4,380 research outputs found

    Recognition and classification of power quality disturbances by DWT-MRA and SVM classifier

    Get PDF
    Electrical power system is a large and complex network, where power quality disturbances (PQDs) must be monitored, analyzed and mitigated continuously in order to preserve and to re-establish the normal power supply without even slight interruption. Practically huge disturbance data is difficult to manage and requires the higher level of accuracy and time for the analysis and monitoring. Thus automatic and intelligent algorithm based methodologies are in practice for the detection, recognition and classification of power quality events. This approach may help to take preventive measures against abnormal operations and moreover, sudden fluctuations in supply can be handled accordingly. Disturbance types, causes, proper and appropriate extraction of features in single and multiple disturbances, classification model type and classifier performance, are still the main concerns and challenges. In this paper, an attempt has been made to present a different approach for recognition of PQDs with the synthetic model based generated disturbances, which are frequent in power system operations, and the proposed unique feature vector. Disturbances are generated in Matlab workspace environment whereas distinctive features of events are extracted through discrete wavelet transform (DWT) technique. Machine learning based Support vector machine classifier tool is implemented for the classification and recognition of disturbances. In relation to the results, the proposed methodology recognizes the PQDs with high accuracy, sensitivity and specificity. This study illustrates that the proposed approach is valid, efficient and applicable

    Novel Approaches for Nondestructive Testing and Evaluation

    Get PDF
    Nondestructive testing and evaluation (NDT&E) is one of the most important techniques for determining the quality and safety of materials, components, devices, and structures. NDT&E technologies include ultrasonic testing (UT), magnetic particle testing (MT), magnetic flux leakage testing (MFLT), eddy current testing (ECT), radiation testing (RT), penetrant testing (PT), and visual testing (VT), and these are widely used throughout the modern industry. However, some NDT processes, such as those for cleaning specimens and removing paint, cause environmental pollution and must only be considered in limited environments (time, space, and sensor selection). Thus, NDT&E is classified as a typical 3D (dirty, dangerous, and difficult) job. In addition, NDT operators judge the presence of damage based on experience and subjective judgment, so in some cases, a flaw may not be detected during the test. Therefore, to obtain clearer test results, a means for the operator to determine flaws more easily should be provided. In addition, the test results should be organized systemically in order to identify the cause of the abnormality in the test specimen and to identify the progress of the damage quantitatively

    Detecting and Interpreting Faults in Vulnerable Power Grids with Machine Learning

    Get PDF
    Unscheduled power disturbances cause severe consequences both for customers and grid operators. To defend against such events, it is necessary to identify the causes of interruptions in the power distribution network. In this work, we focus on the power grid of a Norwegian community in the Arctic that experiences several faults whose sources are unknown. First, we construct a data set consisting of relevant meteorological data and information about the current power quality logged by power-quality meters. Then, we adopt machine-learning techniques to predict the occurrence of faults. Experimental results show that both linear and non-linear classifiers achieve good classification performance. This indicates that the considered power quality and weather variables explain well the power disturbances. Interpreting the decision process of the classifiers provides valuable insights to understand the main causes of disturbances. Traditional features selection methods can only indicate which are the variables that, on average, mostly explain the fault occurrences in the dataset. Besides providing such a global interpretation, it is also important to identify the specific set of variables that explain each individual fault. To address this challenge, we adopt a recent technique to interpret the decision process of a deep learning model, called Integrated Gradients. The proposed approach allows gaining detailed insights on the occurr

    PAC: A Novel Self-Adaptive Neuro-Fuzzy Controller for Micro Aerial Vehicles

    Full text link
    There exists an increasing demand for a flexible and computationally efficient controller for micro aerial vehicles (MAVs) due to a high degree of environmental perturbations. In this work, an evolving neuro-fuzzy controller, namely Parsimonious Controller (PAC) is proposed. It features fewer network parameters than conventional approaches due to the absence of rule premise parameters. PAC is built upon a recently developed evolving neuro-fuzzy system known as parsimonious learning machine (PALM) and adopts new rule growing and pruning modules derived from the approximation of bias and variance. These rule adaptation methods have no reliance on user-defined thresholds, thereby increasing the PAC's autonomy for real-time deployment. PAC adapts the consequent parameters with the sliding mode control (SMC) theory in the single-pass fashion. The boundedness and convergence of the closed-loop control system's tracking error and the controller's consequent parameters are confirmed by utilizing the LaSalle-Yoshizawa theorem. Lastly, the controller's efficacy is evaluated by observing various trajectory tracking performance from a bio-inspired flapping-wing micro aerial vehicle (BI-FWMAV) and a rotary wing micro aerial vehicle called hexacopter. Furthermore, it is compared to three distinctive controllers. Our PAC outperforms the linear PID controller and feed-forward neural network (FFNN) based nonlinear adaptive controller. Compared to its predecessor, G-controller, the tracking accuracy is comparable, but the PAC incurs significantly fewer parameters to attain similar or better performance than the G-controller.Comment: This paper has been accepted for publication in Information Science Journal 201

    Jätevedenpuhdistamojen prosessinohjauksen ja operoinnin kehittäminen data-analytiikan avulla: esimerkkejä teollisuudesta ja kansainvälisiltä puhdistamoilta

