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Abstract 

FAULT CLASSIFICATION AND LOCATION IDENTIFICATION ON ELECTRICAL 

TRANSMISSION NETWORK BASED ON MACHINE LEARNING METHODS 

By: Vidya Venkatesh, MS. 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science 

at Virginia Commonwealth University. 

Virginia Commonwealth University, 2018 

Major Director: Dr. Umit Ozgur, Professor and Graduate Program Director, Department of 

Electrical and Computer Engineering 

 

Power transmission network is the most important link in the country’s energy system as 

they carry large amounts of power at high voltages from generators to substations. Modern power 

system is a complex network and requires high-speed, precise, and reliable protective system. 

Faults in power system are unavoidable and overhead transmission line faults are generally higher 

compare to other major components. They not only affect the reliability of the system but also 

cause widespread impact on the end users. Additionally, the complexity of protecting transmission 

line configurations increases with as the configurations get more complex. Therefore, prediction 

of faults (type and location) with high accuracy increases the operational stability and reliability 

of the power system and helps to avoid huge power failure. Furthermore, proper operation of the 

protective relays requires the correct determination of the fault type as quickly as possible (e.g., 

reclosing relays). 

 With advent of smart grid, digital technology is implemented allowing deployment of 

sensors along the transmission lines which can collect live fault data as they contain useful 

information which can be used for analyzing disturbances that occur in transmission lines. In this 

thesis, application of machine learning algorithms for fault classification and location 

identification on the transmission line has been explored. They have ability to “learn” from the 

data without explicitly programmed and can independently adapt when exposed to new data. The 

work presented makes following contributions: 
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1) Two different architectures are proposed which adapts to any N-terminal in the 

transmission line. 

2) The models proposed do not require large dataset or high sampling frequency. 

Additionally, they can be trained quickly and generalize well to the problem. 

3) The first architecture is based off decision trees for its simplicity, easy visualization which 

have not been used earlier. Fault location method uses traveling wave-based approach for 

location of faults. The method is tested with performance better than expected accuracy 

and fault location error is less than ±1%. 

4) The second architecture uses single support vector machine to classify ten types of shunt 

faults and Regression model for fault location which eliminates manual work. The 

architecture was tested on real data and has proven to be better than first architecture. The 

regression model has fault location error less than ±1% for both three and two terminals. 

5) Both the architectures are tested on real fault data which gives a substantial evidence of its 

application.  
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Chapter 1 : Purpose and Significance of the 

Research 

1.1 Introduction 

 Modern society relies heavily upon complex and widespread electric grids for critical 

service capabilities such as healthcare, transportation, household heating and cooling, and 

industrial manufacturing to name a few. As our energy delivery systems (electric and other) age, 

natural disasters and man-made perturbations are expected to threaten grid integrity more often. 

Furthermore, urban infrastructure energy delivery networks are highly reliant on the electric grid 

and consequently, the vulnerability of infrastructure networks to electric grid outages is becoming 

a major national concern. Electric power transmission is the bulk movement of electrical 

energy from a generating site, such as a power plant, to an electrical substation. Essentially an 

electrical grid is an interconnected network for delivering electricity from producers to consumers. 

It consists of generating stations that produce electrical power, high voltage transmission lines that 

carry power from distant sources to demand centers and distribution lines that connect 

individual customers or businesses. Transmission lines are a vital part of the electrical distribution 

system, as they provide the path to transfer power between generation and load. Transmission lines 

operate at voltage levels from 100kV to 1000kV and are ideally tightly interconnected for reliable 

operation. In recent years, advanced sensors, intelligent automation, hierarchical control, 

communication networks, and operations technologies (OT) have been integrated into the electric 

grid to enhance its performance and efficiency. These new OT devices allow for large amounts of 

information from numerous grid systems and transmitting needed information to operations 

personnel in a timely manner that could not be envisioned when previous generation and 

transmission systems were designed and built decades ago.  

In recent years, power quality has become a main concern in power system engineering – 

with 85-87% of power system faults occur on distribution lines [1]. However, the faults that occur 

on the transmission lines (the transmission grid) though fewer have a more significant and 

widespread impact on the consumers. The performance of a power system is affected by faults on 

https://en.wikipedia.org/wiki/Electrical_energy
https://en.wikipedia.org/wiki/Electrical_energy
https://en.wikipedia.org/wiki/Power_plant
https://en.wikipedia.org/wiki/Electrical_substation
https://en.wikipedia.org/wiki/Electricity
https://en.wikipedia.org/wiki/High_voltage_transmission_line
https://en.wikipedia.org/wiki/Power_(physics)
https://en.wikipedia.org/wiki/Customer
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transmission lines, which results in interruption of power flow. As the power transmission 

configurations (networks) become more complex quick detection of faults and accurate estimation 

of fault location is critical. The rapid dispatch of repair and restoration of supply voltage is essential 

for minimizing local and regional economic impacts, reducing overall power outages and 

improving customer satisfaction.  

When a fault occurs in transmission line, it initiates a transition condition. Transients 

produce over currents in the power system, which can damage the power system depending upon 

its severity of occurrence. To avoid fault recurrences and the high cost associated with finding line 

faults, utilities endeavor for developing more accurate fault-locating methods.  Transmission 

protection systems are designed to identify the location of faults and isolate only the faulted section 

of the network. The key challenge to the transmission line protection lies in reliably detecting and 

isolating faults compromising the security of the system – with significant accuracy. With the 

advent of OT devices, new measurement devices like phasor measurement unit (PMU), Digital 

Fault Recorders (DFR) are often used to provide detailed information on the health the grid. These 

OT advances in power system has led to massive volumes of data from the continuous monitoring 

of transmission lines. The massive volumes of data is both a blessing and curse- large amounts of 

data easily can overwhelm storage facilities, but with the advent of machine learning algorithms 

this opens potential to implement smart and robust fault location algorithms [2]. 

 Section 1.2 discusses the fundamental terms and concepts used in today’s electric power 

system. The basics and types of transmission network is presented in section 1.3. Section 1.4 

describes the issue addressed in the thesis and section 1.5 lays the outline of the thesis. 

1.2 Basics of Power System 

Electric power systems are real-time energy delivery systems. Real-time meaning power is 

generated, transported, and supplied the moment light switch is turned on. Electric power systems 

are not storage systems like water systems and gas systems. Instead, generators produce the energy 

as the demand calls for it. Figure 1 shows the basic building blocks of an electric power system. 

Starting with generation, where electrical energy is produced in the power plant and then 

transformed in the power station to high-voltage electrical energy that is more suitable for efficient 

long-distance transportation. The power plants transform other sources of energy as well in the 
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process of producing electrical energy. For example, heat, mechanical, hydraulic, chemical, solar, 

wind, geothermal, nuclear, and other energy sources are used in the production of electrical energy. 

High-voltage (HV) power lines in the transmission portion of the electric power system efficiently 

transport electrical energy long distances to the consumption locations. Finally, the remote 

substations are responsible for transforming this HV electrical energy for delivery on lower high 

voltage power lines called “Feeders” that are more suitable for the distribution of electrical energy. 

This electrical energy is again transformed to even lower voltage services for residential, 

commercial, and industrial consumption. 

 

  

Figure 1: Building Blocks of Electric Power System [3] 

 The Power Generation and Distributions has four stages: 

1) Generation: Power generation plants produce the electrical energy that is ultimately 

delivered to consumers through transmission lines, substations, and distribution 

lines.  Electrical energy must be generated at the same rate at which it is consumed. A 

sophisticated control system is required to ensure that the power generation very closely 

matches the demand. 

2) Transmission: Transmission lines are necessary to carry high-voltage electricity over long 

distances and connect electricity generators with electricity consumers. Transmission-level 

voltages are typically at or above 110,000 volts or 110 kV, with some transmission lines 

carrying voltages as high as 765 kV[3]. Power generators, however, produce electricity at 

low voltages and the generation voltage is stepped-up to transmission voltages. To make 

https://en.wikipedia.org/wiki/Power_generation
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high-voltage electricity transport possible, the electricity must first be converted to higher 

voltages with a step-up transformer. 

3) Distribution: Distribution systems are responsible for delivering electrical energy from the 

distribution substation. Most distribution systems in the United States operate at primary 

voltages between 12.5 kV to 34.5 kV and some operate at lower distribution voltages such 

as 4kV. These low-voltage distribution systems are being phased out because of their 

relatively excessive cost for losses (low voltage requires high currents, which means high 

losses). These networks carry the power to consumer units like businesses or residential 

entities. 

4) Load: This stage accounts for electrical energy used by various loads on the power system. 

Electricity is consumed and measured several ways depending on whether the load is 

residential, commercial, or industrial and whether the load is resistive, inductive, and 

capacitive. 

The electrical network's or the grid's ability to supply a clean and stable power supply is very 

critical on day-to-day. High power quality ideally creates a perfect power supply that is always 

available, has a pure noise-free, sinusoidal wave shape and is always within voltage and frequency 

tolerances. A well-functioning power transmission network enables: 

1) Economies of scale: The behavior of the electricity sector is directly related to economic 

factors such as Gross Domestic Product (GDP). In this manner, the demand for electricity 

be a “thermometer” of the market. As such, growth of the economy as well as increases in 

purchasing power and quality of life must be accompanied by improvements in the power 

system, with the objective being compliance with current and future situations. 

2) Rural electrification: Extending electrical grids into countryside will not only help cater to 

residential houses for lighting and household purposes but also allows for mechanization 

of many farming operations especially in areas facing labor shortages. 

3) Increased transmission reliability: Reliability refers to the extent to which customers have 

a continuous supply of electricity. As electricity cannot be easily stored, a reliable supply 

of electricity requires generators to produce electricity and the transmission and 

distribution networks to transport the electricity to customers in real time. Therefore, a 

good transmission system will ensure affordable, high-quality electric service is essential 

for modern life.  

https://en.wikipedia.org/wiki/Mechanised_agriculture
https://en.wikipedia.org/wiki/Mechanised_agriculture
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4) Decreased costs: Transmission network carries the high-voltage power from the generating 

sites to the distribution stations. The development and improvement of algorithms that 

allow the analysis and diagnosis of failures in transmission lines can have an important 

economic impact, for power utilities by reducing operation costs, as they enable the 

continuity and reliability of the electric sector. 

5) Increases potential for power pools, markets and bulk power transactions:  A reliable 

transmission network will enable more advanced methods of power transfers like power 

pool, bulk power transfers etc. It primarily helps to balance electrical load over large 

network than a single utility by providing mechanism for interchange of power between 

two or more utilities. 

 Section 1.3 describes more about the transmission network and its configurations used by utilities. 

1.3 Power Transmission Networks 

The United States’ bulk electric system consists of more than 360,000 miles of 

transmission lines, including approximately 180,000 miles of high voltage lines, connecting to 

about 7,000 power plants [4]. High-voltage (up to 765 KV) transmission lines transport power 

long distances much more efficiently than lower voltage (12 - 34.5 KV) distribution lines for two 

main reasons. First, high-voltage power transmission allows for lesser resistive losses in transit 

which is about 6% on average in the United States [5] . This efficiency of high voltage transmission 

allows for the transmission of a larger proportion of the generated power to the substations and in 

turn to the loads, translating to operational cost savings. Second, raising the voltage to lower the 

current allows one to use smaller conductor sizes, or have more conductor capacity available for 

growth. Transmission line systems relay the power from production sites to the users. Failure of 

these structures can lead to power cuts and therefore disrupt the day to day life of people as well 

as the industries dependent on electricity.  
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Figure 2: Transmission Network  

A transmission grid is a network of power stations, transmission lines, and substations. 

Energy is usually transmitted within a grid with three-phase AC. Transmission lines are either 

overhead power lines or underground power cables. Overhead cables are not insulated and are 

vulnerable to the weather but can be less expensive to install than underground power cables. 

Overhead and underground transmission lines are made of aluminum alloy and reinforced with 

steel; underground lines are typically insulated. Figure 2 shows a three-phase 500 kV transmission 

line with two conductors per phase. The two conductors per phase option is called bundling. 

Multiple conductors are bundled together per phase to double, triple, or greater to increase the 

power transport capability of a power line, lower losses and improve other operating characteristics 

of the line such as electromagnetic fields and audible noise. 

Typically, there are three types of line configurations used in the transmission network. 

These line configurations include (a) radial (one-terminal), (b) two-terminal, and (c) multi-terminal 

of which three-terminal is possibly the most prominent multi-terminal type. It should be noted that 

"terminals" in this context, refers to source terminals and not-tapped transformer terminals or 

stations. The two-terminal line configuration is the most dominant type followed by radial, and the 

three-terminal lines are the exceptions. 

