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Abstract

Automation and Artificial Intelligence have a
transformative influence on many sectors, and
software engineers are the actors who engineer
this transformation. On the other hand, there is little
knowledge of how automation and Artificial Intelligence
impact software engineering practice. To answer this
question, we conducted semi-structured interviews with
experienced software practitioners across frontend and
backend development, DevOps, R&D, integration, and
leadership positions. Our findings reveal 1) automation
to appear as micro-automation in the sense of
automation of tiny and specific tasks, 2) automation as
a side product of work, and bottom-up driven in software
engineering, and 3) automation as a possible cause
for cognitive overhead due to automatically generated
notifications. Furthermore, we notice that our interview
participants do not expect automation and artificial
intelligence tools to change software engineering’s
essence in the foreseeable future substantially.

1. Introduction

Automation and Artificial Intelligence have a
transformative influence on many sectors. As a
salient example, the transformation that manufacturing
is still undergoing due to increased automation and
deployment of data analytics and Artificial Intelligence
has been coined Industry 4.0 or smart manufacturing [1,
2, 3]. This transformation is characterized by the
convergence of sensor-enabled and networked things in
production (Internet of Things), and thereby enabled
large scale data collection, on the one hand; and
capabilities for large scale, partially online, data
analytics, often enabled by methods from Artificial
Intelligence. This provides fine-granular process
alignment and optimization, in parallel to increasing
automation of production processes.
Beyond this, the automation and Artificial Intelligence
are discussed as potentially transformative in other

sectors, such as medicine or financial auditing,
both knowledge-intensive sectors that are substantially
based on expert work. For instance, in medicine,
the performance of machine-learning computer-aided
detection and automated diagnosis in radiology is
comparable to that of experienced radiologists [4].
Similarly, auto-encoder neural networks can help
financial auditors identify unusual journal entries in an
audit context [5].

In this paper, we understand automation as a set
of computational tools executing domain activities,
based initially on conditional logic [6]. Thus,
automation takes over activities done by human
workers; or automation enables actions that humans
cannot do. Through automation, tasks are carried out
with different qualities, such as increased precision
or reduced flexibility in the face of exceptions.
By Artificial Intelligence, we understand a broad
range of technologies and technological capabilities
based on processing natural language, audio, images,
and video; formal representations of knowledge and
automated reasoning; and machine learning (cp.
e.g., [7]). In this paper, we do not strictly
differentiate between technologies that employ more
traditional statistical methods of data analysis and
machine learning. By now, automation tools in many
sectors have taken up Artificial Intelligence technologies
to a substantial degree, such that automation does
not anymore mean that computational tools execute
comparably static rules and equations. Nevertheless,
instead, computational tools execute activities based
on sophisticated and advanced computational methods
from Artificial Intelligence.

Subsequently, humans’ role in increasingly
automated environments is mostly that of monitoring,
handling exceptions, and overall managing automated
services [8]. As ”work becomes less predictable, less
repetitive and more complex” ([9] in the context of
smart manufacturing), work can be expected to become
more knowledge-intensive, and learning at all levels to
gain in importance. In parallel, this is likely to lead to
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a polarization in the labor market. Those professions
that demand high education and expertise, high manual
dexterity, or high quality of social interaction (areas
where modern computational technologies perform
worse than humans) will remain or even rise in demand.
In contrast, others need to expect to sink in the market
as the automation costs decrease [10, 11].
Alongside automation and increasingly Artificial
Intelligence enabled tools, it is now acknowledged
that as computational tools grow in intelligence.
Thinking broadly about machines as teammates is on
the agenda of ongoing and future information systems
research [12], which introduces socio-technical
challenges, such as how machines affect
decision-making, pace, and quality of social work,
creativity, responsibility, and individuality (ibid).

Software engineers are - in principle - the actors
who engineer such transformation. However, not
every software engineer is an AI expert, or even
working with AI. At the same time, the current role
of automation and Artificial Intelligence enabled tools
in software engineering practice is barely touched
on in information systems or related research; at a
time where technology-oriented research is, of course,
already working on Artificial Intelligence enabled tools
for software engineers (e.g., [13, 14, 15, 16, 17, 18, 19,
20, 21]).
Therefore, in this paper, we complement the existing
discourse on the presence and future of work in the
face of artificial intelligence an interview study that asks
experienced software engineers about the role of and
experiences with automation in their practice, and their
expectations of the future role of Artificial Intelligence
enabled tools for their work practice.