    Get PDF
    Instrumentation, control and automation are central for operation of municipal wastewater treatment plants. Treatment performance can be further improved and secured by processing and analyzing the collected process and equipment data. New challenges from resource efficiency, climate change and aging infrastructure increase the demand for understanding and controlling plant-wide interactions. This study aims to review what needs, barriers, incentives and opportunities Finnish wastewater treatment plants have for developing current process control and operation systems with data analytics. The study is conducted through interviews, thematic analysis and case studies of real-life applications in process industries and international utilities. Results indicate that for many utilities, additional measures for quality assurance of instruments, equipment and controllers are necessary before advanced control strategies can be applied. Readily available data could be used to improve the operational reliability of the process. 14 case studies of advanced data processing, analysis and visualization methods used in Finnish and international wastewater treatment plants as well as Finnish process industries are reviewed. Examples include process optimization and quality assurance solutions that have proven benefits in operational use. Applicability of these solutions for identified development needs is initially evaluated. Some of the examples are estimated to have direct potential for application in Finnish WWTPs. For other case studies, further piloting or research efforts to assess the feasibility and cost-benefits for WWTPs are suggested. As plant operation becomes more centralized and outsourced in the future, need for applying data analytics is expected to increase.Prosessinohjaus- ja automaatiojärjestelmillä on keskeinen rooli modernien jätevedenpuhdistamojen operoinnissa. Prosessi- ja laitetietoa paremmin hyödyntämällä prosessia voidaan ohjata entistä tehokkaammin ja luotettavammin. Kiertotalous, ilmastonmuutos ja infrastruktuurin ikääntyminen korostavat entisestään tarvetta ymmärtää ja ohjata myös eri osaprosessien välisiä vuorovaikutuksia. Tässä työssä tarkastellaan tarpeita, esteitä, kannustimia ja mahdollisuuksia kehittää jätevedenpuhdistamojen ohjausta ja operointia data-analytiikan avulla. Eri sidosryhmien näkemyksiä kartoitetaan haastatteluilla, joiden tuloksia käsitellään temaattisen analyysin kautta. Löydösten perusteella potentiaalisia ratkaisuja kartoitetaan suomalaisten ja kansainvälisten puhdistamojen sekä prosessiteollisuuden jo käyttämistä sovelluksista. Löydökset osoittavat, että monilla puhdistamoilla tarvitaan nykyistä merkittävästi kattavampia menetelmiä instrumentoinnin, laitteiston ja ohjauksen laadunvarmistukseen, ennen kuin edistyneempien prosessinohjausmenetelmien käyttöönotto on mahdollista. Operoinnin toimintavarmuutta ja luotettavuutta voitaisiin kehittää monin tavoin hyödyntämällä jo kerättyä prosessi- ja laitetietoa. Työssä esitellään yhteensä 14 esimerkkiä puhdistamoilla ja prosessiteollisuudessa käytössä olevista prosessinohjaus- ja laadunvarmistusmenetelmistä. Osalla ratkaisuista arvioidaan sellaisenaan olevan laajaa sovelluspotentiaalia suomalaisilla jätevedenpuhdistamoilla. Useiden ratkaisujen käyttöönottoa voitaisiin edistää pilotoinnilla tai jatkotutkimuksella potentiaalisten hyötyjen ja kustannusten arvioimiseksi. Jo kerättyä prosessi- ja laitetietoa hyödyntävien ratkaisujen kysynnän odotetaan tulevaisuudessa lisääntyvän, kun puhdistamojen operointi keskittyy ja paineet kustannus- ja energiatehokkuudelle kasvavat

    Fault Classification and Location Identification on Electrical Transmission Network Based on Machine Learning Methods

    Get PDF
    Power transmission network is the most important link in the country’s energy system as they carry large amounts of power at high voltages from generators to substations. Modern power system is a complex network and requires high-speed, precise, and reliable protective system. Faults in power system are unavoidable and overhead transmission line faults are generally higher compare to other major components. They not only affect the reliability of the system but also cause widespread impact on the end users. Additionally, the complexity of protecting transmission line configurations increases with as the configurations get more complex. Therefore, prediction of faults (type and location) with high accuracy increases the operational stability and reliability of the power system and helps to avoid huge power failure. Furthermore, proper operation of the protective relays requires the correct determination of the fault type as quickly as possible (e.g., reclosing relays). With advent of smart grid, digital technology is implemented allowing deployment of sensors along the transmission lines which can collect live fault data as they contain useful information which can be used for analyzing disturbances that occur in transmission lines. In this thesis, application of machine learning algorithms for fault classification and location identification on the transmission line has been explored. They have ability to “learn” from the data without explicitly programmed and can independently adapt when exposed to new data. The work presented makes following contributions: 1) Two different architectures are proposed which adapts to any N-terminal in the transmission line. 2) The models proposed do not require large dataset or high sampling frequency. Additionally, they can be trained quickly and generalize well to the problem. 3) The first architecture is based off decision trees for its simplicity, easy visualization which have not been used earlier. Fault location method uses traveling wave-based approach for location of faults. The method is tested with performance better than expected accuracy and fault location error is less than ±1%. 4) The second architecture uses single support vector machine to classify ten types of shunt faults and Regression model for fault location which eliminates manual work. The architecture was tested on real data and has proven to be better than first architecture. The regression model has fault location error less than ±1% for both three and two terminals. 5) Both the architectures are tested on real fault data which gives a substantial evidence of its application
    corecore