 Three-terminal systems are used in power transmission networks to connect three power 

sources, A, B, and C. The power sources are either generators or Thevenin equivalent of a 

https://en.wikipedia.org/wiki/Three-phase_electric_power
https://en.wikipedia.org/wiki/Alternating_current
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connected network. As shown as in Figure 3, the three terminals are connected through a Tap-

point T which does not contain any measuring devices. Protection systems are like that of two-

ended lines except with more sophisticated techniques. In many cases, an existing two-terminal 

line is converted to three-terminal line as part of program to reinforce the power system. At least 

one (generally two) communications-based protection groups are normally used with three-

terminal line applications. 

  

Figure 3: Three-terminal Transmission Lines 

Two-terminal line systems are used for bulk power transfer and to supply loads from two 

power sources- Terminals A, B and are very common. Figure 4 shows the two-terminal 

transmission line. To obtain proper selectivity and coordination, directional distance relays [6] for 

phase and ground fault detection are used normally. Directional ground overcurrent relaying is 

sometimes applied in addition to, or in place of, directional ground distance relay functions. One 

or two communications-based protection groups are normally used with two-terminal line 

applications at the transmission voltages greater than 200KV. 

 

 

Figure 4: Two-terminal Transmission Line 

 

 Radial lines are lines that supply loads from single power source- Terminal A as shown in 

Figure 5. Nondirectional overcurrent or distance relays are normally used to protect these types of 
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lines. Communications based tripping is not generally necessary.  

 

Figure 5: Radial Configuration 

1.4 Problem Statement 

Transmission lines or transmission network is a crucial part of the electric grid as it carries 

high voltage power from generating site to the substations where the voltage stepped-down for 

end-use consumption transported via distribution lines. Though the frequency of faults is much 

higher in distribution lines, faults on transmission lines have more widespread impact and faults 

in buried transmission lines take longer to locate and repair. Additionally, since the transmission 

lines carry high voltages, faults on these lines might lead to unsafe conditions. Therefore, 

safeguarding against exposed fault is the most critical task in the protection of power system. The 

protection schemes or mechanisms for the transmission lines become challenging as configurations 

of the transmission lines become increasingly complex. 

Three-terminal and other multi-terminal line construction are generally a trade-off of planning 

economics and protection complexities. Two-terminal lines with long tap(s) supplying remote load 

from the main line may display many of the same protection and load ability issues as three-

terminal lines. The complexity of protecting these line configurations increases from the relatively 

simple radial, to the more difficult two-terminal, and to the still more difficult three-terminal. 

Relaying three-terminal lines has been and continues to be a challenge for protection engineers 

[7].  

 Primary and biggest challenge with protecting three terminal circuits is “Infeed”. During a 

fault on the transmission line, distance relay measures impedance which is equal to the positive 

sequence (A balanced three-phase system with the same phase sequence as the original sequence), 

if there are no sources of fault current on the transmission line between the line terminal where the 

relay is located and the fault. 
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Figure 6: Infeed Effect at Three-terminal 

  From the Figure 6, the actual line impedance from the relay terminal (Terminal A) to the 

fault is not always the impedance measured by the relay. This is because the third line terminal 

(Terminal C) tapped (Tee point) to a line is an additional source of current for a line fault. Current 

will be supplied to a fault that occurs on the line section beyond the tap of Terminal C through 

both Terminal A and Terminal C. The voltage drops resulting from the input of fault current from 

each of these sources into the common section of the line will be measured by the distance relay 

at the Terminal A. Since the current input from Terminal C is not applied to the relay at Terminal 

A, the impedance measured by this relay is higher than the actual impedance from the Terminal A 

to the fault. The relay will under reach; that is, for a given relay setting the relay does not cover 

the same length of line it would if the additional current source were not present. Due to infeed, 

most of the impedance based and traveling wave-based methods are not successful in identifying 

faults and often give erroneous results [8]. 

 

Figure 7: Outfeed Effect at the three-terminal 
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 It is also possible to experience an “Outfeed” at the T location, in which case there will be 

tendency to overreach as shown in  

Figure 7. This phenomenon is not too common but can cause delayed or sequential tripping at the 

terminals. 

 Thirdly, transmission lines could traverse long distances, in which case the line A-B ends 

up being in one region and line C-T in different region with separate set of environmental 

conditions which directly influences the impedance of the respective lines. This causes line non- 

homogeneity and since impedance on line C-T is different that of line A-B which makes fault 

location on line C-T trickier. Therefore, there is a need of an adaptable, resilient method for fault 

classification and location on transmission lines which could learn from system behavior and 

detect unknown faults rather than hardcoded methods (algorithms)which follow specific set of 

rules. 

 Taken all together, faults on transmission lines and the varying environmental conditions 

present a complex classification and detection problem. With the advent of new machine learning 

methods and supervised learning methods, these challenges may be more effectively addressed. 

Machine learning methods are based on the idea that systems can learn from data, identify patterns 

and make decisions with minimal human intervention.  The ability to automatically apply complex 

mathematical calculations to big data – over and over, faster and faster give these algorithms 

potential to identify insights in the data which would be otherwise an impossible task for humans. 

The availability of high-resolution/high-volume data, due to the proliferation of intelligent 

electronic devices in smart grids, paves ground to implement more accurate and intelligent 

machine learning methods for fault classification and location identification on the transmission 

lines.  

1.5 Contributions and Thesis Outline 

Majority of the faults on the transmission lines are shunt faults and with around 5% of them 

being symmetric (all three phases are equally affected). This research presents supervised-learning 

method for classification and location of shunt faults on three-terminal and two terminal 

transmission lines. The main contributions of the research are: 
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● Two different architectures are proposed which adapts to any N-terminal in the 

transmission line (dimensional scaling). 

● The models proposed do not require large dataset or high sampling frequency. 

Additionally, they can be trained quickly and generalize well to the problem. 

● The first architecture is based off decision trees for its simplicity, easy visualization 

which have not been used earlier. In this instance, fault location method uses 

traveling wave-based approach for location of faults. The method is tested with 

performance better than expected accuracy and fault location error is less than ±1%. 

● The second architecture uses single Support Vector Machine to classify ten types 

of shunt faults and Regression model for fault location which eliminates manual 

work. The architecture was tested on real data and has proven to be better than first 

architecture. The regression model has fault location error less than ±1% for both 

three and two terminals. 

● Both the architectures are tested on real fault data which gives a substantial 

evidence of its application.  

  The thesis is organized into 5 chapters. Chapter 2 discusses relevant literature and presents 

a survey of different machine learning methods proposed over past years. The two new 

architectures for fault classification and location is proposed in Chapter 3. Chapter 4 details the 

experimental setup, implementation and results are presented. Chapter 5 summarizes the 

conclusions and proposes the possibilities of future work. 
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Chapter 2 : Background and Related Work 

2.1 Introduction 

Given the electrical power grid is a complex power system consisting of power generating 

stations, high voltage transmission lines and distribution lines, fault classification and location 

identification is necessary to improve protection mechanisms and have reliable, high-speed 

protection devices. Most often, electrical faults result in mechanical or material damage to the lines 

or structures, which must be repaired before returning the line to service.  As it is noted earlier, 

repair and restoration is extremely important for maintaining critical and societal services. The 

restoration process is hampered if the location of the fault cannot be estimated with accuracy or 

confidence (less than a mile).  Various methods have been proposed over the years, and each 

method have their own merits and disadvantages. 

Section 2.2 presents an overview on several types of electric faults occurring on 

transmission lines. In Section 2.3, to encapsulate the current state of art methods, a survey review 

is presented on popular machine learning algorithms used for fault classification and location on 

transmission lines and summaries are given in Section 2.4. 

2.2 Review of the Faults on the Transmission Line 

In an electric power system, a fault or fault current is any abnormal electric current. For 

example, a short circuit is a fault in which current bypasses the normal load and an open-circuit 

fault occur if a circuit is interrupted by some failure. Transmission line carry 3-phase AC [9]. 

Under ideal state, all phase voltages have same maximum value but differ in phase from each other 

at angle 120 degrees. Shunt faults are caused by short circuit between lines. For example, a line to 

ground fault occurs when one conductor drops to the ground or comes in contact with the neutral 

conductor (ground). This causes a rapid decrease in respective phase voltage of the line involved 

in the fault and increase in phase current. Figure 8 shows the phase C-to-ground fault in time (µs). 

𝑉𝑎, 𝑉𝑏, 𝑉𝑐 are the phase voltages of phase a, b, c and 𝐼𝑎, 𝐼𝑏, 𝐼𝑐 are the phase currents of phase a, b, 

c respectively. From the figure we can see that, magnitude of phase C voltage decreases and phase 

https://en.wikipedia.org/wiki/Electric_power_system
https://en.wikipedia.org/wiki/Electric_current
https://en.wikipedia.org/wiki/Short_circuit
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C current increases during the fault. 

 

Figure 8: Phase to ground fault in time 

Faults can be categorized as the shunt faults and series faults [10] described below:  

2.2.1 Series Faults 

Series faults represent open conductor and take place when unbalanced series impedance 

conditions of the lines are present. These faults disturb the symmetry in one or two phases and are 

therefore unbalanced faults. Two examples of series fault are when the system holds one or two 

broken lines, or impedance inserted in one or two lines. In the real world a series faults takes place, 

for example, when circuit breakers control the lines and do not open all three phases, in this case, 

one or two phases of the line may be open while the other/s is closed [10]. Series faults are 

characterized by increase of voltage and frequency and fall in current in the faulted phases.  
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2.2.2 Shunt Faults  

 

Figure 9: Classification of Short Circuit faults 

There are two types of short circuit faults or shunt faults which can occur on transmission 

lines; balanced faults and unbalanced faults also known as symmetrical and unsymmetrical faults 

respectively as shown in Figure 9. In symmetrical faults, also called three phase short circuits, all 

the three phases are short circuited to each other and often to earth also. Such faults are balanced 

and symmetrical as the system remains balanced even after the occurrence of the fault. Though the 

symmetrical faults are rare, they generally lead to the most severe fault current flow. Most faults 

that occur in a power system are unsymmetrical faults involving only one or two phases. The most 

common type of unsymmetrical fault is a short circuit between a phase and the earth. 

The shunt faults are the most common type of fault taking place in the field. They involve 

power conductors or conductor-to-ground or short circuits between conductors. One of the most 

important characteristics of shunt faults is the increment the current suffers and fall in voltage and 

increase frequency. Shunt faults can be classified into four categories [11].  

1. Line-to-ground fault: This type of fault exists when one phase of any transmission 

lines establishes a connection with the ground either by ice, wind, falling tree or 

any other incident. About 70% of all transmission lines faults are classified under 

this category [12].   

1. Line-to-line fault: Because of high winds, one phase could touch anther phase & 

line-to-line fault takes place. Approximately 15% of all transmission lines faults 

are considered line-to-line faults [12]. 

2. Double line-to-ground: Falling tree where two phases become in contact with the 

ground could lead to this type of fault. Two phases will be involved instead of one 
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in the line-to-ground faults scenarios. Ten percent of all transmission lines faults 

are under this type of faults [12].  

3. Three phase faults: In this case, falling tower, failure of equipment or even a line 

breaking and touching the remaining phases can cause three phase faults. In reality, 

this type of fault not often exists which can be seen from its share of 5% of all 

transmission lines faults [12]. The first three of these faults are known as 

asymmetrical faults. 

2.3 Survey of the methods 

 This section presents a survey on different fault classification and location identification 

techniques in transmission lines highlighting the implementations machine learning methods in 

the past. In this review, only short circuit faults are considered as they are more common. 

    

Figure 10: Fault detection techniques 

 The survey is mainly divided into two parts: 

1) Fault classification techniques - Methods that determine the fault type 

2) Fault Location Techniques - Methods that calculate the distance of the fault 

 Both techniques play a vital role in development of protection mechanisms for a given 

power system model. There have been various approaches used to develop a fast speed and reliable 

method to deal with faults as shown in Figure 10. 

https://www.lucidchart.com/documents/edit/c6161a42-c652-4ab1-9c9a-308f81496421/0?callback=close&name=docs&callback_type=back&v=1104&s=612
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 Wavelet based approaches primarily use the time difference between the traveling wave 

reflections which assume higher sampling rate and synchronized measurements at the terminals 

for fault identification making it difficult for a practical application, especially for three-terminal 

circuits due to infeed problem. Though this method has lower error of estimation, it has a higher 

computational burden [13]. Phasor measurement unit (PMU) based approaches require 

synchronized phasor quantities from all the terminals of the transmission lines. Genetic Algorithms 

are the heuristic search and optimization techniques that mimic the process of natural evolution. 

