223 research outputs found

    Using Parallel Particle Swarm Optimization For RFID Reader-to-reader Anti-collision

    Get PDF
    With the wide application of radio frequency identification (RFID) technology, the possibility of the collision among readers may increase. When the number of RFID readers is large, the dimension of the RFID reader collision problem will be huge. To solve the high-dimensional RFID reader-to-reader collision problem effectively, we improve the parallel cooperative co-evolution particle swarm optimization (PCCPSO) algorithm by adopting the hybrid adaptive strategy of the inertia weight. In addition, we make parallelism implementation of the improved algorithm. Then, we use the improved algorithm to solve the RFID reader-to-reader anti-collision problem. In the experiments, we compare the improved distributed parallel particle swarm optimization (IDPPSO) algorithm with the PCCPSO algorithm, and make Wilcoxon test on the results. The experimental results demonstrate IDPPSO algorithm has better performance

    A Novel and Efficient Anti-Collision Protocol for RFID Tag Identification

    Get PDF
    Radio frequency identification (RFID) is prominent technology for fast object identification and tracking. In RFID systems, reader-to-reader or tag-to-tag collisions are common. Majority of probabilistic and deterministic anti-collisions methods are inefficient in channel distribution and improving the performance. In this work, simulation annealing based anti-collision protocol is proposed where there is uniform distribution of channels among readers. In addition, preference is given to tag state parameters over fixed scheduling in order to increase the performance. The tag state parameters named energy efficiency, distance from selected reader and distance from obstacles are considered. The simulation results show that the proposed approach is an effective mechanism where there is a minimum improvement of 16.7% for 100 readers and maximum of 32.7% for 1000 readers in tag identification ratio, and a minimum improvement of 23% for 1000 readers and maximum of 75.3% for 100 readers in total successful interrogation cycles. Further, total time cycles, total IDLE cycles, total number of collisions, delay, and total number of packets sent and received are reduced compared to state of-art protocols. It is observed that the proposed simulation annealing based protocol is contiguous channels allocation algorithm with zero collision

    A survey of RFID readers anticollision protocols

    Get PDF
    International audienceWhile RFID technology is gaining increased attention from industrial community deploying different RFID-based applications, it still suffers from reading collisions. As such, many proposals were made by the scientific community to try and alleviate that issue using different techniques either centralized or distributed, monochannel or multichannels, TDMA or CSMA. However, the wide range of solutions and their diversity make it hard to have a clear and fair overview of the different works. This paper surveys the most relevant and recent known state-of-the-art anti-collision for RFID protocols. It provides a classification and performance evaluation taking into consideration different criteria as well as a guide to choose the best protocol for given applications depending on their constraints or requirements but also in regard to their deployment environments

    Robust modeling and planning of radio-frequency identification network in logistics under uncertainties

    Get PDF
    To realize higher coverage rate, lower reading interference, and cost efficiency of radio-frequency identification networkin logistics under uncertainties, a novel robust radio-frequency identification network planning model is built and arobust particle swarm optimization is proposed. In radio-frequency identification network planning model, coverage isestablished by referring the probabilistic sensing model of sensor with uncertain sensing range; reading interference iscalculated by concentric map–based Monte Carlo method; cost efficiency is described with the quantity of readers. Inrobust particle swarm optimization, a sampling method, the sampling size of which varies with iterations, is put forwardto improve the robustness of robust particle swarm optimization within limited sampling size. In particular, the exploita-tion speed in the prophase of robust particle swarm optimization is quickened by smaller expected sampling size; theexploitation precision in the anaphase of robust particle swarm optimization is ensured by larger expected sampling size.Simulation results show that, compared with the other three methods, the planning solution obtained by this work ismore conducive to enhance the coverage rate and reduce interference and cost.info:eu-repo/semantics/publishedVersio

    New Algorithm for Fast Processing RFID System in Container Terminal

    Get PDF
    The growth of world economic and increasing of trading in most of countries has impact to the number of containers export and import between countries. Some of container terminal is very busy to handle high volume of container movement. Conventional operational procedures have difficulties to handle containers movement then make slow and some issues in terminal operation for container clearance. This paper discus on proposing new algorithm to the current container terminal management system used RFID technology for fast processing and clearance. Container Terminal Management System (CTMS) is a system for port management and interface to the RFID system that used to identify container e-seal, truck and driver identity. Lack of communication and interfacing protocol made slow response during request or reply of message to the gate operator. Proposed algorithm with new procedure of request to CTMS made faster response and avoid inaccuracy of detecting container e-seal. Results of implementation new algorithm have improved to the productivity and efficiency of container terminal. Testing and implementation of this proposed system conducted in a private container terminal in Malaysia

