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ABSTRACT

How important is the human vision? Simply speaking, it is central for domain
related users to understand a design, a framework, a process, or an application
in terms of human-centered cognition. This thesis focuses on facilitating visual
comprehension for users working with specific industrial processes characterized
by tomography. The thesis illustrates work that was done during the past two
years within three application areas: real-time condition monitoring, tomographic
image segmentation, and affective colormap design, featuring four research papers
of which three published and one under review.

The first paper provides effective deep learning algorithms accompanied by
comparative studies to support real-time condition monitoring for a specialized
microwave drying process for porous foams being taken place in a confined cham-
ber. The tools provided give its users a capability to gain visually-based in-
sights and understanding for specific processes. We verify that our state-of-the-art
deep learning techniques based on infrared (IR) images significantly benefit condi-
tion monitoring, providing an increase in fault finding accuracy over conventional
methods. Nevertheless, we note that transfer learning and deep residual network
techniques do not yield increased performance over normal convolutional neural
networks in our case.

After a drying process, there will be some outputted images which are recon-
structed by sensor data, such as microwave tomography (MWT) sensor. Hence,
how to make users visually judge the success of the process by referring to the
outputted MW'T images becomes the core task. The second paper proposes an
automatic segmentation algorithm named MWTS-KM to visualize the desired low
moisture areas of the foam used in the whole process on the MWT images, effec-
tively enhance users'understanding of tomographic image data. We also prove its
performance is superior to two other preeminent methods through a comparative
study.
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To better boost human comprehension among the reconstructed MW'T image,
a colormap deisgn research based on the same segmentation task as in the second
paper is fully elaborated in the third and the fourth papers. A quantitative
evaluation implemented in the third paper shows that different colormaps can
influence the task accuracy in MW'T related analytics, and that schemes autumn,
virids, and parula can provide the best performance. As the full extension of
the third paper, the fourth paper introduces a systematic crowdsourced study,
verifying our prior hypothesis that the colormaps triggering affect in the positive-
exciting quadrant in the valence-arousal model are able to facilitate more precise
visual comprehension in the context of MWT than the other three quadrants.
Interestingly, we also discover the counter-finding that colormaps resulting in
affect in the negative-calm quadrant are undesirable. A synthetic colormap design
guideline is brought up to benefit domain related users.

In the end, we re-emphasize the importance of making humans beneficial in ev-
ery context. Also, we start walking down the future path of focusing on human-
centered machine learning(HCML), which is an emerging subfield of computer
science which combines theexpertise of data-driven ML with the domain knowl-
edge of HCI. This novel interdisciplinary research field is being explored to support
developing the real-time industrial decision-support system.

Keywords: Industrial tomography, visual comprehension, affective colormap,
automatic segmentation
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1 Introduction

The work presented in this thesis focuses on facilitating visual understanding for
users working with specific industrial processes. Such understanding is critical for
domain-related decision-making relying on the human visual systems. This thesis
illustrates the research done regarding the facilitation of visual comprehension for
a specific domain—industrial tomography, with respect to three realms—condition
monitoring, image segmentation, and affective computing. The main skeleton of
this thesis is summarized as follows. First, it provides an exhaustive background
and motivation of the three realms. Then, the thesis points out the corresponding
problem solving and lights up future work which will concentrate on interdisci-
plinary research by merging human-centered design, machine learning, and visual
analytics.

1.1 Background

The research described in this thesis aims to benefit humans pertaining to get
insights and in-depth understanding for industrial tomography processes. In hu-
man computer interaction (HCI), the goal for a formed framework or application
is to improve their usability or accessibility to the benefit of its users.

1.1.1 Condition monitoring

Condition monitoring has been developed as a mature technique in industrial set-
tings due to its superiority of spotting anomalies and improving productivity. For
an on-going process, it is crucial to detect undesired and defective products and
improve efficiency by reducing faults with production equipment. The detection
and diagnosis of defects and faults via improved monitoring is an active field of
research in industrial systems due to its potential for reducing maintenance costs
[1]. Condition monitoring enables the comparison between regular and erroneous
scenarios by use of external or built-in devices. The progressively increasing so-
phistication of industrial equipment brings a greater likelihood of faults due to
their complexity. Therefore, appropriate and effective condition monitoring must
become mandatory in the context of data-driven industrial processes.

In this thesis, we introduce a specific confined process called microwave drying
for porous foams, which is operated in a confined chamber independent from the
rest of the process. As illustrated in Figure 1.1, a black-boz is used to cover the
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Figure 1.1: Schematic overview of confined microwave drying of porous foams. Array
of Infrared (IR) cameras are mounted on the ceiling inside of the confined chamber

foam drying process. An array of infrared (IR) cameras is installed on the ceiling
of the chamber to capture the complete process. Other sensors (e.g. Microwave
Tomography Sensor, Electrical Capacitance Sensor) are employed either before
or after the drying process to measure the parameters of the foam, but only the
IR cameras can observe the process taking place inside the box. Thus, how to
develop highly intelligent condition monitoring methodologies by making using of
the IR images become the main research problem.