When applied to classify and location faults on transmission lines, they are often slow and complex 

to be implemented [14].  

Machine learning is a subset of artificial intelligence in the field of computer science that 

often uses statistical techniques to give computers the ability to "learn" (i.e., progressively improve 

performance on a specific task) with data, without being explicitly programmed [15]. Machine 

learning algorithms can learn and improve themselves by studying high volumes of available data. 

They are very helpful in fields where traditional programming rules do-not operate or rules keep 

evolving. Since the faults occurring on power grid are very unlikely to be similar and power system 

can change depending on the future demand, use of machine learning algorithms for solving such 

problems might. They can benefit from learning correlation between events and can give insights 

helping human uncover factors causing the faults and to find the solution of complex 

multiobjective nonlinear systems, the above-said methods are used to get faster solution and less 

error. 

2.3.1 Fault Classification Techniques- Machine Learning  

Classification of power system faults is the first stage for improving power quality and 

ensuring the system protection. For this purpose, a robust classifier is necessary.  

Most prominent machine learning approaches for fault classification are explained below: 

A. Support Vector Machines (SVM) 

 Support Vector Machines are supervised learning models which maps the high dimensional 

input space to target space [16]. The main advantage is its regularization parameter, it tells the 

SVM to avoid misclassifying each training sample [17]. Secondly, SVM works well with 

continuous data and can learn more from less number of samples. Section 3.3.1 describes the SVM 

https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Data
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in more detail. 

 One promising indicator is that researchers in the past have used SVM for as a classifier to 

carry out fault classification in the transmission lines [13]. Babu et al. [18] proposed fault 

classification using Empirical Mode Decomposition (EMD) and SVM’s. EMD was used to 

decompose the voltages of transmission line into Intrinsic Mode Function (IMF’s). The 

characteristic features from the IMF’s were extracted by Hilbert Huang Transform which was 

given as input to three SVM’s trained for three phases respectively to predict their involvement in 

the fault. The method was tested on the simulated data with acceptable levels of accuracy. 

 K. Li et al. [19] presented fault detection and classification method based on Principal 

Component Analysis (PCA) and SVM. In the first step, PCA is used to reduce the dimensionality 

as well as find violating point of the signals according to the confidential limit. In the second step, 

extracted features are used to build SVM networks to use the pattern recognition to identify faulty 

phase. However, the PCA cannot identify non-linear relationships which might not work well with 

three-terminal circuits.  

 Malathi et. al [20]  proposed an approach for fault classification in transmission line using 

multi-class Support Vector Machine (SVM). Wavelet decomposition using Discrete Wavelet 

Transform (DWT) of post fault phase current signals are used as a feature set for the SVM which 

predicts the fault class. This method has been tested extensively on various simulated conditions 

on the transmission line with different network conditions. 

 Dubey et. al. [21] used proposed fault classification method using Least Square SVM (LS-

SVM). The main advantage of this method is that it requires lesser training sets. Post fault one-

fourth cycle current signal is used as input to four LS-SVM, for prediction of three phases and 

ground respectively. The results have been validated on the simulated data under various fault 

conditions. 

 An approach of combining Discrete Wavelet Transform (DWT) with SVM for fault 

classification was proposed by Hanif et. al. [22]. DWT is used to extract the post fault voltage 

energies and normalized energies are used as input to the four SVM classifiers used to predict the 

involvement of each phase in the fault. The method was evaluated using simulated data for two 

different networks; an overhead line combined with an underground cable and a 6-bus distribution 

network. 
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 Youssef et. al [23] proposed approach to detect and classify faults in real-time using SVMs. 

The main idea is to use fault inception angle as input to SVM to recognize the patterns. Phase 

angle after the fault were recorded for nine types of fault types and used to train the two SVMs.  

 There have been researches implementing SVM for detecting and classifying faults on 

series compensated circuit [24]–[26]  which is out of boundaries for this research. 

B. Neural Network 

  Artificial Neural Networks are computing systems vaguely inspired by the biological 

neural networks that constitute animal brains. An ANN is based on a collection of connected units 

or nodes called artificial neurons which loosely model the neurons in a biological brain. Each 

connection, like the synapses in a biological brain, can transmit a signal from one artificial neuron 

to another. An artificial neuron that receives a signal can process it and then signal additional 

artificial neurons connected to it. The original goal of the ANN approach was to solve problems 

in the same way that a human brain would. Figure 11 shows an artificial neural network which is 

an interconnected group of nodes, akin to the vast network of neurons in a brain. Here, each 

circular node represents an artificial neuron and an arrow represents a connection from the output 

of one artificial neuron to the input of another. However, over time, attention moved to performing 

specific tasks, leading to deviations from biology. Many researches have used neural network for 

fault classification and detection explained in [27].  

https://en.wikipedia.org/wiki/Biological_neural_network
https://en.wikipedia.org/wiki/Biological_neural_network
https://en.wikipedia.org/wiki/Artificial_neuron
https://en.wikipedia.org/wiki/Neuron
https://en.wikipedia.org/wiki/Brain
https://en.wikipedia.org/wiki/Synapse
https://en.wikipedia.org/wiki/Brain
https://en.wikipedia.org/wiki/Human_brain
https://en.wikipedia.org/wiki/Neuron
https://en.wikipedia.org/wiki/Brain
https://en.wikipedia.org/wiki/Artificial_neuron
https://en.wikipedia.org/wiki/Biology
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Figure 11: Artificial Neural Network [28] 

 Koley et. al. [29] proposed a hybrid wavelet transform and modular artificial neural 

network based fault detector, classifier and locator for six phase lines using single end (single 

terminal) data. The standard deviation of the approximate coefficients of voltage and current 

signals obtained using discrete wavelet transform are applied as input to the modular artificial 

neural network for fault classification and location.  

 Ahmad et. al. [30] proposed wavelet based artificial neural networks for fault classification. 

Discrete wavelet transforms (DWT) is used to extract high-frequency components of the aerial 

modal currents. A feature vector is built using the wavelets details coefficients of one level of the 

aerial modes and is used to train an ANN. The proposed method is tested on the simulated data 

with acceptable accuracies. 

Rao et. al. [31] has presented a fault classification and detection method using discrete 

wavelet transform and artificial neural networks. Discrete wavelet Transform (DWT) is applied to 

the fault phase currents to obtain energy values which is used as input to train the neural network. 

The proposed method was tested on a simulated network values using MATLAB. 

Few other researchers have used Back-Propagation Neural Network (BPNN) for 

identifying and classifying faults on transmission lines. Backpropagation is a method used in 
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artificial neural networks to calculate a gradient that is needed in the calculation of the weights to 

be used in the network. It is commonly used to train deep neural networks, a term referring to 

neural networks with more than one hidden layer. 

Saini et. al. [32] has proposed new algorithm for fault detection and classification on 

parallel transmission lines using Discrete Wavelet Transform (DWT) and Back-Propagation 

Neural Network (BPNN). Wavelet energies coefficients of alpha and beta mode currents obtained 

by clark’s transformation are used as input to train BPNN with two hidden layers. The proposed 

method is tested on different networks and fault scenarios. 

C. Fuzzy Logic 

 Fuzzy logic is a form of many-valued logic in which the truth values of variables may be 

any real number between 0 and 1. It is employed to handle the concept of partial truth, where the 

truth value may range between completely true and completely false. By contrast, in boolean logic, 

the truth values of variables may only be the integer values 0 or 1. They do not need detailed 

knowledge of the system as the decisions are based on rules determined by humans. Figure 12 

shows the basic building block of a fuzzy scheme consisting of 3 stages. In the fuzzification, the 

inputs (for fault classification voltage/current transients) fuzzified into fuzzy membership 

functions. In the Fuzzy Inference System, all the rules in the rule base are used to compute the 

fuzzy output functions. De-fuzzification stage, maps the fuzzy output functions to get predicted 

fault type. 

 

Figure 12: Block Diagram of Fuzzy Logic System 

 Saradarzadeh et. al. [33] proposed an algorithm for fault type recognition of shunt faults 

that occur on the transmission line. The proposed method uses the phase sequence components of 

three phase voltages and currents that are available in most of the power system protection relays. 

https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Gradient
https://en.wikipedia.org/wiki/Artificial_neural_network#Components_of_an_artificial_neural_network
https://en.wikipedia.org/wiki/Deep_neural_network
https://en.wikipedia.org/wiki/Many-valued_logic
https://en.wikipedia.org/wiki/Truth_value
https://en.wikipedia.org/wiki/Boolean_algebra
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A fuzzy method is used to identify the type of fault from the current and voltage signals separately 

and then combines the results to provide more accurate fault-type recognition. 

 Prasad et. al. [34] proposed a method for fault classification. Post fault currents from three 

phases of one terminal is used as input to the Fuzzy Inference System (FIS) to classify faults. The 

proposed technique using two classifiers one is for ground faults (Fuzzy classifier-I) and second 

one is for phase faults (Fuzzy classifier-II). The method is tested on the simulated network. 

 Adhikari et. al. [35] used three phase currents data obtained from Compact Reconfigurable 

i/o (CRIO) devices as input to their method using Fuzzy logic. Once the rule base is prepared for 

classification, compiled fuzzy logic is dumped to FPGA (field-programmable gate array) to get a 

real-time performance.  

D. Other Techniques 

The other machine learning techniques used in fault classification and identification.  

Jamehbozorg et. al. [36] proposed Decision Tree based method for fault classification in 

Double-Circuit Transmission Lines. The proposed method needs voltages and currents of only one 

terminal of the protected line. After detecting the exact time of fault inception and calculating the 

odd harmonics of the measured signals, up to the nineteenth, a decision tree algorithm is employed 

for recognition of the intercarrier fault type. Also, the proposed method is extended for 

classification of crossover faults in these transmission lines. 

 Mishra et. al [37] have used bagged tree ensemble technique. Bagging stands for bootstrap 

aggregation; whereby random samples are drawn through replacing the training datasets. Bagging 

is a simple method that can be employed to reduce the variance for those machine learning 

techniques with high variance. Post fault current is decomposed by Fast Discrete Orthonormal S-

Transform (FDOST) and bagged tree ensemble technique is used to classify faults. The proposed 

method is then tested under different fault scenarios on the simulated data. 

 K-Nearest Neighbor (k-NN) based classification method was proposed by Majd et. al. [38]. 

Distances of each sample and its fifth nearest neighbor in pre-determined in the default window 

which determines the fault occurrence time and phase. Therefore, k-NN is applied to the 

instantaneous values of normalized three phase currents. 

 Ray et. al. [39] proposed an Extreme Learning Machine (ELM) based fault classification 
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technique in a series compensated transmission line. Extreme learning machines are feedforward 

neural networks for classification, regression and feature learning with a single layer or multiple 

layers of hidden nodes, where the parameters of hidden nodes (not just the weights connecting 

inputs to hidden nodes) need not be tuned. Discrete Wavelet Transform (DWT) is used to 

decompose the instantaneous current signals used as input to ELM for fault classification. The 

proposed method is tested with simulated data. 

Dasgupta et. al. [40] proposed a method for detecting and classifying transmission line 

faults using cross-correlation and k-Nearest Neighbor (k-NN). This method computes the cross 

correlation between pure and faulty current signals. Extracted features are used as input the k-NN 

algorithm which then computes distance of a given sample to all other samples in the set and class 

of the sample with least distance is predicted. 

 Linear Regression Index-Based Method for fault classification and detection is presented 

by Musa et. al. [41]. The proposed algorithm has constructed a rule as follows: when the system 

is running under healthy condition, the Linear Regression Coefficient Indices (LRICs) will be 

equal to zero; when the system is subjected to the fault condition, the LRICs of faulted phases will 

be greater than zero. For each possible scenario of faults, the proposed algorithm required only the 

three-phase current measurement of the local measurement. 

2.3.2 Fault Location Techniques – Machine Learning  

 Accurate fault location that occur on transmission lines is highly important from aspect of 

quick identification of weak points on the transmission line and taking respective counter measures 

to decrease the probability of those faults. Various approaches have been developed over the time 

to address these issues and in those few are hard coded. On the other hand, power of algorithms 

which can learn from real world pattern are explored. Figure 10 shows few fault location 

techniques that have been developed by the researches in the past. In this section, machine learning 

techniques employed in past have been summarized. 