2. Background and related work

2.1. Challenges in software engineering
practice

By software engineering, we here understand the
professional practice of designing, developing, and
maintaining software. Daily work practice of a software
engineer typically falls into two major groups of
work activities, namely coding and collaborative tasks,
identified in Computer Support Collaborative Work
(CSCW) literature as ”articulation work” - all that work
that is needed to make cooperative work via division of
labor happen [22].

Overall, software engineering professionals are
independent workers who need an excellent capability
to focus on productive work without a high amount
of distractions [23], need to be able to solve problems
with acceptable coding practices and without time

pressure [24], as well as to communicate well in
different contexts [25]. As software complexity
increases and teams expand, communication and
coordination get more involved, manifesting through the
distribution of time over these two types of activities
shifts from coding to articulation work [26, 27].
A variety of coordination tools and approaches such as
retrospectives, rotation of team members, wiki pages
for documentation, and digital boards [26] have already
been investigated in order to solve typical challenges
that software engineers face, such as increasing
productivity, reducing time wasters, reusing code [28],
and reducing technical debt [29].

However, while software engineering’s work
practice and challenges are discussed within the field,
the role of automation and artificial intelligence-enabled
technologies in either addressing or adding to the
software engineers’ challenges at work has not been
discussed in the literature. This discussion is the gap
that we explore in the present paper.

2.2. Opportunities for automation in software
engineering

In literature, we find automation as playing a role
in two phases of software engineering work: That of
coding in the sense of problem-solving; and that of
coding in the sense of integration of a specific piece of
code into a larger whole.

The first phase of coding in the sense of
problem-solving, means that a software engineer is
focused on understanding and solving a specific
problem without focusing on the broader software
environment (except where necessary) like integration
or software architecture. In this phase, tools like
a programming assistant (PAPA) powered by IBM
Watson’s cognitive computing technology [14] would
be beneficial. PAPA can respond to theoretical
questions based on NLP for a predefined knowledge
base, but it does not support debugging code examples
using program analysis techniques. However, a
recent investigation on software engineer motivations
and challenges to use Machine Learning frameworks
highlighted the importance of having pre-made models
that demonstrate best practices, useful examples,
and support learning-by-doing [30]. This points to
the need for artificially intelligent assisting tools to
go further than programming assistants like PAPA.
Further research is needed to acknowledge automated
programming assistants’ possibility to provide pre-made
models for specific cases and demonstrate best practices.

The second phase occurs when a software engineer
has developed a working solution that now must be
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integrated into the code base and validated. The
common approach uses Continuous Integration [31, 32,
33] configured according to specific project needs, and
accomplished by an automated build that aims to detect
errors as soon as possible. The build is a process that
executes predefined build modules which are defined
by a Continuous Integration pipeline. Execution of
pipeline results in either successful or failed build,
which commonly includes a report on failure causes,
i.e., bad code syntax or failed tests [34].

In a study of 20 open source projects, different
Automated Static Code Analysis Tools have been
identified as being used in Continuous Integration
such as: check coding style; find bugs resulting in
recognizable errors; identifying anti-patterns such
as unused objects and unnecessary code blocks;
reviewing licenses validity and missing license
headers; dependency analysis; and compatibility issues
recognition [35]. Although CI successfully detected
issues in analyzed code, there were instances where CI
tools’ application and configuration caused false errors.
This fact indicates the dual nature of automation tools,
which can be useful and helpful, but like any other
tool, they can also produce counter-effects if not used
properly.

