235 research outputs found

    Optimal power flow solution with current injection model of generalized interline power flow controller using ameliorated ant lion optimization

    Get PDF
    Optimal power flow (OPF) solutions with generalized interline power flow controller (GIPFC) devices play an imperative role in enhancing the power system’s performance. This paper used a novel ant lion optimization (ALO) algorithm which is amalgamated with Lévy flight operator, and an effectual algorithm is proposed named as, ameliorated ant lion optimization (AALO) algorithm. It is being implemented to solve single objective OPF problem with the latest flexible alternating current transmission system (FACTS) controller named as GIPFC. GIPFC can control a couple of transmission lines concurrently and it also helps to control the sending end voltage. In this paper, current injection modeling of GIPFC is being incorporated in conventional Newton-Raphson (NR) load flow to improve voltage of the buses and focuses on minimizing the considered objectives such as generation fuel cost, emissions, and total power losses by fulfilling equality, in-equality. For optimal allocation of GIPFC, a novel Lehmann-Symanzik-Zimmermann (LSZ) approach is considered. The proposed algorithm is validated on single benchmark test functions such as Sphere, Rastrigin function then the proposed algorithm with GIPFC has been testified on standard IEEE-30 bus system

    SLIME MOULD ALGORITHM FOR PRACTICAL OPTIMAL POWER FLOW SOLUTIONS INCORPORATING STOCHASTIC WIND POWER AND STATIC VAR COMPENSATOR DEVICE

    Get PDF
    Purpose. This paper proposes the application procedure of a new metaheuristic technique in a practical electrical power system to solve optimal power flow problems, this technique namely the slime mould algorithm (SMA) which is inspired by the swarming behavior and morphology of slime mould in nature. This study aims to test and verify the effectiveness of the proposed algorithm to get good solutions for optimal power flow problems by incorporating stochastic wind power generation and static VAR compensators devices. In this context, different cases are considered in order to minimize the total generation cost, reduction of active power losses as well as improving voltage profile. Methodology. The objective function of our problem is considered to be the minimum the total costs of conventional power generation and stochastic wind power generation with satisfying the power system constraints. The stochastic wind power function considers the penalty cost due to the underestimation and the reserve cost due to the overestimation of available wind power. In this work, the function of Weibull probability density is used to model and characterize the distributions of wind speed. Practical value. The proposed algorithm was examined on the IEEE-30 bus system and a large Algerian electrical test system with 114 buses. In the cases with the objective is to minimize the conventional power generation, the achieved results in both of the testing power systems showed that the slime mould algorithm performs better than other existing optimization techniques. Additionally, the achieved results with incorporating the wind power and static VAR compensator devices illustrate the effectiveness and performances of the proposed algorithm compared to the ant lion optimizer algorithm in terms of convergence to the global optimal solution.Мета. У статті пропонується процедура застосування нового метаеврістіческого методу в реальній електроенергетичній системі для розв’язання задач оптимального потоку енергії, а саме алгоритму слизової цвілі, який заснований на поведінці рою і морфології слизової цвілі в природі. Дане дослідження спрямоване на тестування і перевірку ефективності запропонованого алгоритму для отримання хороших рішень для проблем оптимального потоку потужності шляхом включення пристроїв стохастичною вітрової генерації і статичних компенсаторів VAR. У зв'язку з цим, розглядаються різні випадки, щоб мінімізувати загальну вартість генерації, знизити втрати активної потужності і поліпшити профіль напруги. Методологія. В якості цільової функції завдання розглядається мінімальна сукупна вартість традиційної генерації електроенергії і стохастичної вітрової генерації при задоволенні обмежень енергосистеми. Стохастична функція енергії вітру враховує величини штрафів через недооцінку і резервні витрати через завищену оцінку доступної вітрової енергії. У даній роботі функція щільності ймовірності Вейбулла використовується для моделювання і характеристики розподілів швидкості вітру. Практична цінність. Запропонований алгоритм був перевірений на системі шин IEEE-30 і великий алжирської тестовій енергосистемі зі 114 шинами. У випадках, коли мета полягає в тому, щоб звести до мінімуму традиційне вироблення електроенергії, досягнуті результати в обох тестових енергосистемах показали, що алгоритм слизової цвілі функціонує краще, ніж інші існуючі методи оптимізації. Крім того, досягнуті результати з використанням вітрової енергії і статичного компенсатора VAR ілюструють ефективність і продуктивність запропонованого алгоритму в порівнянні з алгоритмом оптимізатора мурашиних левів з точки зору збіжності до глобального оптимального рішення