A. Neural Networks 

 Neural Networks becomes first choice when the goal is to model non-linear and complex 

relationships which follow real-life pattern. They generalize well which results in a model that 

predicts well on unseen data. 

https://en.wikipedia.org/wiki/Feedforward_neural_network
https://en.wikipedia.org/wiki/Feedforward_neural_network
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 Twafik et. al. [42] proposed Artificial Neural Network (ANN) for estimating fault location 

on transmission lines. Prony method is used to extract the modal information from voltage or 

current signal. ANN are then used to estimate the fault distance based on the modal information. 

The model is trained and tested using the simulated data.  

 Fathabadi et. al. [43] proposed an hybrid framework consisting of a proposed two stage 

Finite Impulse Response (FIR) filter, four Support Vector Machines (SVMs), and eleven Support 

Vector Regressions (SVRs). The proposed two-stage FIR filter together with the SVMs are used 

to detect and classify short-circuit faults while the SVRs are utilized to locate short-circuit faults 

and predict distances. 

 Yadav et. al. [44] have written a comprehensive and exhaustive survey will reduce the 

difficulty of new researchers to evaluate different ANN based techniques with a set of references 

of all concerned contributions. From the survey they concluded that ANN is found to be robust, 

accurate, and efficient approach for transmission line fault detection, classification, localization, 

direction discrimination, and faulty phase selection. 

B. Support Vector Regression (SVR) 

  The Support Vector Regression (SVR) uses the same principles as the SVM for 

classification. Because output is a real number it becomes very difficult to predict the information 

at hand, which has infinite possibilities. In the case of regression, a margin of tolerance (epsilon) 

is set in approximation to the SVM which would have already requested from the problem.  

 Ray et. al. [45] proposed Support Vector Machine (SVM) for fault classification and 

Support Vector Regression (SVR) for fault location. Fault classification consists of four SVMs 

each predicting the involvement of each phase and fault location consisting of SVR. Both the 

models have been trained by best features out of decomposed post fault current signals using 

Wavelet packet transform (WPT). The proposed method has been trained and tested on the 

simulated data and a comparison study has been carried out with methods published by other 

researchers. 

 Hosseini et. al. [46] presented hybrid method for fault classification and location. Post fault 

voltage samples are decomposed by discrete wavelet transform which are used with post fault 

current samples as input to SVM for the fault classification model. Four SVMs are used to predict 
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the fault in each phase. Depending on the fault type in the first stage, the second stage one out of 

four SVRs is selected for fault location.  

C. Other Techniques 

 Farshad et. al. [47] proposed a method to classify and locate single-to-ground faults using 

k-Nearest Neighbors (k-NN) algorithm. Various features are extracted from the voltage signals 

measure from a single terminal. Decomposed signals from the discrete Fourier Transform is used 

as input to k-NN for fault type classification. k-NN in regression mode is used for fault location. 

Since, current signals are not used, the proposed approach is immune against current-transformer 

saturation and its related errors. 

 Ray et. al. [48] in  proposed fault location technique using extreme learning machine 

(ELM) in series compensated transmission line. The proposed method uses one cycle of post fault 

current and voltage signals which are decomposed by wavelet transform. Best features, selected 

by genetic algorithm are then used as input to the ELM. The method has been tested on variety of 

simulated data. 

2.4 Summary 

 Variety of approaches have been used to increase reliability and robustness of fault 

classification and location methods. 

Neural Network follows a black box model making the explanation for the result typically 

difficult to understand. Neural network-based fault classification methods show good accuracy, 

however the training time is quite large due to which the task becomes more complex. The artificial 

neural network techniques suffer from the requirement of large training data. However, these 

methods are hard to implement practically. If the fault can’t be identified quickly, it will produce 

many ill-effects such as line outages during the period of peak load leading to severe economic 

losses. There may be a chance for the entire grid to collapse which is called as blackout and the 

reliability of the system would be affected. 

Few of the fault classification and location methods use fuzzy logic based architectures 

[13]. Fuzzy logic uses rule-based relationship for making decisions. Though they have lot less 

computation burden, it is tedious to develop fuzzy rules and membership functions and fuzzy 
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outputs can be interpreted in many ways making analysis difficult. In addition, it requires lot of 

data and expertise to develop a fuzzy system. 

Other impedance measurement-based methods for fault location depend on fundamental 

concept of calculating line impedances pre- and post-faults to determine the distance of the fault. 

However, in three terminal circuits, due to infeed, the impedance values are measured are much 

larger than actual line impedance which gives rise to erroneous results. Secondly, the lines A-B 

and C-T may be in different terrains which results in different environmental conditions. In this 

scenario, synchronized impedance measurements might provide erroneous results. 

It appears, Current state of the art Machine Learning methods presented in above sections 

have tested models on simulated data which have same distribution, pattern/trend as training data. 

Therefore, the robustness of the methods is not completely known and the question of whether 

these methods are applicable to 3 terminal networks is yet to be answered. 
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Chapter 3 : Design 

3.1 Introduction 

In the recent past, many researchers have proposed approaches for fault classification and 

location identification. However, they were not applicable to a variety of transmission network 

configurations, particularity 3 terminal networks and were not evaluated with real data to ensure 

the effectiveness of the methods in locating and classifying faults on the transmission line. 

Based on the literature review and preliminary designs, the design criteria that emerged is as 

follows: 

1. Scalability. Transmission network expand as the demand for the power increases every 

year. Therefore, fault location methods should be scalable.  

2. Confidence. Should produce estimates that are timely, sound and reliable, otherwise 

the confidence in the methods would be weakened and longer lengths of transmission 

line would have to be examined to find the exact fault location. 

3. Network Topology. Adaptive to different configurations, applicable to changing fault 

data.  

4. Relevant. Make use of existing power line health data 

5. Extensible. Interface with existing OT power line monitoring devices.  

Based on recent advances in machine learning, it was decided to explore the utility and 

applicability of machine learning to fault classification and location on transmission lines. Machine 

learning is a form of data analysis that automates analytical model building [49]. Using algorithms 

that continuously assess and learn from data, machine learning algorithms enables hidden insights 

into complex behavior and relationships. It can handle multi-dimensional and multi-variable data 

in dynamic environments. A key aspect to machine learning algorithms is that they learn the 

behavior of the system representative and synthetic datasets to produce reliable, repeatable 

decisions and results. For fault classification and location on transmission lines, these attributes 

are desirable. In addition, machine learning methods do not require synchronized measurements 

at the terminals. Additionally, they can be employed in real time to monitor the grid as well. 
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 Input data is very crucial aspect for the machine learning algorithms and the correctness of 

prediction is based on the quality of data that the model was trained with. Post- fault voltage or 

current transients from the live grid are prone to have small amount of noise (may be negligible). 

Therefore, to ensure the quality of the data used to train the machine learning models and to extract 

required features from the post-fault signal, Discrete Wavelet Transform (DWT) is used. The 

advantage of DWT lies in determination of the key components in the signal like energy and 

entropy. The training data which consists of these components is used to train the predictive models 

so that they can learn from the information given by these components. 

 In predictive modeling, the idea is to create a function which is isomorphic to original 

function/process which was used to generate the training data. Therefore, this predictive model 

can predict new data points using the “new” function. The fault type and faulty line identification 

on the transmission line is a classification problem – in which we want to build a classification 

model to classify ten fault types into the target classes. Based on the preliminary research, we 

focused on two machine learning based architectures. The first architecture employs decision trees 

and second architecture use multi-class Support Vector Machines (SVM) for fault classification 

and faulty line identification. Both SVM and Decision trees follow white box ( subsystem whose 

internals can be viewed but usually not altered) approach  and are capable of handling continuous 

data (floating point).  

 Section 3.2 gives the details about the overall process for fault identification in the 

transmission lines. 

3.2 Overview 

  

Figure 13: High Level Overview of the Process 

This section provides an overview of the proposed method as shown in Figure 13. The goal 

is to employ machine learning methods to identify faults and fault location on a given transmission 

line or circuit rather than hard coding the values. 

https://en.wikipedia.org/wiki/Subsystem
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The process has mainly three major steps below: 

1) Data Generation: The machine learning algorithms need to be trained before 

deployment in real time to detect faults and identify locations. In this step, 

simulated data of fault phase voltages is collected from an emulated Transmission 

model resembling the live transmission model. The collected data then is 

normalized and massaged before it can be used as training data to train the models. 

2) Fault Type Identification: The goal is to correctly classify ten types of Short circuit 

faults as described  Chapter 2. Two different architectures are presented in the later 

sections consisting machine learning algorithms to predict the fault type. 

3) Fault Location Identification: The methodology differs for three terminals and two 

terminal circuits. Fault location identification in first architecture is using wavelet-

based traveling wave method to calculate the distance. The second method is to 

employ regression models to predict the distance of the fault. 

Section 3.2 describe the data generation process in detail. Section 3.3 and 3.4 present two 

different architecture for fault type classification and location methods.  

3.3 Data Generation 

 Data Generation is a crucial step to any method employing machine learning algorithms. 

The algorithm or model needs to be trained beforehand to predict the outcome for the test sample. 

The model is initially fit on a training dataset that is a set of examples used to fit the parameters of 

the model and tested on the test dataset which is used to provide an unbiased evaluation of 

a final model fit on the training dataset. Machine learning algorithms learn from data. Therefore, 

it is critical that you feed them the appropriate data for the problem being addressed. Additionally, 

the type of the data collected governs the choice of machine learning algorithm to be applied to 

obtain best results. For the fault classification and location problem, the data generation process is 

presented in Figure 14. 
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Figure 14:Data Generation Process 

 

 It is a three-step process provided as follows: 

1) Post fault transient three phases (Va, Vb, Vc) and ground mode voltages are recorded for 

one cycle on each terminal of the transmission model under study. Simulated post fault 

transient voltages from all the terminals is obtained from simulating the faults on the 

network using Aspen One-liner [50].  Post fault transient phase current value also could be 

used in place of phase voltages which is to be tried in future work. 

2) Discrete Wavelet Transform is applied to the transient phase and ground mode voltages to 

get the wavelet transform approximation coefficients (WTAC’s). To minimize noise effect 

wavelet coefficients are squared [51]. Energy of the wavelet is obtained by summation of 

all the 𝑊𝑇𝐴𝐶2 over one cycle after the fault has occurred. 

𝐸𝑚 = ∑ 𝑊𝑇𝐴𝐶2(𝑘) ∀ 𝑚 ∈ {𝑎, 𝑏, 𝑐 𝑎𝑛𝑑 𝑔} 𝑎𝑛𝑑 𝑘 ∈ {0, 𝐾 − 1

𝐾−1

𝑘= 0

} 

 Where K is the number of cycles  

 The obtained wavelet energies are normalized as  

𝐸𝑁𝑘 = 
𝐸𝑚

𝐸𝑚𝑎 + 𝐸𝑚𝑏 + 𝐸𝑚𝑐 + 𝐸𝑚𝑔
 ∀ 𝑚 ∈ {𝑎, 𝑏, 𝑐 𝑎𝑛𝑑 𝑔} 

3) The input features are calculated wavelet energies at all the terminals. For three terminal 

models, the data set consists of wavelet energies from all the three terminals A, B and C. 

Classification of fault is done from the obtained energy of the approximation coefficients.  
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4) For architecture I, the number of target labels to be predicted is 4, phase A, B, C and Ground. 

Therefore, three-terminal training set would be Nx12 matrix features and Nx4 target labels, 

where N is the number of samples in the dataset. Two terminal has Nx8 feature matrix and 

same target labels. For architecture II, the feature space for two and three terminals does 

not change, the target matrix reduces to Nx1. 

 All the machine learning algorithms are trained with above training simulated dataset. Once 

the training is done, the algorithms will have optimal decision boundaries which will be used to 

predict the outcome of the real-time fault during the testing phase. 

 The next section briefly describes Discrete Wavelet Transform (DWT) and then the later 

sections present the proposed architectures. 

3.3.1 Discrete Wavelet Transform 

A discrete wavelet transform (DWT) is any wavelet transform for which the wavelets are 

discretely sampled. For fault classification and location technique, DWT is a method of preparing 

the data. Traveling wave theory is utilized in capturing the travel time of the transients along the 

monitored lines between the fault point and the relay. Time resolution for the high frequency 

components of the fault transients, is provided by the wavelet transform. Using wavelets for fault 

location was first proposed in [52]. 

Traveling wave or ultra-high-speed fault location method utilizes the higher frequency 

contents of the transient fault signals due to its use of traveling wave theory and shorter sampling 

windows. 