    Advances in analytical models and applications for RFID, WSN and AmI systems

    Get PDF
    Experimentos llevados a cabo con el equipo de división de honor UCAM Volleyball Murcia.[SPA] Internet de las cosas (IoT) integra distintos elementos que actúan tanto como fuentes, como sumideros de información, a diferencia de la percepción que se ha tenido hasta ahora de Internet, centrado en las personas. Los avances en IoT engloban un amplio número de áreas y tecnologías, desde la adquisición de información hasta el desarrollo de nuevos protocolos y aplicaciones. Un concepto clave que subyace en el concepto de IoT, es el procesamiento de forma inteligente y autónoma de los flujos de información que se dispone. En este trabajo, estudiamos tres aspectos diferentes de IoT. En primer lugar, nos centraremos en la infraestructura de obtención de datos. Entre las diferentes tecnologías de obtención de datos disponibles en los sistemas IoT, la Identificación por Radio Frecuencia (RFID) es considerada como una de las tecnologías predominantes. RFID es la tecnología detrás de aplicaciones tales como control de acceso, seguimiento y rastreo de contenedores, gestión de archivos, clasificación de equipaje o localización de equipos. Con el auge de la tecnología RFID, muchas instalaciones empiezan a requerir la presencia de múltiples lectores RFID que operan próximos entre sí y conjuntamente. A estos escenarios se les conoce como dense reader environments (DREs). La coexistencia de varios lectores operando simultáneamente puede causar graves problemas de interferencias en el proceso de identificación. Uno de los aspectos claves a resolver en los RFID DREs consiste en lograr la coordinación entre los lectores. Estos problemas de coordinación son tratados en detalle en esta tesis doctoral. Además, dentro del área de obtención de datos relativa a IoT, las Redes de Sensores Inalámbricas (WSNs) desempeñan un papel fundamental. Durante la última década, las WSNs han sido estudiadas ampliamente de forma teórica, y la mayoría de problemas relacionados con la comunicación en este tipo de redes se han conseguido resolver de forma favorable. Sin embargo, con la implementación de WSNs en proyectos reales, han surgido nuevos problemas, siendo uno de ellos el desarrollo de estrategias realistas para desplegar las WSN. En este trabajo se estudian diferentes métodos que resuelven este problema, centrándonos en distintos criterios de optimización, y analizando las diferentes ventajas e inconvenientes que se producen al buscar una solución equilibrada. Por último, la Inteligencia Ambiental (AmI) forma parte del desarrollo de aplicaciones inteligentes en IoT. Hasta ahora, han sido las personas quienes han tenido que adaptarse al entorno, en cambio, AmI persigue crear entornos de obtención de datos capaces de anticipar y apoyar las acciones de las personas. AmI se está introduciendo progresivamente en diversos entornos reales tales como el sector de la educación y la salud, en viviendas, etc. En esta tesis se introduce un sistema AmI orientado al deporte que busca mejorar el entrenamiento de los atletas, siendo el objetivo prioritario el desarrollo de un asistente capaz de proporcionar órdenes de entrenamiento, basadas tanto en el entorno como en el rendimiento de los atletas. [ENG] Internet of Things (IoT) is being built upon many different elements acting as sources and sinks of information, rather than the previous human-centric Internet conception. Developments in IoT include a vast set of fields ranging from data sensing, to development of new protocols and applications. Indeed, a key concept underlying in the conception of IoT is the smart and autonomous processing of the new huge data flows available. In this work, we aim to study three different aspects within IoT. First, we will focus on the sensing infrastructure. Among the different kind of sensing technologies available to IoT systems, Radio Frequency Identification (RFID) is widely considered one of the leading technologies. RFID is the enabling technology behind applications such as access control, tracking and tracing of containers, file management, baggage sorting or equipment location. With the grow up of RFID, many facilities require multiple RFID readers usually operating close to each other. These are known as Dense Reader Environments (DREs). The co-existence of several readers operating concurrently is known to cause severe interferences on the identification process. One of the key aspects to solve in RFID DREs is achieving proper coordination among readers. This is the focus of the first part of this doctoral thesis. Unlike previous works based on heuristics, we address this problem through an optimization-based approach. The goal is identifying the maximum mean number of tags while network constraints are met. To be able to formulate these optimization problems, we have obtained analytically the mean number of identifications in a bounded -discrete or continuous- time period, an additional novel contribution of our work. Results show that our approach is overwhelmingly better than previous known methods. Along sensing technologies of IoT, Wireless Sensor Networks (WSNs) plays a fundamental role. WSNs have been largely and theoretically studied in the past decade, and many of their initial problems related to communication aspects have been successfully solved. However, with the adoption of WSNs in real-life projects, new issues have arisen, being one of them the development of realistic strategies to deploy WSNs. We have studied different ways of solving this aspect by focusing on different optimality criteria and evaluating the different trade-offs that occur when a balanced solution must be selected. On the one hand, deterministic placements subject to conflicting goals have been addressed. Results can be obtained in the form of Pareto-frontiers, allowing proper solution selection. On the other hand, a number of situations correspond to deployments were the nodes¿ position is inherently random. We have analyzed these situations leading first to a theoretical model, which later has been particularized to a Moon WSN survey. Our work is the first considering a full model with realistic properties such as 3D topography, propellant consumptions or network lifetime and mass limitations. Furthermore, development of smart applications within IoT is the focus of the Ambient Intelligence (AmI) field. Rather than having people adapting to the surrounding environment, AmI pursues the development of sensitive environments able to anticipate support in people¿s actions. AmI is progressively being introduced in many real-life environments like education, homes, health and so forth. In this thesis we develop a sport-oriented AmI system designed to improve athletes training. The goal is developing an assistant able to provide real-time training orders based on both environment and athletes¿ biometry, which is aimed to control the aerobic and the technical-tactical training. Validation experiments with the honor league UCAM Volleyball Murcia team have shown the suitability of this approach.[ENG] Internet of Things (IoT) is being built upon many different elements acting as sources and sinks of information, rather than the previous human-centric Internet conception. Developments in IoT include a vast set of fields ranging from data sensing, to development of new protocols and applications. Indeed, a key concept underlying in the conception of IoT is the smart and autonomous processing of the new huge data flows available. In this work, we aim to study three different aspects within IoT. First, we will focus on the sensing infrastructure. Among the different kind of sensing technologies available to IoT systems, Radio Frequency Identification (RFID) is widely considered one of the leading technologies. RFID is the enabling technology behind applications such as access control, tracking and tracing of containers, file management, baggage sorting or equipment location. With the grow up of RFID, many facilities require multiple RFID readers usually operating close to each other. These are known as Dense Reader Environments (DREs). The co-existence of several readers operating concurrently is known to cause severe interferences on the identification process. One of the key aspects to solve in RFID DREs is achieving proper coordination among readers. This is the focus of the first part of this doctoral thesis. Unlike previous works based on heuristics, we address this problem through an optimization-based approach. The goal is identifying the maximum mean number of tags while network constraints are met. To be able to formulate these optimization problems, we have obtained analytically the mean number of identifications in a bounded -discrete or continuous- time period, an additional novel contribution of our work. Results show that our approach is overwhelmingly better than previous known methods. Along sensing technologies of IoT, Wireless Sensor Networks (WSNs) plays a fundamental role. WSNs have been largely and theoretically studied in the past decade, and many of their initial problems related to communication aspects have been successfully solved. However, with the adoption of WSNs in real-life projects, new issues have arisen, being one of them the development of realistic strategies to deploy WSNs. We have studied different ways of solving this aspect by focusing on different optimality criteria and evaluating the different trade-offs that occur when a balanced solution must be selected. On the one hand, deterministic placements subject to conflicting goals have been addressed. Results can be obtained in the form of Pareto-frontiers, allowing proper solution selection. On the other hand, a number of situations correspond to deployments were the nodes¿ position is inherently random. We have analyzed these situations leading first to a theoretical model, which later has been particularized to a Moon WSN survey. Our work is the first considering a full model with realistic properties such as 3D topography, propellant consumptions or network lifetime and mass limitations. Furthermore, development of smart applications within IoT is the focus of the Ambient Intelligence (AmI) field. Rather than having people adapting to the surrounding environment, AmI pursues the development of sensitive environments able to anticipate support in people¿s actions. AmI is progressively being introduced in many real-life environments like education, homes, health and so forth. In this thesis we develop a sport-oriented AmI system designed to improve athletes training. The goal is developing an assistant able to provide real-time training orders based on both environment and athletes¿ biometry, which is aimed to control the aerobic and the technical-tactical training. Validation experiments with the honor league UCAM Volleyball Murcia team have shown the suitability of this approach.Universidad Politécnica de CartagenaPrograma de doctorado en Tecnología de la Información y de las Comunicacione

