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Chapter 1
Introduction

In recent decades, in the field of applied electromagnetism, there has been a
significant interest in the development of non-invasive diagnostic methods through
the use of electromagnetic waves, especially at microwave frequencies [1]. Microwave
imaging (MWTI) - considered for a long period an emerging technique - has potential-
ities in numerous, and constantly increasing, applications in different areas, ranging
from civil and industrial engineering, with non-destructive testing and evaluations
(example e.g., monitoring contamination in food, sub-surface imaging based on both
terrestrial and space platforms; detection of cracks and defects in structures and
equipments of various kinds; antennas diagnostics, etc. ), up to the biomedical field
2], [3], [4], [5], [6], [7T]. Omne of the first applications of microwave imaging (MWI)
in the medical field was the detection of breast tumors [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17]. Subsequently, brain stroke detection has received great attention
[18],[19], [20], too. Other possible clinical applications include imaging of torso,
arms, and other body parts [21], [22], [23], [24]. The standard diagnostic method
are computerized tomography (CT), nuclear magnetic resonance (NMR) and X-rays.
Although these consolidated techniques are able to provide extraordinary diagnostic
results, some limitations still exist that stimulate the continuous research of new
imaging solutions. In this context, MWI can be overcome some limitations of these
techniques, such as the ionizing radiations in the CT and X-rays or the disadvantages
of being expensive, in the NMR case. This motivates the study of MWI methods
and systems, at least as a complementary diagnostic tools.

The aim of electromagnetic diagnostic techniques is to determine physical param-
eters (such as the electrical conductivity and the dielectric permittivity of materials)
and/or geometrics of the objects under test, which are suppose contained within a
certain space region, sometimes denoted as "investigation domain". In particular,

by means of a properly designed transmitting antenna, the object under test is
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illuminated by an electromagnetic radiation. The interaction between the incident
radiation and the target causes the so-called electromagnetic scattering phenomena.
The field generated by this interaction can be measured around the object by means
of one or more receiving antennas, placed in what is sometimes defined as the "ob-
servation domain". Starting from the measured values of the scattering field, it is
possible to reconstruct the fundamental properties of the test object by solving an
inverse electromagnetic scattering problem.

As it is well known, the inverse problem is non-linear and strongly ill-posed, unless
specific approximations are used, which can be applied in specific situations.

In several cases, two-dimensional configurations (2D) can be assumed, i.e., the
inspected target has a cylindrical shape, at least as a first approximation. More-
over, often the target is illuminated by antennas capable of generating a transverse
magnetic (TM) electromagnetic field [25]. These assumptions reduces the problem
from a vector and three-dimensional problem to a 2D and scalar one, since it turns
out that the only significant the field components are those co-polarized with the
incident wave and directed along to the cylinder axis.

In recent years, several methods and algorithms that allow an efficient resolution
of the equations of electromagnetic inverse scattering problem have been developed.
The proposed approaches can be mainly grouped into two categories: qualitative and
quantitative techniques. Qualitative procedures, such as the delay-and-sum technique
[26], the linear sampling method [27], and the orthogonality sampling method [28],
usually provides reconstructions that allows to extract only some parameters of the
targets, such as position, dimensions and shape. However, they are in most cases
fast and computationally efficient.On the contrary, quantitative methods allows in
principle to retrieve the full distributions of the dielectric properties of the object
under test, which allows to also obtain additional information on the materials
composing the inspected scenario. Such approaches are often computationally very
demanding [25].

Qualitative and quantitative approaches can be combined in order to develop
hybrid algorithms [29], [30], [31], [32], [33], [34]. An example is represented by the
combination of a delay-and-sum qualitative focusing technique [35], [36], [37] with a
quantitative Newton scheme performing a regularization in the framework of the LP
Banach spaces [38], [39], [40].

Holographic microwave imaging techniques are other important qualitative meth-
ods. In this case, the processing of data is performed by using through direct and
inverse Fourier transforms in order to obtain a map of the inspected target.

As previously mentioned, quantitative approaches aim at retrieving the distri-



butions of the dielectric properties of the scene under test, although they can be
significantly more time-consuming especially in 3D imaging. Among them, Newton-
type approach are often considered [39], [40].

Recently, artificial neural networks (ANNs) have been considered as powerful
tools for quantitative MWI. The first proposed ANNs were developed as shallow
network architectures, in which one or at least two hidden layers were considered [41],
[42]. Successively, deep neural networks have been proposed, in which more complex
fully-connected architecture are adopted. In this framework, Convolutional Neural
Networks (CNNs) have been developed as more complex topologies, for classification
problems or for solving the inverse scattering problems [43], [44], [45], [46], [47], [48],
[49]. In the inverse scattering problems, the CNNs often require a preliminary image
retrieved by other techniques [43], [44], [47], [50], [51] and do not allow directly inver-
sion from the scattered electric fields collected by the receiving antennas. Standard
CNNs are developed for different applications. Examples are represented by Unet
[52], ResNet [53] and VGG [54].

This Thesis is devoted to the application of MWI techniques to inspect the
human neck. Several pathologic conditions can affect this part of the body, and a
non-invasive and nonionizing imaging method can be useful for monitoring patients.
The first pathological condition studied in this Thesis is the cervical myelopathy [55],
which is a disease that damages the first part of the spinal cord, between the C3 and
CT cervical vertebrae located near the head [56].

The spinal cord has an important function in the body, since it represents the
principal actor in the nervous system. For this reason, it is "protected' inside the
spinal canal [57]. A first effect of cervical myelopathy is a reduction of the spinal
canal sagittal diameter, which may be caused by different factors [58]. Some patients
are asymptomatic and for this reason a continuous monitoring could be very helpful
for evaluating the pathology progression. To this end, the application of qualitative
and quantitative MWI approaches are proposed in this document.

The second neck pathology studied in this Thesis is the neck tumor, in particular
supraglottic laryngeal carcinoma [59], thyroid cancer [60] and cervical lymph node
metastases [61]. These kinds of tumors are frequently occurring and shown a 50%
5-year survival probability [61],[62], [63], [64]. Fully-connected neural network are
proposed for neck tumor detection.

The Thesis is organized as follows. In Chapter 2, the relevant concepts of the
electromagnetic theory are recalled. Chapter 3 describes the developed inversion
algorithms. It also reports an extensive validation considering both synthetic and

experimental data. Detailed data about the imaging approach based on machine



learning are provided in Chapter 4. This chapter also reports the results obtained in

a set of simulations and experiments. Finally, some conclusions are drawn in Chapter
5.



Chapter 2
Electromagnetic Formulation

In this chapter, some fundamental concepts of electromagnetic scattering theory
are presented. After the definition of the Maxwell’s equations, the electric properties
of the materials are discussed, with particular emphasis on the dielectric properties of
biological tissues. Then, the inverse scattering problem is addressed, with reference to
three-dimensional and two-dimensional configurations. In particular, electromagnetic

scattering phenomena in free space and in inhomogeneous environments are described.

2.1 Maxwell Equations

The electromagnetic field is governed by a set of experimental laws known as
Mazwell’s equations, which relate the field vectors to their sources [65]. Maxwell’s

equation can be expressed in the following local form

= oD(r,t) -

V x H(r,t) = e + Je(r,t) (2.1)
V x E(r,t) = —83(;:’25) (2.2)

V- D(r,t) = pe(r,t) (2.3)
V-B(r,t)=0 (2.4)

where 7 denotes the position vector expressed in meters [m] and ¢ the time in seconds

[s]. H is the magnetic field vector [A/m)], D is the electric flur density [C'/m?], E is

the electric field vector [V/m], and B the magnetic induction vector [Wb/m?] (or,

equivalently, [7]). The electromagnetic sources are p., the volume electric charge
5



density [C'/m?], and J, that is the electric current density [A/m?].
In the follow, we consider harmonic fields. Therefore, the Maxwell’s equation can
be written as [65]

V x H(r) = jwD(r) + J.(r) (2.5)
V x E(r) = —jwB(r) (2.6)
V- D(r) = pe(r) (2.7)
V-B(r)=0 (2.8)

where now the involved vectors represent the phasors of the corresponding time-

domain quantities reported in (2.1)-(2.4).

2.2 Electromagnetic Properties of Materials

Maxwell’s equations relate the field vectors D, E, B, and H with the sources
J. and p., which hold true in every electromagnetic phenomenon. However, these
equations are not sufficient for determining the vector fields univocally, since can be
easily proven [66] that the equations [(2.5)-(2.8)] correspond to six independent scalar
equations, whereas the 4 unknown vector fields can be represented by 12 unknown
scalar functions. Indeed, Maxwell’s equations contain no information on the media
in which the electromagnetic phenomena occur. This kind of information is given
by the constitutive equations, which provide additional constraints among the fields
vectors D, E, B, and H. The constitutive equations are specified for any medium
where the propagation take places [66]. In case of a linear, stationary, isotropic, and

non-dispersive (in space) medium, the constitutive equations can be written as

D(r) = e(r)E(r)

(2.9)
B(r) = u(r)H(r)

where € and p are the dielectric permittivity [F'/m| and the magnetic permeability
[H/m], respectively. Relative dielectric permittivity and magnetic permeability are

often introduced

e (r) = Ei:) (2.10)
_p(r)
pr(r) = m (2.11)

where €y &~ 8.85 x 107'2[F/m] and py = 47 x 107"[H/m] denote the dielectric

permittivity and the magnetic permeability of the vacuum, respectively.
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Some materials exhibit frequency-dependent dielectric properties and a complex
permittivity
e(r,w) =€ (r,w) — j'(r,w) (2.12)

Moreover, if inside the material there are free charges, an induced current is

generated, that in some case is given by
Jorm (1) = o(r,w)E(r) (2.13)

where o is the electric conductivity in [S/m].
Replacing (2.12) and (2.13) in the Ampere equation (2.5), and considering that
the total current density is the sum of impressed and inducted ones, was obtain

V x H(r) = jw <e('r,w) _ o)

) E(r)+ J.(r) (2.14)

As a result, it is possible to define an equivalent complex dielectric permittivity

é(r,w) = e(r,w) —jg(zw) =d(r,w)—j L"(r,w) + U(";;W)
(2.15)
=é(r,w) — jaeq(:’w)

where 0., is an equivalent electric conductivity. €(r,w) described both the effects of

free charges and temporal dispersion.

2.3 Electromagnetic Characterization of Biological

Materials

Biological materials exhibit dielectric properties that are strongly dependent upon
the working frequency [67]. In particular, the dielectric permittivity values are deeply
influenced by their water contents. Consequently, many biological tissues are very
lossy, in particular at microwave frequencies, resulting in significant attenuations
of the signals [1]. As shown in [68], biological tissues are characterized by three
dispersion regions, which are characterized by significant variations in the values of
the dielectric properties versus frequencies. The first region, called o dispersion, is
related to the diffusion mechanism in the cellular membranes and happens between
0.1 kHz and 100 kHz. The (8 dispersion is between approximately 1 MHz and 20 MHz
and is related to the presence of bound water in macromolecules, such as proteins.

Finally, the v dispersion is mainly due to the polarization of the water molecules

7



and is located around 20 GHz. Sometimes, a fourth transition region can be defined,
called o dispersion, that is present between o and ( dispersion regions.

Some examples of the behavior of the real part of the dielectric permittivity and
equivalent electric conductivity of some biological tissues in microwave band, are

shown in Figure 2.1.

2.3.1 Parametric Models of the Dielectric Properties

As discussed in the previous section, biological tissues exhibit a temporal disper-
sion behavior, which produces a frequency dependence in the dielectric properties.

To this end, several models can be used for describing the dielectric properties of
the materials in computational electromagnetics. In particular, the Debye and the

Cole-Cole models are considered in the following.

Debye Model

The Debye model has been introduced in [69] for describing the dielectric properties
of polar molecules. Using the Debye model, the complex dielectric permittivity of

materials can be approximated with the following parametric formula

Ae o
(W) =€+ ———j— 2.16
() 1+ jwr J w ( )
where €., 0, and 7 are real valued parameters that depend upon the specific material.
From equation (2.16) it is possible to write the real part of the dielectric permittivity

and the equivalent electric conductivity as

Ae Ae
(W) = €es + R =+ ———— 2.17
W) = e+ e{l—l—jwr} ‘ +1+(w7')2 (2.17)
Ae w?TAc
=0, —wl — ) = _— 2.1
o(w) =0, —wlm { T juﬂ'} 05+ 1 (W) (2.18)

When w — +00, it shows that € — €., whereas, for w — 0 we have ¢ — o,. The two
parameters €., and o, represent the asymptotic values of the dielectric permittivity
and electric conductivity, respectively. Moreover, Ae = €, — €5, where ¢, is the static
dielectric permittivity, since € — €., + Ae for w — 0 [1].

In several cases, the model in (2.16) is not sufficient to accurately describe the
dielectric properties over the whole range of frequencies of interest. In order to

overcome this problem, the model has been extended considering multiple poles, such



that [70]

Yo Ae, s

=€ + Z —j— (2.19)

1+ jwr, w

where €., o,, N, 7,, and Ag, are again parameters depending upon the specific

material.

Cole-Cole Model

The Cole-Cole model is an extension of Debye model [71], [72]. In particular, the

complex dielectric permittivity is described as

ew) = ewo + Hjii(l_a) - j% (2.20)

where €, is the real value of dielectric permittivity for w — 400, o, is the static

electric conductivity, and Ae = €, — €4, being €, the static dielectric permittivity. In

this model a new variable « is introduced, which varies between 0 and 1. It is worth
noting that, if o = 0, the Cole-Cole model reduces to the Debye one.

Also in this case, the model can be generalized considering multipoles. Therefore,

the complex dielectric permittivity can be expressed as

o —j— 2.21
6+Zl+]w7)1an ‘]w ( )

where €., and o, represent the asymptotic values of the dielectric permittivity and
the electric conductivity, respectively, and Ae,, 7,, and «,,, with n = 1,.., N, are the

parameters of the N poles.

