
Technological University Dublin Technological University Dublin 

ARROW@TU Dublin ARROW@TU Dublin 

Articles School of Computer Sciences 

2022 

Adopting Scenario-Based approach to solve optimal reactive Adopting Scenario-Based approach to solve optimal reactive 

power Dispatch problem with integration of wind and solar energy power Dispatch problem with integration of wind and solar energy 

using improved Marine predator algorithm using improved Marine predator algorithm 

Noor Habib Khan 

Raheela Jamal 

Mohamed Ebeed 

See next page for additional authors 

Follow this and additional works at: https://arrow.tudublin.ie/scschcomart 

 Part of the Computer Sciences Commons 

This Article is brought to you for free and open access by 
the School of Computer Sciences at ARROW@TU Dublin. 
It has been accepted for inclusion in Articles by an 
authorized administrator of ARROW@TU Dublin. For more 
information, please contact arrow.admin@tudublin.ie, 
aisling.coyne@tudublin.ie, gerard.connolly@tudublin.ie. 

This work is licensed under a Creative Commons 
Attribution-Noncommercial-Share Alike 4.0 License 
Funder: European Union; Enterprise Ireland; National 
Research and Development Agency of Chile (ANID) 

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschcomart
https://arrow.tudublin.ie/scschcom
https://arrow.tudublin.ie/scschcomart?utm_source=arrow.tudublin.ie%2Fscschcomart%2F163&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=arrow.tudublin.ie%2Fscschcomart%2F163&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20gerard.connolly@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20gerard.connolly@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/


Authors Authors 
Noor Habib Khan, Raheela Jamal, Mohamed Ebeed, Salah Kamel, Hamed Zeinoddini-Meymand, and 
Hossam Zawbaa 



Adopting Scenario-Based approach to solve optimal reactive power
Dispatch problem with integration of wind and solar energy using
improved Marine predator algorithm

Noor Habib Khan a, Raheela Jamal b, Mohamed Ebeed c, Salah Kamel d, Hamed Zeinoddini-Meymand e,
Hossam M. Zawbaa f,g,⇑
a School of New Energy, North China Electric Power University, Beijing 102206, China
b School of Control & Computer Engineering, North China Electric Power University, Beijing 102206, China
cDepartment of Electrical Engineering, Faculty of Engineering, Sohag University, Sohag 82524, Egypt
dDepartment of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan 81542, Egypt
eDepartment of Electrical and Computer Engineering, Graduate University of Advanced Technology, Kerman, Iran
f Faculty of Computers and Artificial Intelligence, Beni-Suef University, Beni-Suef, Egypt
g Technological University Dublin, Dublin, Ireland

a r t i c l e i n f o

Article history:
Received 1 November 2021
Revised 26 December 2021
Accepted 28 January 2022

Keywords:
Marine Predator Algorithm
Optimal Reactive Power Dispatch
Photovoltaic Power
Renewable Energy Resources
Scenario-based Approach

a b s t r a c t

The penetration of renewable energy resources into electric power networks has been increased consid-
erably to reduce the dependence of conventional energy resources, reducing the generation cost and
greenhouse emissions. The wind and photovoltaic (PV) based systems are the most applied technologies
in electrical systems compared to other technologies of renewable energy resources. However, there are
some complications and challenges to incorporating these resources due to their stochastic nature, inter-
mittency, and variability of output powers. Therefore, solving the optimal reactive power dispatch
(ORPD) problem with considering the uncertainties of renewable energy resources is a challenging task.
Application of the Marine Predators Algorithm (MPA) for solving complex multimodal and non-linear
problems such as ORPD under system uncertainties may cause entrapment into local optima and suffer
from stagnation. The aim of this paper is to solve the ORPD problem under deterministic and probabilistic
states of the system using an improved marine predator algorithm (IMPA). The IMPA is based on enhanc-
ing the exploitation phase of the conventional MPA. The proposed enhancement is based on updating the
locations of the populations in spiral orientation around the sorted populations in the first iteration pro-
cess, while in the final stage, the locations of the populations are updated their locations in adaptive steps
closed to the best population only. The scenario-based approach is utilized for uncertainties representa-
tion where a set of scenarios are generated with the combination of uncertainties the load demands and
power of the renewable resources. The proposed algorithm is validated and tested on the IEEE 30-bus sys-
tem as well as the captured results are compared with those outcomes from the state-of-the-art algo-
rithms. A computational study shows the superiority of the proposed algorithm over the other
reported algorithms.
� 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Ain Shams University
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).

