2,371 research outputs found

    Initial Experimental Tests of an ANN-Based Microwave Imaging Technique for Neck Diagnostics

    Get PDF
    In this letter, a microwave imaging strategy based on an artificial neural network (ANN) is applied, for the first time, to experimental data gathered from simplified neck phantoms. The ANN is used for solving the underlying inverse scattering problem, with the aim of retrieving the dielectric properties of the neck for monitoring and diagnostic purposes. The ANN is trained using simulated phantoms, to overcome the limited availability of experimental data. First, a simple configuration with a liquid-filled glass beaker is tested. Then, simplified 3-D-printed models of the human neck are considered. The preliminary findings indicate the possibility of training the network with numerical simulations and testing it against experimental measurements

    Advanced Computational Methods for Oncological Image Analysis

    Get PDF
    [Cancer is the second most common cause of death worldwide and encompasses highly variable clinical and biological scenarios. Some of the current clinical challenges are (i) early diagnosis of the disease and (ii) precision medicine, which allows for treatments targeted to specific clinical cases. The ultimate goal is to optimize the clinical workflow by combining accurate diagnosis with the most suitable therapies. Toward this, large-scale machine learning research can define associations among clinical, imaging, and multi-omics studies, making it possible to provide reliable diagnostic and prognostic biomarkers for precision oncology. Such reliable computer-assisted methods (i.e., artificial intelligence) together with clinicians’ unique knowledge can be used to properly handle typical issues in evaluation/quantification procedures (i.e., operator dependence and time-consuming tasks). These technical advances can significantly improve result repeatability in disease diagnosis and guide toward appropriate cancer care. Indeed, the need to apply machine learning and computational intelligence techniques has steadily increased to effectively perform image processing operations—such as segmentation, co-registration, classification, and dimensionality reduction—and multi-omics data integration.

    Passive Microwave Radiometry and microRNA Detection for Breast Cancer Diagnostics

    Get PDF
    Breast cancer prevention is an important health issue for women worldwide. In this study, we compared the conventional breast cancer screening exams of mammography and ultrasound with the novel approaches of passive microwave radiometry (MWR) and microRNA (miRNA) analysis. While mammography screening dynamics could be completed in 3–6 months, MWR provided a prediction in a matter of weeks or even days. Moreover, MWR has the potential of being complemented with miRNA diagnostics to further improve its predictive quality. These novel techniques can be used alone or in conjunction with more established techniques to improve early breast cancer diagnosis

    Optimized Multilayer Perceptron with Dynamic Learning Rate to Classify Breast Microwave Tomography Image

    Get PDF
    Most recently developed Computer Aided Diagnosis (CAD) systems and their related research is based on medical images that are usually obtained through conventional imaging techniques such as Magnetic Resonance Imaging (MRI), x-ray mammography, and ultrasound. With the development of a new imaging technology called Microwave Tomography Imaging (MTI), it has become inevitable to develop a CAD system that can show promising performance using new format of data. The platform can have a flexibility on its input by adopting Artificial Neural Network (ANN) as a classifier. Among the various phases of CAD system, we have focused on optimizing the classification phase that directly affects its performance. In this paper, we present the optimized Multilayer Perceptron (MLP) binary classifier, which can be plugged into the CAD system, that uses Dynamic Learning Rate (DLR) for alleviating local minima problem. The proposed classifier has an optimized size of neural network so that it will not fall into indeterminate equation problem by having reasonable amount of weights between each perceptron. Also, the proposed model will dynamically assign a learning rate onto each training points in the way that model earmarks a higher learning rate onto each training points belonging into minority class in order to escape from local minima which is a typical jeopardy of MLP. In experiment, we evaluate performance of our model with following measures; precision, recall, specificity, accuracy, and Matthews Correlation Coefficient (MCC) and compare them to that of work by Samaneh et al. The results show that our model outperforms existing model not only for the performance such as recall, specificity, accuracy, and precision, but also for the quality, and thus it empowers physicians to make better decision on breast cancer screening in early stage, as it also alleviates the cost burden from the patients

    Advanced Computational Methods for Oncological Image Analysis.

    Get PDF
    The Special Issue "Advanced Computational Methods for Oncological Image Analysis", published for the Journal of Imaging, covered original research papers about state-of-the-art and novel algorithms and methodologies, as well as applications of computational methods for oncological image analysis, ranging from radiogenomics to deep learning [...]