2.4 Electromagnetic Scattering: Cylindrical Struc-

tures

Let us consider a linear, isotropic, time-invariant and spatially non-dispersive
dielectric medium, characterized by a complex dielectric permittivity €, and a mag-
netic permeability p;, with an inhomogeneity inside it that represents the object
under test. Considering the hypothesis of non-magnetic materials, i.e., the magnetic
permeability u(r) is always equal to the vacuum value g, the dielectric properties
of the object are the dielectric permittivity €(r) and the electric conductivity o(r).
The considered object is contained in a region of the space, €2, denoted as the "inves-

tigation domain", as showed in Figure 2.2. Moreover, the object is illuminated by a
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Measurement

/ domain
Source

% e y “

ad

Object under test

Investigation
domain

Figure 2.2: Three-dimensional configuration of the electromagnetic scattering problem.
The object under test, inside the investigation domain €2, is illuminated by an
electromagnetic source. The scattering field is collected in the measurement
domain ©.

proper source that generates an electromagnetic radiation in the region of interest.
Due to the electromagnetic scattering phenomena, the presence of the object modifies
the surrounding field. As a result, a "total" electric field E; is present at any point.
If the object is absent, the total field coincides with the incident electric field E;.
When the target is present, the difference between the total field and the incident

field is usually referenced as the scattered electric field
E r)=E,r)— E;(r) (2.22)

The scattered electric field E; can be seen as a fictitious quantity given by the
difference between the electric fields with and without the object under test. Usually
two situations can occur. In the first case, the object is fully known and the scattered
field is to be calculated. This is known as a forward scattering problem. The incident
field E;, the values of ¢, and 1, and the distributions of dielectric properties of the
object €(r) and o(r) inside € are known. The purpose is to derive the scattered
fields E in such a way to immediately get the total field E; from equation (2.22).

In the second case, the object is unknown and its dielectric properties have to
deduced from the perturbed field measurements, generally collected outside the
object. This is called inverse scattering problem. The incident field E; and the values
of ¢ and p; are known, while the distributions of the dielectric parameter of the

object, €(r) and o(r), within , are unknown.
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2.4.1 Wave Equation and Equivalent Sources

The starting point for solving the inverse electromagnetic scattering is represented
by the wave equation, which directly derive from Maxwell’s equations. Let us consider
a homogeneous, isotropic and non-magnetic medium characterized by a complex
dielectric permittivity €; in this case, the incident electric field satisfies the following

vector wave equation
V x V x Ei(r) — kiE;(r) = —jwpod.(r) (2.23)

in which &k, = wy/&puo is the wavenumber of the background medium, J.(r) is a

current density of the source, and V denotes a vector operator defined as

9
ox

0 )
— z— 2.24
+y8y + (2.24)

Vg z@z

where &, ¥ and 2 represent the unit vectors related to the axes of the Cartesian
coordinates z,y and z, such that » = 2x + yy + 22. Considering the vector identity
V x V x E; = VV - E; — V2E; equation (2.23) can be rewritten as

(V2 4+ kD) Ei(r) = jwped.(r) + VV - Ei(r) (2.25)

Thanks to the Gauss’s law for the electric field and the continuity equation, the

last term can be expressed as

VY- Ey(r) = ~Vpo(r) = LYV - J.(r) (2.26)
€p

WEp

Hence, equation (2.25) becomes

(V2 4 kD) Ey(r) = juwpod () + évv CJ(r)
b
= juwnod.(r) + 5V Y - I (r) (2.27)
b

‘ - VV
= Jwlo (I + /€2> - Je(r)
b

in which I denotes the identity dyadic tensor. The solution of equation (2.25) is
given by [25]
E(r)= jwuo/ G(r|r') - J.(r")dr' (2.28)

Qo

12



where () is the volume that contains the source, and

_ , _ 1 e—jka”—’"‘

is the dyadic Green’s function for free space [74]. As well know, the dyadic Green’s

function is the solution of following dyadic equation [25]
V x V x G(rlr'") — EG(r|r') = I§(r — 1) (2.30)

where ¢ is the Dirac function. Let us assume that an object is contained inside the
investigation domain €2, the dielectric permittivity is now no more constant and the

total electric field E,(r) everywhere satisfies the following equation [25]
V x V x E/(r) — k*(r)E,(r) = —jwuod.(r) (2.31)

where the wave number is equal to k(r) = w/é(r)uy. Adding the quantity kZE;(r)
to both side of the equation (2.31), we obtain

V x V x E/(r) — K*(r)E,(v) + K E,(r) = —jwpoJ.(r) + KL E/(7) (2.32)
that can be written as
—V XV x Ey(r) + K E\(r) = jwped.(r) + (K — k*(r)) Ei(r) (2.33)

At this point you can define the following equivalent current density

Tr) = L (1) — jutetr) - @B (2.34)

Since outside of the investigation domain é(r) = &, it results that
J(r)=0 Vré¢Q (2.35)
Considering equation (2.34), it is possible to rewrite equation (2.33) as
V XV x E(r) — EE/(r) = —jwue.(r) — jupo.(r) (2.36)

Since equation (2.36) represents a wave equation in a homogeneous medium, it
can be solved using (2.28). In particular, due to the linearity of Maxwell’s equations

and assuming that the real source does not is modified by the presence of the object

13



(electromagnetic decupling), the solution of equation (2.36) can be expressed

E\(r) =jopo |

= Bi(r) + o | Glrlr') - T.(r')dr’

G(r|r') - J.(r")dr" + jwuo /Q G(rlr') - J.(r")dr’

(2.37)

Finally, by recalling equation (2.22), the scattered electric field can be expressed
as
E(r) = E,(r) — Ey(r) = jwuo / G(r|r') - T.(r')dr’ (2.38)
Q

On the basis of the previous formulation, the scattered field can be viewed as
radiated by an equivalent current density source j;(r) in free space. It is important
to note that equation (2.38) is an expression of the volume equivalence principle
[25], because it states that the equivalent source J,(r) in a homogeneous medium
produces the same scattered electric field of the object. Equation (2.38) can be

written in an equivalent form as

E(r) = /Q G(r|r') - O(") Ey(v')dr’

B (2.39)
— k¢ [ Grir') - x(r)By(r)dr’
where O(r’) = wuo(€ — &) and the function
x(r') = E(r,)gb_eb (2.40)

is the contrast function containing the information related to the dielectric properties
of the object under test. In terms of the contrast function, the equivalent current

density is given by

Je(r) = jw(€ = &) Ey(r) = jwéx(r)Ey(r) (2.41)

2.4.2 The Inverse Scattering Problem

As mentioned above, the inverse problem aims at reconstructing the values of the
contrast function x(7) for r € Q (i.e., in the investigation domain) starting from field
measurements collected in a set of points located outside the investigation domain,
i.e., the measurement domain ©. Obviously, only the total electric field E;(r) for r €
© can be measured, but it is immediate to derive the scattered field (equation (2.22))

by subtracting the know incident field E;. As can be seen from equation (2.39), there

14



are two unknowns, x(r) and E;(r). Usually, this nonlinear problem is addressed
by considering two equations [25]. The first one, usually known as "data equation’,
relates the scattered field in the measurement domain with the two unknowns and is
given by

E(r) = —k2 /Q G(rlr') - x (" Ey(#)dr', r€© (2.42)

The second one is called "state equation" and links the two unknowns with the

incident field inside the investigation domain
E/r) = Ei(r) -k} /Q G(rlr') - x(rE,(v")dr', recQ (2.43)

As it is well known, the electromagnetic inverse problem is severely ill-posed [25].
It is therefore necessary to adopt appropriate regularization strategies (that will be
better detailed in the following).

2.4.3 Scattering Operators

Equations (2.42) and (2.43) can be combined together to write in a compact form
the relation between the scattered electric field and the contrast function. To this

end, it is possible to define two convolutional integral linear operators
Gof(r) = —k2 / G(rl') - t")dr',  T€© (2.44)
Q

and
Gof(r) = —k2 /Q G(r|r') - f(r")dr', T eQ (2.45)

whose kernel is the dyadic Green’s function G. By using equation (2.44), the data

equation can be rewritten as
E,(r)=GoxE(r), recO (2.46)
in which the contrast operator x is defined as
xf(r) = x(r)f(r), r e (2.47)
Analogously, by applying equation (2.45), the state equation becomes

E,(r) = Ei(r) + GoxE,(r), rcQ (2.48)
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Finally, the total electric field E, inside the investigation domain can be retrieved

from equation (2.48) as
N
E(r)=(T-0ox) Eir), reQ (2.49)

where T is the identity operator. Then, equation (2.49) can be used to rewrite (2.46)

E.(r) = GoX (I - Go®Y)  Ei(r)=F(\)(r), r€o (2.50)

where F is the scattering operator.

2.5 Two-dimensional Configurations

If the geometry of the considered problem does not change along one of the
spatial coordinates, the electromagnetic problem can be simplified assuming a two-
dimensional configuration, as shown in Figure 2.3.

In particular, let us assume that:

1. the contrast function is invariant along the z direction, i.e.,

x(r) = x(r) (2.51)
where r, = 2& + yg is the transversal component of r in the (z,y) plane.

2. the incident electric field vector is transverse-magnetic (TM) and z-polarized,
ie.,

Because of symmetry, also the scattered and total electric fields are z-polarized, i.e.,
E (r) = Es(r;)2 and E;(r) = Ei(r;)2. Under these assumptions, the full vector 3D
problem is reduced to a 2D and scalar problem. Equation (2.39) can be now written

as
Ey(r) = =12 [ glrlr)x(ri) Eu(r)r, (25

where g(r|7r}) is the 2D Green’s function for the considered configuration.

For the 2D case, the data and state equations can be written as

Ey(ry) = —kg/g g(re|ry)x(ry) Ey(v")dr,, r, €O (2.54)
Ey(ry) = Ei(ry) — kf/g g(rdr)x(r) E(r)dry, 7€ (2.55)
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Figure 2.3: Cylindrical configuration. The object under test is an infinite cylinder with the
axis parallel to the z axis. The cross section is contained in the investigation
area 2. The illuminating field is an electromagnetic TM wave.

where both the investigation area {2, and the measurement domain © are in the

same (z,y) plane. In this case, too, the following linear operators can be defined

Gof(r) ==k [ g(mlr)f(r)arl, mie© (2:56)
and
Gof(re) = =k} [ g(rdri)f(drl,  vi€ (257)

and it is possible to write the operator equations (2.54) and (2.55) as
Ey(r) = GoxEi(ry), 1, €O (2.58)

Ey(re) = Ei(re) + GaxEi(re), Ty € (Y (2.59)

Finally, also in the 2D case, a non-linear scattering operator can be defined, and

the equation (2.50) can be expressed as
Ey(r) = GoX (I — Gax) ' Ei(ri) = F(X)(r), 1. €0 (2.60)

where Z is the identity operator.

2.5.1 Objects in Free Space

Let us assume that the target under test is located in a homogeneous background

characterized by a dielectric permittivity &, (free space) (Figure 2.4). In this case
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Figure 2.4: Two-dimensional configuration. The object under test is surrounded by an
infinite and homogeneous medium, with a dielectric permittivity €, (free space).

the 2D Green function g(r|r]) is equal to [74]
n o ] (2) ’
glrdry) = JTHo™ (ko|re — 1)) (2.61)
where HSQ) is the zero-order Henkel function of second kind.

2.5.2 Objects in Inhomogeneous Structures

If the target under test is included in an inhomogeneous structure with arbitrary,
but known, dielectric properties, an analytic Green’s function does not exist (except
in particular cases) and must be numerically computed.

To this end, let us consider a reference distribution of the contrast function inside
the investigation domain x(r;), with r, € €, and a perturbation Ax(r;) in the
dielectric configuration (corresponding to the target in the inhomogeneous structure),
such that

X(re) = X(71) + Ax(r) (2.62)

To solve the inverse problem, it is convenient to search the differential contrast
function Ax(r;) instead of the total one, since Y (7;) is known. The scattered field

AE; due to the differential contrast function can be expressed as [25]

AB(r) =~k [ g(rlr) Ax(r) Eu(r])dr (2.63)

Q
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where §(7¢|r}) is the Green’s function of the inhomogeneous dielectric configuration

X, which satisfy the following equation
anr) = glrilrl) =k [ RGD)glrr!)a(rilr! )ar] (2.64)

As can be seen, equation (2.64) is similar to (2.55). For this reason, the same
numerical approaches can be used to calculate the total electric field Fy(r;) in equation
(2.55) and the function §(r:|r]) in (2.64). Now, the electromagnetic inverse problem

can be formulated using the following data and state equations

ABE, (1)) = —k? /Q Q) Ax(F) E(rl)drl, e © (2.65)

Ei(re) = Ey(m) — K2 /Q Gl AN E(r)dr!, T eQ (2.66)

where E(ry) is the total electric field due to the reference configuration §. This field
is given by

A

Ei(ry) = Ei(ry) — kf/Qg(rt\r;))Z(r;)Et(rg)dr;, ry € Q (2.67)

where F; is again the incident field in free space.

2.5.3 Discretization of the Continuous Model

In order to develop numerical algorithms able to solve forward and inverse
electromagnetic problems, the scattering equation described in the previous Section
must be discretized. The considered 2D geometry is sketched in Figure 2.5. N,
antennas are located around the object under test and are modeled as z-directed
infinite line current sources located at points r,, s = 1,...,5. Each antenna
sequentially illuminates the object under test with a transverse-magnetic (TM) field
and the total electric field due to the interaction with the object is collected in the
measurement domain © composed, for each transmitting antenna, by the remaining at
M = N, —1 antennas, modelled as ideal probes located at points rs,,, m =1,..., M.
For the sake of simplicity, a single-view and a single-frequency case is described here.
In what follows, the indexes s =1,...,5 and f =1,...,F, represent the considered
view and frequency, respectively. As shown in Figure 2.5, the investigation domain
(), is partitioned into I;,; square subdomains R;, centered at r;, 1 = ..., I;,;, with
side length p. With this assumption, the samples of the z-component of the electric

field in the measurement domain are related to the dielectric properties of the object
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Figure 2.5: Schematic representation of the considered discretized problem.

by means of the following equations [1]

E;/ = EY) + gl diag(\)E] (2.68)
B} = giuadiag (V) B} (2.69)
where B/ = [EP L EPP T and B3, = (B3, ES) T are the arrays

containing the z-components of the total and reference electric fields for the sth view
and the fth frequency in the investigation domain and E$/ = [E5 . ESHM]T jg
the array of the z-component of the electric field due to the scattering phenomena at
the measurement points. The reference field is due to a given reference configuration

when illuminated by the incident electromagnetic field produced by the source. The

gﬁm and gfl’;;a matrices contain the integrals of the values of the inhomogeneous

Green’s function for the reference configuration [1]. Finally, the array of the contrast
6(’)"1) — Eref (Tl) e(rltot) - ETCf(rItoz)]T

— g e ooy —

€p €p
complex dielectric permittivity of the actual and reference configurations in each

contains the values of the

function xy = [

subdomain R;. Combining the equations (2.68) and (2.69), the following equation

describing the whole electromagnetic scattering phenomena is defined

Ey/ = gi) diag()[I — glucdiag(x)] " E;, (2.70)

where I is an I;,; X I, identity matrix.
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Chapter 3
Deterministic Inversion Methods

As introduced in the previous chapter, the considered electromagnetic inverse
scattering problem consists in retrieving the contrast function of the object under
test, starting from the collected measurements of the electric field in the measurement
domain. Therefore, equation (2.60) needs to be solved with respect to the unknown
contrast function y. As mentioned, the relation between the scattered field and
the contrast function is strongly nonlinear and ill-posed. For this reason, a proper
non-linear regularization approach is required to solve the involved inverse problem.