2.3. Artificial Intelligence and software
engineering

The scarce research we have found on how Artificial
Intelligence is changing software engineering was
mostly within decision-support for product owners.
For example, Dam et al. [15] proposed an Artificial
Intelligence-powered agile project management tool,
based on deep learning architecture, capable of assisting
product owners and developers by identifying and
refining backlog items, risk prediction, mitigation, and
efforts estimation.
Another research from Dam et al. [17] proposes a
concept where the Long Short Term Memory model
(LSTM) is used to automatically learn semantic and
syntactic features, which would lead to the possibility
to recognize and predict code vulnerabilities.
Similarly, Choetkiertikul et al. [16] utilized LSTM to
build a prediction system that supports developers and
managers in estimating story points, where machine
learning algorithm learns from previous estimates and
supports teams in making consistent estimates by
providing them with suggestions where teams make the
final decision.
While [15, 17, 16] do discuss that Artificial Intelligence
enabled tools that they proposed will act as support
for software engineers rather than as a replacement

of software engineers, they do not focus on how
Artificial Intelligence-powered decision-support would
affect software engineering teams, in the sense of
studying who would be supported by such a tool (project
managers or software engineering teams), or how such a
tool would compare with other existing tools.

Another set of technologies from artificial
intelligence with a potentially transformative
effect on software engineering practice is formal
verification, which automatically detects mismatches
between program specification and implementation.
For instance, tools such as the deductive software
verification engine [21] can assist software engineers
in debugging by recognizing and reporting which
expressions might be responsible for errors that
appeared in the source code.

Overall, however, in an overview study, Feldt
et al. recognize the lack of a structured way
to classify Artificial Intelligence applications on
software engineering [20]. The authors propose to
differentiate between different artificial intelligence
roles in software engineering as follows: The point of
Artificial Intelligence application, the type of Artificial
Intelligence technology used, and the automation level
allowed an interesting artifact. In parallel, the authors
differentiate between using artificial intelligence as
being applied at the process, product, or run-time
to enable manual or autonomous automation. For
example, independent change in run-time would be
considered a higher risk, while automation based on
the manual decision would be the lowest risk level.
Feldt et al. conclude that most of the examined
papers focus on supporting SE during the development
phase but with uneven use of Artificial Intelligence
approaches that exist. The authors conclude that
artificial intelligence is not yet massively used in tools
for programmers, but more at the level of embedding
Artificial Intelligence into decision-supporting and
decision-making processes.

Our study contributes and builds upon these findings
by conducting interview-style research to get more
information about Artificial Intelligence tools and use
cases in software engineering. Interviewing seasoned
software practitioners, recognized as the primary
beneficiary and stakeholders affected by possible
automation and AI, caused improvements.

2.4. Synthesis and research questions

In summary, we see that although automation and
Artificial Intelligence-based tools are understood as
transformative in many sectors and for many types of
professions, there has not been an investigation of how
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ID Gender Age Position YOE NOC Sector Industry domain Technology stack
P1 M 25-30 Frontend developer 3 2 Industry SaaS HTML, CSS, JS, Python, Git, Sql, Matlab
P2 F 30-35 Backend and DevOps 6 3 Industry Logistic Python, Git, Web services, Google Cloud
P3 M 40-45 Net-System Engineer 17 7 Industry Networking OS, NetOS, System Software
P4 M 35-40 Research & Backend 10 4 Academia Security Java, MySql, Git, SVN, Tomcat, GlassFish
P5 M 30-35 Frontend developer 15 5 Industry SaaS HTML, CSS, JS, UX/UI design
P6 M 25-30 Backend Team Lead 5 2 Industry SaaS PHP, MySql, Shell, Git, Pre-Commit
P7 F 30-35 Team Lead Sw. Integ. 3 2 Industry Semiconductors MongoDb, Python, Nginx, PostreSql, ELS
P8 F 25-30 Backend, Integration 3 2 Industry SaaS PHP, MySql, Git, Python, API, RestAPI
P9 F 35-40 Software developer 10 5 industry SaaS C#, MsSql, Git, Raact, Redux, WinSrv
P10 F 30-35 Researcher 8 4 Academia Automotive Semantic Web, NLP, Python
P11 M 30-35 Software Quality Ing. 9 3 Industry Ind. Autom. SW Test Automation, DevOps, Jenkins, C#
P12 M 40-45 Sr. Software Developer 20 8 Academia SaaS C++, PHP, JS, Arudino, Ruby, Go
P13 M 20-25 Software Engineer 3 2 Industry Hardware Jenkins, Python, XML, JSON, HDL, Linux

Table 1. List of software practitioners we interviewed: F=female, M=male; YOE=Years of Experience;

NOC=Number of Companies that software practitioner worked for.

automation and Artificial Intelligence-based tools are
used or impact software engineering practice. In this
paper, we are taking up this question in two parts:

RQ1 What are approaches for automation and Artificial
Intelligence enabled tools and practices adopted
by interviewed software engineers? This question
aims to understand the current practice.