Wavelet transform possesses some unique features that make it very suitable for this 

application. It maps a given function from the time domain into time-scaling domain. The wavelet, 

the basis function used in the wavelet transform, has bandpass characteristics which makes this 

mapping like a mapping to the time-frequency plane. The wavelet transform is often compared 

with the Fourier transform, in which signals are represented as a sum of sinusoids. In fact, the 

Fourier transform can be viewed as a special case of the continuous wavelet transform with the 

choice of the mother wavelet (𝑡) =  𝑒−2𝜋𝑖𝑡 . The main difference in general is that wavelets are 

localized in both time and frequency whereas the standard Fourier transform is only localized in 

frequency. This localization allows the detection of the time of occurrence of abrupt disturbances, 

https://en.wikipedia.org/wiki/Wavelet_transform
https://en.wikipedia.org/wiki/Wavelet
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Fourier_transform
https://en.wikipedia.org/wiki/Frequency
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such as fault transients. Fault generated traveling waves appear as disturbances superposed on the 

power frequency signals recorded by the relays. Processing these signals using the wavelet 

transform reveals their travel times between the fault and the relay locations.  

Implementation of the discrete wavelet transform, involves successive pairs of high-pass 

and low-pass filters at each scaling stage of the wavelet transform. This can be thought of as 

successive approximations of the same function, each approximation providing the incremental 

information related to a scale. The first scale will cover a broad frequency range at the high 

frequency end of the spectrum, and the higher scales will cover the lower end of the frequency 

spectrum with progressively shorter bandwidths. Conversely, the first scale will have the highest 

time resolution and lowest frequency resolution and higher scales will cover longer 

time intervals and shorter frequency ranges. 

The DWT of a signal x is calculated by passing it through a series of filters. First the 

samples are passed through a low pass filter with impulse response g resulting in a convolution of 

the two: 

𝑦[𝑛] = (𝑥 ∗ 𝑔)[𝑛] =  ∑ 𝑥[𝑘]𝑔[𝑛 − 𝑘]

∞

𝑘= −∞

 

The signal is also decomposed simultaneously using a high-pass filter h as shown in Figure 

15. The outputs giving the low frequency detail coefficients (from the high-pass filter) and high 

frequency approximation coefficients (from the low-pass). It is important that the two filters are 

related to each other and they are known as a quadrature mirror filter. 

 

Figure 15:  Block diagram of one level DWT [53] 

However, since half the frequencies of the signal have now been removed, half the samples 

can be discarded according to Nyquist’s rule. The filter output of the low-pass filter g in the 

diagram above is then subsampled by 2 and further processed by passing it again through a new 

low- pass filter g and a high- pass filter h with half the cut-off frequency of the previous one, i.e.: 

https://en.wikipedia.org/wiki/Low_pass_filter
https://en.wikipedia.org/wiki/Impulse_response
https://en.wikipedia.org/wiki/Convolution
https://en.wikipedia.org/wiki/High-pass_filter
https://en.wikipedia.org/wiki/Quadrature_mirror_filter
https://en.wikipedia.org/wiki/Downsampling
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𝑦ℎ𝑖𝑔ℎ[𝑛] =  ∑ 𝑥[𝑘]ℎ[2𝑛 − 𝑘]∞
𝑘= −∞                                

𝑦𝑙𝑜𝑤[𝑛] =  ∑ 𝑥[𝑘]𝑔[2𝑛 − 𝑘]

∞

𝑘= −∞

 

With summation operator ↓, the above equation can be written more concisely as: 

𝑦𝑙𝑜𝑤 = (𝑥 ∗ 𝑔) ↓ 2 

𝑦ℎ𝑖𝑔ℎ = (𝑥 ∗ ℎ) ↓ 2 

 DWT differs from Continuous Wavelet Transform (CWT) in time-frequency plane that is 

considered as multi-resolution wavelet analysis. The purpose is to decompose signal in multiple 

frequency bands, to process the signal in multiple frequency bands differently and independently. 

Santoso et. al. [51] studied the power quality via wavelet analysis. In their study, they 

concluded that, for short and fast transient disturbances, Daub4 and Daub6 wavelets are better, 

while for slow transient disturbances, Daub8 and Daub10 are particularly good. Rioul et al. in their 

seminal paper [54] have studied the computational complexity of wavelet transforms in detail. In 

general, the computations are periodic in 2m for an m-level wavelet. The selection of an appropriate 

mother wavelet without knowing types of transient disturbances (which is always the case) is a 

formidable task. Therefore, instead of creating algorithms to select appropriate wavelets (which 

surely adds complexity to the main problem), we utilize one type of mother wavelet in the whole 

course of detection and localization for all types of disturbances. In this study, Db4 at scale 2 is 

used for decomposition of the post fault transient voltage signals. 

3.4 Architecture I 

 Locating faults on Three Terminal transmission models are complex [Section 1.4] due to 

interactions between all the three terminals. A reasonable approach to address complex interactions 

is a “divide and conquer” approach where the problem is broken down into sub-problems. This 

approach is not only resilient but also helps towards optimization of sub-problems. In architecture 

I as shown in Figure 16, for the fault classification, decision is made at each phase. Four decision 

tree classifiers, one for each phase (A, B, C and G) for its involvement in the fault. The location 

identification, is done by using travelling wave-based method. However, for three-terminal 

circuits, the faulty-branch is identified first and then the distance is calculated. 
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Figure 16: Overview of Architecture I 

 The architecture can be applied to simple system consisting of two-terminal transmission 

line to a complex system consisting of N lines, which makes it highly scalable. 

 Section 3.3.1 has an overview of Decision Tree model used in fault classification followed 

by fault classification and location identification processes in Section 3.3.2 and 3.3.3 respectively. 

3.4.1 Review of Decision Trees 

Decision Trees are non-parametric supervised learning method used in classification and 

regression. Classification and Regression Trees (CART) were first introduced by [55]. The model 

predicts the value of the target variable by learning decision rules from the feature set also called 

input variables. For Fault Classification, since the target value to be predicted is discrete, the trees 

are called classification trees. Whereas, for the regression the target value is a real number. 

Decision Trees are constructed top-down approach, by choosing a variable at each step that 

best splits the target into homogeneous sets. It follows greedy search for one feature value which 

can “best” split the target space which is a decision value at a given node. This process repeats for 

the next child node. There are various metrics used by different algorithms constructing the 

decision trees to find the “best” feature.  

Below are few metrics used to provide a measure of the quality of split: 

1) Gini Impurity: It is a measure of how often a randomly chosen element from the set 

would be incorrectly labeled if it was randomly labeled according to the distribution of 
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labels in the subset. The Gini impurity can be computed by summing the probability pi 

of an item with label i to being chosen times the probability: 

∑ 𝑝𝑘 = 1 − 𝑝𝑖 

𝑘 ≠𝑖

 

To compute Gini impurity for a set of items with J classes, suppose i belongs to {1, 

2…J}, and let pi be the fraction of items labeled with class i in the set. 

𝐼𝐺(𝑝) =  ∑ 𝑝𝑖   ∑ 𝑝𝑘

𝑘 ≠𝑖

𝐽

𝑖 = 1

= ∑ 𝑝𝑖   (1 − 𝑝𝑖

𝐽

𝑖 = 1

 ) = 1 − ∑𝑝𝑖
2

𝐽

𝑖=1

  

 

 2) Information Gain:  It is based out of concept of Entropy from Information Theory. 

  Entropy is defined as: 

𝐻(𝑇) =  −∑𝑝𝑖 log2 𝑝𝑖

𝐽

𝑖=1

 

  

where p1, p2, .........are fractions that add up to 1 and represent the percentage of 

each class present in the child node that results from a split in the tree 

 

A good example of decision tree is mentioned in [56]. The iris data set has three classes 

namely - Setosa, Versicolour, Virginica. At each node, an observation traverses to the left child 

node only if the condition at that node is true. The pair of numbers below each terminal node gives 

the number of misclassified over the node sample size as shown in Figure 17. 
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Figure 17:Classification tree model for iris dataset [42] 

Decision Trees are simple to understand, interpret and visualize. They work well with both 

continuous and discrete data which makes them suitable to work with the generated dataset. They 

require little data preparation compared to other models and mirrors human decision making closely 

which can greatly help in reasoning about a situation. Decision Trees work well with 

Binary/Multiclass Labels. A class is the category for a classifier which is given by the target. The 

number of class to be predicted define the classification problem. A class is also known as a label. 

On the Other hand, Decision trees can be non-robust i.e. get over-fitted to the training data. 

A slight change in the training set can cause substantial changes in the predictions. Various 

statistical metrics should be used to generalize the model. Since the transmission model doesn't 

change frequently, Decision Tree model once made could be sustained for long time. 

3.4.2 Fault Classification 

 The goal is to predict ten types of Short Circuit fault which occur on the transmission line. 

Figure 18 shows the process of the fault classification for two and three terminal circuits. The idea 

is to use divide and conquer approach on the system and collectively interpret the result. 

https://gerardnico.com/data/type/nominal/nominal
https://gerardnico.com/data_mining/classification
https://gerardnico.com/data_mining/target
https://gerardnico.com/data_mining/classification#type
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Figure 18: Architecture I Fault Classification for Two and Three Terminal Circuit 

 The simulated data has phase voltage wavelet energies at each Terminal as features and 

four labels (A, B, C and G) each taking value of either +1 or -1. The value of +1 denotes that the 

phase is involved in the fault that occurred. For example, for a phase A to Ground fault, the values 

of A, B, C and G would be +1, -1, -1 and +1 respectively.  

 Simulated data set described earlier is used as input to train the decision trees and tested on 

the real dataset. Each of four decisions have two target classes (binary). Decision Trees 

corresponding to each phase are used to predict the involvement of each phase in the fault. For 

example, DT-Phase A is a decision tree for phase A predicts +1 if phase A is involved in the fault 

and -1 if it’s not. The result is interpreted as combination of prediction of 1 bit from 4 Trees. The 

Target space for the fault classification is ~212.  

Note that in this architecture, trees are assumed to be independent of each other, meaning 

prediction of one tree is an independent event. This may not hold true as Short Circuit faults are a 

combination of any two phases. 

3.4.3 Fault Location Identification 

 Once the fault type is classified using the decision tree classifiers, the next step is to identify 

the line where the fault has occurred. In case of two terminal transmission line, since the system 

studied has just a single line, we skip this step and do the wave-distance method to get the fault 

location distance directly. For Three-Terminal (TEED) Circuits, the branch with the fault first 

needs to be identified. Figure 19 shows the Fault Location Identification process for TEED 
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Circuits. 

 

Figure 19: Fault Location Identification Process for Three-Terminal Circuits 

 The fault location identification process mainly consists of two Decision Tree models 

which predict whether the fault occurred was in line A-Tap or B-Tap.  First Decision Tree, DT1, 

predicts +1 if the fault has occurred on line A-Tap and value -1 if not. Second Decision Tree, DT2, 

makes decision for the line B-Tap. If both the trees have predicted the value of -1, then the fault 

has occurred in line C-tap. The simulated data is used to train the Decision Tree models. Max-

depth parameter has been used to restrict the tree from over-fitting the training data. In case of a 

complex system with N lines, N-1 Decision Trees would be used to make predictions.  

 The fault location for the two terminal circuits do not require previous step as they have 

only one line and therefore fault distance can be calculated as described below. 

 Once the line is identified, the fault location equations in [52] is used to calculate the fault 

distance. The aerial mode voltages are obtained by,  

𝑆𝑚𝑜𝑑𝑒 = 𝑇 𝑆𝑝ℎ𝑎𝑠𝑒 

where, 𝑆𝑚𝑜𝑑𝑒 and 𝑆𝑝ℎ𝑎𝑠𝑒 are the modal and phase signals (voltages) vectors respectively, and T is 

Clarke’s constant. All transmission line models are assumed to be fully transposed, and therefore 

the well-known Clarke's constant and real transformation matrix given by: 

𝑇 =  
1

3
[
1 1 1
2 −1 −1

1 √3 −√3

] 
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is used. Clarke's transformation is real and can be used with any transposed line. If the studied line 

is untransposed, then an eigenvector-based transformation matrix, which is frequency dependent, 

will have to be used. This matrix should be computed at a frequency equal or close to the frequency 

of the initial fault transients. 

