3,832 research outputs found

    Causative factors of construction and demolition waste generation in Iraq Construction Industry

    Get PDF
    The construction industry has hurt the environment from the waste generated during construction activities. Thus, it calls for serious measures to determine the causative factors of construction waste generated. There are limited studies on factors causing construction, and demolition (C&D) waste generation, and these limited studies only focused on the quantification of construction waste. This study took the opportunity to identify the causative factors for the C&D waste generation and also to determine the risk level of each causal factor, and the most important minimization methods to avoiding generating waste. This study was carried out based on the quantitative approach. A total of 39 factors that causes construction waste generation that has been identified from the literature review were considered which were then clustered into 4 groups. Improved questionnaire surveys by 38 construction experts (consultants, contractors and clients) during the pilot study. The actual survey was conducted with a total of 380 questionnaires, received with a response rate of 83.3%. Data analysis was performed using SPSS software. Ranking analysis using the mean score approach found the five most significant causative factors which are poor site management, poor planning, lack of experience, rework and poor controlling. The result also indicated that the majority of the identified factors having a high-risk level, in addition, the better minimization method is environmental awareness. A structural model was developed based on the 4 groups of causative factors using the Partial Least Squared-Structural Equation Modelling (PLS-SEM) technique. It was found that the model fits due to the goodness of fit (GOF โ‰ฅ 0.36= 0.658, substantial). Based on the outcome of this study, 39 factors were relevant to the generation of construction and demolition waste in Iraq. These groups of factors should be avoided during construction works to reduce the waste generated. The findings of this study are helpful to authorities and stakeholders in formulating laws and regulations. Furthermore, it provides opportunities for future researchers to conduct additional researchโ€™s on the factors that contribute to construction waste generation

    Satisfiability Logic Analysis Via Radial Basis Function Neural Network with Artificial Bee Colony Algorithm

    Get PDF
    Radial Basis Function Neural Network (RBFNN) is a variant of artificial neural network (ANN) paradigm, utilized in a plethora of fields of studies such as engineering, technology and science. 2 Satisfiability (2SAT) programming has been coined as a prominent logical rule that defines the identity of RBFNN. In this research, a swarm-based searching algorithm namely, the Artificial Bee Colony (ABC) will be introduced to facilitate the training of RBFNN. Worth mentioning that ABC is a new population-based metaheuristics algorithm inspired by the intelligent comportment of the honey bee hives. The optimization pattern in ABC was found fruitful in RBFNN since ABC reduces the complexity of the RBFNN in optimizing important parameters. The effectiveness of ABC in RBFNN has been examined in terms of various performance evaluations. Therefore, the simulation has proved that the ABC complied efficiently in tandem with the Radial Basis Neural Network with 2SAT according to various evaluations such as the Root Mean Square Error (RMSE), Sum of Squares Error (SSE), Mean Absolute Percentage Error (MAPE), and CPU Time. Overall, the experimental results have demonstrated the capability of ABC in enhancing the learning phase of RBFNN-2SAT as compared to the Genetic Algorithm (GA), Differential Evolution (DE) algorithm and Particle Swarm Optimization (PSO) algorithm

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes
    • โ€ฆ
    corecore