In the present Thesis, following an approach previously developed at the Ap-
plied Electromagnetic Laboratory of DITEN, University of Genoa, a regularization
approach based on an InexactNewton method is considered, performing a regular-
ization in the framework of LP Banach Spaces [38], [40], [75]. The considered scheme
consists in two nested loops: The outer one, iteratively linearizes equation (2.60),
whereas in the inner one the linear problem obtained in the previous step is solved
by a regularization approach in LP Banach Space. Figure 3.1 shows the workflow of

the considered inversion method through a block diagram.

3.1 Inexact Newton approach (outer loop)

Generally, the equation (2.60) can be written in compact form as
F(x) = E; (3.1)

The unknown x belongs to the linear space C, provided with L” norm. The
scattered filed E, belongs to the linear space D, also provided with L” norm. F'is a
non-linear operator so that F: C — D. The developed Inexact-Newton algorithm
[76],[77],[78], schematized in Figure 3.1, inverts equation (3.1) through the following
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Figure 3.1: Block diagram representing the workflow of the proposed Inexact-Newton
inversion scheme.

iterations:

1. Definition of the initial solution y,. If a priori information is not available,

Xo = 0 is used.

2. First-order Taylor expansion of equation (3.1) around the current solution y;.

The following linear system is obtained [79]
Fi.h=E;—F(x;) = b (3.2)

where F}_ is the Fréchet derivative of F' around the current trial solution y;,

and b; is the residual at the 7th iteration.

3. Find a regularized solution A of equation (3.2) through a linear algorithm

developed in L” Banach spaces.

4. Update the solution with
Xi+1 = Xi + D (3.3)
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5. If a given stopping rule is satisfied, the algorithm terminates, otherwise repeat

from step 2.

As previously introduced, the algorithm belongs to the class of local deterministic
methods. Consequently, it may fall into local minima corresponding to false solutions
of the inverse scattering problem [80]. To partially overcome this problem, the
eventually available a priori information should be used to give an initial solution xq

as close as possible to the correct one [81].

3.2 Regularization in Banach Space (inner loop)

The developed Inexact-Newton scheme requires the application of a linear method
for the solution of the linear equation obtained in the outer loop. Typically, such
solvers are defined in the framework of the L? Hilbert space, where it is possible to
use standard mathematical tools, such as spectral analysis, to study convergence
properties and regularization methods [25], [82], [83], [84]. However, algorithms
developed in Hilbert spaces are often characterized by over-smoothness and ringing
effects in the obtained solutions, which makes it difficult to recognize small dielectric
discontinuities [40], [75], [85]. Therefore, different strategies have been considered.
One of the most promising approach is represented by the generalization of the
classical solution to LP Banach spaces, with p > 1 [86]. The main novelty is
represented by the parameter p, which characterizes the norm of the Banach space.
Such a parameter can be tuned in order to mitigate the ringing effects and over-
smoothness. On the other hand, the lack of a norm induced by an inner product
[87] denies the possibility of defining a singular value decomposition of the linear
operators, and, consequently, it is not possible to use standard mathematical tools.

The duality maps represent the key point for the extension of linear solution
method to LP spaces [86], [88]. These are nonlinear functions that associate an
element of a generic Banach space B to an element in its dual space B*, defined as the
space of all the continuous linear functionals from B to the real value. Beyond the
mathematical definition of the duality maps, a heuristic description can be obtained

considering the following theorem:

Asplund Theorem. Let B be a generic Banach space with norm ||-||z. The subdifferen-

tial of the convex functional —||-||5 with » > 1 is duality map, i.e., Jg =0 —|| - ||’"B)
T r
186].

In our considered problem, the linear system in equation (3.2) is solved by finding
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a regularized solution that minimizes the following functional
Lo 2
SIELR bl (3.4)
Applying the chain rule for derivatives, it results that
1 *
0 (I =billh) = FLaP(F b= b) (3.5)

where F* is the adjoint operator of I} and Jf : D — D* with D* dual space of
D, is the duality map of the considered LP space. In particular, in the considered
settings, J” turns out to be defined as [86], [38]

I (9) = |lgll5 PlglP~ " sign(g) (3.6)

where sign(g) = i, if g # 0, and sign(0) = 0 otherwise.

As it will be séqen in the following, the solution methods for the linear equation
(3.2) use the quantity at the right member of the equation (3.5) to carry out an
iterative update of the solution. In particular, thanks to the application of the duality
maps, the updated step is not executed in the contrast functions space, but in its
dual one. Once the new estimated solution is obtained in the dual space C*, the

corresponding element in the solution space is obtained by applying the duality map

JE 1 C* — (C*)* = C, defined as [36], [88]

2—q
C*

fI* sign(f) (3.7)

Jg () =11l

where ¢ = p/(p — 1) is the Holder conjugate of p and f € C*. This approach uses a
non standard minimization of the functional defined in equation (3.4). In particular,
the directions of minimization are not steepest descent ones of the classic methods
(i.e., conjugate gradient method), but non standard ones that derive from convex
analysis of the Banach spaces. The two approaches are equal only when p = 2, that
is the case in which the data and unknown spaces are provided with the structure
of the Hilbert L? space; in fact, the duality maps in the equations (3.6) and (3.7)
reduce to identities when p = 2. It is important to highlight that has been proven
that new method can mitigate the mentioned oversmoothing and ringing issues when
1 <p<2[86].
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3.2.1 Conjugate Gradient Method in Lebesgue Space

The classic conjugate gradient exhibits regularizing properties when a proper

early stopping of the iterations is adopted, since it behaves as a spectral filter [83].

The conjugate gradient method has been generalized to the LP Banach space (with

p > 1) in [89], [90], showing advantages in the reconstruction capabilities with respect

to classical approaches. Its superior performance has been shown for the first time in

the context of 2D brain stroke microwave imaging (MWI) in [38]. The method is

characterized by the following steps:

1.

2.

Initialization of hg =0 € C, hy = 0 € C* and py = F*JP(b;) € C*.

Solution of the following single-variable minimization problem

ay = argmin ||F}, JP (hy + apyp_1) — bil|? (3.8)

a>0 P

P(a)

This can be solve by a simple one-dimensional optimizer (such as the secant
method [91]).

Computation of the following parameters

pe = —FUJP(F) by — b;) + B
_NERIY (B b = 0l (3.9)

P = [ D (F by — b0)| 2

Update of the solution in C* with

iLk_H = ilk + @ﬁk (310)

Update of the solution in C through

et = IS (hisr) (3.11)

If a given stopping rule is satisfied, the process terminates, otherwise repeat

from step 2.
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3.3 Multi-frequency inversion through frequency
hopping

When field measurements are available at F' different working frequencies (f; <
fo < -+ < fr), it is possible to use this information in order to improve the quality
of the inversion at single frequency by using the frequency hopping method [92], [93].
In particular, such technique performs several single frequency inversions (in this
work the inexact-Newton scheme detailed above is adopted), starting from the data
with the lower frequency. The result obtained for a given frequency are then used
as initial guess for the subsequent inversion at a higher frequency. Basically, the

approach can be schematized as follows.

1. Inatialization. The frequency hopping scheme is started considering the lowest
working frequency f;. The data at this frequency are inverted. If no a-priori
information is available, the starting solution is set to xo = 0. The resulting

reconstructed contrast function is indicated as xo.f, -

2. Main loop. For v =2,--- | F, apply the inversion algorithm to the data related
to the f, frequency to obtain a new reconstructed contrast function x,. The

initial solution guess xo,f, is computed as

Yo, = RO + jf}‘lfmml) (3.12)

3. End. The frequency hopping loop stops when the data at the F-th frequency

are processed.

3.4 Hybrid Method: Newton Scheme with Delay-

and-Sum Beamforming

Following an approach previously developed at the Applied Electromagnetic
Laboratory of DITEN, University of Genoa, the Newton scheme in Lebesgue spaces
has also hybridized with a qualitative method based on the delay-and-sum (DAS)
beamforming technique [35], [36], [37]. A block scheme of the procedure is shown in

Figure 3.2.
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Figure 3.2: Block diagram of the hybrid inversion technique.

Specifically, the data collected in the measurement domain are first processed but
using the DAS method. In particular, assuming a multistatic multiview configuration
(as better specified in the following), in which the domain is sequentially illuminated
by the incident field produced by a different antennas located in a domain Orx a

preliminary image of the inspected scenario is obtained as
A(r) :/ / / Es(rr"w)ejw\/MOEOMb%d("'a"'la”'”)dr,dwdr”7 req (3.13)
orx JBJO

where d(r,r’,7") = |[r — v"|| + || — 7| (v' € © and r” € Orx represent the
positions of receiving and transmitting antennas, respectively). Moreover, € is the
dielectric permittivity of the propagation medium (in the case of inhomogeneous
target, an average value is used). Such a preliminary image is then normalized with
respect to its maximum value, resulting in a map Ao () = |A(r)| /r?ég( |A(7)],
which is used in the subsequent quantitative reconstruction procedure. A pmm ()
assumes values near unity in the parts of the domain where significant dielectric
discontinuities (with respect to the background) are present, thus allowing an initial
identification of target.

The second step of the hybrid approach relies upon the iterative Newton method

with a conjugate-gradient-like inner solver in LP Banach spaces detailed above.
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However, differently from the standard Newton scheme, the solution update is
weighted by the normalized map obtained in the first step, i.e., the updated solution

is computed as
Xi+1(r) = Xi(T) + Anorm (r)h(7) (3.14)

In this way, the solution update is focused on the region where the delay-and-sum
method finds dielectric discontinuities. In the developed approach, the DAS image
obtained in the first step is used only for updating the solution in the iterative Newton
method. Since DAS method returns only a qualitative reconstruction and not directly
the €, and o, it has been chosen to not exploit it in the definition of the initial guess
of the inversion. However, it has been found that this approach generates sufficently
good results. The iterations are stopped when a proper termination criterion, e.g.,
based on the maximum number of iterations or on the variation of the residual during

subsequent iterations, is satisfied.

3.5 Numerical and Experimental Validation: CG
Method

In this Section, a validation analysis concerning the application of the conjugate
gradient method is reported. First of all, numerical and experimental phantoms
mimicking the human neck are described. They have been designed and realized for
assessing the feasibility of the inversion method. Concentric cylinders are used as
preliminary simplified neck phantoms, followed by targets with more complex cross
sections. Numerical and experimental results are reported to evaluate the capabilities
and limitations of the proposed approach and of the adopted microwave measurement

system.

3.5.1 Numerical and Experimental Phantoms

As a preliminary numerical neck phantom, concentric circular cylinders are used to
describe the various tissues into the neck. The distributions of the relative dielectric
permittivities and electric conductivities are shown in Figure 3.3. Such a phantom is
composed by five concentric layers with circular cross sections, modeling skin, fat,
muscle, bone and spinal cord. The dielectric properties of each tissue have been
modeled by using the Debye models in [94], and the corresponding parameters at
1 GHz are reported in Table 3.1. The external diameters of the layers have been
set equal to Dy, = 12.8 cm, Do = 12.6 cm, Dipyscre = 9 cm, Dyope = 3.8 cm, and
Dgpine = 1.8 cm [95].
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Figure 3.3: Simplified model of the neck used as preliminary phantom. (a) Relative
dielectric permittivity and (b) electric conductivity [95].

To improve the complexity of the neck phantom, two different geometries are
considered, both numerically and experimentally. The geometry of the phantom,
which has been designed on the basis of realistic geometrical shapes reported in [96]
and by using the average dimensions reported in [57], is shown in Figure 3.4. The
main structure consists of a cylinder with an internal circular inclusion close to the
outer border that represents the trachea (Figure 3.4 (a)). The outer boundary has a
circular cross section with diameter d,,; = 11 ¢m and height h,, = 11 cm. Internally,
a circular compartment with diameter d;, = 9.5 cm and center in (—0.175,0) cm
has been added. The trachea has inner and outer diameters d;,;, = 1.8 cm and
doutjt = 2.4 cm, respectively, both centered at (3.9, 0) cm (Figure 3.4 (b)). Inclusions
of different sizes d; can be placed inside the structure for modeling the spinal canal
("Phantom 1"). An improved model includes a simplified section of the vertebral
column ("Phantom 2"). The shape of this part is sketched in Figure 3.4 (d), and the
corresponding dimensions are: r; = 4.23 ¢cm, ro = 4.31 cm, r3 = 1.3 cm, a; = 4.8 cm,
as = 3.9 cm, az = 0.6 cm, and ay = 0.3 cm. The spinal canal inclusion has an inner
diameter dy. = 1.8 cm and it is centered at (0.5,0) cm.

3D printed neck phantoms are developed following the structures of the numerical
ones. Polylactic acid (PLA) is used to create the main structure and also as a
supporting material for trachea and internal inclusions. The considered dielectric
properties of PLA are reported in [97] and the structure is modeled with a relative
dielectric permittivity €, pra = 3 and an electric conductivity opra = 0.001 S/m. As
a preliminary proof of concept, the phantoms have been filled with glycerin/water
mixtures in different concentrations to approximate the average contrast between

neck tissues. In particular, a glycerin/water mixture with 70% volumetric content
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of glycerin has been used to fill the main structure. The spinal canal has been
modeled with an 80% glycerin/water mixture, whereas pure glycerin has been used
for the vertebral bone. The dielectric properties of the involved liquids have been
obtained by means of reflection coefficient measurements on a liquid-filled section of
a short-circuited coaxial line [98]. Table 3.2 reports the parameters of the single pole
Debye model obtained by fitting the measured data. As shown in Figure 3.5 (a),
the relative dielectric permittivity of the adopted mixture are quite similar to those
of the corresponding biological tissues (on the basis of the results reported in [99],
[100]), average neck properties are calculated with a concentration of 80% muscle
and 20% fat). Figure 3.5 (b) reports the simulated and the actual contrasts between
spinal cord and average neck (green line) and between spinal cord and bone (blue

line), which also show a good agreement with the mentioned experimental data.