1.1.2 Image segmentation

A significant point to understand a process is to be familiarized with the related
dateset, especially the input and output of the specialized processes. The data
used to characterize the tomography included in this thesis is mainly in the form
of images. Image segmentation is one of the most commonly used methods to
classify the pixels of an image correctly in decision oriented applications. Due
to its capability for distinguishing various features [2], it is able to divide an
image into a number of discrete regions such that the pixels have high similarity
within and high contrast between regions [3]. in a word, image segmentation has
the high capacity to help human better visually understand the specifications by
highlighting the critical information.

Microwave Tomography (MWT) is a non-ionizing imaging technique that pro-
vides a quantitative image of the dielectric profile of the object of interest (OI)
[4, 5], which is used to characterize our microwave drying for porous foams pro-
cess. An important physical parameter—moisture level of the foam—is measured
throughout the whole drying process. Depending on the imaging techniques used,
a reconstructed tomographic images can display either the location of the moisture



Figure 1.2: Ezample of an MWT image (input image) in our study. Blue means
lower moisture, yellow means higher moisture.

through the foam as an OI or a map of the dielectric properties of the moisture
value both commonly referred to as MWT techniques [6, 7]. After the drying
procedure, the moisture level is represented on the outputted images, depicted in
Figure 1.2, which is an example of reconstructed images using the MW'T system.
Different colors resemble different moisture values.

1.1.3 Affective computing

In HCI, an important starting point is deploying human-centered design to aid
users to improve usability of the targeting objects. We have described that users
are able to understand the critical information revealed on images by using image
segmentation. However, will the precision of the visual understandability vary
with the changing of related affective stimuli such as different colors? Appropriate
color scheme usage in graphs, images, and animations can raise expressiveness
and persuasiveness in visual representations. The goal of color-mapping is to
effectively communicate these features from visual imagery to those data that
are the most prominent in hands-on tasks [8]. Color is a retinal variable which
is conventionally determined by hue, saturation, and brightness (HSB), all three
being dimensions in perception-based applications [9]. Research has proven that
using different colormaps can result in differing interpretations, depending on
how the visualization is perceived by the human eye [10]. That is, the selection
of colormaps can significantly influence a user's visual comprehension of data.
People react emotionally to different colormaps as well as to the visual imagery
displayed by those specific colormaps. Emotions can influence how the information
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Figure 1.3: The eight MWT image samples in our study. Different colors represent
different foam moisture levels. Blue is the desired color, representing lower moisture
levels.

presented to people will be interpreted, and how people will be affected in the
visual environment [11]. In our context, the outputted MWT images, offering
information that can be visualized using colormaps, are central in controlling the
heating process. An operator's visual comprehension of an MWT image is key
in recognizing the moisture levels on images. Figure 1.3 shows the set of eight
MWT image samples used in our study. Each sample was acquired from a confined
microwave foam drying and reveals post-process moisture levels.

1.2 Motivation

This section presents the key motivations driving this thesis.

1.2.1 Feature engineering & feature learning

Conventional 'intelligent'methods of condition monitoring are taxonomically de-
fined as feature engineering (Figure 1.4) [12] — also called shallow learning models
[13-16]. The well-established and verified methods have already achieved consid-
erable success in intelligent fault detection [17], but are not capable of tackling
complicated faults with low amounts of prior knowledge [13]. These traditional
models also have difficulties when processing complex errors, causing undesirable
consequences, which motivates us to explore more functional and powerful meth-
ods for feature extraction and function computation, even in multiplex settings.
To achieve this, we propose to use feature learning (Figure 1.5) [12, 18, 19] in-
stead of feature engineering. Feature learning makes use of algorithms that create
and learn features derived from raw data, with iterative steps to continue learn-
ing from newly obtained data [12]. Deep learning [20] is typically representative
of feature learning: It is a class of machine learning algorithms that use multiple
layers of nonlinear processing units for feature extraction and transformation [21].
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Figure 1.4: Schematic representation of feature engineering.
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Figure 1.5: Schematic representation of feature engineering with multiple feature
transformations.

Deep learning makes it to extract complicated features and resolve multiple com-
plex functions, overcoming some of the shortcomings of existing methods. There
are many categories of representations in deep learning, such as Deep Neural Net-
work (DNN) [22], Convolutional Neural Network (CNN) [23], Recurrent Neural
Network (RNN) [24], and others. In this thesis, the advanced feature learning is
used to address the condition monitoring for microwave drying process.

1.2.2 Visualization by automatic segmentation

After drying, some regions of the foam may not be completely dry. It is obvious
that dry parts have less moisture, hence the amplitude (moisture or dielectric
level) of these areas is lower than in the non-dry regions. The difference between
dry and non-dry is represented by allocating different colors to each region (Figure
1.2) where the blue parts stand for good/low moisture and the yellow parts stand
for bad/high moisture. Dark blue parts are drier than yellow areas. The colours
become more yellow when there is more moisture. It is critical for operators and
practitioner to precisely assess the low moisture areas of the material so as to
gauge the success of a drying process.