    Microwave Imaging of The Neck by Means of Inverse-Scattering Techniques

    Get PDF
    In recent decades, in the field of applied electromagnetism, there has been a significant interest in the development of non-invasive diagnostic methods through the use of electromagnetic waves, especially at microwave frequencies [1]. Microwave imaging (MWI) - considered for a long period an emerging technique - has potential- ities in numerous, and constantly increasing, applications in different areas, ranging from civil and industrial engineering, with non-destructive testing and evaluations (example e.g., monitoring contamination in food, sub-surface imaging based on both terrestrial and space platforms; detection of cracks and defects in structures and equipments of various kinds; antennas diagnostics, etc. ), up to the biomedical field [2], [3], [4], [5], [6], [7]. One of the first applications of microwave imaging (MWI) in the medical field was the detection of breast tumors [8], [9], [10], [11], [12], [13], [14], [15], [16], [17]. Subsequently, brain stroke detection has received great attention [18],[19], [20], too. Other possible clinical applications include imaging of torso, arms, and other body parts [21], [22], [23], [24]. The standard diagnostic method are computerized tomography (CT), nuclear magnetic resonance (NMR) and X-rays. Although these consolidated techniques are able to provide extraordinary diagnostic results, some limitations still exist that stimulate the continuous research of new imaging solutions. In this context, MWI can be overcome some limitations of these techniques, such as the ionizing radiations in the CT and X-rays or the disadvantages of being expensive, in the NMR case. This motivates the study of MWI methods and systems, at least as a complementary diagnostic tools. The aim of electromagnetic diagnostic techniques is to determine physical param- eters (such as the electrical conductivity and the dielectric permittivity of materials) and/or geometrics of the objects under test, which are suppose contained within a certain space region, sometimes denoted as "investigation domain". In particular, by means of a properly designed transmitting antenna, the object under test is illuminated by an electromagnetic radiation. The interaction between the incident radiation and the target causes the so-called electromagnetic scattering phenomena. The field generated by this interaction can be measured around the object by means of one or more receiving antennas, placed in what is sometimes defined as the "ob- servation domain". Starting from the measured values of the scattering field, it is possible to reconstruct the fundamental properties of the test object by solving an inverse electromagnetic scattering problem. As it is well known, the inverse problem is non-linear and strongly ill-posed, unless specific approximations are used, which can be applied in specific situations. In several cases, two-dimensional configurations (2D) can be assumed, i.e., the inspected target has a cylindrical shape, at least as a first approximation. More- over, often the target is illuminated by antennas capable of generating a transverse magnetic (TM) electromagnetic field [25]. These assumptions reduces the problem from a vector and three-dimensional problem to a 2D and scalar one, since it turns out that the only significant the field components are those co-polarized with the incident wave and directed along to the cylinder axis. In recent years, several methods and algorithms that allow an efficient resolution of the equations of electromagnetic inverse scattering problem have been developed. The proposed approaches can be mainly grouped into two categories: qualitative and quantitative techniques. Qualitative procedures, such as the delay-and-sum technique [26], the linear sampling method [27], and the orthogonality sampling method [28], usually provides reconstructions that allows to extract only some parameters of the targets, such as position, dimensions and shape. However, they are in most cases fast and computationally efficient.On the contrary, quantitative methods allows in principle to retrieve the full distributions of the dielectric properties of the object under test, which allows to also obtain additional information on the materials composing the inspected scenario. Such approaches are often computationally very demanding [25]. Qualitative and quantitative approaches can be combined in order to develop hybrid algorithms [29], [30], [31], [32], [33], [34]. An example is represented by the combination of a delay-and-sum qualitative focusing technique [35], [36], [37] with a quantitative Newton scheme performing a regularization in the framework of the Lp Banach spaces [38], [39], [40]. Holographic microwave imaging techniques are other important qualitative meth- ods. In this case, the processing of data is performed by using through direct and inverse Fourier transforms in order to obtain a map of the inspected target. As previously mentioned, quantitative approaches aim at retrieving the distributions of the dielectric properties of the scene under test, although they can be significantly more time-consuming especially in 3D imaging. Among them, Newton- type approach are often considered [39], [40]. Recently, artificial neural networks (ANNs) have been considered as powerful tools for quantitative MWI. The first proposed ANNs were developed as shallow network architectures, in which one or at least two hidden layers were considered [41], [42]. Successively, deep neural networks have been proposed, in which more complex fully-connected architecture are adopted. In this framework, Convolutional Neural Networks (CNNs) have been developed as more complex topologies, for classification problems or for solving the inverse scattering problems [43], [44], [45], [46], [47], [48], [49]. In the inverse scattering problems, the CNNs often require a preliminary image retrieved by other techniques [43], [44], [47], [50], [51] and do not allow directly inver- sion from the scattered electric fields collected by the receiving antennas. Standard CNNs are developed for different applications. Examples are represented by Unet [52], ResNet [53] and VGG [54]. This Thesis is devoted to the application of MWI techniques to inspect the human neck. Several pathologic conditions can affect this part of the body, and a non-invasive and nonionizing imaging method can be useful for monitoring patients. The first pathological condition studied in this Thesis is the cervical myelopathy [55], which is a disease that damages the first part of the spinal cord, between the C3 and C7 cervical vertebrae located near the head [56]. The spinal cord has an important function in the body, since it represents the principal actor in the nervous system. For this reason, it is "protected" inside the spinal canal [57]. A first effect of cervical myelopathy is a reduction of the spinal canal sagittal diameter, which may be caused by different factors [58]. Some patients are asymptomatic and for this reason a continuous monitoring could be very helpful for evaluating the pathology progression. To this end, the application of qualitative and quantitative MWI approaches are proposed in this document. The second neck pathology studied in this Thesis is the neck tumor, in particular supraglottic laryngeal carcinoma [59], thyroid cancer [60] and cervical lymph node metastases [61]. These kinds of tumors are frequently occurring and shown a 50% 5-year survival probability [61],[62], [63], [64]. Fully-connected neural network are proposed for neck tumor detection. The Thesis is organized as follows. In Chapter 2, the relevant concepts of the electromagnetic theory are recalled. Chapter 3 describes the developed inversion algorithms. It also reports an extensive validation considering both synthetic and experimental data. Detailed data about the imaging approach based on machine learning are provided in Chapter 4. This chapter also reports the results obtained in a set of simulations and experiments. Finally, some conclusions are drawn in Chapter 5