1. Introduction

The electric power networks are complicated networks and
consist of generation, distribution and transmission arrangements
that aim to operate in a secure and economic environment with
minimization of transmission losses, voltage profile and opera-
tional cost, as well as enhancing the voltage stability. It is possible
to achieve these optimization objectives by selecting the suitable
coordination of operational variables such as transformer tap set-
tings and generator output voltages as well as shunt reactive
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VAR compensators, respectively [1]. ORPD is a non-convex and
non-linear model that contains continuous and discrete decision
variables. The new trend of incorporating renewable energy
resources (RERs) is extensively used in the power system to pro-
vide a sophisticated solution in terms of technical, economic and
environmental perspectives [2]. The generation from these
resources can reduce the dependency on fossil fuel, minimize gen-
eration cost, improve the system operation, reduce greenhouse
gases and harmful emissions [66,67].

1.1. Literature review

The ORPD problem can be solved via using different classical
techniques such as; interior-point [3], linear [4] and non-linear
programming [5], quadratic programming [6] and Newton-
Rapson [7], respectively. These techniques face problems while
using for large-scale systems such as; trapping in local minima
and complex computation. To solve these optimization issues,
the researchers developed new meta-heuristic techniques to
resolve these non-linear optimization problems of ORPD. For solv-
ing the conventional thermal problem, the different meta-heuristic
optimization techniques are considered to solve the ORPD prob-
lem, such as; moth-flame optimization [8], genetic algorithm [9],
sine cosine algorithm [10], grey wolf optimizer [11], barnacles
mating optimizer [12], Bat algorithm [13], artificial bee colony
algorithm [14], Jaya algorithm [15], particle swarm optimization
[16], h-social mimic optimization [17], bamboo plant intellect
deeds optimization [18], levy flight based white wolf algorithm
[19], whale optimization algorithm [20], ant lion optimizer [21],
wind-driven optimization Algorithm [22], modified-differential
evolution algorithm [23], comprehensive learning particle swarm
optimization [24], biogeography-based optimization [25] and
hybrid Fuzzy-Jaya optimizer [26].

The most type of RERs used for the integration of ORPD solu-
tions are solar and wind power. However, these resources have
some technical deficiencies due to their stochastic behavior and
continuously varying that can cause uncertainty in the electrical
power networks. However, it has mostly seemed in terms of fluc-
tuations in load demand [27]. So, it’s a spiritual task for the
decision-maker to plan these resources in the electrical power net-
works efficiently. Hence, there are several techniques modelled for
these problems, such as hybrid possibilistic–probabilistic methods
[28], interval analysis [29], probabilistic methods [30] and robust
optimization [31], respectively. The relevant latest studies have
been included in the literature related to the integration of RERs
in ORPD to understand the significance of these resources in the
power systems. Fractional calculus-based PSOGSA algorithm dis-
cussed in [32] to solve ORPD with taking into account the uncer-
tainty of RERs generation. ORPD solution using Moth Swarm
Algorithm is discussed in [33] to minimize the power losses using
uncertainty in RERs. RAO-3 algorithm in [34] considering the
uncertain PV and Wind resources with a time-varying load. SHADE
algorithm [35], used to solve ORPD problem with the inclusion of
uncertainty in RERs and load demand. ECOA algorithm is presented
in [36], considering the wind units and solving the ORPD problem.
Moreover, LAPO and improved LAPO techniques are used to solve
the ORPD problem [37,38] with the integration of solar and wind
under uncertainty of the load demand to minimize the power
losses using IEEE 30 standard.

The marine predator algorithm is an efficient and recently
developed algorithm introduced by A. Faramarzi et al. in 2020
[39]. It is used in some engineering applications such as; parameter
estimation of PV models [40], image segmentation [41], the param-
eter of identification of triple-diode PV model [42], ranking based
diversity reduction strategy [43], forecasting of COVID-19 [44]
and parameter estimation of fuel cell [45], respectively. For some

cases, the traditional MPA may face the stagnation problem and
trap into the local minima. The research presented the novel mod-
ified MPA algorithm based on using levy flight distribution (LFD)
concept and spiral movement of predators to global solution helps
to improve the exploration and exploration properties of the
algorithm.