There are some efficient MWT systems that produce high-quality images for
industrial processes [5, 7]. In our drying process, the measurement of the foams
is also performed by MWT, whose detailed design is beyond the scope of this
paper. We address the segmentation for visualizing the blue regions represent-
ing low moisture. Thus, we propose an automatic segmentation method called
MWT Segmentation based on K-means (MWTS-KM) for processing the images
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reconstructed by an MWT in our experiment. This algorithm is fully automatic
and the user only has a verification role [2]. Next, we report on how we car-
ried out experiments in practical settings to validate the proposed segmentation
method, including how we successfully validated its robustness, performance and
reliability.

1.2.3 Human affect and Design

Generally, a successful deployment of colormaps can not only improve the ob-
jective performance of tasks but can also arouse affective resonance, as well as
raising visual immersion. To measure the effect of different colormaps explored
within our study, we firstly propose a research question. RQ1: How can various
colormaps affect task accuracy in the context of MW'T so as to support accurate
visual comprehension?

Besides, we note that research has shown how colors can be linked to affective
expressions. A commonly-used approach is to encode affect with the circumplex
valence-arousal emotional model [25-29] for further analysis. Emotions are char-
acterized and plotted as a 2D circumplex coordinate system graph (Figure 1.6)
with the first dimension being positive and negative (valence), and the second
dimension being physically exciting and calm (arousal) [26]. These psychological
dimensions of affect are significantly influenced by informative properties of col-
ormaps, such as lightness and chroma. Some design rules for colormaps have been
developed for practical uses, suggesting that the chromatic properties of colormaps
are emphasized and increased in positive and exciting status and are weakened
and reduced in negative and calm status [28]. This leads to the second research
question. RQ2: Are colormaps triggering affect in the positive-exciting quadrant
of the valence-arousal grid able to facilitate more accurate visual comprehension
in terms of human perception towards MWT than those from the other three
quadrants? According to Bartram et al. [27], more strongly saturated colors can
be used to characterize the affect positive quadrant, while positive emphasizes
higher chroma colors. Since the segmentation task, which is highly dependent on
deeper colors is engaged in our study, we hypothesize that the positive-exciting
quadrant is more desirable than other quadrants.

1.3 Contributions

In this thesis, we emphasize the importance of letting human understand the
details of the specialized industrial processes. By real-time condition monitoring,
users to able to find the process anomalies through the IR images. By MW'T image
segmentation, users are visually enhanced to obtain the in-depth comprehension
of the output. Furthermore, the affective computing provides multiple colormaps
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Figure 1.6: The circumplex valence-arousal affective model used in our study. We
hypothesize that the positive-exciting quadrant is more desirable than other quadrants.

for users to connect human affect with accurate visual comprehension, so as to
get more insights into the tomography-controlled processes.

1.3.1 Deep learning through IR images

Nowadays, IR imaging is widely used in industrial processes because of its excellent
performance in measuring temperature differences, important when monitoring
safety-critical equipment [12]. In a confined industrial process where temperature
is a crucial parameter for evaluating overall performance, IR cameras and IR
imaging are especially useful for monitoring process health. As illustrated in
Figure 1.1, an array of IR cameras is installed on the ceiling of the chamber
to capture the complete process. The main research question here is whether,
through analysing the IR images, a state-of-the-art model-driven deep learning
technique can in this context more effectively determine process conditions when
compared to conventional methods. The contributions of our work are:

o Deriving a method to get access to monitor the confined industrial process.

o Deploying state-of-the-art deep learning with its derived methods and veri-
fying their efficacy.
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o Making use of IR images to broaden the industrial condition monitoring
horizon.

« Comparing feature learning and conventional feature engineering.

1.3.2 MWTS-KM

To benefit from the output from the microwave drying process, we propose to vi-
sualize the moisture area, more precisely the low moisture area for porous foams
using image segmentation methods on MW'T images, on the premise that many
segmentation methods have demonstrated satisfactory utilization in tomographic
systems but not desirable success in the context of MWT. Regarding the contri-
butions, firstly, a state-of-the-art MWTS-KM segmentation method is proposed
to visualize the low moisture area of an image. Then, as a novel integrated al-
gorithm, it is compared with two alternative segmentation algorithms that have
been used widely in related application areas.

1.3.3 Affective colormap design

After the segmentation, users are capable to distinguish the low moisture area on
MWT images by their own understanding merely. Thus, we start to concentrate
on colormap design for visual comprehension of MWT images based on the same
segmentation task. To balance energy effectiveness, material flow, and safety
aspects, it is crucial that humans accurately interpret such images. To resolve
RQ1 ( 1.2.3), we implemented a systematic quantitative study focusing on an
MWT image segmentation task to evaluate the colormaps. To tackle RQ2 ( 1.2.3)
and validate our hypothesis, we formulated and conducted a crowdsourced study
on the same task. The following contributions are made:

o Investigating how different colormaps affect task accuracy in the context of
MWT by a quantitative evaluation and obtaining the colormaps yielding the
best accuracy.

o Combining conventional design study with crowdsourced study and validat-
ing that colormaps triggering affect in the positive-exciting quadrant in the
valence-arousal model are able to facilitate more precise visual comprehen-

sion in MWT.

o Proposing a synthetic design guideline for relevant researchers and practi-
tioners to select colormaps boosting accurate visual comprehension in the
context of MW'T.