3.5.2 Numerical and Experimental Results

In this Section, numerical and experimental reconstruction results obtained by
the application of the proposed inexact-Newton scheme with the conjugate gradient
method in LP Banach spaces (described in the previous chapter) and using the
developed phantoms are reported.

First of all, in order to establish suitable working conditions, a planar multilayer
model composed by N = 5 layers is adopted. The outermost semi-infinite layer,
whose relative dielectric permittivity is €., € [1,80], represents the the coupling
medium outside the neck, whereas the innermost layer is used to model the bone.
The coupling medium outside the neck is used to increase the field penetration and
to reduce the skin reflection that otherwise could be too large. The three internal
layers, representing skin, fat and muscle, have thickness dsin, = 3 mm, dfe = 9
mm and dusee = 26 mm [96]. The innermost semi-infinite layer represents the

vertebral bone. The dielectric properties of these tissues are characterized by the

Tissue Relative dielectric Electric
permittivity conductivity (S/m)
Skin 40.90 0.90
Fat 5.45 0.116
Muscle 54.80 0.98
Bone 12.40 0.16
Spine 32.30 0.60

Table 3.1: Dielectric properties at 1 GHz of the tissues considered in the simplified model
of the neck [95].
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(f)

Figure 3.4: Design and dimension of the neck phantoms. "Phantom 1": (a) General view;
(b) Top view of the neck model; (¢) 3D printed neck phantom with a cylindrical
inclusion. "Phantom 2": (d) General view; (e) Top view of the vertebral column
model; (f) 3D printed neck phantom with printed model of the vertebral
column [101].

Tissue Glycerin (vol.) € Ae;  7ips]  os[mS/m]
Avg. neck 70% 12.440 40.157 116.75 127.46
Spinal Cord 80% 10.999 35.360 192.48 135.16

Bone 100% 5.7649 7.1352 187.52 219.74

Table 3.2: Parameters of the first-order Debye models of the glycerin/water mixtures used
inside the neck phantom [101].

frequency-dependent Cole-Cole models available in [72]. Such a model is used to
evaluate the reflection at the external interface of the neck and the transmission
coefficients inside the vertebral bone, versus the working frequency and the dielectric
permittivity of the coupling medium. The magnitudes of these two parameters are
computed with a custom code based on the analytical formulation reported in [102].
The results are shown in Figure 3.6. As can be seen, the analysis is done with
operating frequencies between 300 MHz and 3 GHz. The aim is to find the values of
dielectric permittivity of the coupling medium and the working frequency allowing a
good trade-off between low reflection from skin and high transmission toward the
vertebra. The reflection coefficient, shown in Figure 3.6(a), presents three regions

with low values. The first one is located around 300 MHz, when €, ; 2 30, the second
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one is approximately between 500 MHz and 1 GHz, with 5 < €, 2 60, and the third
one, which is partially overlapped to second one, is between 1 GHz and 1.8 GHz
with 5 < €. 2 30. From 2 GHz onward, a significant reflection appears. Regarding
the transmission coefficient, as can be seen in Figure 3.6(b), higher values appear at
lower frequencies with €,;, 2 5. On the basis of these results, the second frequency
band and a coupling medium with relative dielectric permittivity 5 < €., 2 60 have
been selected [101].

As a very preliminary test, the simplified multilayer cylindrical phantom is
adopted for the inversion procedure. Let us start with the description of the illuminat-
ing and measurement simulated setup. The background medium is vacuum, which is
characterized by the propagation constant ky, = kg = w,/po€o. The working frequency
is set to 1 GHz without adopting coupling media. A multistatic measurement setup is
considered, with N, = 16 antennas uniformly spaced on a circumference of diameter
Dpeas = 14.8 cm, surrounding the neck. Each antenna, modeled as a line-current
source, acts in turn in transmission mode and the remaining M = N, — 1 = 15 ones
are used to collect the scattered electric field. In the numerical simulations, the
electric field data used as input data for the inversion procedure have been computed
by using forward analytical solutions [103] for multilayer circular cylinders. In order
to simulate more realistic imaging conditions, a white Gaussian noise with a zero
mean value and a standard deviation corresponding to a signal-to-noise ratio equal to
SNR =40 dB has been added to the total electric field of the simulated data. The
investigation domain corresponds to the whole neck, i.e., it is a circular area with

diameter equal to dg, = 12.8 cm and it is discretized into [;,; = 12645 square cells of

80 40
70% glycerin average neck simulated contrast —simulated contrast
60 —80% glycerin - - spinal cord real contrast - - real contrast
—100% glycerin - - -bone cortical

~0T 407

0 ‘ ‘ ‘ 0 ‘ ‘ ‘
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Frequency (MHz) Frequency (MHz)
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Figure 3.5: (a) Relative dielectric permittivity of biological tissues and glycerin in different
concentrations. (b) Real and simulated dielectric contrast between spinal cord
and bone (blue line) and between spinal cord and average neck (green line) [101].
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Figure 3.6: (a) Reflection and (b) transmission coefficients for different values of the
frequency and of the dielectric permittivity of the coupling medium [101].

side 1 mm. The parameters of the inversion procedure are the following: Maximum
number of linearization iterations, B = 20; number of inner linear solver iteration,
C = 10; norm of the data and unknown spaces, p = 1.4.

To test the capabilities of the proposed method, two sizes of spinal cord are
considered (diameters of the innermost layer: 0.6 cm and 1.8 cm) that represent
the pathological and normal condition, respectively. As preliminary test case, the
reference scenario is assumed to be the actual neck without the spinal cord and
the aim is to retrieve the dielectric discontinuities represented by the spinal cord.
The results obtained by applying the inversion procedure are shown in Figure 3.7.
Such figures report the distributions of the normalized amplitude of the retrieved

differential contrast function, i.e., I(r) = |x(r)|/m%x |x(7)]. In the reported cases,
refle
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Figure 3.7: Reconstruction images for two sizes of the spinal cord: (a) 0.6 cm and (b) 1.8
cm. Normalized values of the differential contrast function [95].
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Figure 3.8: Reconstructed relative dielectric permittivity for different diameters of the
spinal canal d¢. "Phantom 1": (a) d; = 1.4cm, (b) d; = 1.8 cm and (c) d; = 2.4
cm. "Phantom 2": (a) d; = 1.4 cm, (b) d; = 1.8 cm and (c¢) d; = 2.4 cm [101].
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the size of the inclusion can be identified with a reasonable accuracy (withe circles
represent the correct diameters), although some artifacts appear for the smallest
considered diameter.

Finally, the inversion procedure has been numerically tested by using the more
complex neck phantoms, which have been described in the previous section. The
capabilities of the inverse procedure are tested by means of numerical simulations
involving the numerical model shown in Figure 3.4 (a)-(b) ("Phantom 1"). The
dielectric properties of the simulated phantom are characterized by using the Debye
model reported in Table 3.2. The measurement system is composed by N, = 10
antennas with D,,... = 12.8 cm. The frequency range is between 600 and 900
MHz, with a frequency step of 50 MHz. A 2D simulator based on the method
of moment is used for performing the forward simulation [104]. In this case, we
assume a SN R = 35 dB added to the total electric field and an investigation domain
constituted by a circular region with diameter do, = 12 cm, which is discretized
into Ny = 11304 square cells of 1 mm in side. For the inversion procedure, the
following parameters are considered: [;,; = 2828 square cells of side 2 mm; p = 1.4;
B = 20; C = 10; and the residual threshold is equal to Ry, = 0.01. Also in this
case, the reference scenario is the actual neck without the spinal canal [Fig. 3.8 (a)].
Three different diameters of the spinal canal d; are considered: 1.4 cm, 1.8 cm, and
2.4 cm. Figures 3.8 (b)-(d) show the distributions of the reconstructed dielectric
properties (in particular, the value of |e.|) at 900 MHz for the considered test cases.
The aim of this inital test was to evaluate the cabability of the proposed method to
reconstruct different value of spinal cord diameter. For this reason, in the figures
the modulus of dielectric permittivity, |e,.|, is shown. The estimated diameters of the
spinal cord, calculated with a threshold value corresponding to 45% of the actual
contrast between the dielectric values of the spinal cord and the average neck, are
1.66 cm, 2.19 cm, and 2.58 cm, respectively. Such values are very close to the actual

ones and allow distinguishing between the different canal sizes. As a second test case,
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Figure 3.9: Structure of the proposed microwave imaging system [101]
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the more complex "Phantom 2" (Figure 3.4 (d)-(e)), containing the simplified model
of the vertebral column, is investigated. As in the previous case, the same values
for the diameter of the spinal canal are assumed, i.e., 1.4 ¢m, 1.8 ¢cm, and 2.4 cm.
In this case, the reference scenario is the actual neck with the vertebra and without
the spinal cord [Fig. 3.8 (e)], whereas the inversion parameters are the same as in
the previous simulation. The distributions of the reconstructed dielectric properties
are reported in Figure 3.8 (f)-(h). The estimated diameters are 1.58 cm, 2.27 cm
and 2.88 cm, respectively. Also in this case, it is possible to distinguish between the
pathologic condition and the normal one.

Moving to the experimental results, let us introduce the proposed microwave
imaging system developed at the Applied Electromagnetics Laboratory of DITEN,
University of Genoa. The system processes the scattered-field data acquired with a
vector network analyzer (VNA) by means of a non linear inverse scattering technique,
and provides an image of the neck cross section. The structure of the prototype is
shown in Figure 3.9, where both the measurement instrumentation and the processing
scheme are highlighted. A two-port VNA is used for performing measurements in a
multistatic way, i.e., a single antenna radiates at a time and all the other ones are
subsequently swept to obtain multiview data. A microwave switch matrix is inserted
between the VNA and the antennas. The switch is controlled by MATLAB R2019a
(The MathWorks, Natick, MA, USA). In particular, N, = 10 slotted bowtie-like
antenna elements with back cavity realized on a FR-4 substrate are used. Details
about these antennas can be found in [38]. The number of antennas has been chosen
as a trade-off between the minimum number of sampling point and the available space

around the neck. The antennas are supported by a modular 3D printed assembly of

Figure 3.10: Design parameters of a section of the 3D printed antenna support structure.
(a) Side view. (b) Top view.
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PLA having the shape of a circular collar containing N, holes where the antennas
are located. The dimensions of the antenna support structure are reported in Figure
3.10. In particular, with reference to the elements specified in the figure, it results:
how = 4.2 cm, h;, = 4.2 cm, [, = 2.6 cm, [;;, = 2.1 cm, and d = 0.8 cm. The whole
assembly is composed of two equal parts with height h = 5.4 cm, and with inner
and outer radii equal to r;, = 6.45 cm and r,,; = 7.35 c¢m, respectively. These parts
are hooked with two joints that should allow quite a comfortable application on the
patient’s neck. The coupling between the probing elements and the neck is ensured
by plastic bags filled with a matching medium placed in contact with the radiating
surface of each antenna. The adopted matching medium, which is enclosed in sealed
polyethylene bags, is a mixture of glycerin and water, with 70% volumetric content
of glycerin. As mentioned, the bags are placed in contact with the radiating surfaces
of the antennas and are also able to compensate for variations in neck size.

Some preliminary experimental results are provided in Figure 3.11. Initially, the
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MWTI system and the applied inversion procedure are assessed by using the simplified
phantom shown in Figure 3.11(a), called in the follow "Beaker". It is composed of
a circular glass beaker with external diameter d, = 10.7 cm, which is filled with a
70% glycerin/water mixture. Circular inclusions filled with an 80% glycerin/water
mixture are placed inside the beaker in order to simulate the presence of the spinal
canal. The described microwave system is used to collect measurement data in
the frequency range between 600 and 900 MHz, with a frequency step of 50 MHz
frequency step. The measured data are used by inversion approach (described in the
previous chapters) and using a frequency-hopping scheme. In this case, the total and
incident electric fields used in the inversion method are obtained from the acquired S
parameter after a calibration procedure [105]. In particular, for each case, a complex
scaling coefficient is computed by considering the measurements of the incident field
performed in a known condition. The reference configuration is represented by a
homogeneous cylinder with the dielectric properties of a 70% glycerin/water mixture.
For the inversion procedure, the region of interest has a diameter dg, = 12.2 cm and
is partitioned into I;,; = 3024 square cells of side 2 mm. The following inversion
parameters are used: p = 1.4, B =20, C' = 10, Ry, = 0.01. Two different diameters
of the inclusion model of the spinal canal are considered: dg = 1.24 cm and d,, = 1.69
cm. The reconstructed distributions of the contrast function magnitudes for the
two cases are shown in Figure 3.11(e) and Figure 3.11 (f), respectively. In both
experimental cases, the internal cylinder is reconstructed quite accurately and the
estimated diameters are 1.03 cm and 1.58 cm, respectively. Moreover, the differences
between the two inclusions of different diameters can be clearly deduced from the
reconstructed images.

Subsequently, the imaging setup has been tested by using the 3D printed neck
phantom. Initially, the simplified structure denoted as "Phantom 1" is adopted. As
shown in Figure 3.11 (b) and Figure 3.11 (c), two different diameters of the inclusions,
i.e., dgo = 2.4 cm and dg3 = 1.0 cm, are considered again. The investigation domain
has a diameter of dp, = 12.4 cm and it is partitioned into I;,; = 5024 square cells
of side length equal to 1.5 mm. The printed phantom without inclusions has been
used as reference model and the inversion parameters for the first inclusion are:
p=14, B=20,C =10, Ry = 0.2. For the second case, p = 1.2, whereas the other
parameters are the same as in the previous example. The reconstructed distributions
are in Figure 3.11 (g) and Figure 3.11 (h), respectively. The sizes of the inclusion
are quite correctly identified in both cases (the estimated diameters are 2.74 ¢cm and
0.72 cm, respectively), confirming that even when using a more complex structure,

it is still possible to distinguish between the two different inclusions on the basis of
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their sizes.