 If the fault is in A-Tap or B-Tap, fault distance from Tap point is calculated using: 

𝑆 = 𝐿𝐴𝑇 −
𝑣𝑙𝑖𝑛𝑒 ∆𝑡

2
 

  Where LAT - length of the line A-Tap. LBT for line B-Tap 

  𝑣𝑙𝑖𝑛𝑒  - velocity of the traveling wave in mi/s = ~ speed of light in aerial mode [57] 

𝑣𝑙𝑖𝑛𝑒 = 1.85 ∗ 105 𝑚𝑖/𝑠 

  ∆𝑡 - is the time difference between the first and second peaks of DWT coefficients 

squared of aerial mode voltages at Terminal A or B respectively. [Clarks transformation]. DWT 

gives the higher frequency transients generated by the fault. 

 For fault in C-Tap, the fault distance is calculated using: 

𝑆 = 𝐿𝐴𝑇 +
𝑣𝑙𝑖𝑛𝑒 ∆𝑡

2
 

 Where 𝐿𝐴𝑇 - length of the line A-Tap.  

 𝑣𝑙𝑖𝑛𝑒 - velocity of the traveling wave in mi/s  = ~ speed of light in aerial mode [57] 

     𝑣𝑙𝑖𝑛𝑒 = 1.85 ∗  105 𝑚𝑖/𝑠  

 ∆𝑡 - is the time difference between the first and second peaks of DWT coefficients squared 

of aerial mode voltages at Terminal A. 

 The Two-Terminal transmission model consists of a single line. Therefore, line 

identification step could be skipped as shown in Figure 20. 
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Figure 20: Fault location Identification Process in two terminal circuit 

The fault distance is calculated from terminal A (reference terminal) using:  

𝑆 =
𝑣𝑙𝑖𝑛𝑒 ∆𝑡

2
 

Where 𝑣𝑙𝑖𝑛𝑒 - velocity of the traveling wave in mi/s 

 ∆𝑡 - is the time difference between the first and second peaks of DWT coefficients squared 

of aerial mode voltages at Terminal A. 

3.5 Architecture II 

In Architecture I, the fault type classification done by using four decision tree classifiers 

that did not generalize well and couldn’t predict the test set well. Whereas, the fault location 

method used travelling wave method, which though accurate requires higher sampling rate for a 

reasonable accuracy. This section describes the fault classification and location identification 

method using a different approach. The simulated dataset for this process consists of wavelet 

energies of post-fault transient phase voltages as features described in previous sections and multi-

class categorical target labels for fault classification. Each short circuit fault (e.g. “AB”) is 

considered as one class, with total 10 classes. In this architecture as shown in Figure 21, the fault 

type classification uses multi-class SVM classifier and the fault location identification is done by 

regression model which predicts the distance of the fault. However, for three-terminal circuits the 

faulty line is identified before calculating the fault distance. 
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Figure 21: Overview of Architecture II 

Sections 3.3.1 provides a brief overview of the Support Vector Machine algorithm from 

the point of view of the current problem and 3.3.2 has a brief description of Regression model. 

3.5.1 Review on Support Vector Machine 

 The dataset for the fault classification has multiclass Label. Multiclass classification (not 

to be confused with multilabel classification) means a classification task with more than two 

classes; e.g., classify a set of images of fruits which may be oranges, apples, or pears. Multiclass 

classification assumes that each sample is assigned to one and only one label: a fruit can be either 

an apple or a pear but not both at the same time.  

 Support Vector Machine (SVM) algorithm was first introduced by Vapnik, Vladimir 

Naumovich [58].It is a supervised learning model which uses maximum margin hyperplane to 

create decision boundary between two different classes. A support vector machine constructs a 

hyperplane or set of hyperplanes in a high- or infinite-dimensional space, which can be used for 

classification, regression, or other tasks like outliers detection. Intuitively, a good separation is 

achieved by the hyperplane that has the largest distance to the nearest training-data point of any 

class (so-called functional margin), since in general the larger the margin the lower the 

generalization error of the classifier. 

There are two approaches to use SVM in multiclass mode:  

1) “One vs one” mode where a classifier is created for each pair of classes. Therefore, number 

of classifiers = n (n-1)/2 where n is number of classes. For 10 classes, it would create 450 

classifiers. This method is resource consuming and slow.   

2) “One vs rest” mode creates one classifier per class. Linear SVM uses one vs the rest scheme 

https://en.wikipedia.org/wiki/Hyperplane
https://en.wikipedia.org/wiki/High-dimensional_space
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Generalization_error
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to build classifiers. This method would give 10 classifiers. This mode has been chosen to 

build fault type classifiers for this problem. 

 Linear SVM creates a maximum-margin hyperplane separating data points from two 

different classes. In case of multiclass, “one vs rest” when building a hyperplane for each class, 

other classes are considered negative class as shown in Figure 22.  

 

Figure 22: Maximum-margin hyperplane and margins for an SVM trained with samples from 

two classes. Samples on the margin are called the support vectors [59]. 

  If we are given a set of N data points form of (vector x, linear y) (x1, y1) …. (xn, yn) where 

yn is either +1 (positive class), -1 (negative class) and x is m-dimensional real vector. The goal is 

to find the “maximum-margin hyperplane” that divides group of points xi for which yi = +1 from 

the other points of xi for which yi = -1. Any hyperplane can be written as: 

𝜔⃗⃗ 𝑇 𝑥⃑ =  −𝑏 

Where 𝜔⃑⃗⃗ is a normal vector to the hyperplane. The parameter 
𝑏

||𝜔⃗⃗ ⃗⃗⃑||
determines the offset of the 

hyperplane from the origin along the normal vector 𝜔⃑⃗⃗. 

Linear classifier is then given as: 

𝑓(𝑥⃑) = 𝑠𝑖𝑔𝑛(𝜔⃗⃗ 𝑇 𝑥⃑ + 𝑏) 

3.5.2 Review on SVM Regression 

 Fault distance identification is done by Regression model. Regression analysis is used to 

estimate the dependent variable (continuous) given a set of independent variables. Since there is a 
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non-linear relation between variables, for fault location, SVR (support vector Regression) is used 

to predict the distance, which is the dependent variable and the post-fault wavelet energies are the 

independent variables. 

A version of SVM for regression was proposed by Vapnik et al. [58] .This method is called 

Support Vector Regression (SVR). The model produced by support vector classification (as 

described above) depends only on a subset of the training data, because the cost function for 

building the model does not care about training points that lie beyond the margin. Analogously, 

the model produced by SVR depends only on a subset of the training data, because the cost function 

for building the model ignores any training data close to the model prediction.  

 Training the original SVR is to: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 
1

2
 ||𝜔||2 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {
𝑦𝑖 − (𝜔, 𝑥𝑖) − 𝑏 ≤  𝜀
(𝜔, 𝑥𝑖) + 𝑏 − 𝑦𝑖 ≤ 𝜀

 

where xi is the training sample with target value yi. ε is a free parameter that serves as a threshold. 

The prediction of a given sample is (w, xi) +b. 

3.5.3 Fault Classification 

  In this section, the fault classification method for three and two terminal 

transmission models is presented. Fault type classification is performed using a single multiclass 

SVM as shown in the Figure 23. 

 

Figure 23: Fault Classification Process 

 The simulated dataset consisting of the wavelet energies of the post-fault transient phase 

voltages as features and fault type (‘AG’, ‘ABG’ …) as labels is used to train the SVM model. 

SVM works well with continuous and nonlinear data and thus proves as a good fit for the fault 

classification problem. 

https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Vladimir_N._Vapnik
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3.5.4 Fault Location Identification 

 After the fault type has been identified, the next step is to locate the fault. For Three-

Terminal (TEED) Circuits, the faulty line (branch) is identified first. Figure 24 shows the process 

of fault location identification specifically for TEED circuits. 

 

  Figure 24: Fault Location Identification Process in Three-terminal Circuits 

 Two Decision Trees DT1 and DT2 is used to predict whether the fault has occurred in A-

Tap or B-Tap respectively. When the predictions of both the trees is -1 simultaneously, then the 

fault has occurred in C-Tap line. This step is important to provide a reference point for the 

regression model as the distances and the input feature space are non-linear in nature. 

 Once the faulty-line has been identified, respective regression models are used to predict 

the fault distance. The fault distance obtained is the distance of the fault from the Tap point. The 

regression models are trained for each line of the transmission network and it remains consistent 

for all types of short circuit faults.   

 

Figure 25: Fault Location Identification process in Two-Terminal circuits 

 For Two- Terminal circuits, the simulated data is used to train the regression model as 

Shown in Figure 25. The regression model predicts the fault distance from Terminal A. Since the 

features are linearly related to the distance, Linear SVR is used for prediction of the fault distances. 

Next chapter describes the implementation of both the architectures followed by results. 
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Chapter 4: Implementation and Evaluation 

4.1 Experimental Setup  

The three terminals and two terminal networks from Dominion Energy, Virginia, USA 

Transmission network in North Eastern region was used to experiment the proposed architecture. 

The testbed contains two-terminal and three-terminal 230KV transmission lines shown below in 

Figure 26 and Figure 27 with their configuration details shown tabulated in Table 1 and Table 2 

respectively. 

 

Figure 26: Two-terminal Transmission Line Details 

 

A-B details: 

Length- 24.64 mi 

R=0.003 

X = 0.0338 

R0 = 0.0214 

X0 = 0.0887 

Table 1: Line details of two terminal Circuit 
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Figure 27: Three-terminal Transmission Lines Details 

 

A-T details: 

Length- 25.55 mi 

R=0.004 

X = 0.0277 

R0 = 0.0229 

X0 = 0.0742 

B-T details: 

Length- 25.33 mi 

R=0.0045 

X = 0.0275 

R0 = 0.0321 

X0 = 0.0867 

C-T details: 

Length- 36.91 mi 

R=0.00659 

X = 0.433 

R0 = 0.03992 

X0 = 0.12675 

Table 2: Line Details of the three-terminal transmission model 

 An evaluation framework was created used to deploy the two architectures. The both 

transmission models were emulated in Aspen One Liner [58] to collect the simulated data. Aspen 

OneLiner is a PC-based short circuit and relay coordination program. It is a productivity tool which 

is useful for simulations. In aspen one-liner, any type of fault could be simulated under different 

conditions and fault data for relay testing can be exported. All 10 types of shunt faults as mentioned 

in Table 3 were simulated at every 1%, 2%,3%....99% of each line and instantaneous post-fault 

phase voltages from each terminal was collected over one cycle. Aspen OneLiner Script was 

written to simulate and collect the data which takes about 60 seconds. 

Types of Shunt faults Fault Type 

  AG (phase A to Ground) 
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Line to ground faults  BG (phase B to Ground) 

 CG (phase C to Ground) 

 

Double Line to ground 

faults 

ABG (phase A-phase B to Ground) 

BCG (phase B-phase C to Ground) 

ACG (phase A- phase C to Ground) 

Three Line to ground faults ABCG (phase A- phase B-phase C to Ground) 

 

Line to Line faults 

AB (phase A to phase B) 

BC (phase B to phase C) 

AC (phase A to phase C) 

Table 3 : Types of Shunt Faults 

Python was used in the framework for data preparing which consists of computing wavelet 

energies for the transient post fault phase voltages collected, normalization and then assigning 

target classes to each sample. The simulated data was used to train and validate the models. Real 

fault data were collected from Digital Fault Recorders placed at the terminal of the Dominion 

Energy’s transmission line under study. The test set consists of real fault data which is independent 

of the training dataset (simulated) and used only to assess the performance (i.e. generalization) of 

a fully specified classifier. For three terminal line configuration, the test set consists of 2 samples 

(two faults) whereas two terminal test set consists of one sample (one fault). 

 Classifiers were built with scikit-learn: machine learning library in Python [60]. Training 

and testing time for the classifiers were within few microseconds/milliseconds. The experiment 

was carried on a machine with 8GB RAM, intel i5 processor and 1TB memory. 

4.2 Methods to Evaluate the model 

 This section briefly describes various metrics used in evaluating the machine learning 

models. From the training dataset presented to the algorithm, it tries to tweak its internal 

parameters to better understand the data. If the model is over trained meaning the model tries to 

mimic the exact behavior of the training data, then it will be able to identify all the relevant 

https://en.wikipedia.org/wiki/Independence_(probability_theory)
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information in the training data but will fail miserably when presented with the new data which is 

independent of the training set. Then it is said that the model is not generalizing well or that it is 

overfitting the training data. Below are few metrics which help in estimating the generalization 

capabilities of a given model: 

1) Cross validation: One of the model validation techniques for assessing how the results of 

a statistical analysis will generalize to an independent data set. It is mainly used in a 

supervised setting. The goal of cross-validation is to test the model’s ability to predict new 

data that were not used in estimating it, to flag problems like overfitting.  