2 Related work

A body of research has been done regarding this three specialized application
fields. Deep learning for condition monitoring or fault diagnosis is ubiquitously
employed in industry. Fenton et al. [30] established a research overview on fault
detection in electronic systems wherein the importance of DNN was emphasized.
In addition, a retrospective review of deep learning in machine health monitoring
was conducted by Zhao et al. [31]. They concluded that general deep learning
methods in this context are mainly from Autoencoder and its variants, Restricted
Boltzmann Machines and its variants including Deep Belief Network (DBN), Deep
Boltzmann Machines (DBM), CNN and RNN. Janssens et al. [12] conducted
a comprehensive evaluation of feature engineering and feature learning among
several industrial cases, verifying its superiority for automatically determining the
condition of machine health, using IR videos. Keerthi et al. [21] also fed IR videos
as input into CNN to automatically extract the relevant region of an interest's
features, and subsequently make a prediction regarding their machine's bearing oil
status. Their evaluation showed that the proposed system achieved an accuracy
of 96.67%. Ma et al. [32] implemented a deep Autoencoder for diagnosing faults
based on images and structured data. A novel model which completely extracted
features by DNN and conducted analysis via a hidden Markov model (HMM) was
proposed by Qiu et al. [33] to handle indistinguishable faults. For an industrial
rolling element bearing (REB) fault classification process, Amar et al [34] gave an
example of creating then training vibration spectrum images in DNN. Likewise,
for a similar REB fault detection task, Verma et al. [35] developed an autoencoder
using intelligent unsupervised learning towards vibration measurements.

Besides, significant research efforts have been invested into the topic of tomo-
graphic image segmentation and related areas of application. Sharma et al. [36]
provided a review of a set of automated segmentation methods ranked by applica-
bility and suitability in the context of tomographic images; especially CT images.
Shoaib et al. [37] used the Otsu algorithm [38] to propose a method includ-
ing thresholding to prove a successful segmentation in lungs using CT. Likewise,
Dorgham [2] deployed an automatic segmentation method on the basis of GrabCut
[39] to detect human body Regions of Interest (Rol) from CT images. Moreover,
Jose et al. [40] effectively detected and identified the exact location of a brain
tumor through K-means clustering and fuzzy c-means algorithms by segmenta-
tion CT images. Sheppard et al. [41] utilized a combination algorithm containing
active contours [42] and watershed transformation [43] to implement segmenta-
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tion for porous materials in industrial tomographic images, resulting in superb
quality results. Concerning practical MWT, Wang et al. [44] employed a compar-
ative study on MWT image segmentation for breast cancer detection. They used
a K-Nearest Neighbor (KNN) algorithm and Gaussian Mixture Model (GMM)
in their research, and showed that KNN outperformed GMM when segmenting
Region of Interest (Rol) when using the Mathew Correlation Coefficient (MCC).
Another concrete comparative study was presented by Mahmood et al. [45], who
demonstrated that MW'T image segmentation is even capable of ameliorating the
accuracy of image reconstruction using several automated segmentation methods.
Joseph et al. [46] integrated image segmentation with their inverse scattering al-
gorithm called Forward- Backward Time-Stepping (FBTS) to apply on microwave
imaging for brain tumors.

For colormap design and selection, it has received attention over recent decades.
In the early nineties, Bergman et al. explored a rule-based tool to help choose the
best colormap for isomorphic, segmentation, and highlighting tasks [47]. Schulze-
Wollgast et al. exploited an enhanced automatic color-coding framework by en-
capsulating metadata extraction, colormap adaptation, and color legend creation
[9]. Tominski et al. developed a color-coding function to choose color scales
according to particular tasks [48]. Similarly, Mittelstadt et al. [49] proposed
a guided tool for selecting suitable colormaps for combined analysis tasks. By
conducting several hands-on crowdsourcing experiments with appropriate partic-
ipants, Reda et al. [50] designed a guideline which indicates that the rainbow
scheme or diverging colormaps afford superior accuracy for tasks requiring gra-
dient perception. Likewise, Turton et al. [51] also leveraged a crowdsourced
tool called Ware color key to assess various colormaps. Also, many research has
been focusing on the intersection amid colors, affect, cognition, and behavior [52,
53]. Wilms et al. [54] state that the effect of a certain color on emotions de-
pends not on only a single property but on a combination of them, such as hue,
saturation, and brightness. In a similar fashion, Bartram et al. [27] concluded
that colormaps have affective expression, inspecting the relationship between af-
fect and color properties (hue, chroma, and lightness) and confirmed the most
advisable palette composition design principles with regard to the correspond-
ing emotions. Some affective color-mapping rules were developed by Yang et al.
28] to encode visual properties of colormaps with the valence-arousal model for
re-rendering in animation. In practical application settings, the valence-arousal
emotion model is widely adopted due to its functionality. Kragel et al. [55] uti-
lized this model to embody complex affect on humans and have constructed a
comprehensive emotion-estimating framework in visual systems.