    An Improved Differential Evolution Algorithm for Maritime Collision Avoidance Route Planning

    Get PDF
    High accuracy navigation and surveillance systems are pivotal to ensure efficient ship route planning and marine safety. Based on existing ship navigation and maritime collision prevention rules, an improved approach for collision avoidance route planning using a differential evolution algorithm was developed. Simulation results show that the algorithm is capable of significantly enhancing the optimized route over current methods. It has the potential to be used as a tool to generate optimal vessel routing in the presence of conflicts

    Digital technologies for enhancing crane safety in construction: a combined quantitative and qualitative analysis

    Get PDF
    A digital-enabled safety management approach is increasingly crucial for crane operations, which are common yet highly hazardous activities sensitive to environmental dynamics on construction sites. However, there exists a knowledge gap regarding the current status and developmental trajectory of this approach. Therefore, this paper aims to provide a comprehensive overview of digital technologies for enhancing crane safety, drawing insights from articles published between 2008 and 2021. Special emphasis is placed on the sensing devices currently in use for gathering “man-machine-environment” data, as well as the communication networks, data processing algorithms, and intuitive visualization platforms employed. Through qualitative and quantitative analysis of the literature, it is evident that while notable advancements have been made in digital-enabled crane safety management, these achievements remain largely confined to the experimentation stage. Consequently, a framework is proposed in this study to facilitate the practical implementation of digital-enabled crane safety management. Furthermore, recommendations for future research directions are presented. This comprehensive review offers valuable guidance for ensuring safe crane operations in the construction industry
    corecore