RQ2 What are software engineers’ outlook towards the
future of automation and Artificial Intelligence
enabled support for their work? This question
aims to understand the attitudes, hopes, and
concerns of software engineers.

3. Research method

We answer the above research questions with
an interview study of 13 software practitioners with
different backgrounds and working in various industries
and academic institutions. An interview study is
considered an appropriate method within an exploratory
setting [36].

3.1. Interview structure and content

The interviews were semi-structured, with the
following guiding questions to elicit the interviewee’s
professional background and answer the research
questions: Can you describe your job and what your
company does? Which environment and tools are
used in development? Which other tools are used for
communication and management? Which part of work
is automated, and what this automation ”do for you”?
Which part of work did you automate on your own?
How does Artificial Intelligence fit in your activities,
in your opinion?. When introducing questions about
automation or AI, examples as discussed above in the
background section 2 was given. When asked about

expectations for the future, again, these examples were
used as prompts to stimulate discussion. Throughout the
interviews, we encouraged participants to think about
why they did something in a specific way or what could
have been better by asking general reflective questions,
such as What was the benefit of this approach? What
caused this problem? Could any of these be automated?
We designed the interviews for 45-60 minutes, but
on some occasions, they took up to 90 minutes.
Participation was not paid but voluntary. After
the first interviews, P1-P4, we made a reflection
of how interviewees perceive our questions and
to recognize possible communication challenges and
emerging topics. We aimed to identify which
themes are triggering responses where participants
knew something potentially novel, such as specific
problems or difficulties, innovative ideas, solutions, or
a combination of tools and processes to solve some
of these challenges. Furthermore, we were interested
in engaging our participants in creative discussion in
terms of Artificial Intelligence to understand their level
of knowledge of this topic and realize how they would
utilize Artificial Intelligence in their daily work. Our
analysis of the first round resulted in small refinement of
our interview questions related to Artificial Intelligence
and recognition of one emerging topic, ”Who initiated
automation in your company? Individual developer,
team, or management?”.

3.2. Data collection

The lead author conducted interviews via
video conferencing and took quasi-verbatim notes
simultaneously. These notes were shared with
the interviewee directly via screen-sharing. This
allowed immediate discussion of notes in case of
disagreement by the interviewee. Furthermore,
participants were asked to review the notes and provide
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their consent afterward. Post-hoc corrections made
by the participants were minimal and mostly related
to GDPR1 or NDA (Non-Disclosure-Agreement)
compliance topics, i.e., related to personal sensitivity
or organizational confidentiality of interview notes.
Further, we interviewed professionals on equal standing
with the researcher in terms of natural authority.
Because of these characteristics, we can assume that the
note-taking approach does not affect reliability, validity,
or transparency (cp. [37]); on the other hand, this
approach saved time and added clarity in understanding
interviewees through the immediacy of using the
interview notes to discuss any misunderstandings.
Interviews were carried out in English.

3.3. Data analysis

Data analysis was done as inductive and reflexive
thematic analysis [38, 39]. Our analysis constitutes
an inductive thematic analysis, as we intended to
identify a priori unknown patterns in the described
experiences of our interviewees of how automation and
AI support their current work practice; and how they
envisage this to be in the future. Further, our analysis
constitutes a reflexive thematic analysis, in the sense
that themes were developed during the data analysis by
discussion and reflection within the research team: We
started by describing and summarizing the experiences
of interviewees structured along with the types of
guiding questions (professional background, current
practice, future practice), and in further discussions
identified and developed salient themes. The themes
correspond to the subsections of Section 4, except for
the first subsection 4.1, which is a descriptive account of
”commonly automated tools, activities, and challenges”
and sets the background for the subsequently described
themes. While reflexive and inductive thematic analysis
means that we did not set out to structure data analysis
by an a priori defined theoretical framework, the themes
can, of course, still be related to and further interpreted
with respect to existing literature; which we do in
Section 5.