3 Problem solving

As mentioned before, the work outlined in this thesis intends to facilitate the
domain related users’ cognition for the specialized tomography-controlled pro-
cesses, by means of accentuating visual comprehension. This chapter specifically
introduce the problem solving procedure based on summarizing the methodolo-
gies used in the attached papers. For the ongoing confined process, we develop
intelligent algorithms by using the IR images to create a see-through pipeline for
real-time monitoring. To fully understand the outputted tomographic images, an
automatic MWT image segmentation algorithm is proposed to visualize the de-
sired area for users to gain deeper insights. After that, a human-centered design
guideline for selecting proper colormaps is brought forward to enhance the users’
visual comprehension in the same context.

3.1 Real-time condition monitoring

Paper paper I investigates the advanced feature learning 1.2.1 in improving the
monitoring accuracy for a confined microwave drying process through the im-
mediate genetated IR images. The data used comes from three distinct drying
processes of different foams with different drying duration. In our experimental
setting, IR videos recorded the entire drying process, from the foam being sent into
the chamber to its reemergence. We obtained nearly 10000 IR images to store
in our dataset. For further support of our observations, we divided the whole
dataset into a training set and a testing set, at a proportion of 8:2. There are 8
defined conditions which describe the whole process. Among them, conditions 7
and 8 are recognized as faults if detected.

Method: 4 benchmark neural networks (feature learning, 1.2.1) and 4 baseline
models are chosen to implement the training processes to predict the immediate
conditions, as well as to find the faults. The 4 benchmark networks (feature engi-
neering, 1.2.1) are one deep convolutional neural network, two transfer learning
models, and one deep residual neural network [56], which the 4 baseline models
include basic logistic regression [57], naive Bayes [58], support vector machine
[59], and linear discriminant analysis [60].

Result: Accuracy is chosen as the metric for evaluating condition monitor-
ing. This widely-used criterion specifies the rate between the samples correctly
classified and the total samples in the dataset. From the statistics, we witness
how the four feature learning methods completely outstrip the four conventional

11
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feature engineering methods, based on their superior accuracy acquired both in
the training and testing phases. Deep learning is thus observed to have satisfac-
tory efficiency in analysing the IR images from the monitoring of this process,
supporting the research question proposed in 1.3.1. In training results, it is
noteworthy that all four benchmark networks achieve higher accuracy (nearly
100%) when compared to the other four baseline models. Likewise, the feature
learning-based benchmark networks outperform the baseline models comprehen-
sively in the testing stage. Our research also shows that transfer learning and
deep residual network do not have greater abilities in condition monitoring and
prognostic fault detection within a confined microwave drying process. In fact,
neither transfer learning networks nor deep residual networks can be shown to
have similar training and testing accuracy when compared to our general CNN
model in three distinct processes.

3.2 Automatic segmentation for MWT

Method: At the beginning, we conduct a prior study to segment MW'T images
by two already well-established algorithms: Otsu algorithm [38] and K-means al-
gorithm [61]. We demonstrate that K-means exceeds Otsu in our context from the
conventional methods'perspective. The K-means algorithm is a method of cluster
analysis in data mining [61] which can also be used in image segmentation. This
genre of unsupervised machine learning algorithm aims to minimize the sum of
squared distances between all points and the cluster center [62, 63]. This is the
one of the simplest clustering algorithms and is computationally faster than the
hierarchical clustering. As a type of unsupervised learning, it is widely used in the
realm of image segmentation due to its simplicity and efficiency. Many researchers
have tried to combine it with other techniques to increase its performance, such
as integrating with fuzzy c-means algorithms [40] and partial stretching enhance-
ment [3]. Following such a strategy of combination, our proposed algorithm-MWT
Segmentation based on K-means (MWTS-KM)—is established based on the basic
K-means algorithm. It integrates image augmentation, grayscale image conver-
sion and conventional K-means into our proposed automatic algorithm. This
integrative strategy of our method is derived after considerable and objective test
cases.

Result: We conduct segmentation in all the 30 images gained from different
microwave drying processes. In our analysis, the segmentation task is a binary
classification to distinguish the foreground and the background in images. Accord-
ingly, we intend to categorize our MWT image into two parts; low moisture area
and other area. The whole segmentation period for 30 images lasts around three
hours. We run all the python scripts in the full-fledged IDE-Jupyter Notebook.
The results show that there is almost no evident difference observed between the
segmentation results from Otsu and K-means algorithms, both of which are inef-
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Figure 3.1: The comparison among three segmentation results. The first row shows
the input images. The second row results from applying the Otsu algorithm on the
input images. The third row results from using conventional K-means Algorithm while
the last row shows output images from the MWTS-KM algorithm.

fective in obtaining desirable consequences. However, compared to ground-truth
images which are input MW'T images, our proposed MWTS-KM achieves excel-
lent accuracy in visualizing low moisture areas in terms of perception, as revealed
in Figure 3.1. To validate the efficacy, we provide another more convincing quan-
titative evaluation. The evaluation output for the 30 samples are conducted by
Jaccard index, Dice coefficient and false positive. In terms of performance of each
algorithm, MWTS-KM exceeds Otsu and K-means remarkably in each metric.