The last considered configuration is based on the more accurate "Phantom 2",
which is shown in Figure 3.11 (d). The vertebral bone is filled with pure glycerin
and the internal inclusion is filled with a 80% glycerin/water mixture to simulate
the spinal canal, which has a diameter of 1.8 cm. The investigation domain is the
same used in the previous cases and the considered reference scenario is a numerical
model of the phantom with the vertebral section filled with pure glycerin. The
inversion parameters are the same as before. The reconstructed distributions of
the dielectric permittivity are reported in Figure 3.11 (i). Although the increased
complexity of this phantom leads to a slight decrease in the reconstruction accuracy
(the estimated diameter is 2.25 cm), it confirms the possibility of identifying the
inclusion even in this more challenging case. Also in these preliminary experimental
results the aim was to evaluate the cabability to individuate different diameter values;

the distribution of |e,.| have been considered.

3.6 Experimental Validation: Hybrid Method

In this Section, some preliminary results concerning the validation of the hybrid
approach that combines the DAS method with the Newton scheme (which has been
described in section 3.4) are reported and discussed.

The simplified phantom described in the previous Section and referred as "Beaker"
is considered. This phantom is composed by a circular glass beaker with diameter
dy = 10.7 cm and filled with a mixture of water and 70% glycerin by volume. Two
test cases are considered, with two different inner inclusions. The first one includes
an additional circular glass pipe with diameter d;,; = 12.4 mm, which is filled with
a mixture of water and 80% glycerin by volume. The dielectric properties of the
considered mixtures, at a frequency of 800 MHz, are equal to eggy, = 29.26 — 20.71
and €790, = 42.31 — 20.39, respectively. The microwave system used to acquire the
data is the same that has been described in the previous Section. Data are collected
in the frequency band ranging from 600 MHz to 800 MHz, with a frequency step
of 50 MHz. The investigation area has a circular shape with a diameter dg, = 12.4
cm. The domain is discretized into I;,; = 3024 square cells of side equal to 2 mm.
The considered reference scenario is the mentioned phantom without the spinal cord
inclusion. For the inversion procedure, the following parameters of the method are
used: p=1.3, Ry, = 0.1, B =20, and C' = 10.

Figure 3.12 (a) shows a reconstructed qualitative image obtained by applying the
DAS method. As can be seen, the DAS technique is able to identify the presence of
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Figure 3.12: "Beaker" phantom with glass inclusion with dg; = 12.4 mm. (a) Qualitative
image provided by the DAS method. Reconstructions obtained by using the
hybrid method (800 MHz). (b) Relative dielectric permittivity and (c) electric
conductivity (p = 1.3), (d) relative dielectric permittivity and (e) electric
conductivity (p = 2.0. Hilbert space) [106].

the inclusion and its position, although the size is largely overestimated, and artefacts
affect the background region. Such an image allows guiding the inversion process
in the second step in an effective way, by focusing the updates mainly in the region
where the inclusion is detected. This results in an enhanced capability of reducing
artefacts outside the inclusion, which in turn allows a better estimation of its dielectric
properties. The reconstruction results obtained by applying the proposed hybrid
method are provided in the other figures. In particular, Figure 3.12 (b)-(c) report the

reconstructed distributions of the relative dielectric permittivity and of the electric
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Norm parameter, p Estimated diameter [em]

1.1 0.87
1.2 1.11
1.3 1.26
1.4 1.46
1.5 1.49
1.6 1.55
1.7 1.68
1.8 1.76
1.9 1.77
2.0 1.74

Table 3.3: Estimated diameter of the inclusion versus the norm parameter p [106].

conductivity with a norm parameter p = 1.3, whereas the reconstructions in Figure
3.12 (d)-(e) are obtained in the Hilbert space, i.e., with p = 2.0. The reconstructions
with p = 1.3 exhibit a good target localization, different from the ones obtained
in the Hilbert-space, in which a certain over-smoothing is present in the inclusion
region.

For completeness, the hybrid method has been tested for different values
of the norm parameter (in the range [1.1,2]). The reconstructed values of the
diameter of the spinal canal are calculated for each norm value. A threshold equal
to 0.5max |€,rec — €rref| is used, where €, ,.. and €,.,.; are the relative dielectric
permittivities of the reconstructed and actual configuration, respectively. The
obtained results are reported in Table 3.3. As can be seen, the value of the norm
parameter significantly influences the reconstruction quality. For the considered case,
the "optimal" norm value is p = 1.3, for which the inner estimated diameter is equal
to 1.26 cm. For smaller norm values, the size of the inclusion is underestimated,
whereas for higher values the diameter is significantly overestimated (due to the
increased oversmoothing of the reconstructed images). Indeed, low values of the norm
parameter p enhance the sparsity of the solution and thus improve the reconstruction
of small and localized targets.

The second inclusion is a plastic pipe with diameter d, = 16.9. The pipe is filled
with the same mixture as the previous case. The obtained DAS image is shown in
Figure 3.13 (a). In this case, too, the method is able to detect the inclusion region. A
comparison between the hybrid method and quantitative method alone, with the same
parameter p, has been performed, too. In Figure 3.13 (b)-(c) the reconstructions of
the relative dielectric permittivity and electric conductivity are provided, respectively,

whereas in Figure 3.13 (d)-(e) the reconstructed images obtained with the quantitative
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Figure 3.13: "Beaker" phantom with plastic inclusion with d, = 16.9 mm. (a) Qualitative
image provided by the DAS method. Reconstructions obtained (800 MHz and
p = 1.3) by using the hybrid method, (b) relative dielectric permittivity and
(c) electric conductivity. Reconstructions obtained by using the quantitative
method alone, (d) relative dielectric permittivity and (e) electric conductiv-
ity [106].

method alone are reported. As can be seen, the hybrid method allows a better
reconstruction of the background, both for ¢, and o.

Finally, other two test cases are proposed. In particular, "Phantom 1" and "Phan-
tom 2" are used. These phantoms have been described in details in the previous
section. Firstly, "Phantom 1" is considered, in which a glass inclusion with diameter
dgo = 24 mm is present. The DAS image obtained in this case is reported in Figure

3.14 (a). As can be seen, it allows a good detection of the considered inclusion. The
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reconstructions of the dielectric properties yielded by applying the hybrid method
(with p = 1.3), are provided by Figure 3.14 (b)-(c). The corresponding results ob-
tained with applying only the quantitative method are reported in Figure 3.14 (d)-(e).
In this case, too, the use of hybrid method allows again a better reconstruction of
dielectric properties and a quite good detection of the inclusion if compared with the
results provided by the quantitative approach. In the latter reconstructions, however,

significant artefacts are presented, in particular concerning the distribution of the
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Figure 3.14: "Phantom 1" with glass inclusion with dgo = 24 mm. (a) Qualitative image pro-
vided by the DAS method. Reconstructions obtained (800 MHz and p = 1.3)
by using the hybrid method, (b) relative dielectric permittivity and (c) electric
conductivity. Reconstructions obtained by using the quantitative method
alone, (d) relative dielectric permittivity and (e) electric conductivity [106].
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Figure 3.15: "Phantom 2" with an inclusion with d,; = 18 mm. (a) Qualitative image
provided by the DAS method. Reconstructions of electric conductivity with
hybrid method (b) with p = 1.3 and (c¢) with p = 2.0. Reconstructions with
quantitative method alone (d) with p = 1.3 and (f) with p = 2.0 [106].

Finally, "Phantom 2" is considered, for which the inclusion has a diameter d,; = 18
mm. The obtained DAS image is reported in Figure 3.15 (a). It exhibits more artefacts
than in the previous cases, although the inclusion region can be correctly localized.
For this case, a comparison between the results obtained with the hybrid method
(p = 1.3 and p = 2.0), and with the quantitative method applied in a straight-
forward way, are given. In particular, Figure 3.15 (b)-(e) report the reconstructed
images of the electric conductivity obtained with the hybrid method, with p = 1.3
(Figure 3.15(b)) and with p = 2.0 (Figure 3.15 (c)), and the results obtained by
the quantitative method, with p = 1.3 (Figure 3.15 (d)) and with p = 2.0 (Figure
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3.15 (e)). The best detection of the inclusion is obtained with the hybrid method
with p = 1.3. Both with the hybrid method and the quantitative one, the retrieved
distributions include some artefacts and the electric conductivity of the inclusion is
rather underestimated.

In conclusion, the presented results demonstrate the capabilities of the proposed
hybrid method in improving the reconstruction of the distribution of the dielectric
parameters. In general, for the considered cases, the best results are obtained with a

norm parameter equal to 1.3.
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Chapter 4

Inversion Methods with Machine

Learning Approach

In this Chapter, another new, fast and reliable imaging method based on a machine
learning approach is investigated. Artificial neural networks (ANNs) represent recent
and useful tools for quantitative microwave imaging. In particular, fully-connected
neural networks have been found to be very effective in this framework [107]. In this
Chapter, the network architecture is presented, followed by the description of the
dataset constructed on the basis of numerical neck phantoms. As it is well known,
in machine learning approaches a massive quantity of data for the training phase is
required. To this end, a set of neck phantoms is used in this phase. The aim of the
proposed approach is to retrieve the geometric and dielectric properties of the cross
section of the human neck under investigation, starting by the measured values of

the scattered electric field, which represent the input of the fully-connected network.

4.1 Network Architecture

A feed-forward fully-connected network allows implementing a direct inversion of
the values of the scattered electric field in order to retrieve the dielectric properties
of the neck profiles. In particular, the adopted network is shown in Figure 4.1. As
can be seen, it includes L hidden layers and D neurons for each layer. All the hidden
layers have the same number of units, except the last layer, which is denoted as
the L 4+ 1 layer. With reference to the general tomographic imaging configuration
reported in Figure 2.5 (section 2.5.3), the network input is the array of values of the

scattered electric fields, which is defined as following

s

P = [Re{E, . Re{ ESPMY Im{ BV Im{ ESPMAT (4.0)
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Figure 4.1: Sketch of the fully-connected artificial neural network architecture adopted in
the present Thesis [108].

The array contains the values of the real and the imaginary part of the scattered field
collected for each view s, s = 1,...,S (S number of views), frequency f, f=1,..., F
(F number of frequencies), and measurement point m, m = 1,..., M (M number of
measurement points). Moreover, the output of the network is an array containing

the values of the dielectric properties in each cell R; of the investigation domain

O=1le),....ex(tn,)s . 0(rr), ... oy, )]

For the dth unit of the [th layer of the network, a numerical array of weights
of its input connections W, 4 € R, and a scalar bias value, b 4, are defined, with
l=1,...,Land d=1,...,D. The L + 1 layer has a number of neurons equal to
211, where I, is the number of square cells in which the investigation domain €2, is

partioned (see Section 2.5.3). Accordingly, the output array O is obtained as
0= R[ €+1,1OL + bL+1,17 s 7W’£+1,2Itot Or + bL+1,2ltot]T (4‘2)

where W7, € R¥* and by,14 € RP are the numerical array of weights and
a scalar bias value of the last layer, respectively. The output of a generic layer

[=2,...,L can be written as
O, = R[WlﬁOl_l + bl,17 . ,WZDOl_l + bl,D]T (43)
For the first hidden layer, [ = 1, the output is

O, =RW[,P+by,...., W], P+bp]" (4.4)
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with Wy 4 € RS*FXM and bia € RP are the numerical array and the scalar bias value
of the first layer, respectively. In the equations (4.2) - (4.4), R indicates the so-called
Rectified Linear Unit (ReLu) activation function [109], i.e.,

R(x) = [relu(z), relu(ay), . . ., relu(zp)]” (4.5)
where x = [z, T3,...,zp|’ and
‘ <0
elu(z) = 4 © Wes (4.6)
0, otherwise

Finally, to train the fully-connected neural network, a large dataset of neck
phantoms is necessary. In particular, the dataset will be split in two different groups,
the training and the validation set. The first set is used to "training" the developed
network with selected parameters, such as the number of hidden layers, neurons for
each layer, etc.. The training phase is used to obtain the best weights vectors that
minimize the prediction error. Usually, the weights are randomly initialized with a
normal distribution with zero mean and a standard deviation equal to 0.01. For each
training epoch, i.e. the number of times in which the neural network is trained with
all the training data, the difference between the actual output and predicted one
is calculated. The loss function is used to calculate the reconstruction error in the
training set for each epoch. Then, backpropagation is used to update the weights in
an attempt to correctly map arbitrary inputs to outputs. In the backpropagation,
an iterative optimization algorithm is used for finding the minimum of the error
function. The aim is to reduce the difference between prediction and actual output.
The second set is used to "validate" the network, such as the set is used to evaluate
the performance of the network. In particular, during the training phase, the error
prediction of the validation set is evaluated. When the error on the validation set
increases whereas the error on the training set is stable, this is sign of over-fitting to
the training set. The network learns too much from the training data, such as the
weights in the network allow a good prediction for the training data but not for a
new input data not used in the training phase.

Finally, the obtained weights of the trained network are used to predict the
reconstructions for the test set. The data in the test set are different from the
training and validation set and are used to evaluate the performance of the developed

network.
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Figure 4.2: Sketch of the simplified neck phantom [110]

4.2 Numerical Neck Phantom

In order to perform a quantitative inversion by means of the proposed neural
network, a database of simplified neck phantoms, with different geometric and

dielectric properties, has been developed.

4.2.1 Circular Cross Section Cylinders

Firstly, a circular cylinder filled with dielectric properties of the average of the
internal neck tissues, which are approximated by a medium with dielectric properties
calculated with a concentration of 80% muscle and 20% fat, following the suggestions
reported in [99], [100], is created. Accordingly, the relative dielectric permittivity
and electric conductivity has been chosen to change in the range [40, 50] and [0.5, 0.8]

80 15
average neck average neck
60 - --spinal cord ---spinal cord
- - -bone cortical 'S 1]---bone cortical
SWTA0L E.E.
©05) oooemmmmmmmt T
200 T
0 i
300 500 700 900 300 500 700 900
Frequency (MHz) Frequency (MHz)

(a) (b)

Figure 4.3: (a) Relative dielectric permittivity and (b) electric conductivity of the considered
neck tissues [110].
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Tissue Radius Range [cm] € o[S/m]

Average Neck [5,7] [40,50]  [0.5,0.8]
Bone [2,2.5] [10,20] [0.06,0.2]
Spinal Cord [0.5,0.9] [30,40]  [0.4,0.7]
Table 4.1: Summary of tissues parameters variations adopted in simplified neck phantoms
[110].