1.2. Research contribution

The main research contributions can be depicted as follows:

� Solving the ORPD problem considering PV and Wind energy
with time-varying load.

� The improved marine predator algorithm (IMPA) is introduced
based on predator mutation strategy and spiral movement to
enhance exploration and exploitation mechanisms.

� The IMPA was applied to resolve the ORPD problem with and
without considering RERs applied on IEEE 30 standard.

� To authenticate the efficiency of the proposed IMPA, the results
are compared to the different meta-heuristic approaches.

The paper organization is arranged as follows: the mathemati-
cal formulation of ORPD problem is present in Section 2, formula-
tion related uncertainties in RERs are presented in Section 3,
Methodology of the IMPA is introduced in Section 4, results and
discussions are offered in Section 5, while Section 6 is part of the
conclusion

2. Problem formulation of ORPD

The ORPD problem solution aims to determine the set of control
parameters for system performance enhancement to satisfy the
operational constraints. Usually, the mathematical expression of
ORPD can be expressed according to the following equations:

MinFðx;uÞ ð1Þ
Subjected to

geq x;uð Þ ¼ 0k ¼ 1;2; � � � ;m ð2Þ

hieq x;uð Þ � 0n ¼ 1;2; � � � ;p ð3Þ
where geq and hieq are representing the terms related to equality and
inequality constraints. u is vector referring to control parameters,
including the generator voltages (VG), the reactive power of capac-
itors (QC), the transformer taps (Tp), whereas x refers to the depen-
dent variables and slack bus power, the transmission lines power
flow (ST), voltages of the load buses (VL) and the reactive generators
power (QG). The vectors u and x are represented as follows:

u ¼ ½QC ; Tp;VG� ð4Þ

x ¼ ½ST ;QG;VL; P1� ð5Þ

2.1. Objective function

2.1.1. Power losses
The first objective is to minimize the transmission line losses

and its formulation is given as follows:

F1 ¼ PLosses ¼
XNL

i¼1

GijðV2
i þ V2

j � 2ViVjcosdijÞ ð6Þ

where, Gij is the conductance of the transmission line, Vi and Vj are
the voltage magnitudes whereas, NL is the number of transmission
lines.
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2.1.2. Voltage Deviation
The second objective is to minimize the voltage deviations and

improve the voltage profile. It is related to the quality of the volt-
ages in the electrical networks and computed as adding of voltage
deviations of the load buses compared to the reference voltage
which is equal to 1. The related formulation is usually expressed
as follows:

F2 ¼ VDðp:uÞ ¼
XNq

i¼1

Vi � 1ð Þj j ð7Þ

Where, Nq represents the number of load buses, Vi is the bus voltage
of the i-th load bus.

2.1.3. Voltage stability enhancement
The third objective is to improve voltage stability, which is con-

sidered the utmost perilous phenomenon due to voltages instabil-
ity in the electrical power networks. The voltage instability can
cause voltage collapse steadily or suddenly in the electrical power
network and is required to improve. The voltage stability is
denoted as L-index of each bus and can be enhanced by the L-
index values at one bus formulated as:

F3 ¼ minLi ¼ 1�
Png

j¼1yijv j

v i

�����
�����i ¼ 1;2; � � � ;Nbus ð8Þ

F3 ¼ min Lmaxi ¼ 1;2; � � � ;Nbus ð9Þ
where, Li is the value of stability index of i-th bus, whereas yij is the
mutual admittance between i and j.