3.3 Colormaps with affect

Method: To answer RQ1 ( 1.2.3) inculded in paper paper IV, we choose an-
other 10 commonly-used continuous colormaps (listed and elaborated in Figure
3.2) after conducting a literature review. Following the selection, we convert our
eight MWT images with the 11 chosen colormaps (we obtained a total of 88
MWT images) by using OpenCV !. Thus, we are able to observe each colormap
in segmenting the desired low moisture areas (blue parts on the images in parula
colormap, which is the original and default colormap).With this implementation,
we established the underlying quality of the selected 11 colormaps in the con-
text of the MWT segmentation task. We then executed the same segmentation
among all 88 MWT images. The segmentation of each image was conducted by

1 Open Source Computer Vision Library, referred as a library comprising various programming
functions aiming for real-time computer vision: https://opencv.org
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Colormap Hues Lightness Design Strategy
parula - multiple - default (MATLAB)
viridis -" multiple lightness increases monotonically sequential (perceptually uniform)
magma - multiple lightness increases monotonically sequential (perceptually uniform)

greys - single lightness increases monotonically sequential
blues - single lightness increases monotonically sequential
cool - two lightness function has plateau sequential
autumn -I multiple lightness function has plateau sequential
hot - multiple lightness function has kinks sequential
copper - two lightness function has kinks sequential
spectral ' ] multiple | lightness increases and decreases monotonically diverging
coolwarm l . two lightness increases and decreases monotonically diverging

Figure 3.2: The 11 colormaps we studied with their hues and lightness characteristics,
followed by each colormap's underlying design strategy.

MWTS-KM ( 3.2) while the overall evaluation for those designated colormaps
was accomplished by adopting the same data-driven approach ( 3.2). The three
indexes (Jaccard index, Dice coefficient, and false positive) [64] were used to mea-
sure and evaluate the 11 tested colormaps with the segmentation task in paper
paper IV.

According to our hypothesis and RQ2 ( 1.2.3), we intend to test whether those
colormaps triggering affect in the positive-exciting quadrant can facilitate more
accurate visual comprehension towards MWT than that from the other three
quadrants in valence-arousal coordinate system. We designed a crowdsourced
user study to verify our speculation. This experiment had two goals, first to
examine all the participants'affective responses to the 11 selected colormaps. The
emotions from participants were encoded with this circumplex model for further
analysis. Second, the user study would test participants'comprehension ability in
comparing and rating the accuracy of diverse colormaps from the segmentation
task in the prior quantitative evaluation. Hence, our study was divided into two
parts. An online questionnaire comprising two parts (I and II) to execute the
crowdsourced study is created via Google Forms. The participants are requested
to complete the study individually with no time limit. Answers are anynomized
for privacy. With no colorblind participants, all results are deemed valid.

Result: Regarding the resolution of RQ1 ( 1.2.3), we note that in both Jac-
card index and Dice coefficient, autumn scheme reaches very a high value, even
approaching 1.0 in some cases, which demonstrates excellent performance. Simi-
larly, it yields considerably low false positive assessment over the whole samples.
Colormaps viridis and parula obtain brilliant performance consistently among the
three metrics assessment. Then we note that colormaps spectral, coolwarm, and
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Figure 3.3: The synthetic distribution of the 11 colomaps regarding the affect evoked
in the valence-arousal coordinate system.

magma have the low evaluation outcomes (low Jaccard index and Dice coefficient
values but high false positive values) corresponding to initial results (In Figure 3,
those 3 colormaps are not able to visualize the blue parts correctly). By combin-
ing the complete results, it is fair to conclude that autumn, viridis, and parula
schemes appear to be the most desirable choices.

Regarding the results from the crowdsourced user study which is for RQ2
( 1.2.3), the outcomes support our hypothesis firmly. The first part of the user
study is to encode the affect caused by the 11 chosen colormaps, both in valence
and arousal dimensions. From our aggregated data acquired from the results and
the visualized plots (Figure 3.3), it is fair to conclude that colormaps parula,
viridis, and autumn trigger emotions mostly in the positive-exciting quadrant.
Conversely, coolwarm, spectral, magma, greys, copper, and cool incite the affect
mainly in the negative-calm quadrant. The remaining colormaps blues and hot
are in the positive-calm and negative-exciting quadrants respectively. Secondly,
another part of the user study records the rating of the accuracy of each colormap
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Figure 3.4: The overall accuracy rating results of the 11 colormaps by the 78 par-
ticipants (rating scale: very high accuracy, high accuracy, intermediate accuracy, low
accuracy, and very low accuracy).

on the same segmentation task by the participants who use their own comprehen-
sion (Figure 3.4). By observing the entire results, it is fair to initially conclude
that the colormaps autumn, viridis, parula, hot, and cool are favored over spec-
tral, coolwarm, magma, copper, and blues. After combining the two parts of the
croedsourced study, we can thus confidently conclude that the color schemes au-
tumn, viridis, and parula are the most desirable results from the judgement by
human visual comprehension, while spectral, coolwarm, and magma schemes are
much less preferable in the same context.



