro plans with data-to-text generation. As part of this, we generate a micro plan highlighting which records should be mentioned and in which order, and then generate the document while taking the micro plan into account. We then show how data-to-text generation can benefit from higher level latent entity planning. Here, we make use of entity-specific representations which are dynam ically updated. The text is generated conditioned on entity representations and the records corresponding to the entities by using hierarchical attention at each time step. We then combine planning with the high level organization of entities, events, and their interactions. Such coarse-grained macro plans are learnt from data and given as input to the generator. Finally, we present work on making macro plans latent while incrementally generating a document paragraph by paragraph. We infer latent plans sequentially with a structured variational model while interleaving the steps of planning and generation. Text is generated by conditioning on previous variational decisions and previously generated text. Overall our results show that planning makes data-to-text generation more interpretable, improves the factuality and coherence of the generated documents and re duces redundancy in the output document

    Analysis of reliable deployment of TDOA local positioning architectures

    Get PDF
    .Local Positioning Systems (LPS) are supposing an attractive research topic over the last few years. LPS are ad-hoc deployments of wireless sensor networks for particularly adapt to the environment characteristics in harsh environments. Among LPS, those based on temporal measurements stand out for their trade-off among accuracy, robustness and costs. But, regardless the LPS architecture considered, an optimization of the sensor distribution is required for achieving competitive results. Recent studies have shown that under optimized node distributions, time-based LPS cumulate the bigger error bounds due to synchronization errors. Consequently, asynchronous architectures such as Asynchronous Time Difference of Arrival (A-TDOA) have been recently proposed. However, the A-TDOA architecture supposes the concentration of the time measurement in a single clock of a coordinator sensor making this architecture less versatile. In this paper, we present an optimization methodology for overcoming the drawbacks of the A-TDOA architecture in nominal and failure conditions with regards to the synchronous TDOA. Results show that this optimization strategy allows the reduction of the uncertainties in the target location by 79% and 89.5% and the enhancement of the convergence properties by 86% and 33% of the A-TDOA architecture with regards to the TDOA synchronous architecture in two different application scenarios. In addition, maximum convergence points are more easily found in the A-TDOA in both configurations concluding the benefits of this architecture in LPS high-demanded applicationS

    Machine learning based adaptive soft sensor for flash point inference in a refinery realtime process

    Get PDF
    In industrial control processes, certain characteristics are sometimes difficult to measure by a physical sensor due to technical and/or economic limitations. This fact is especially true in the petrochemical industry. Some of those quantities are especially crucial for operators and process safety. This is the case for the automotive diesel Flash Point Temperature (FT). Traditional methods for FT estimation are based on the study of the empirical inference between flammability properties and the denoted target magnitude. The necessary measures are taken indirectly by samples from the process and analyzing them in the laboratory, this process implies time (can take hours from collection to flash temperature measurement) and thus make it very difficult for real-time monitorization, which in fact results in security and economical losses. This study defines a procedure based on Machine Learning modules that demonstrate the power of real-time monitorization over real data from an important international refinery. As input, easily measured values provided in real-time, such as temperature, pressure, and hydraulic flow are used and a benchmark of different regressive algorithms for FT estimation is presented. The study highlights the importance of sequencing preprocessing techniques for the correct inference of values. The implementation of adaptive learning strategies achieves considerable economic benefits in the productization of this soft sensor. The validity of the method is tested in the reality of a refinery. In addition, real-world industrial data sets tend to be unstable and volatile, and the data is often affected by noise, outliers, irrelevant or unnecessary features, and missing data. This contribution demonstrates with the inclusion of a new concept, called an adaptive soft sensor, the importance of the dynamic adaptation of the conformed schemes based on Machine Learning through their combination with feature selection, dimensional reduction, and signal processing techniques. The economic benefits of applying this soft sensor in the refinery's production plant and presented as potential semi-annual savings.This work has received funding support from the SPRI-Basque Gov- ernment through the ELKARTEK program (OILTWIN project, ref. KK- 2020/00052)

    Enhancing Parkinson’s Disease Prediction Using Machine Learning and Feature Selection Methods

    Get PDF
    Several millions of people suffer from Parkinson’s disease globally. Parkinson’s affects about 1% of people over 60 and its symptoms increase with age. The voice may be affected and patients experience abnormalities in speech that might not be noticed by listeners, but which could be analyzed using recorded speech signals. With the huge advancements of technology, the medical data has increased dramatically, and therefore, there is a need to apply data mining and machine learning methods to extract new knowledge from this data. Several classification methods were used to analyze medical data sets and diagnostic problems, such as Parkinson’s Disease (PD). In addition, to improve the performance of classification, feature selection methods have been extensively used in many fields. This paper aims to propose a comprehensive approach to enhance the prediction of PD using several machine learning methods with different feature selection methods such as filter-based and wrapper-based. The dataset includes 240 recodes with 46 acoustic features extracted from 3 voice recording replications for 80 patients. The experimental results showed improvements when wrapper-based features selection method was used with KNN classifier with accuracy of 88.33%. The best obtained results were compared with other studies and it was found that this study provides comparable and superior results

    How to Be a God

    Get PDF
    When it comes to questions concerning the nature of Reality, Philosophers and Theologians have the answers. Philosophers have the answers that can’t be proven right. Theologians have the answers that can’t be proven wrong. Today’s designers of Massively-Multiplayer Online Role-Playing Games create realities for a living. They can’t spend centuries mulling over the issues: they have to face them head-on. Their practical experiences can indicate which theoretical proposals actually work in practice. That’s today’s designers. Tomorrow’s will have a whole new set of questions to answer. The designers of virtual worlds are the literal gods of those realities. Suppose Artificial Intelligence comes through and allows us to create non-player characters as smart as us. What are our responsibilities as gods? How should we, as gods, conduct ourselves? How should we be gods
    • 

    corecore