3.4. Interview participants

Our interview participants have experienced
software practitioners across frontend, backend
development, DevOps, R&D, integration, and
leadership positions.
Our selection criteria were seniority (described as in
the column ”YOE” abbreviating ”years of experience”
in Table 1) in parallel to ongoing hands-on software

1https://gdpr-info.eu/

engineering practice, i.e., we did not want to interview
managers of software engineering teams. Further,
we aimed for diversity in gender and age, sector
(industry vs. academia), industry domain (Software as a
Service - SaaS, logistics, networking, software security,
semiconductors, automotive, industrial automation,
or computer hardware), professional position, and
technology stack (ongoing experience with various
technologies).
Note that our interview partners had different levels
of understanding of artificial intelligence and how it
combines with software engineering. None of our
participants had work experience in an AI software
project. Experience with AI was not explicitly a
selection or exclusion criterion; instead, our focus was
to gather perspectives across the above-described range;
and not only from people with direct experience in AI.

Participants were recruited online through the
Linked-In network and in-person within corporate
environments and conferences. Some participants
recommended further potential interviewees.

3.5. Research limitations

Although we aimed to interview software
practitioners with diverse demographics and
professional backgrounds, our sample has some
limitations: All of our participants are from Austria and
neighboring countries in South-East Europe. Although
territorial limits do not bound the nature of software
engineering as a profession, our sample would benefit
from a broader demographic. None of our participants
worked for big corporations such as Google, Facebook,
or Amazon, except P3, who pointed out that his
experiences when working for big corporations are
different from his experiences related to Small and
Medium Enterprises (SMEs). Having this limitation
in mind, the results of this research should be treated
trough the scope of SMEs, taking into account that
corporate experiences can differ from our findings.

4. Results

4.1. Commonly automated activities, tools,
and challenges

Across all study participants, we see that automation
occurs in many different types of software engineering
activities (Table 2). The concrete tools utilized for
automation and the precise manner of automation differ.
There is no standard for automating similar activities,
but there are popular tools that are combined differently.
For instance, GitLabs and BitBucket are frameworks
to automate server-side test and deployment, and
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Automated activity group Participants Common tools
(Dev) Environment Configuration P1, P3, P6, P7, P12 Docker, custom scripts
Coding, reviewing and compliance P1, P2, P3, P4, P5, P8, P10, P11, P12 PyCharm, PHPStorm, Eclipse, Ansible
Versioning, Deployment, Releasing P1, P2, P7, P11, P12 Jenkins, scripts, GitLabs
Tests and Continuous Integration P1, P2, P5, P6, P7, P8, P10, P11, P12, P13 GitLabs, BitBucket, Pre-Commit, Jenkins, Ranorex, ReSharper
Orchestration and dependency management P2 Kubernetes
Documentation generation P1, P8, P10 DoxyGen, OpenApi
Knowledge share, notification and report P1, P8, P9, P10, P13 Jira, Slack
Business performance tracking P2, P4 Various BI tools

Table 2. Commonly automated activities, tools and participants that pointed them out

Pre-Commit hooks are used to automate client-side
tests before sending to the server. However, there is
no strict standard way to combine such tools; single
software engineers or teams organize configuration,
which constitutes both freedom and a workload.

Our results indicate substantial automation in
environment configuration, static code checking,
versioning, deployment, testing, continuous integration,
and releasing.
Environment configuration is mostly related to either
predefined Docker configurations or to custom scripts
that automate steps needed for everyday tasks such as
setup of development environment for new software
engineer, extending infrastructure by adding new
servers with predefined configuration or introducing
additional dependencies to existing infrastructure.
Testing, versioning, deployment, and releasing activities
tend to combine into Continuous Integration pipelines
using Jenkins orchestration with custom scripting and CI
environment provided by Git services such as GitLabs,
BitBucket, or GitHub. Almost all participants execute
tests within local environments before sending code to
the server. Some participants reported a trend where
tests are automated locally on development machines
with the help of already mentioned pre-commit hooks
framework. This local automation provides a better
experience and faster response to developers and
reduces the load of integration pipelines.
Developers also rely on automation provided by
their Integrated Development Environments such
as PyCharm, PHPStorm, Eclipse, or Visual Studio.
Automation such as syntax checkers, linting, coding
standard checkers, and necessary semantic checks are
commonly used and expected as a default commodity.