4 Discussions

Enhancing human vision to improve the visual comprehension towards tomography-
controlled industrial processes is the main point discussed in this thesis. In this
chapter, the insights obtained with the limitation spotted are illustrated.

4.1 Deep learning for real-time condition monitoring

Paper paper I shows that the state-of-the-art feature learning-based tool, CNN
and its variants, are advantageous for condition monitoring in a confined mi-
crowave drying process by using IR images. The merit of feature learning is that
it conducts iterative feature transformation, which conventional feature engineer-
ing does not have, making the implementation more reliable. In addition, we
also verify that transfer learning and deep residual neural networks do not out-
perform the standard CNN model. Overall, feature learning-based methods are
well-qualified to provide robust monitoring in various conditions and to detect
faults in a non-visible microwave drying process, as shown in our three distinct
demonstrations. Deep learning transcends traditional condition monitoring meth-
ods by a range varying from approximately 3% to 48%, according to our research.

However, there is still room to advance our approaches in Paper paper I. First,
the volume of the database should be enlarged to more closely approximate the
massive database that would be required for truly analogous research. In addition,
the thickness, as well as other physical properties, of the foam chosen in the
experiment may affect the temperature distribution, which may influence the
desired results. To make the research more robust, a greater variety should now
be tested.

4.2 MWTS-KM automatic segmentation

To summarize paper paper 11, we implement image segmentation technology in 30
MWT images obtained from the specialized microwave drying processes. The pro-
posed MWTS-KM algorithm is applied to segment images to visualize the areas
indicating low moisture level for porous foams in relevant context. We compare
MWTS-KM with another two commonly used methods and appraise them thor-
oughly. K-means algorithm surpasses Otsu in general cases even though there is
only a moderate difference between them. In some samples, the Otsu algorithm
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is superior to K-means algorithm whereas it is disadvantageous compared to K-
means algorithm. However, Our proposed algorithm has the highest Jaccard in-
dexes and Dice coefficients with the lowest false positive values as a tremendously
acceptable result. On the other hand, there still are some inefficiencies in our
algorithm, such as inadequate samples and lack of more complete pre-processing
steps.

4.3 Affective colormap design

What do we obtain from all the results acquired in paper paper IV? Foremost, we
propose two core research questions ( 1.2.3) regarding our study. How can various
colormaps affect task accuracy in the context of MW'T so as to impart accurate
visual comprehension? Are the colormaps triggering human affect in the positive-
exciting quadrant in the valence-arousal grid able to facilitate more accurate visual
comprehension in terms of human perception towards MW'T than those from the
other three quadrants? To resolve our RQ1 ( 1.2.3), we carry out a metric-
driven quantitative evaluation to judge the performance of individual colormaps
based on the same segmentation task. After consulting relevant literature, we
selected 10 prevalent continuous colormaps (plus a default colormap, totalling
11 colormaps tested) which were capable of retaining the needed information
in MWT images. By means of an automatic segmentation approach, we then
obtain the easily-distinguishable results which enabled us to determine the most
appropriate colormaps. We find that color schemes autumn, viridis, and parula
were considered the optimal options in comprehension-based scientific analysis
of MWT. In addition, we conclude that the colormaps spectral, coolwarm, and
magma were undesirable in the same context.

More critically, inspired by well-proven research on colormaps-emotion, paper
paper IV reflects on a comprehensive crowdsourced user study to address RQ2
( 1.2.3), as well as to validate our hypothesis. A 73-participant involved study is
formalized to verify whether the advisable colormaps concluded from the quantita-
tive evaluation are encoded in the positive-exciting quadrant in our built valence-
arousal model. We divide the whole study into two parts. Part I collects the affect
of how participants react to the 11 different testing colormaps and recorded the
outcomes. In Part II, our complementary study investigate the ratings by the par-
ticipants of the segmentation accuracy of each colormap. Through integrating the
two parts, we expectedly find that the most desirable colormaps autumn, viridis,
and parula indeed trigger the human affect in the positive-exciting quadrant which
conforms with our hypothesis.

The first limitation manifests in paper paper IV is that we investigate 11 dif-
ferent colormaps in terms of several selection strategies, in which categories (se-
quential and diverging) and color properties (hues and lightness) were considered.
However, the design strategy of additional colormaps could be enriched by adding
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more classes of colormaps that might then give similar or more outstanding per-
formance in our context. Second, we chose continuous colormaps simply because
of their ability to retain complete information of MW'T as well as respecting the
default setting in MATLAB. However, the scope could be extended by inspecting
discrete colormaps. Last but not least, some factors influencing the crowdsourced
study could not be controlled. For instance, we recruit participants from a range
of domains while the working environment of each participant could not be con-
trolled. Participants most likely are subject to different screen resolution, lighting,
and other environmental factors. A unified and subjective working environment
could have ensured more robust results.