To evaluate the models of the proposed model k-fold cross validation is used where 

k = 5. It divides the complete dataset into 5 sets, then trains model on 4 sets and evaluates 

performance on the remaining set. This is repeated 5 times and the 5 results can then be 

averaged to produce a single estimation which is used to present the result. 

2) Absolute Error (AE): This measure is used to evaluate regression models. It is the 

magnitude of the difference between the exact value and the approximation. If 𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 is 

a value of single prediction generated from a sample on all variables, and 𝑌𝑡𝑟𝑢𝑒 is the 

observed value of the variable being predicted, then AE of the predictor is computed as: 

𝐴𝐸 = ||𝑌𝑡𝑟𝑢𝑒 − 𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑|| 

4.3 Architecture I Results 

In this section, testing is carried out for the fault classification and location identification 

process for architecture I. The evaluation results presented are the accuracy measures for both two 

and three terminal transmission models. 

4.3.1 Two Terminal Transmission Line Configuration 

 In Architecture I, Fault Classification process for two terminal circuits have four decision 

trees which predict the involvement of three phases and ground in a fault respectively. Table 4 

shows the fault classification results for two terminals. All the numbers in the table represent 

accuracy of the model. DT- A is the decision tree for phase A. Similarly, DT-B, DT-C and DT-G 

is classification trees for B, C and Ground phase. These columns present accuracy measure for the 
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individual tree. Since the result at the end is combination of 4-bits predicted by 4 trees, it is crucial 

to study the accuracy of this combined result as well. Column 4/4-bit accuracy represents the 

accuracy of correct prediction where a prediction is considered correct only if all the four bits 

predicted by each of the four decision trees match the actual value. All the incorrect predictions 

are discarded in calculation of accuracy. This metrics also gives the threshold value or tolerance 

for a prediction to be considered as incorrect. Similarly, ¾ bit accuracy is the measure of accuracy 

when a prediction is considered correct only if at least 3 bits out of 4 are correct. 

Metrics DT-A DT-B DT-C DT-G 4/4-bit 

accuracy 

3/4-bit 

accuracy  

Baseline 90% 90% 90% 90% 90% 100% 

5-fold cross validation on 

100% training set 

87.22% 87.22% 87.23% 89.99% 90% 100% 

5-fold cross validation on 

80% training set 

100% 94.23% 100% 100% 94.56% 100% 

20% validation set 100% 94% 100% 100% 100% 100% 

Test set 100% 100% 100% 100% 100% 100% 

 

Table 4: Architecture I Two-terminal Fault Classification Results 

 Baseline is the minimum accuracy a model should achieve for it to be considered good. It 

gives a measure which can be used to compare the model’s performance. In this case, baseline is 

90% meaning that the currently used technology to classify and locate faults gives right outcome 

90% of the times. 5-fold cross validation on 100% of the training data gives us a measure of 

generalization of the model over whole training set. To test the model, the training set is divided 

into 80% training set and 20% validation set. The results of fault classifiers show that they perform 

well on validation set. 
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 Actual value Predicted value 

Classifiers Phase A Phase B Phase C Phase G Phase A Phase B Phase C Phase G 

Fault 1 -1 -1 +1 +1 -1 -1 +1 +1 

Table 5: Architecture I Two-terminal Fault Classification Model Prediction Results 

  Lastly, the models are tested on the real-dataset and all the faults are predicted exactly 

right. Predictions from the classifying trees are shown in Table 5. We see that all the predicted 

values from the classifying trees match the actual or True value. 

 The real fault data has been collected from Digital Fault Recorders (DFR) placed at the 

terminals and for two-terminal transmission line the DFR’s used have a sampling frequency of 5.7 

KHz. Therefore, the time between the samples of the time series fault data collected from DFR is 

given by: 

𝑇𝑠 = 
1

𝐹𝑠
= 

1

5700
= 0.175 𝑚𝑠 

 Discrete wavelet transform is applied at scale 1 to the fault data to obtain the wavelet 

coefficients. The approximation coefficients and Detailed coefficients have half the samples that 

of original signal.  Approximation coefficients are the high frequency components of the signal, 

whereas detail coefficients capture the low frequency components of the signal. The difference 

between the arrival times of waveform reflections at one terminal is used to compute fault distance. 

The transmission model under study is 24.64 mi long and it takes about 0.133µs for the voltage 

signal in aerial mode to travel from one end of the line to other. Therefore, to capture the reflection 

waves the sampling time should be less than 0.133 µs or sampling frequency should be greater 

than at least 7.5MHz. Since the frequency of the DFR is much lower, the wavelet coefficients have 

overlapping peaks which makes it impossible to calculate the time difference between peaks which 

is required to calculate the ∆𝑡 to be imputed in the below equation to calculate the distance of the fault. 

𝑆 =
𝑣𝑙𝑖𝑛𝑒 ∆𝑡

2
 

 Therefore, travelling wave method could only be successfully applied if sampling time is 

much lower than the time taken for voltage signal in aerial mode to travel the through the total 

length of the line. That is, sampling frequency of the DFR’s should be higher for shorter lines or 
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transmission line length should be greater to use DFR’s with lower sampling frequency. Secondly, 

while calculating the time difference between the two arrival peaks manually, since these 

quantities are in µs, there might be human precision error which could lead to difference in the 

final distance calculation. 

4.3.2 Three Terminal Transmission Line Configuration 

 For three terminal transmission line configuration, the fault classification has same process 

as that of two terminals with four decision trees, but the fault location process has two additional 

decision trees DT1 and DT2 to identify the faulty line. Table 6 shows the resulting accuracies of 

all the 6 decision trees for various metrics. All the numbers in the table represent accuracy of the 

model. Accuracy here means percentage of correct prediction over total prediction. 

Metrics DT-A DT-B DT-C DT-G DT1 DT2 6/6 bits 

accuracy 

5/6 bits 

accuracy 

Baseline 80% 80% 80% 80% 80% 80% 80% 90% 

5-fold cross 

validation on 

100% training set 

98.5

% 

88.5

% 

96.77

% 

98.2

% 

91.5% 92.1% 92% 100% 

5-fold cross 

validation on 80% 

training set 

100% 94.23

% 

100% 100% 96.12

% 

95.6% 94% 100% 

validation set 20% 100% 94% 100% 100% 95.2% 90.7% 84.84% 100% 

Test set 100% 100% 100% 50% 100% 100% 50% 100% 

Table 6: Architecture I Three-terminal Fault Classification and Location Results 

 All the individual classifying trees perform better than the baseline. Column 6/6 bits 

accuracy, is the accuracy of correct prediction where a prediction is considered correct only if all 

the 6 bits predicted from the 6 decision trees classifiers is correct.  For the validation set, 

approximately 85% of the validation set was predicted correctly when 6/6-bit accuracy is 
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considered and 100% of the validation set was predicted correctly when ⅚ bit accuracy was the 

threshold. Therefore, 15% incorrect prediction were considered incorrect as one of the bits out of 

6 were predicted wrong. This is due to errors of each tree cascading for the final error. 

The test dataset consists of the real data for two faults i.e. two samples. From the table it is 

evident that the accuracy of the decision tree for phase A, B and C are 100% meaning both the 

samples in the test set is classified correctly. Whereas, decision tree for ground phase is 50%. This 

is because decision tree for ground phase predicts the second fault incorrectly as shown in Table 

7. Therefore, when we consider a strict measure of 6/6-bit accuracy, if the prediction has even one 

of the bits incorrect the prediction is considered incorrect. Therefore, since only one sample out of 

two was predicted correctly, accuracy is 50%. On the other hand, the threshold for error is 

increased in 5/6-bit accuracy, both the test samples were correctly predicted. 

 Actual value Predicted value 

Classif

iers 

DT

-A 

DT

-B 

DT

-C 

DT-G DT1 DT2 DT-A DT-B DT-C DT-G DT1 DT2 

Fault 1 +1 +1 -1 -1 -1 +1 +1 +1 -1 -1 -1 +1 

Fault 2 +1 -1 -1 +1 -1 +1 +1 +1 -1 -1 -1 +1 

  

Table 7: Architecture I Three-terminal Model Prediction Results 

 The individual bit predictions from 6 decision trees has been illustrated in Table 7. On a 

closer look its seen that the Decision Tree for Ground phase has predicted -1 instead of actual 

value +1, whereas the fault 1 is predicted correct. 

 Once the type of fault is identified, the next step is location identification. The results of 

few scenarios have been presented below. The scenario assumes that the fault type identification 

is done prior. Scenarios 1 to 3 are simulated faults data to calculate the fault distance. 

Scenario 1: The first scenario assumes the fault is phase A-to-Ground that has occurred in line 

A-Tap at 12.775 miles from Bus A. 
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The fault type was accurately classified since DT-A (corresponding to phase A) and DT-G 

(corresponding to ground phase) had predicted +1 while another DT’s predicted -1. The two faulty-

line identifiers DT1 and DT2 predicted +1 and -1 respectively indicating that the fault is the line 

A-Tap. 

Discrete wavelet transform is applied to aerial mode voltage at Bus A and the WTC2 are 

plotted with respect to time shown in Figure 28. 

 

Figure 28: WTC2 vs time at Terminal A for fault on line A-Tap 

  

∆𝑡 (time difference between first and second peaks) = 59 - 45 = 14 x10-5 s 

Fault location can be calculated using: 

𝑆 =
(𝑣𝑖

𝑙𝑖𝑛𝑒 ∗  ∆𝑡)

2
 

                                          =
(1.85∗105)(14∗ 10−5 )

2
 = 12.95 mi 

 

Absolute Error in calculation is ~ 0.175 mi 

 

Scenario 2: The second scenario assumes the fault is line to line i.e. phase B-to-phase C that has 

occurred in line B-Tap at 2.533 miles from Tap point towards bus B. 

 The fault type was accurately classified since DT-B (corresponding to phase B) and DT-C 

(corresponding to phase C) had predicted +1 while another DT’s predicted -1. The two faulty-line 

identifiers DT1 and DT2 predicted -1 and +1 respectively indicating that the fault is the line B-

Tap. 
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Discrete wavelet transform is applied to aerial mode voltage at Bus B and the WTC2 are 

plotted with respect to time shown in Figure 29: WTC2 vs time at line B-Tap for fault on line B-

Tap. 

 

Figure 29: WTC2 vs time at line B-Tap for fault on line B-Tap 

∆𝑡 (time difference between first and second peaks) = 16 -13 = 3 x10-5s 

Fault location can be calculated using: 

𝑆 =
(𝑣𝑖

𝑙𝑖𝑛𝑒 ∗  ∆𝑡)

2
 

             =
(1.85∗105)(3∗ 10−5 )

2
   = 2.775 mi 

 

Absolute Error in calculation is ~ 0.2 mi 

 

 

Scenario 3: The third scenario assumes the fault is Three-phase-to-ground that has occurred in 

line C-Tap at 34.55 miles from bus A. 

 The fault type was accurately classified since all the four DT’s predicted +1. The two 

faulty-line identifiers DT1 and DT2 predicted -1 and -1 respectively indicating that the fault is the 

line C-Tap. 

Discrete wavelet transform is applied to aerial mode voltage at Bus A and the WTC2 are 

plotted with respect to time shown in Figure 30. 
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Figure 30: WTC2 vs time at terminal A for fault on line C-Tap 

∆𝑡 (time difference between first and second peaks) = 73-62 = 10 x10-5 s 

Fault location can be calculated using: 

𝑆 = 𝐿𝐴𝑇 +
𝑣𝑙𝑖𝑛𝑒 ∆𝑡

2
 

       = 25.33+ (0.51x106) x (10x10-5)/2 = 34.58 mi from A 

 

Absolute Error in calculation is ~ 0.03 mi 

 The error for faults on all the three terminal is within 1 mile which is within the acceptable 

range of ± 1% to ± 2% of the line length. To calculate the fault distance of the real fault (test data), 

the data from the DFR’s at terminal A (4.8 KHz), terminal B (5.7KHz) and terminal C (9.6 KHz) 

is used. As we have concluded in previous section, the sampling frequency of DFR’s need to be 

higher to capture two peaks in the wavelet transform, which is the case in three-terminal as well. 

This makes it impossible to locate the fault with travelling wave method in these real-world 

scenarios. 

 In architecture I, for three terminal line configuration, the test samples were not classified 

correctly and therefore had lower accuracy. Judging by its performance based on current results 

the accuracy might or might not improve when tested on more bigger set. Furthermore, the 

travelling wave-based method needs higher sampling frequency and has an associated human 

precision error which make it more challenging for it to be applied in real world. Therefore, 

architecture II results are investigated in Section 4.4 for fault classification and location 
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identification on transmission line which uses multiclass support vector machine for predicting 

fault type and regression models for calculating the distance. 