2.2. Constraints

2.2.1. Equality constraints

PGi � PLi ¼ Vij j
XNB
j¼1

Vj

�� �� Gijcosdij þ Bijsindij
� � ð10Þ

QGi � QLi ¼ Vij j
XNB
j¼1

Vj

�� �� Gijsindij � Bijcosdij
� � ð11Þ

2.2.2. Inequality constraints

Pmin
G;k � PG;k � Pmax

G;k k ¼ 1;2; � � � ;NG ð12Þ

Qmin
G;k � QG;k � Qmax

G;k k ¼ 1;2; � � � ;NG ð13Þ

Vmin
G;k � VG;k � Vmax

G;k k ¼ 1;2; � � � ;NG ð14Þ

Tmin
p;n � Tp;n � Tmax

p;n n ¼ 1;2; � � � ;Np ð15Þ

Qmin
C;n � Qc;n � Qmax

c;n n ¼ 1;2; � � � ;Nc ð16Þ

ST;n � Smin
T;n n ¼ 1;2; � � � ;NT ð17Þ

Vmin
L;n � VL;n � Vmax

L;n n ¼ 1;2; � � � ;Nq ð18Þ

Where min and max are superscripts denote the upper and the
lower limits. NG, Np, Nc , NL and Nq are the number of generators,
transformers, capacitors, transmission lines and load buses, respec-
tively. The obtained solution must be at the appropriate solution. To

ensure this, the weighted square variables expression is used as
follows:

F ¼ Fi þ v1 PG1 � Plim
G1

� �2
þ v2

XNG

i¼1

QGi � Qlim
Gi

� �2
þ v3

�
XNq

i¼1

VLi � Vlim
Li

� �2
þ v4

XNL

i¼1

SLi � SlimLi
� �2

ð19Þ

where F represents the penalty factor while v1;v2,v3 and v4 are the
coefficient of the penalty factors. The values of the penalty coeffi-
cients v1, v2, v3 and v4 are selected to be 100, 100, 1000 and
100, respectively.

3. Uncertainty modeling

The Continuous Probability Function (PDF) is for modelling the
uncertainty of the system, which includes uncertainty in the load
demand, the output of solar PV and the wind power generation
system. The PDF is further divided into subsections in order to
get the different scenarios of loading, wind speed and solar PV [46].

3.1. Load demand modeling

To modelled the uncertainty of the load demand by using the
PDF [34], it is defined as follows:

f dðPdÞ ¼ 1
rd

ffiffiffiffiffiffiffi
2p

p exp �ðPd � ldÞ2
2r2

d

� 	
ð20Þ

Where, ld and rd are indicated the mean and the standard devia-
tions parameters, whereas, Pd represents probability density of nor-
mal distribution load, respectively. In addition, the load demand
probability with its related expected load scenario generation can
be formulated as follows [33].

sdi ¼
Z Pmax

d;i

Pmin
d;i

1
rd

ffiffiffiffiffiffiffi
2p

p exp �ðPd � ldÞ2
2r2

d

� 	
dPd ð21Þ

Pd;i ¼ 1
sd;i

Z Pmax
d;i

Pmin
d;i

Pd

rd

ffiffiffiffiffiffiffi
2p

p exp �ðPd � ldÞ2
2r2

d

� 	
dPd ð22Þ

where Pmax
d;i and Pmin

d;i are the upper and the lower limits of the
selected interval of i-th. It is mentioned that the value of the rd con-
sidered in the paper is 0:02ld. The detail of load scenarios and their
probabilities are given in Table 1.

3.2. Solar irradiation modeling

The Beta PDF is used to model the uncertainty in solar irradi-
ance, which is denoted as GS [34]. However, Beta PDF formulation
can be given as follows:

Table 1
Generation of Wind, Solar and the Load Scenarios with their Probabilities.

Scenarios of Load Loading % s d, i

1 58.5892 0.3085
2 72.0663 0.5328
3 85.2514 0.1587
Scenarios of Wind Speed Wind Speed % s wind, k

1 5.3953 0.6321
2 11.1082 0.2789
3 16.4918 0.0889
Scenarios of Solar Irradiance Solar Irradiance % s solar, m

1 691.4611 0.1255
2 857.2083 0.1671
3 970.6447 0.7075
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f G GSð Þ ¼
C aþbð Þ

C að ÞþC bð Þ � G/�1
s

� 1� GSð Þb�1

0otherwise

If

8>><
>>: 0 � GS � 1;0 � a;b ð23Þ

here, a and b represents the beta probability parameters which can
be computed in terms of standard deviations (rs) and mean (ls) of
the random variables given as follows:

b ¼ 1� ls

� �� ls � 1þ ls

� �
rs

2


 �
� 1 ð24Þ

rs ¼ 1� ls

� �� ls � b

1� ls

� �
 !