5 Conclusions

Some industrial processes take place in confined settings only observable by sen-
sors, e.g. infrared (IR) cameras. Paper paper I focuses on a drying process being
taken place in an isolated chamber while a material is transported by means of
a conveyor through a 'black box'equipped with internal IR cameras. Inspired by
numerous implementations monitoring techniques that analyse IR images using
deep learning, this work shows how they can be applied to the confined microwave
drying of porous foams, with benchmarking their effectiveness at condition mon-
itoring to conduct fault detection. Our comparison shows that state-of-the-art
deep learning techniques significantly benefit condition monitoring, providing an
increase in fault finding accuracy of up to 48% over conventional methods. Nev-
ertheless, we also find that derived transfer learning and deep residual network
techniques do not in our case yield increased performance over normal convolu-
tional neural networks.

After a complete microwave drying process, it is critical for domain related
users to understand the output, which is the reconstructed tomographic images.
Hence, paper paper Il contributes to the development of an automatic MWT
segmentation algorithm to visualize the desired areas representing important in-
formation. Firstly, we prove the mature segmentation methods which have been
widely used in tomographic systems are considerably suitable for MW'T image
segmentation. In our study, this technique is an intuitive and innovative method
for visualizing the low moisture areas of foams. We have developed an entirely
automatic methodology named MWTS-KM to conduct the MWT image segmen-
tation, validating its high efficiency and high accuracy after practical experiments.
This method is able to meticulously visualize the low moisture areas for foams in
MWT images. Furthermore, its performance is superior to two other preeminent
methods.

To better promote human comprehension among the reconstructed MWT im-
age, we set up a colormap deisgn research in paper paper IV based on the same
segmentation task as in paper paper II. A quantitative evaluation of our work
shows that different colormaps can influence the task accuracy in MWT related
analytics, and that schemes autumn, virids, and parula can provide the best per-
formance. In our systematic crowdsourced study, we verify our hypothesis that
the colormaps triggering affect in the positive-exciting quadrant in the valence-
arousal model are able to facilitate more precise visual comprehension in MW'T
than the other three quadrants. Interestingly, we also discover the converse-finding
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that colormaps resulting in affect in the negative-calm quadrant are undesirable.
Therefore, we propose a synthetic design guideline for future practitioners to select
colormaps boosting accurate visual comprehension in the context of MWT.
From the perspective of HCI, it is vital to make humans, such as domain related
users or operators, to become aware of the various industrial processes. As the
thesis title resembles, benefiting human vision is plays an important role in this
context. We have used the IR images describing the ongoing processes for real-
time monitoring as well as enabling users to find the faults immediately. Then,
we develop an automatic segmentation method for outputted MW'T images to
visualize the needed part, which allows people to visually understand the data
better. Finally, through a systematic colormap design with human affect, we
have successfully obtained the most suitable color schemes which are capable to
facilitate accurate visual comprehension in the context of industrial tomography.



6 Future work

The research contained in this thesis is novel and has various possibilities in rele-
vant future studies. It tackles problems in order to benefit humans, while engaging
many intelligent methods such as machine learning (ML) /Al As a popular topic,
ML has been pervasively used in a variety of applications to obtain the better
results. In terms of HCI, to make ML beneficial for humans is an interesting
realm. In future work, we will concentrate on human-centered machine learning
(HCML), which is an emerging subfield of computer science which combines the
expertise of data-driven ML with the domain knowledge of HCI. ML research
works on pre-existing, well-standardized datasets, using objective measures such
as accuracy, precision, while HCI works directly with people, using qualitative
or quantitative user studies. In HCML, it emphasizes the deployment of human-
centered approaches to the conception, design, implementation, and evaluation
of ML systems. The targets of HCML are utilizing human-centered practices
to make ML systems more usable and reliable, and eliciting deeper understand-
ing of human contexts that leads to ML systems that have greater impact and
comprehensibility in terms of human concerns.

We will focus on this novel interdisciplinary research field to support devel-
oping the real-time industrial decision-support system. In our context, we are
supposed to obtain the appropriate real-time decisions through relevant data col-
lection, modelling, evaluation, and determination, which is subject to effective ML
systems. However, the information regarding the whole process should be easily-
perceivable, highly-understandable to the people involved in this loop. That is,
it's critical to take the users needs, goals, behaviors, and constraints into account
so as to design human-centric interactive ML systems, benefiting both human
concerns and the objective data-driven predictions. To efficiently concretize the
procedure, we are able to roughly organize our potential work into three stages:

o Collect the needs, goals, behaviors, and constraints of the context related
users, in a sustainable efficient manner. Use methods of ethnography and
contextual research to understand the problem space. Find out the status
and prospects of the use of ML in context related users. Propose a design
framework (can be an object, interface, system, or service) to effectively
address the needs found, which is used for further development of interactive
ML systems (note: domain users).

e Develop an interactive ML system to support accurate decision-making,
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6 Future work

which possesses high usability leading to great human perceivability and
comprehensibility.

Create the whole framework of the real-time decision making system for
the designated context. It should include the effective tool to model hu-
man concerns and the progressed interactive ML system which gives precise
predictions and the great impact on humans.
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