    Deep Learning in Medical Image Analysis

    Get PDF
    The accelerating power of deep learning in diagnosing diseases will empower physicians and speed up decision making in clinical environments. Applications of modern medical instruments and digitalization of medical care have generated enormous amounts of medical images in recent years. In this big data arena, new deep learning methods and computational models for efficient data processing, analysis, and modeling of the generated data are crucially important for clinical applications and understanding the underlying biological process. This book presents and highlights novel algorithms, architectures, techniques, and applications of deep learning for medical image analysis

    The Magic of Vision: Understanding What Happens in the Process

    Get PDF
    How important is the human vision? Simply speaking, it is central for domain\ua0related users to understand a design, a framework, a process, or an application\ua0in terms of human-centered cognition. This thesis focuses on facilitating visual\ua0comprehension for users working with specific industrial processes characterized\ua0by tomography. The thesis illustrates work that was done during the past two\ua0years within three application areas: real-time condition monitoring, tomographic\ua0image segmentation, and affective colormap design, featuring four research papers\ua0of which three published and one under review.The first paper provides effective deep learning algorithms accompanied by\ua0comparative studies to support real-time condition monitoring for a specialized\ua0microwave drying process for porous foams being taken place in a confined chamber.\ua0The tools provided give its users a capability to gain visually-based insights\ua0and understanding for specific processes. We verify that our state-of-the-art\ua0deep learning techniques based on infrared (IR) images significantly benefit condition\ua0monitoring, providing an increase in fault finding accuracy over conventional\ua0methods. Nevertheless, we note that transfer learning and deep residual network\ua0techniques do not yield increased performance over normal convolutional neural\ua0networks in our case.After a drying process, there will be some outputted images which are reconstructed\ua0by sensor data, such as microwave tomography (MWT) sensor. Hence,\ua0how to make users visually judge the success of the process by referring to the\ua0outputted MWT images becomes the core task. The second paper proposes an\ua0automatic segmentation algorithm named MWTS-KM to visualize the desired low\ua0moisture areas of the foam used in the whole process on the MWT images, effectively\ua0enhance users\u27understanding of tomographic image data. We also prove its\ua0performance is superior to two other preeminent methods through a comparative\ua0study.To better boost human comprehension among the reconstructed MWT image,\ua0a colormap deisgn research based on the same segmentation task as in the second\ua0paper is fully elaborated in the third and the fourth papers. A quantitative\ua0evaluation implemented in the third paper shows that different colormaps can\ua0influence the task accuracy in MWT related analytics, and that schemes autumn,\ua0virids, and parula can provide the best performance. As the full extension of\ua0the third paper, the fourth paper introduces a systematic crowdsourced study,\ua0verifying our prior hypothesis that the colormaps triggering affect in the positiveexciting\ua0quadrant in the valence-arousal model are able to facilitate more precise\ua0visual comprehension in the context of MWT than the other three quadrants.\ua0Interestingly, we also discover the counter-finding that colormaps resulting in\ua0affect in the negative-calm quadrant are undesirable. A synthetic colormap design\ua0guideline is brought up to benefit domain related users.In the end, we re-emphasize the importance of making humans beneficial in every\ua0context. Also, we start walking down the future path of focusing on humancentered\ua0machine learning(HCML), which is an emerging subfield of computer\ua0science which combines theexpertise of data-driven ML with the domain knowledge\ua0of HCI. This novel interdisciplinary research field is being explored to support\ua0developing the real-time industrial decision-support system
    • 

    corecore