S/m, respectively. The dimension of the radius of the neck, r,,, varies uniformly in the
range [5,7] cm and its center changes randomly no more than of 1 cm with respect
to the center of the coordinate system. On the outside of the main structure of the
neck, a circular shell representing the coupling medium between the antennas and
the neck is added, as shown in Figure 4.2. This layer has an external radius » = 8 cm
and fixed dielectric properties, i.e., €, = 43 and ¢ = 0.8 [S/m]|, which approximately
correspond to those of a 70% glycerin/water mixture at 750 MHz [111]. Others
circular cylinders are used to mimic the main internal neck structures, i.e., the bone
and the spinal cord. The bone radius varies uniformly in the range 7, € [2,2.5] cm.
Its center varies maximum of 1 cm with respect to the center of the neck. The relative
dielectric permittivity of this layer, in the training set, ranges from 10 to 20 and the
electric conductivity lies in the range [0.06,0.2] S/m. The last considered tissue is
the spinal cord whose properties range from 30 to 40 and from 0.4 to 0.7 S/m for the
relative dielectric permittivity and the electric conductivity, respectively. The radius
rs can change from 5 mm up to 9 mm, to represent physiological and pathological
conditions. The range of values used to generate the dataset are summarized in
Table 4.1. The different ranges in which the dielectric properties vary are shown in
Figure 4.3.

4.2.2 Models from Virtual Family

To improve the complexity of the neck phantom, two strategies to define the
training set based on a realistic neck slice extracted from the man phantom of

Virtual Family [112] are developed.

Five-Tissues Model

In the first simplified case, the spline function [113] is used to randomly generate
the boundary of five considered biological tissues of the neck, i.e., bone, muscle, skin,
spinal cord and trachea. The spline function create smooth curves out of irregular

data points, called control points. When the coordinate of the control points change,
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Figure 4.4: Sketch of five-tissues neck phantom that includes: bone, muscle, skin, spinal
cord and trachea [110].

the obtained shape is different from the previous one. Figure 4.4 provides a sketch of
the developed phantom. The control points of the spline function and the dielectric
properties of each tissue are randomly varied in a given range, to obtain realistic

phantom.

Nine-Tissues Model

The second case is more accurate than the previous one. The slice from the Duke
phantom is extracted at 1.60 m of height and includes the third cervical vertebra,
as shown in Figure 4.5 (a). The discretization of the considered slice is equal to 2
mm and 9 biological tissues are present, i.e., skin, fat, muscle, vertebral bone, spinal
cord, trachea, cartilage, cerebrospinal fluid (CSF) and blood vessels. To obtain a
suitable phantom that can mimic the real neck, all tissues are considered, except
CSF, which is only present in a few pixels of the slice and its presence is not relevant
for our study, as can be seen in Figure 4.5 (b). The remaining tissues are modeled in
a simple way to allow a reproducible and randomized generation of phantoms. In
this case, the boundaries of tissues are modeled by means of two different approaches:
Ellipses and splines. As shown in Figure 4.5 (b), the tissues boundaries modeled

with ellipses are:
» Vertebral Bone
 Infiltrated Fat
« Cartilage.

Spline functions are used to model the remaining biological tissues boundaries, i.e.:
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o Skin

« Subcutaneous Fat
o Muscle

o Spinal Cord

» Blood Vessels

o Trachea

Specifically, in order to define a curve that models the particular shape of some
tissue boundaries, the natural cubic spline functions are considered. This kind of
functions takes the coordinates of some chosen points, called control points, and
defines a curve that passes through them. In this way, a specific shape is obtained.
With this approach, the first modeled tissue boundary is the skin, which also defines
the external shape of the neck. To develop the skin structure, 14 control points have
been considered adequate to mimic the external shape of the phantom. The control
points allow generating different configurations and sizes of the neck. The thickness
of the skin vary in the range [2,4] mm. After that, the subcutaneous fat tissue is
also modeled with spline functions. This tissue is located internally, adjacent to the
skin and its thickness df varies between [2,8] mm. The subcutaneous fat is located
along the skin, both in the anterior and posterior part of the neck. Defined these
two tissues (skin and subcutaneous fat) the structure is internally filled with the
dielectric properties of muscle. In this way, the shape of muscle depends only on the
thickness of skin and subcutaneous fat. Then, the remaining anatomical structures

are located inside the neck, overlapping with the previous ones already created.

Muscle

— —{ Cartilage ‘
Blood
vessels

Figure 4.5: Realistic cross section of the neck: (a) Slice extracted from the Duke man
phantom of the Virtual Family. (b) Example of a nine-tissues neck phantom
with different structures: bone, blood vessels, cartilage, infiltrated fat, sub-
cutaneous fat, muscle, skin, spinal cord, trachea and tumor [108].
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Internally to the vertebral bone, the spinal cord is inserted. In this case, 5 control
points are used to define the tissue and are chosen to obtain a shape that can mimic
the stretched configuration of the spinal cord. Other considered structures are the
blood vessels. In the Virtual Family phantom [Fig. 4.5 (a)], there are two arteries and
two veins, one for each side of the neck. In the developed phantom, only one vessel
for each side is considered for simplicity and because their presence is not so relevant
for this study. In this case, 4 control points are used to define the shape of the vessel,
and then such a shape is duplicated to obtain the second vessel. Finally, the trachea
structure is created. Here, 5 control points are used to obtain the structure. As
shown in Figure 4.5 (b), the trachea is embedded inside the cartilage tissue.

To reproduce other tissue structures, one or more ellipses are used. First, the
vertebral bone is created using two ellipses, one placed vertically and the other
horizontally. Another tissue modeled with elliptic shape is the infiltrated fat. For
this tissue, three ellipses are placed near the bone, in the posterior region of the neck.
Within such ellipses, a binary random variable with uniform distribution defines
whether pixels are occupied by fat or not. To complete the presence of fat in the
phantom, other two ellipses are defined, which are placed in the anterior part of the
neck. The last biological tissue modeled with elliptic structures is cartilage: two
ellipses are located in the anterior part of the neck, overlapped to the fat structure.

Considering all tissues, those created with ellipses and those with the spline
functions, the obtained phantom - although unavoidably simplified - reproduces
in a suitable way the cross section of the neck. To create the training set, a huge
number (hundreds) of neck phantoms are required. For this reason, each geometrical
parameter, i.e., center and semi-axes of ellipses, coordinates of the spline control
points and dielectric properties, randomly varies in a certain range to obtain different
phantoms preserving the simplicity and the realism of the neck. The ranges in which
the dielectric properties vary are selected following their dielectric behavior in the
considered frequency band [72]. The coordinates of the control points vary along
the z — y axis, both in the negative and positive directions respect of a cartesian
coordinates system, in which the center is in (0,0) mm. Moreover, each neck structure
is rotated by applying a rotation matrix with random angle ¢ € [—45°,45°], to increase
the variability of the training set. In Table 4.2, the properties of the tissues considered
for the developed phantoms are given. The value of each parameter is randomly
defined (with uniform distribution in the reported intervals) and independent from
each other. The approach used to generate each tissue region, the position of the
center and the size of the semi-axes for ellipses, the number of control points for the

spline functions, as well as the dielectric properties are also provided.
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Finally, to obtain the neck cross section with a tumor (i.e., to reproduce a
pathological situation) a circle with radius r; is inserted in the anterior part of the
neck, near the trachea. For tumors such as supraglottic laryngeal carcinoma [59] and
thyroid cancer [60], the cross section can be approximated as a circular inclusion
[114]. Also in previous works [115], [116], [117], the tumor cross sections have been
simulated like circles. Tumors such as thyroid cancers [59], [114], neck sarcomas
or cervical lymph node metastases [61] are nodular, being approximately spherical,
with a radius in the range 3-5 mm, located up to 3 cm below the skin surface [118],
[119], [120]. To reproduce in an accurate way the dielectric properties of the tumor,
the results reported in [116] are used. For most neck tumors, the relative dielectric
properties are relatively high, and in the considered frequency band are on average
around €, ~ 59 and o ~ 0.9 [S/m], as can be derived by MRI and as usually modeled
in numerical studies in the field of microwave hyperthermia [72], [117], [121], [122].
For this reason, by also taking into account possible changes of such parameters, the
dielectric properties of the simulated tumor model were chosen in the range between
55 and 65 for the relative dielectric permittivity, whilst the electrical conductivity
lies within [0.5,1] S/m. Also in this case, the generated neck phantom is set inside a
circular shape with radius » = 8 cm and €, = 43 and o = 0.8 S/m, representing the
matching medium, between the antenna and the neck. The dielectric properties of
the matching medium have been selected in order to increase the field penetration
and to reduce the reflection due to the skin. In particular, as shown in [101], a
70% glycerin/water mixture allows obtaining a good tradeoff between these two

requirements.

4.3 Numerical Results

In this Section, preliminary numerical results are reported. As first dataset,
the simplified circular phantoms, described above, are considered for the training
procedure. The investigation domain €); is discretized into I;,; = 5024 square cells of
side 2 mm and N, = 10 antennas are simulated to sequentially illuminate via TM
fields the neck. The system acquired measurements at F' = 7 different frequencies in
the range [600,900] MHZ. We assume a fully-connected network with L = 4 hidden
layers and D = 64 neurons in each layer. The weights vectors illustrated above,
are initialized by a Gaussian distribution with zero-mean and standard deviation
equal to 0.01 and the initial bias is set to zero. The updating rule for the training
procedure is based on the adaptive moment estimation method (ADAM) [123], with

a learning rate equal to 0.01, to minimizes the loss function, which is in this case the

54



[80T] wojueyd yoou oY) OPISUI SoNSSI) 9Y) JO SIvjoWRIR] :g'F 9[q
. @H

01T+
S:os%\w 01—
voyovaglt] D N
[T'c0 n —
oo - ! 0p T fergl 3
woyon )T 0T+ Q=v - d
_ - - Sﬁfwi > 0z S Jownf,
0 T ¢ . B
¢ N Nl _ - -
[91°¢'T] [89'8¢] Tﬁm% N - - C _ ASD
o070l [ovog] 2] - - i L
B - ourrdg S[OSSOA POO
: T g 1
n (HARAY oT'7]> % foeoe] > q ouds paoo [eurdg
[s0'co]  [67" _ [0z— ‘pe—] > 0 : ¢
iad [0‘9] >
ﬁ NEIEE ﬁ _odemren
cegarg 0TI logioe] S ¢ i
[¥¢ ‘0g) > O [0T‘9] 3 » I sosdiy oSerrre)
0 [9°9—] > 0f Ze02 30 o8e[I1Ie) I
[2'0'900°0]  [0z‘01] ] (971 > 00 l0z'9] 5 v g ouog
0. 0 FW 91> 0z°9] > 9 B sosd
[1°2°0] [09°0¢] [9°9] - [971—] > % [ce‘0g] 3 v I ouog Hiici ouog
0 9°9-]5 % [r1°9l 54 = ouiIds oSy
[9 Nﬁl_ 5> x EN4AEE G el
[cpT'ceT] @ 9] > i [91°8] 3 ¢
- [99T—] > 0x 9] 3 v G| sosdr
« EEY ) siic|
ez c1T] o ) Uo 91°8] 3 ¢ PoIILA
[€1°0°900°0]  [cT8] _@MWT_ ERLIN N EX gaeg  Afenred
erricer] 7 :N%H |__ >0 foroz] 5.4
) 0z 2 7 91 ‘01] 2 » z e
. ¢ - pojenjyguy
({5494 qu J > M@ UREX ; sosdA
o0 0g| 5%  [ot'ot}ov I ¥ed pold ved
[1°0°0] 05°07] 907 : ) - Al oundg SNooURINO
- . -qng
Fote) ; 4!
[m/g] o 4 [t wp:_\mg 013109 ﬁ QMQM [t (0 ‘O) [ gD sod ourdg un[g
jo Lypiqerrep Toyuod sosdie SIXE-TIOS - wojueyd
wonpeyoy  Jo Aypiqere R [01310D q onssty
[[Iqerre  Jo AJi[iqerrep  Jo "ON podopeas(] SN

%)



mean square error (MSE). The choice of learning rate value is a trade-off between a
too large value, that can cause the model to converge too quickly to a suboptimal
solution, and a too small value that can requires more training epochs and can cause
the process to get stuck.The training procedure is performed with a maximum of
100 epochs.

To test the performance of the developed network, a dataset of K = 7000
simplified neck phantoms is built. 90% of the data are used in the training procedure,
the remaining 10% as validation set. A test case is created according to the procedure
explained in Section 4.2, with the dielectric properties of tissues related to a random
frequency in the considered range. The neck under test is created following the
procedure described above, specifically presents a circular cross section of radius
equal to 7, = 6 cm, wich represent the external shape of the neck, with the relative
dielectric permittivity equal to 45.87 and the electric conductivity equal to 0.688
S/m. Its center is in (0, —0.005) m. The bone is a circular cylinder with radius
equal to r, = 2.3 cm centred in (0.011,0.001) m, with €, pone = 12.79 and opep = 0.11
S/m. At the end, the spinal cord circle is set in (0.009,0.001) m with radius equal to
rs =9 mm. The dielectric properties are €, spina = 37.77 and ogping = 0.497 S/m. A
custom direct solver based on method of moments (MoM) is applied on the created
neck profiles to calculate the corresponding scattered electric fields. Moreover, to test
the network response with more realistic data, the total electric fields of validation
set and the test case were corrupted with a white Gaussian noise with a variance
corresponding to a SNR equal to 35 dB and zero mean value. The results obtained for
the test case are reported in Figure 4.6 and confirm a quite accurate reconstruction.
To evaluate the accuracy of the reconstruction, normalized mean square errors are

calculated as

— ||Tec€r,0' B Objﬁr,0'H2

. (4.7)
|[0bje, ||

eTTe, &

in which rec., , and obj., , represent the reconstructed and the actual values of
relative dielectric permittivity and electric conductivity, respectively. The mean
square errors of the reconstructed distributions of €, and o are err., = 0.070 and
err, = 0.11. These results show that the reconstruction of the relative dielectric
permittivity is slightly better than the one of the electric conductivity, as can be
seen in Figures 4.6 (b)-(d). In particular, in the €, reconstruction image there are
few artefatcts. Moreover, reconstructed radius of the spinal cord is equal to 17.8 mm,

which is very close to the original value.
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Figure 4.6: Reconstruction of simplified neck test configuration: (a) Relative dielectric
permittivity of the reference configuration. (b) Distribution map of relative
dielectric permittivity obtained via ANN. (c) Electric conductivity of the
reference configuration. (d) Distribution map of electric conductivity obtained
via ANN [110]. 57
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Figure 4.7: Mean error and standard deviation of (a) €, and (b) o versus the number of L
hidden layers and D neurons [110].
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In another set of simulations, the five-tissues model described above, is used to
train and test the network. In this case, too, K = 7000 are numerically constructed
and the same number of training and validation sets are considered. All the network
parameters are the same as in the previous case, except for the loss function that in

this case is expressed as

1 ||rect — objl || rect — objt
e~ [Z e 2 )
The choice to normalize the €, and ¢ values allows to obtain two quantities comparable
between them and a better reconstruction of both of ¢, and o (previously the
reconstruction of o was worse). Dy, is the number of samples considered in the
training procedure and ¢ represents the ¢th considered samples.