    Adopting Scenario-Based approach to solve optimal reactive power Dispatch problem with integration of wind and solar energy using improved Marine predator algorithm

    Get PDF
    The penetration of renewable energy resources into electric power networks has been increased considerably to reduce the dependence of conventional energy resources, reducing the generation cost and greenhouse emissions. The wind and photovoltaic (PV) based systems are the most applied technologies in electrical systems compared to other technologies of renewable energy resources. However, there are some complications and challenges to incorporating these resources due to their stochastic nature, intermittency, and variability of output powers. Therefore, solving the optimal reactive power dispatch (ORPD) problem with considering the uncertainties of renewable energy resources is a challenging task. Application of the Marine Predators Algorithm (MPA) for solving complex multimodal and non-linear problems such as ORPD under system uncertainties may cause entrapment into local optima and suffer from stagnation. The aim of this paper is to solve the ORPD problem under deterministic and probabilistic states of the system using an improved marine predator algorithm (IMPA). The IMPA is based on enhancing the exploitation phase of the conventional MPA. The proposed enhancement is based on updating the locations of the populations in spiral orientation around the sorted populations in the first iteration process, while in the final stage, the locations of the populations are updated their locations in adaptive steps closed to the best population only. The scenario-based approach is utilized for uncertainties representation where a set of scenarios are generated with the combination of uncertainties the load demands and power of the renewable resources. The proposed algorithm is validated and tested on the IEEE 30-bus system as well as the captured results are compared with those outcomes from the state-of-the-art algorithms. A computational study shows the superiority of the proposed algorithm over the other reported algorithms

    Optimal power flow incorporating facts devices and stochastic wind power generation using krill herd algorithm

    Get PDF
    © 2020 by the authors. This paper deals with investigating the Optimal Power Flow (OPF) solution of power systems considering Flexible AC Transmission Systems (FACTS) devices and wind power generation under uncertainty. The Krill Herd Algorithm (KHA), as a new meta‐heuristic approach, is employed to cope with the OPF problem of power systems, incorporating FACTS devices and stochastic wind power generation. The wind power uncertainty is included in the optimization problem using Weibull probability density function modeling to determine the optimal values of decision variables. Various objective functions, including minimization of fuel cost, active power losses across transmission lines, emission, and Combined Economic and Environmental Costs (CEEC), are separately formulated to solve the OPF considering FACTS devices and stochastic wind power generation. The effectiveness of the KHA approach is investigated on modified IEEE‐30 bus and IEEE‐57 bus test systems and compared with other conventional methods available in the literature

    Particle Swarm Optimization: Basic Concepts, Variants and Applications in Power Systems

    Get PDF
    Many areas in power systems require solving one or more nonlinear optimization problems. While analytical methods might suffer from slow convergence and the curse of dimensionality, heuristics-based swarm intelligence can be an efficient alternative. Particle swarm optimization (PSO), part of the swarm intelligence family, is known to effectively solve large-scale nonlinear optimization problems. This paper presents a detailed overview of the basic concepts of PSO and its variants. Also, it provides a comprehensive survey on the power system applications that have benefited from the powerful nature of PSO as an optimization technique. For each application, technical details that are required for applying PSO, such as its type, particle formulation (solution representation), and the most efficient fitness functions are also discussed

    Optimal power flow solution with current injection model of generalized interline power flow controller using ameliorated ant lion optimization

    Get PDF
    Optimal power flow (OPF) solutions with generalized interline power flow controller (GIPFC) devices play an imperative role in enhancing the power system's performance. This paper used a novel ant lion optimization (ALO) algorithm which is amalgamated with Lévy flight operator, and an effectual algorithm is proposed named as, ameliorated ant lion optimization (AALO) algorithm. It is being implemented to solve single objective OPF problem with the latest flexible alternating current transmission system (FACTS) controller named as GIPFC. GIPFC can control a couple of transmission lines concurrently and it also helps to control the sending end voltage. In this paper, current injection modeling of GIPFC is being incorporated in conventional Newton-Raphson (NR) load flow to improve voltage of the buses and focuses on minimizing the considered objectives such as generation fuel cost, emissions, and total power losses by fulfilling equality, in-equality. For optimal allocation of GIPFC, a novel Lehmann-Symanzik-Zimmermann (LSZ) approach is considered. The proposed algorithm is validated on single benchmark test functions such as Sphere, Rastrigin function then the proposed algorithm with GIPFC has been testified on standard IEEE-30 bus system
    corecore