However, in terms of knowledge creation and
knowledge management activities, we have noticed a
low level of automation efforts. We asked interviewees
explicitly whether they use automated knowledge
gathering or knowledge delivery mechanisms, smart
search engines, or similar tools for assisting in
knowledge management. Interviewees mentioned
coordination and communication tools such as Jira and
Slack, but only in task management and receiving direct
notifications. P1, P8, and P10 confirmed activities

related to documentation generation with DoxyGen and
OpenApi standards and toolsets.

Most interview participants are not involved
in implementing business performance tracking or
analyzing data that stems from such tracking, with
the exception of P3, who said on this: [I do this for]
”Black Friday” sales, where you need to predict what
will be the load on services and Network telemetry is
using algorithms for Artificial Intelligence and machine
learning on Network environments. By this, P3 means
that he was analyzing data provided by an AI service
that can predict network traffic to prepare for and
support high-increase in traffic around events such as
”Black Friday” sales.
Apparently, the business performance tracking and
monitoring perspective are outside the sphere of
responsibility of our interview partners; and the present
interview study can, therefore, do not make statements
about this. In particular, our study, therefore, does not
indicate a lack of automation or Artificial Intelligence
enabled tools for monitoring business performance.

4.2. Processes bridging with
micro-automation

Software practitioners have similar groups of
activities, such as requirements gathering, coding,
testing, documenting, and communicating with other
stakeholders. However, processes for enforcing these
activities vary between companies and teams. Almost
all interviewees mentioned some level of in-house
built custom automation, but none of them reported
any structured or standardized approach to automation.
Established micro-automation solutions are usually
built as custom scripts to automate multiple steps,
automatic configurations, helpers for a development
environment, quick optimizations for testing, and
automated knowledge delivery systems (i.e., chatbots,
smart notifications). Our participants reported various
approaches to process bridging with micro-automation
activities.
For example, P1 mentioned: We have console
commands which are build by our team [...] automation
in the form of ”Slack bots” that help developers. For
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example, if somebody creates a backup that I need,
there is Slack channel with that backup hash.. In this
example, the trick is that custom scripts report results
of software engineering processes (backup is a typical
one) directly within the chosen digital communication
environment of the team, in this case, Slack. This is
helpful, as results and reports from automated processes,
therefore, are communicated and documented in more
general-purpose environments.
P6 reports efforts invested in the automation of code
quality check, stating: Pre-commit hooks are automated,
so we do not need to think if we will push something that
is not according to code standards or that we will break
parts that are covered with unit tests. When commit is
pushed successfully, then our CI spins docker containers
in [the] pipeline [...]. This is helpful to automatically
check for specific code standards even before publishing
code to a remote repository (pre-commit).

The above are examples of what we call
”micro-automation,” i.e., automation of concrete
steps in a process. An essential joint characteristic is
that such micro-automation tends to bridge between
different software engineering tools and environments
that the developer uses to accomplish a specific activity.

When asked about micro-automation reasons, our
interview partners commented that every company has
processes that result in different needs to customize
and automate various activities. For example, the
Agile approach defines methodology and scope on
what to do, but it does not prescribe exact steps on
how to implement agile. A similar thing happens in
code testing and validation. Many things in software
engineering are scoped and turned into a methodology,
but implementations change from company to company.