A preliminary analysis concerning different numbers of hidden layers, neurons
and values of SNR on field of the test set is performed. Figure 4.7 shows the mean
error (equation (4.7)) and the standard deviation, both for ¢, and o, versus L and D
in the test set. The number of hidden layers is set to L = {1,2,...,5}, whereas the
number of neurons for each layer is D = {4,8,16,...,256}. The graphs show that
for one hidden layer and a low number of neurons the errors are always very high,
and they decrease as the number of neurons and layers increase. In particular, the
best results are obtained with the highest number of layers and neurons, L = 5 and
D = 256. Moreover, the distribution maps of reconstructed dielectric properties of a

test case are evaluated with different network architecture, in particular with: L =1
and D =4; L=4and D = 128; L =5 and D = 256. The obtained maps for all
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Figure 4.8: Five-tissues neck configuration. (a) Actual relative dielectric permittivity and
(b) electric conductivity. Reconstruction with L =1 and D = 4 of (c) €, and (d)
0. Reconstruction with L =4 and D = 128 of (e) ¢, and (f) 0. Reconstruction
with L =5 and D = 256 of (g) ¢, and (h) o
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cases are shown in Figure 4.8, in which Figure 4.8 (a)-(b) represent the actual
distributions maps of dielectric properties, €, and o, respectively.

As can be seen, the reconstructions of dielectric properties with the lowest number
of layers and neurons don’t allow to correctly detect the inner biological structure.
In particular, ¢, and ¢ are highly underestimated, and the skin is not detected. On
the contrary, with higher numbers of L and D, the reconstructed structures are more
accurate, and it is possible to individuate all tissues. The best reconstructions are
shown in Figure 4.8 (g)-(h), with L = 5 and D = 256, confirming the previous results
shown in the graphs of Figure 4.7.

Moreover, the mean error and the standard deviation are evaluated changing
the SN R value, considering a neural architecture with L = 4 and D = 128. The
total electric field of test set is corrupted with a Gaussian noise with zero mean and
variance corresponding to a given SNR. The graph in Figure 4.9 shows how the
mean error and standard deviation decrease when the SN R value increase, and this
behavior is in line with what is expected.

For completeness, the maps of reconstructed dielectric properties of some test
cases with different value of SN R are shown in Figure 4.10, in which Figure 4.10
(a)-(b) represent the actual distribution of dielectric properties, €, and o, respectively.
In Figure 4.10 (c)-(d) the reconstructions obtained with SNR =5 dB are presented.
As can be seen, the reconstructions show significant artifacts, near the trachea and
the bone, both in the ¢, and 0. With SNR = 15 dB (Figure 4.10 (e)-(f)), the recon-
structions improve and the best of all configurations, in particular in the internal
structures, are obtained with SN R = 25 dB, shown in Figure 4.10 (g)-(h).

Finally, the most complex dataset described in the previous Section, the nine-

Mean Error and Standar Deviation Variation of
SNR. Neural network with L =4 and D =128.
03

0.25
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I l
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Figure 4.9: Mean error and standard deviation of €, and o versus the SN R value [110]
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tissues model, is used in the training phase. A preliminary analysis is performed in
order to choose the best parameters for the neural network architecture. Then, the
selected architecture is tested with different cases. To train the developed neural
network, a data set of K = 30000 simplified neck phantoms is built. Each neck
phantom is generated by the random variations of the dielectric and geometrical
properties described in Section 4.2. The dataset does not contain any duplicate. The
investigation domain is discretized with I,,; = 5024 square cells of side 2 mm. Half
of the dataset represents the neck profile with the presence of variable tumors in
the anterior neck area, whereas the other half is without tumor. This dataset is
subdivided into two subsets: 95% of the samples for the training procedure and the
remaining 5% for the validation phase. A custom direct solver based on MoM is
applied on the created neck profiles to calculate the corresponding scattered electric
fields, with F' = 7 frequencies in the range [600,900] MHz, N, = 10 antennas, and
M = 9 measurement points. Moreover, a Gaussian noise with zero mean value and
SNR = 35 dB is added to the total electric fields of validation cases to obtain more
realistic data.

The neural network parameters are the same as the previous cases, and 500
epochs for each training phase are considered, with mini-batch size of 256. The
considered loss function is expressed in equation (4.8). The input layer size is defined
as ' x S x M x 2 = 1260, whereas the output layer consists of 21;,; = 10048 neurons.

In order to find a trade-off between the accuracy in the reconstruction and
computational complexity, different network architectures are tested. To perform
a quantitative assessment for evaluating the best architecture, for each proposed
network structure, the average error parameters err.. and err, described in equation
(4.7) are calculated for the reconstructions of the data in the validation set.

Also in this analysis, the impact of the number of L and D are evaluated. To
this end, the number of hidden layers is set to L = {1,2,...,5}, whereas the number
of neurons for each layer is D = {32,64,96,...,512}. Figure 4.11, which reports the
behaviors of err., and err, versus L and D, shows that for L = 5 hidden layers and
D = 448 neurons the smallest reconstruction errors are obtained, both for relative
dielectric permittivity err., [Figure 4.11 (a)] and for electric conductivity err, [Figure
4.11 (b)]. The findings show that err., and err, assume the highest values for L = 1,
regardless of the value of D. Moreover, the reconstruction errors remain high for
L = 32 and any value of D. This analysis highlights that for L = 1 and a low number
of neurons the reconstruction is not accurate. Indeed, as shown in other works [107],
a too small number of hidden layers and neurons does not allow a good quality of

the reconstruction.
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Figure 4.11: Mean reconstruction error on (a) €, and (b) o versus the number of L hidden
layers and D neurons [108].

Following this preliminary analysis, quantitative reconstructions of the cross
section of neck are analyzed with different values of L and D. In particular, three
different network topologies are tested against two selected cases from the validation
set.

The actual values of the relative dielectric permittivity and electric conductivity
in the first case are shown in Figure 4.12 (a) and Figure 4.12 (b), respectively. The
neck cross section, in this configuration, presents each biological tissue in a normal
physiological condition, without any tumor. The first tested network topology is
characterized by L =1 and D = 32 (i.e., the simplest network architecture). Figure
4.12 (c)-(d) report the reconstructed maps of the relative dielectric permittivity and
of the electric conductivity, which are not very accurate in this case. Indeed, the e,
value of the infiltrated fat near the cartilage is overestimated (24 — 32 vs. the actual
values of 8 — 15), the blood vessels are not well detected, and the subcutaneous
fat thickness is larger than in the actual configuration. The same considerations
hold for the ¢ reconstruction. The second tested network topology is characterized
by L = 3 and D = 224, a slightly more complex neural network structure. The
reconstructions obtained with this network are shown in Figure 4.12 (e)-(f). Now,
the reconstructions are more precise: the thickness of the subcutaneous fat is close
to its true value for both €, and o; the cartilage is better shaped, and the trachea is
well retrieved. On the other hand, the reconstructions show some artefacts outside
the neck, in the matching medium, and in the relative dielectric permittivity overall.
The last considered neural network has L = 5 and D = 448, and it shows the best
results of the err.. and err, errors. The reconstructed maps of the relative dielectric
permittivity and electric conductivity are plotted in Figure 4.12 (g) and Figure
4.12 (h). With this network architecture, the reconstructions are better than those
obtained with the previous topologies. Here, in both reconstructions of ¢, and o, the
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blood vessels are well identified, the cartilage shape reproduces well the real one and
the thickness of the subcutaneous fat is reconstructed correctly. Moreover, the spinal
cord shape is detected, and the artifacts visible in the previous reconstructions are
less evident.

To test the ability to detect the presence of a tumor, a second case extracted from
the validation set is analyzed. This case is a cross section of the neck with a tumor in
the anterior neck part, as shown in Figure 4.13 (a)-(b). In this configuration, too, the
reconstructions are evaluated for three different network architectures, as explained
previously. For the first neural network, Figure 4.13 (c¢)-(d) report the reconstructed
maps of the dielectric properties €, and 0. As before, the reconstructions are not
very precise, with an overestimation of subcutaneous fat thickness, the absence of
blood vessels, and an incorrect tumor shape. The reconstructions achieved with the
second neural network, as can be seen in Figure 4.13 (e)-(f), highlight a significant
improvement of results. The tumor is better reconstructed, as well as fat, both for
dielectric and geometric properties.

Finally, the last neural network is tested, with L = 5 and D = 448, and the
corresponding reconstructions can be found in Figure 4.13 (g)-(h). Now, the external
shape of the neck is better retrieved than in the previous cases [Figure 4.13 (c), (d),
(e), (f)]. Moreover, the tumor is identified with its correct shape and the cartilage
around it is identified correctly. The trachea is now detected, although the dielectric
permittivity is overestimated and assumes values similar to those of the fat. However,
this fact does not prevent the identification of the tumor. Moreover, the spinal cord
is properly recognized inside the vertebral bone, too, both in the relative dielectric
permittivity and electric conductivity (e.g., estimated values of 25 — 35 vs. the actual
values of 30 — 40). It is worth noting that in general, the dielectric properties of the
muscle and tumor tissues may overlap. However, the considered laryngeal tumors are
usually located in the anterior part of the neck and near the cartilage, where there is
a reduced presence of muscle tissue. In this case, it is still possible to identify the
presence of anomalies/tumors in reconstructed images, as confirmed by Figure 4.13.

After this preliminary analysis, a network with L = 5 hidden layers and D = 448
neurons has been selected for the training procedure and to test different cases with
and without tumor.

To prove the robustness of the approach, the identified network is tested on
realistic numerical neck phantoms extracted from the Virtual Family numerical
phantoms [112]. Five test cases are created to assess the capability of discriminating
the presence, size and position of the tumor. The dielectric properties of neck tissues

are related to the frequency of 750 MHz, and the tumor properties are set to €, = 58
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Figure 4.14: Realistic neck configuration without tumor (Test case #1). Relative dielectric
permittivity: (a) Reconstructed values; (b) Actual configuration. Electric
conductivity:(c) Reconstructed values; (d) Actual configuration. [108].
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Figure 4.15: Realistic neck configuration with tumor centered in (40, —10) mm. Test case
#2, tumor radius 7, = 15 mm: (a) Reconstructed and (b) actual relative
dielectric permittivity; (c) Reconstructed and (d) actual electric conductivity.
Test case #3, tumor radius r, = 10 mm: (e) Reconstructed and (f) actual
relative dielectric permittivity; (g) Reconstructed and (h) actual electric
conductivity. [108].
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and o = 0.8 [S/m)], according to [116], [124].

First, a case without tumor is considered, to check the ability to reconstruct the
dielectric properties in a healthy situation (Test case #1). Figure 4.14 (a)-(c) show
the reconstructions of the relative dielectric permittivity and the electric conductivity,
respectively. The actual configurations related to such a case are presented in Figure
4.14 (b)-(d). In the map of ¢,, the neural network is able to detect the vertebral
bone, the spinal cord inside it, as well as the external shape of the neck. Moreover,
in the reconstruction of the electric conductivity, the trachea is quite well detected.
In both reconstructions the absence of tumor is verified. Successively, four cases with
tumor-like inclusions are tested. Two different dimensions of the tumor, with the
same center, are evaluated. In the first configuration (Test case #2), a circular target
of radius equal to r; = 15 mm representing the tumor was included. Figure 4.15 (a)
and Figure 4.15 (c) represent the reconstructed distributions of the relative dielectric
permittivity and electric conductivity, respectively. The tumor is well detected and
characterized. Moreover, the external shape of the neck follows the real one, and the
vertebral bone is detected. The corresponding actual neck configuration is shown
in Figure 4.15 (b)-(d). In the second tumor-affected case (Test case #3), a smaller
tumor is considered, with radius equal to r; = 10 mm. Figure 4.15 (e)-(g) show the
reconstructed dielectric properties, whereas the actual neck properties are reported in
Figure 4.15 (f)-(h). In both test cases, the tumor is centered at (40, —10) mm. The
reconstructed maps of the dielectric properties allow the discrimination between the
two different tumor sizes, with better results for the relative dielectric permittivity.
Furthermore, the external shape of the neck is well reconstructed, as well as its main
tissues, i.e., vertebral bone, trachea, spinal cord, and subcutaneous fat. On the other
hand, in both cases the infiltrated fat near the vertebral bone in the posterior part
of the neck is not identified.

To test the ability to discriminate different tumor positions, other two cases are
evaluated. Figure 4.16 (a) and Figure 4.16 (b) show the reconstructed maps of €, and
o, respectively, with radius of tumor equal to r, = 15 mm (Test case #4). Figure
4.16 (c)-(d) present the reconstructions with tumor radius equal to 7, = 10 mm (Test
case #5). In these two situations, the tumor is centered at (40,10) mm. Again, the
tumor-like inclusion, the vertebral bone and the internal spinal cord are detected,
and the trachea is localized in the correct position. The external boundary of the
neck follows the expected shape, as well as the subcutaneous fat. As before, the

infiltrated fat near the bone is not detected.
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Figure 4.16: Realistic neck configuration with tumor centered in (40,10) mm. Test case
#4, tumor radius r; = 15 mm: Reconstructed map of (a) relative dielectric
permittivity; (b) electric conductivity. Test case #5, tumor radius r, = 10
mm: Reconstructed map of (c) relative dielectric permittivity; (d) electric
conductivity [108].
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Test case err,, erry

#1 0.3082  0.3459
#2 0.3004 0.3446
#3 0.3071 0.3508
#4 0.2987 0.3428
#5 0.3044 0.3470

Table 4.3: Reconstruction errors for the considered test cases [108].