4.4 Architecture II Results 

 In this section, a different technique of fault type classification and location identification 

process is presented. The method is evaluated on two-terminal as well three-terminal transmission 

model. Following Section 4.4.1 presents the results for Two Terminal and Section 4.4.2 for Three 

Terminal model. 

4.4.1 Two Terminal Transmission Line Configuration 

   In architecture II, the fault classification process consists of one Support Vector 

Machine (SVM) which could predict all 10 types (10 classes) of Short Circuit faults. Table 8 

presents the accuracy results of fault classification for two terminal transmission lines. All the 

numbers in the table represent accuracy of the model. Accuracy here means percentage of correct 

prediction over total prediction. 

Metrics Fault Type 

Baseline 90% 

5-fold cross validation 80% 99.5% 

5-fold cross validation 100% 95.37% 

20% validation set 100% 

Test set 100% 

Table 8: Architecture II Two-terminal Fault Classification Results 

 The accuracies of the SVM based on various metrics is evaluated. Baseline prediction is 

90% meaning the model should have at least 90% accuracy to have an acceptable result. Model 

validation technique of 5-fold cross validation on the entire training set had ~95% accuracy 

meaning on an average 95% of the samples were always classified correctly. Validation set is 
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predicted with 100% accuracy. Test set consisting of real fault is correctly classified as shown in 

Table 9. 

Faults Actual Label Predicted Label 

Fault 1 CG CG 

Table 9: Architecture II Two-terminal Fault Classification Model Prediction Results 

 Once the fault type is identified, the next step is to locate the fault. In architecture II, the 

fault distance is predicted by the regression model. Table 10 shows the prediction results of 

regression model.  

Faults Expected distance from Terminal C Model Prediction  Absolute Error 

Fault 1 7.42 mi 7.5 mi ~0.08mi 

Table 10: Architecture II Two-terminal Fault Location Results  

 The model has predicted 7.5 miles for a fault with expected distance of 7.42 mi from Bus 

C. The absolute error for the prediction is about ~0.08 mi which is well within acceptable ±1% of 

the line length (±0.2464 mi). 

 

Figure 31: Actual vs Predicted distance plot for phase C-to-Ground fault (4 samples) 

 The test data (DFR fault data at the terminal) for the two-terminal transmission is available 

for only single fault which provides very less evidence to believe that the model has achieved good 
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generalization. To validate the correctness of the model prediction, 4 samples were picked 

randomly from the simulated data which constituted of the validation set. The model was trained 

on rest of the samples. Figure 31 shows the actual distance vs the predicted distance plot for phase 

C- to-Ground fault. From the graph, its seen that the error in the prediction of the fault distances 

is well below the acceptable absolute error of ±1% to ±2% of the line length.  

 Absolute Error is given by ≔‖𝑡𝑟𝑢𝑒 𝑓𝑎𝑢𝑙𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑓𝑎𝑢𝑙𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒‖ 

 

Figure 32: Actual vs predicted fault distances for phase C-to-Ground fault 

 To validate the robustness of the model, the training data was randomly sampled without 

replacement into 20% validation set and remaining 80% as training set. Figure 32 shows the graph 

of prediction vs actual true fault distance value.  From the graph its seen that, the regression model 

has predicted fault distances with error less than ±1% of the length of the line (~ ±2.5 mile) which 

is a better than precision of other conventional methods. 

4.4.2 Three Terminal Transmission Line Configuration 

  In architecture II, the fault location process is same for two and three terminal 

transmission models. Table 11 illustrates the Fault classification results for three terminal circuit. 

All the numbers in the table represent accuracy of the model. Accuracy here means percentage of 

correct prediction over total prediction. 
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Metrics Fault-Type 

Baseline 90% 

5-fold cross validation 100% 99.2% 

5-fold cross validation 80% 89.5% 

20% validation set 100% 

Test set 100% 

Table 11: Architecture II Three-terminal Fault Classification Results 

 The model is validated with complete training set by 5-fold cross validation which has an 

accuracy of 89.5% very close to the baseline prediction. Model predictions are tested on validation 

set which is 20% of the samples in the training set.  Finally, the model is tested on the test dataset 

which is independent of the training dataset achieving 100% accuracy on the test set meaning all 

the samples in the test set were predicted correctly. Table 12 shows the predicted value by the 

model.  

Faults Actual Label Predicted Label 

Fault 1 AB AB 

Fault 2 AG AG 

Table 12: Architecture II Three-terminal Fault Classification Model Prediction Results 

Faults Results from DT1 and 

DT2 

Expected distance from 

TAP Point 

Predicted distance 

from TAP Point 

Absolute 

Error 

Fault 1 BT 21.46 mi 20.77 mi ~0.69 mi 

Fault 2 BT 14.308 mi 14.72 mi ~0.4 mi 

Table 13: Architecture II Three-terminal Fault Location Results 
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 Once the fault type is identified, the faulty-line identification is done by the two decision 

trees. Table 13 shows the fault location identification results. The first column has the results from 

two decision trees, DT1 and DT2. For both the faults in the test dataset, the output of DT1 and 

DT2 were -1 and +1 respectively indicating that the fault occurred is in line B-Tap. Then the 

respective regression models are used to predict the fault distance from the tap point. Column 2 

and 3 give the expected and predicted distances. We observe that the error is less than 1 mile in 

both the cases, which is well within the acceptable error range of ±1 to ±2% of the length of the 

line. 

 

Figure 33: AG Fault on B-Tap line 

For the three-terminal model, the test data (DFR fault data at the terminal) has only two 

samples of the real-world faults. Let’s take a scenario where phase A-to-ground has occurred on 

line B-Tap. To validate the correctness of the model prediction,4 samples were picked randomly 

from the simulated data which constituted of the validation set which have extreme ranges to test 

the corner cases. The model was trained on rest of the samples. Figure 33 shows the actual distance 

vs the predicted distance plot for phase A- to-Ground fault. From the graph, its seen that the error 

in the prediction of the fault distances is well below the acceptable absolute error of ±1% to ±2% 

of the line length where Absolute Error is given by: 

𝑒𝑟𝑟 =  ‖𝑡𝑟𝑢𝑒 𝑓𝑎𝑢𝑙𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑓𝑎𝑢𝑙𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒‖ 

 Figure 34 shows the comparison of true and predicted value on 20% validation set formed 

by randomly sampling the training data without replacements. Even for three-terminal circuit, 

which is complex, the regression model predictions are well within the acceptable absolute error. 
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Figure 34: Actual vs predicted fault distances for phase A-to-Ground fault on validation set 

4.5 No Fault Scenario 

 Under no fault scenario the power system remains at a steady state with specified current 

and voltage values. Therefore, the fault classification and location method could be deployed if 

the voltage or current values differ from the steady state values. 

4.6 High Level Comparison of the Two Architectures 

 Both the architectures presented in this thesis implement machine learning algorithm to 

predict the fault type and distance on the transmission line and they can be applied to any 

configuration of the transmission line. However, the design criteria and the choice of algorithm 

vary between the architectures. The differences have been outlined below: 

• Each machine learning model has some amount of prediction error associated with 

it. In architecture I, the fault classification approach uses four decision tree 

classifiers to predict the fault type. Unlike architecture I, in architecture II uses one 

multiclass- SVM classifier to predict the fault type. The prediction error associated 

with the model in architecture II is lower than that of architecture I. 

• For fault location identification, architecture I uses traveling wave-based method, 

though accurate it requires higher sampling frequency and synchronized 

measurements at the terminal. Additionally, the travelling wave-based method has 

human error associated with it while calculating the difference between the arrival 

time of the peaks. Currently, there are no software’s that can automate this process.  
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Whereas architecture II, uses regression model to calculate the fault distance which 

provides faster and reasonable accurate results. 
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Chapter 5: Conclusion 

5.1 Summary and Findings 

 Transmission lines safeguard against exposed fault is the most critical task in the protection 

of power system. The purpose of a protective relaying is to identify the abnormal signals 

representing faults on a power transmission system. So, fault classification and location is 

necessary for reliable and high speed protective relaying. 

 The research work presented in this thesis provides two promising architectures for fault 

classification and location on transmission line using machine learning techniques. The first 

architecture deploys four decision tree models one for each phase for fault identification in each 

phase. “Divide and conquer” strategy has been used to classify faults on each phase with greatest 

accuracy. Each tree classifier has two possible target classes [-1, +1]. Class of ‘+1’ indicates that 

a phase is involved in the fault. Once the type of fault is known, travelling wave method is used to 

locate the fault on the transmission line. The wavelet transformation coefficients (WTCs) of the 

post fault transient phase voltage at a terminal is computed. The time difference between first two 

peaks of WTC2 is used to calculate the distance from a reference terminal. While travelling wave-

based methods have few demerits, they are very reliable and can give accurate results. The method 

was tested on real data for both two and three terminal transmission models. The fault classification 

did better than baseline accuracy and the fault distance error calculated was within ±1% to ±2% of 

the line length. 

  Decision trees give better prediction with more data. Then we come to a question of how 

much training data is sufficient for getting a good prediction.  SVM is an attractive classifier when 

classification process needs to be made useful and economical with smaller number of samples. 

SVM models have similar functional form to neural networks and radial basis functions, both 

popular data mining techniques. However, neither of these algorithms has the well-founded 

theoretical approach to regularization that forms the basis of SVM. The quality of generalization 

and ease of training of SVM is far beyond the capacities of these more traditional methods which 

makes it a better pick than decision trees.  

In the second architecture, multi-class support vector machine model is used to classify 10 
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types of short circuit faults. When tested SVM fault classification model on real data, it 

outperformed decision trees with 100% accuracy on two and three terminal transmission lines. For 

fault location, Support Vector Regression was used for three terminal transmission line and Linear 

Regression for two terminal transmission lines. The error of the fault distance was same as the 

travelling wave-based method used in first architecture. However, regression models don’t require 

any manual calculations or measurements. 

 Since both the architecture do not use current signals, the presented approach is immune 

against current-transformer saturation and its related errors. Additionally, the presented method 

uses simulated data for training which means it can be deployed even when a new transmission 

line is added to the transmission network which does not have any historical records of fault. The 

presented architectures in this thesis are tested and validated against real data of faults. In this 

thesis, the test set sizes for both two and three terminal line configuration had only three samples 

in total. Therefore, the method needs to be tested more robustly. Overall, preliminary findings are 

promising but more data is needed to gain confidences in the reliability of the methods.  

5.2 Challenges 

 In the initial stages, collecting the simulated data had two stages. First, the instantaneous 

post fault transients simulated in ASPEN were collected in .CFG as ASPEN only had one format 

option to save the data. After collecting the simulated data, the CFG was saved to a CSV file with 

help of tool called WAVEWIN (use to analyze the signals). This process creating each file 

manually was very tedious even to have a reasonable number of samples. To overcome this, a 

ASPEN script was written which could write the instantaneous values directly to the CSV file 

which reduced the data preparation time to 30 secs which otherwise would take several hours 

manually.  

 Secondly, since transmission line faults are rare compared to the faults on distribution lines, 

there was availability of limited real data to test the presented architectures. However, the 

preliminary results show strong potential in the architectures. 
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5.3 Future Work 

 In this thesis, problem of a having an adaptive, effective and resilient method for fault 

classification and location is addressed. There are several lines of research arising from this work 

which could be pursued as mentioned below: 

● Since the test set considered in the thesis had just three samples in total (small size), the 

architectures need to be tested and evaluated with more test samples robustly in future. 

Additionally, architecture I had low accuracy of about 50% on the test set which may be 

due to low sample size. Therefore, with more test set samples, this result needs to be re-

evaluated. However, the preliminary results are promising to lead to further investigation. 

● Four Terminal transmission lines aren’t very far from implementing. The proposed method 

may be possible to be extended N-terminal transmission line in the future work which 

would give different insights. 

● The described method assumes single fault on the transmission line. However, chances of 

multiple faults, double circuit faults etc. though are low cannot be ignored from protection 

perspective.  

● “Evolving Faults” are faults beginning in one phase and spreading to another phase after a 

few cycles. Thus, evolving fault consists of two faults: primary fault and secondary fault 

according to their fault inception times. Extending proposed method to classify and locate 

these faults would be an interesting topic for future work. 

● The method proposed could be used for real-time monitoring of grid using spark-python. 

Once the fault has occurred, an alert could be set up from the method which would give 

the fault type and distance instantly. 

● Complex fault sequence elements could be incorporated in data which will increase the 

robustness of the machine learning technique and results could be compared. 
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