4.3. Automation of software engineering as a
bottom-up driven side product of
operative activity

We perceived our interview partners as being very
enthusiastic about automation. Automation is, in
general, perceived as valuable, helpful, and almost all of
our participants reported automation in their daily work,
mostly related to continuous integration and testing.
On the other hand, as companies are focused on the
delivery of software or other operatives in the sense
of billable project activities, the activity of automating
tasks is, from our interview partners’ perspective, a
side-product of work. As an interesting example, P3
believes that automation is not recognized top level
because there is no immediate result and understanding
on how to prioritize automation: There is no ”immediate
cache return” with automation. It is like a ”defensive

player” in football. The question is always, is there
a need for huge automation or an approach where
we automate only things that we need.. On a similar
note, P4 mentioned: ”members of these projects
(management, team leads) were inert and did not have
the initiative in introducing automation [...] some of
these projects did not have stated Quality Assurance so
this was not forcing any automation that would assist
in Quality Assurance or development. This suggests
that in our interviewees’ perception, automation is not
initialized by top management because the strategic
value of automation, nor an existing pain point that
would be solved by it is clearly identifiable.

Most of our interviewees understand automation as
a bottom-up driven initiative, in the sense that individual
developers recognize an automation opportunity and
then implement a quick solution tailored to a specific
context and need. P3 says: ”automation is mostly
individual effort and not organized company effort.”.
P11 gives an example where he was the driver
for bottom-up change in organization-wide practice:
”Since there was no company-wide tool for [continuous
integration and continuous development], I suggested
Jenkins. After some time, other teams started using
it.”. We have indications that such initiatives are also
understood as products of the nearer social context,
namely the team, as when P12 states: ”The automation
was introduced by either team or the individual
developer [...]”. In all our interviews, however, there
were no reports of more structured automation efforts
organized at the level of the entire company.

The motivation for automating parts of the software
engineering process is twofold. The first is to make
work easier. The second is for software engineers to
expand their knowledge and experiment with new tools
and approaches. Making automated software is far more
challenging and rewarding than manually repeating the
same action over and over again. We see this motivation
for automation as specific to the domain of software
engineering.

4.4. Automation and effects on work efficiency

Despite enthusiasm for automation, and at least the
partial motivation to automate in order to simplify work
and make it more efficient, it is not that clear how
automation really relates to work efficiency.

For instance, we have identified concerns that
automation increases the cognitive overhead by making
it more complicated to understand what is going on,
and by overwhelming through notifications. Participant
P1 describes how Jira’s automated email notifications
overwhelm him with a mix of information that he
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already knows and does not need at the time of delivery:
Lots of these emails are not useful for me because it is
spam because I was in the sprint refinement meeting
and I was there when we updated these tickets. I
would say that this is automation in my workflow [...]
is not smart enough. [The] email notification system
does not have information that I do not need something
because I was already in a meeting.. Other participants
made similar comments, mostly related to overhead due
to automatically generated emails or other forms of
notifications, or irrelevant loads of error messages that
should be helpful but have the opposite effect.
We, therefore, see that as automated routines generate
automated messages (in the context of our interviews,
this was mostly emails; but in other environments,
this might be Slack messages or any other kind of
notification), automated routines do take over work;
but in parallel add a communication overhead. In
computer-supported collaborative work, it has long
been understood that in social, collaborative work,
there is an overhead of articulation work (coordination,
communication, scheduling, planning division of labor,
and in general management - cp. [22]). Following this,
we can reach farther based on the above observation
of communication overhead through automation, and
speculate, or at least ask, whether automated routines
and in the future, increasingly autonomous and
intelligent agents, will require a similar overhead.

4.5. Unclear impact of AI on the future of SW
engineering practice

Overall, our interview partners are clearly
enthusiastic with respect to the ongoing
micro-automation within their work, as described
above, but more ambivalent with respect to the future,
and instead not seeing that automation or artificial
intelligence-enabled tools would or could substantially
change work practice in the near future.

When discussing technologies like programming
assistants or AI-enabled pattern mining in continuous
integration processes as discussed in the background
section above, our interview participants were somewhat
skeptical that such tools would be available in the near
future with a performance that would substantially alter
their work practice. On the other hand, our interview
partners were looking with interest forward to more
within the reach automation, such as for instance, smart
testing tools: there are companies with thousands of
automated test cases, where executing all of them would
last for days, therefore selecting only an appropriate
subset of tests is very important. (P11), and more
advanced versions of code quality checking support, or

automatic documentation generation.
Some of the use cases our participants suggested

are matching findings from our literature overview
as experimental research and prototypes. However,
none of our participants reported any productive
implementations in their experience and working
environments.