In Table 4.3, the reconstruction errors on relative dielectric permittivity err., and
electric conductivity err, for each test case are shown. The errors are calculated using
equation (4.7) and represent the normalized root mean square errors on the relative
dielectric permittivity and on the electric conductivity, respectively. As confirmed
by these errors, the dielectric reconstructions are more accurate for the relative
dielectric permittivity than the electric conductivity. In summary, the reconstructed
distributions of the dielectric properties show that, at least in the considered cases,
the neural network is able to reconstruct different dimensions of tumor, for the same
position, and also to localize it inside the neck.

For completeness, the estimated values of the center and the radius of the tumor
in the four cases are calculated (the latter obtained by setting a threshold equal to
80% on the value of €, of the tumor). Table 4.4 reports the estimated values of both
the radius of the tumor and of its center. As can be seen, both the radius size and
the center are well reconstructed, also considering that a quite coarse discretization
of 2 mm has been adopted.

Finally, also with this complex dataset, the results are evaluated changing the
value of the SINR of the noise added to the computed fields for the test case.
Specifically, other ten test cases are used. The first five considered test cases shown
the tumor with the same center position. In particular, the radius r; has been varied

between 8 and 16 mm, with step of 2 mm, and its center is located in (43,10) mm.

Actual Estimated Actual center Estimated
Test case . . center (g, Yo)
radius r; [mm] radius r; [mm] (xg,yo) [mm]
[mm]

#2 15 14.2 (40,-10) (42.31,-7.25)
#3 10 11.6 (40-10)  (42.62,-10.48)
#4 15 14.7 (40,10) (43.77,8.28)
#5 10 9.2 (40,10) (44.21,10.86)

Table 4.4: Estimated and actual tumor radius and center in different test cases.
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SNR=35 SNR=15

Test case aB [mm] aB [mm] Correct radius r;
#6 6 3 8
H#7 9 8 10
#8 11 15 12
#9 14 14.5 14
#10 15.5 15 16
#11 9 8.3 8
#12 9 9 10
#13 12 13.5 12
#14 16 16 14
#15 17.5 16.2 16

Table 4.5: Estimated radius of the tumor for different values of SNR [125].

Other five test cases are considered, in which the center is located in (43, —10) mm.
The radius 7, is again varied in the range [8,16] mm. The network is tested in
the same configurations used for the previous cases, i.e., with L =5 and D = 448.
Two different values of SNR are considered, i.e., 15 dB and 35 dB. The results
are summarized in Table 4.5. As expected, slightly worse estimations of the tumor
dimensions are obtained for the lower value of SN R, especially for small sizes of the

inclusion.

4.4 Experimental Results

In this Section, preliminary experimental results are introduced. Three different
experimental test cases are proposed, and for each case a different numerical dataset
is developed for the training procedure. The adopted microwave imaging system is
described in Section 3.5.2 and shown in Figure 4.17. F' = 4 frequencies between 600
and 750 MHz with 50 MHz frequency step are considered for the first two test cases,
whereas for the third case F' = 7 frequencies between 600 and 900 MHz are used.
The network parameters used in the training phase are the same of the previous
numerical cases, in particular L = 5 and D = 448.

For these experimental data, the aim is to detect just the inner inclusion present in
each test case. For this reason, in the follow, the obtained reconstructions will exhibit

i i

- - - i _ i i
differential values, Ae, and Ao. In particular, Ae, = €, —¢, —and Ac" = o05,—0,;,

where €. and ol represent the values of the relative dielectric permittivity and

the electric conductivity, respectively, of the actual test case in the ith subdomain

(i =1,...,Iir). On the other hand, ¢, and oy ; are the values of the relative
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Figure 4.17: Structure of the proposed microwave imaging system and of the inversion
approach based on a fully connected neural network [126]

dielectric permittivity and the electric conductivity, respectively, of the reference
configuration of the test case in the ith subdomain (i = 1,..., [;;). In general, the
reference configuration corresponds with the test case without the inclusion.

In the first case, the simplified beaker proposed in Section 3.5.2 is used as test
case, in which a circular inclusion with radius r, = 8.5 mm is placed at (23, 3) mm.
The network is trained using a dataset of K = 10, 000 numerically simulated configu-
rations. Each neck phantom is modeled as a circular cylinder with radius r,, = 6.2
cm (to account for beaker and matching medium) and fixed dielectric properties
€mm = 4369 and 0, = 0.8 S/m [101], in which a cylindrical inclusion with random
radius ry; € (5,10) mm and position (inside the beaker) is present. The inclusion
simulates the spinal cord, so, as seen in the Table 4.1, the dielectric permittivity
randomly ranges from 30¢, to 40¢y and its electric conductivity in the range [0.4,0.7]
S/m. The investigation domain §2; correspond with the circular cylinder with radius
r,. It is discretized into I, = 3024 square cells of side 2 mm. In the training phase, a
subset of 90% of samples is considered and the remaining ones are used for validation.
In this case, the reference configuration is a homogenous circular structure with
dielectric properties equal to those of the matching medium.

With the experimental data, a scattered-field calibration is needed [105]. For ap-
plying this procedure, a known experimental and simulated configuration is required,
in particular the fields measured in the presence of a known target are used to derive a
set of scaling coefficients, one for each transmitter-receiver pair and frequency. The cal-
ibrated measurements are then obtained as E$/™ = gs/mME ps.fm.SLE | ps.fmMER
where E$/™ME are the uncalibrated data, and E$/mMER - psfmSLE are the ex-
perimental and simulated fields for the known configuration. For this first test case,
the known calibration target is a circular inclusion with radius r,; = 6.2 mm that
has been placed inside the beaker at (23,5) mm. The reconstructions of Ae, and
Ao are reported in Figure 4.18 (b) and Figure 4.18 (c). The internal inclusion is

correctly localized, and a quite good estimation of the dielectric properties is obtained,
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although Ae, is underestimated.

The second test case [Figure 4.18 (d)] is the 3D-printed model of the human neck
described previously ("Phantom 1" of Section 3.5.1). In particular, an inclusion with
radius 742 = 12.4 mm is placed inside the neck phantom at (10,5) mm. In this case, a
dataset built from a numerical model of the phantom (containing the external layer
and the trachea) is considered. An inclusions with different random positions (inside
the inner part) and radius 749 € (3,15) mm have been located to generate different
neck phantoms. The dielectric properties vary in the same ranges of the previous
case and the PLA structure is simulated as seen in the Section 3.5.1. The reference
scenario is the phantom without inclusions. To calibrate the data, the known target
is an inclusion with radius ry3 = 5 mm and placed at (10,9) mm. The reconstructed
values of Ae, and Ao are shown in Figure 4.18 (e)-(f). In this case, too, the inclusion
is well detected, although Ae, is slightly overestimated and Ao is underestimated.

Finally, a more complex 3D-printed model with vertebral column filled with
glycerin (€yer = 9.77€g, 0per = 0.36 S/m) is considered ["Phantom 2" of Section 3.5.1,
Figure 4.18 (g)]. The considered test case is a circular printed inclusion inside the
vertebral bone with radius r,» = 5 mm and located at (0.5,0) mm. In this case, the
neck phantoms in the training set reproduce the external printed structure and the
vertebral bone and contain random inclusions inside the vertebra with radius in the
range 743 € (3,12) mm. The ranges of the dielectric properties of the average neck
are the same as before, whereas the €, and o of the bone range between 10 and 20 and
0.006 and 0.2, respectively (see Table 4.2). Also in this case, the structure without
inclusion is used as reference scenario. To calibrate the data, an inclusion with radius
ry1 = 9 mm is considered inside the vertebra at (5,0) mm. The reconstructed maps of
the dielectric properties are shown in Figure 4.18 (h)-(i). Even in this more involving
case, the inclusion is well detected in both Ae, and Ao, and the reconstructed values
are quite accurate.

For completeness, the performances of the approach are evaluated using different
error quantities, to quantify the reconstruction errors of the dielectric properties and
also the error in the position and radius size of the inclusion. In particular, the mean

relative errors, calculated as

l |/Y7"ec(ri> - ’Yact(ri>|
I{tot,b,in} ri€Q pin) |'7act(rz'>|

(4.9)

€{tot,bin},y —

are used to evaluate the reconstruction error of the dielectric properties in the total,
background and inclusion region. Moreover, 7,.. and 7, are the reconstructed

and actual values of Ae, or Ao, r; is the center of the ith cell of the investigation
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Figure 4.18: Configuration of the experimental target and reconstructed maps. Beaker: (a)
picture of the phantom, reconstructions of (b) Ae, and (c) Aco. 3-D printed
neck "Phantom 1" [101]: (d) picture of the phantom, reconstructions of (e)
Ae, and (f) Ac. 3-D printed neck "Phantom 2" [101]: (g) picture of the
phantom, reconstructions of (h) Ae, and (i) Ao [126].

domain, Qg ny is the background (b) or the inclusion (in) region, and I, is the
corresponding number of cells. The relative errors on the estimated radius and center
of the inclusion have been evaluated as dimensionless quantities. In particular, the

radius error, e,, is computed as
er = |ry = 7al/|ral (4.10)

where r, and r, are the actual and estimated radiuses, the latter obtained by setting
a threshold equal to 40% on the maximum reconstructed value of Ae¢,. The position
eITors, €.q, and e.q,, are calculate as the center errors along the x and y coordinates

of the reconstructed inclusion. For the three considered cases, in Table 4.6 the
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Case €tot, e, €tot,o €b.e, €b,o €in,e, €in,o €r €cd,x €ed,y

#1 0.007 0.013 0.004 0.008 0.169 0.259 0.001 0.026 0.100
#2 0.011 0.033 0.006 0.008 0.141 0.703 0.146 0.013 0.048
#3 0.008 0.006 0.006 0.005 0.262 0.328 0.250 0.020 0.001

Table 4.6: Relative reconstruction errors (dimensionless) [126].

calculated errors are reported. In the second configuration, e, and e, and e,
and e, are slightly higher than in the first case, and it is expected given the higher
complexity of the second configuration. Indeed, in Figure 4.18 (e)-(f) some artifacts
in the background are present. Moreover, e;, , is about twice the value of the first
case, and this is motivated by the underestimation of the reconstructed values of
Ao. In all cases, the inclusion is correct detected, both in size and position, and it is
highlighted by the obtained low radius and position errors. These results shown the
possibility to identify and locate the inclusion suitably. In the last test case, errors
are generally comparable with the simplest configuration even though the highest
complexity in the configuration. In fact, the inclusion position in the training set
changes few inside the vertebral bone.

Finally, for the test cases #1 and #2, the values of dielectric properties outside
the inclusion are changed of +5% of the previously considered ones. This analysis
allows to verified if the obtained results are influenced from the selected values of
the dielectric properties. In particular, the average increase in the relative errors
is 2.45% for eyor., and 9.15% for e ,. This errors highlighted that the results are
quite good also with a change of £5% in the dielectric properties.
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Chapter 5
Conclusions

In this Thesis, two approaches to microwave imaging for medical diagnostics
have been proposed. In particular, they have been focused on two different neck
pathologies: The cervical myelopathy and the presence of neck tumors.

The first disease has been addressed by using an inexact-Newton strategy with
regularization performed in the framework of the LP” Banach spaces. Different
numerical neck phantoms have been considered and used to simulate the pathological
conditions. Some numerical simulations have been performed and the obtained results
have been discussed. In particular, the capabilities of retrieving the spinal cord with
different sizes (the size is correlated to the health or pathological status of the patient)
have been evaluated. Moreover, some experimental reconstructions have also been
reported. To this end, an imaging system working at microwave frequencies for spinal
cord diagnostics has been used. The prototype includes a set of antennas that can
be positioned around the patient’s neck. Different experimental neck phantoms have
been used with increasing structural complexity. Firstly, a beaker has been used for
the neck and pipes simulate the presence of the spinal cord. Then, a quite realistic
neck phantom has been constructed by using a 3D printed. Although preliminary,
these results seem to indicate the potentialities of microwave imaging techniques
in detecting significant changes in the spinal cord size, which may be symptoms of
cervical myelopathy. Indeed, the diameters of the cord, estimated from the retrieved
images, seem to allow discriminating between the normal and pathologic conditions.

Furthermore, a hybrid inverse scattering procedure, based on the combination of
a qualitative delay-and-sum focusing technique with a quantitative Newton scheme in
Lebesgue spaces, has been developed and tested. The obtained experimental results
shown the possibility to identify, localize, and shape the inclusion with quite good
accuracy.

The second approach discussed in this document concerns the solution of the

7



electromagnetic inverse scattering problem by using a fully-connected neural network.
This technique has been considered as a potential diagnostic method for neck tumor
detection. To train the neural network, a set of synthetic neck phantoms has been
constructed. The aim was to reconstruct the distribution of dielectric properties of a
cross section of the neck starting from the measured samples of the scattered electric
field. The phantoms are randomly generated and includes different biological tissues
that mimic rather realistically the human neck. A preliminary numerical analysis has
been performed to select the network parameters, considering various architectures
with different numbers of hidden layers and neurons per layer. The obtained "best"
neutral network has been used to evaluate the reconstruction capabilities of the
approach. The obtained results, although very preliminary, seem to indicate the
possibility of detecting neck tumors by using microwave imaging techniques.
Finally, initial experimental tests have been performed also by using this new
approach. In order to perform these tests, due to the lack of experimental data for the
training phase of the procedure, numerical simulations have been adopted, whereas
the experimental data have been used in the testing phase. Three different phantoms,
with different inclusions, have been considered and the preliminary results, although
initial ones, seem to be very promising. In all cases, the position, dimensions, and
dielectric properties of the inclusions are identified with a rather good accuracy.
Concerning the possible future developments of the research activity in the
field of application of microwave imaging techniques for neck diagnostics, a strong
effort should be dedicated to all the aspects considered in the present work. In
particular, significant advances can be expected by improving the effectiveness of
the experimental microwave system, as well as by introducing even more realistic
neck phantoms. Obviously, clinical trials will be necessary to finally evaluate the
capabilities and limitations of the approach. Concerning the diagnostic technique
based on machine learning, the continuous progresses of the research in this field
are expected to suggest the use of new and increasingly effective neural network

architectures.
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