5. Discussion of Results

Our interview results point out that automation
in software engineering tends to be on the side of
quick-and-dirty micro-automation where no substantial
strategic budget is set aside; hence all automation needs
to make sense within operative projects. This type of
automation aims to save time, meaning there is less
incentive or possibility for reusable scripts/code for
automation. Further, this means that automation is
maybe even less perfect than in some other sectors; and
this, in turn, may lead to adverse effects of automation,
such as increased cognitive load for software engineers.
Moreover, there are usually no benchmarks or quality
criteria to evaluate the different socio-technical and
cost-benefit effects of these automation efforts.

This micro-automation might be caused by
the bottom-up nature of automation in software
development. This is different from what we see in
other sectors, where automation is a strategic activity
that aims to optimize and respond to external pressures
and opportunities. We acknowledge that the present
study may be biased because we did not have strategic
positions amongst the interviewees.
On the other hand, all interviewees were comparatively
senior, and so it can be expected that they would at least
have noticed strategic activities. One interpretation is
that as software engineers are capable of recognizing
automation bottlenecks and solving them, they just do
automation themselves. In contrast, in other domains
such as manufacturing, it has been repetitive and less
creative tasks that have become automated [1, 2, 3]. In
this case, those whose jobs have been most impacted by
automation did not have the education (automation and
software engineering), nor the tools within their work,
nor the job profile (less flexibility in self-organizing
work than software engineers) to ”just do automation
themselves.” So, in software engineering as a domain,
there is the possibility of bottom-up driven automation.

Secondly, when it comes to increasing artificial
intelligence (AI) instead of rule-based and more
simple automation, our interview partners were, on
the one hand, optimistic and enthusiastic about having
AI-enhanced tools for their work, but skeptical about
AI ”being in a driver’s seat” and making decisions of
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substantial importance. Combined with our findings
from Section 2.3, we understand that AI-driven
applications, such as for code error prediction [15],
error localization using deductive verification [21]
and assistance in effort estimations [16], would be
useful and accepted by software practitioners, as
long as these applications have advisory and not
decision making purpose. Furthermore, scarce hands-on
experiences with AI, which we recognized during our
interviews, go along with the conclusion made by
Feldt et al. [20] that AI applications are not yet
massively used in decision-support and decision-making
processes. We recognize and take into account that these
results might be biased because software practitioners
that we interviewed are not in the business of
developing Artificial Intelligence and have no extensive
professional knowledge of this topic.
On the other hand, it might be that software engineers as
professionals do not seriously engage with the question
of how their profession will be affected by Artificial
Intelligence. In order to bring the discussion forward
with experienced software engineering practitioners
without in-depth knowledge or direct contact with
Artificial Intelligence in their current practice, more
in-depth discussions using different methods than
interviews, such as co-design workshops to enable
active learning and knowledge construction, and hence
more informed discussion of the potential of Artificial
Intelligence to transform software engineering practice,
might be necessary [40, 41].
However, a third perspective might be that software
engineering as a profession moves toward a skill
diversity phase, where development might differ
between two groups. Simple programming, which
is heavily supported by automation and Artificial
Intelligence tools where developers do not need actual
awareness of Artificial Intelligence tools working in the
background and actual creators of Artificial Intelligence
enhanced tools that have an in-depth understanding of
how Artificial Intelligence affects software engineering.

6. Conclusion

The interview study described in this paper has
been concerned with the current usage of and
practice around automation and Artificial Intelligence
enabled tools in software engineering in Austrian-
and Eastern-Europe centered SMEs, and with the
expectations of interviewees on how automation
and increasing deployment of methods from AI in
automation will change software engineering practice.
A salient summary insight is that within software
engineering, automation but not AI is substantially part

of work practice, and is not necessarily seen by its
practitioners as constituting a significant part in the
future. We see the four themes of micro-automation,
bottom-up automation, ambivalent automation benefits,
and unclear future impact of AI on software engineering
practice as a starting point for future work, in particular,
to investigate in-depth characteristics and causalities
around these themes and to map out, probably with
co-design or future studies methods, potential roles of
AI in future software engineering practice.
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