� 1 ð25Þ

The generated output of the PV system is computed as the solar
irradiance function and can be formulated as follows [34,46]:

Ps GSð Þ ¼
Pr

G2
s

Gstd�Xc

� �
for0 < GS � Xc

Pr
GS
Gstd

� �
forGS � Xc

8><
>: ð26Þ

here,Ps is the output of solar-PV, Pr is the rated power, Gstd is the
standard solar irradiance with a value considered 1000 W/m2.
Moreover, the certain irradiance point is denoted by Xc with the
value considered 120 W/m2 [50]. The 50 MW rated power of the
solar-PV is considered in this research which is connected to gener-
ator bus 8 of IEEE 30-bus standard. The solar irradiance probability
of each scenario can be computed as follows [32].

Ps GSð ÞsSolarm ¼
Z Gmax

m

Gmin
m

f Gs
GSð ÞdGS ð27Þ

where sSolarm presents the probability of solar being in scenario m.

Gmin
m and Gmax

m are the ending and the starting points of solar irradi-
ance interval at mth scenario. In this paper, three scenarios are gen-
erated related to solar irradiance by using (27). The corresponding
probability and solar irradiance scenarios are given in Table 1.

3.3. Wind speed modeling

The Weibull Probability Distribution Function (PDF) is consid-
ered here to modelled the uncertainty of the wind speed (m/sec);
the expression is given as follows [32]:

f u uð Þ ¼ bshape

ascale


 �
u

ascale


 � bshape�1ð Þ
exp � u

ascale


 �bshape
" #

0 6 u < 1

ð28Þ
Where bshape and ascale are represented as the shape and scale param-
eters of Weibull distribution. To find the output power of a wind
turbine, the related expression can be as followed [49]:

Pw uxð Þ ¼
0 for ðux < uxi&ux > uxoÞ

Prated
ux�uxi
uxr�uxi

� �
for uxi � ux � uxrð Þ

Prated for uxr < ux � uxoð Þ

8>><
>>: ð29Þ

here, Pw is the output of the wind turbine, uxo; uxr and uxi are the
cut-out, rated and the cut-in speed with the values 25, 16 and
3 m/sec, respectively [33]. While, Prated is rated power of the wind
turbine. In our study case, the total power output taken from the
wind farm is 75 MW, in which 25 turbines are connected with rated
3 MW power of each turbine. The probability of the wind speed can
be computed as follows [34].

swind
k ¼

Z umax
k

umin
k

f uðuÞdu ð30Þ

Here,umax
k and umin

k are the ending and the starting points of wind
speed interval at k-th scenario. swind

k denoted the probability of wind
being in k-th scenario. The scenarios of wind speed with their prob-
abilities are given in Table. 1.

3.4. Combined load generation modeling

The corresponding probabilities for load demand, solar irradi-
ance and wind speed models are given in Table 1; while combining
the model of three functions will be captured by multiplying their
probabilities, the related expression is given as follows [46]:

sS ¼ sdmi � swind
k � sSolarm ð31Þ

4. Optimization algorithm

4.1. Marine Predators’ algorithm (MPA)

The traditional MPA is an efficient technique inspired by the
scavenging action of marine predators such as; sunfish, swordfish,
tunas, marlines and sharks with their prey in the ocean. The scav-
enging technique depends on two random movements like Brow-
nian movements and Lévy flight walk, which is presented in
Fig. 1. Humphries et al. [47] indicated Lévy’s motion which has
an extensive outline among the marine predators’, when searching
for food. However, when it is in a state of scavenging, the pattern
usually converts into the Brownian type. It is worst mentioning
here that the Lévy flight walk is an arbitrary technique of change-
over of a particle from one spot to another spot which is working
on the probability distribution function [39].

In a prey-sparse environment, the movement of the predators
to the food is based on Lévy flight walk, while in a pre-abundant
area, the movement of the predators is based on a Brownian pat-
tern. In addition, the other behavior is also considered due to the
movement of sharks, named, Fish aggregating device (FAD), and
it revealed that the sharks move in a sudden vertical jump. The
steps of the MPA can be depicted as follows:

Step 1: initialization
In this step, a set of populations are generated randomly as

follow:

Xi ¼ Xmin
i þ Xmax

i � Xmin
i

� �
� Rand ð32Þ

where Xmin
i is the lower limit of the ith population while Xmax

i

denotes its upper limit, whereas Rand presents the random value
which range is between 0 � Rand � 1. Then evaluate the fitness
function for each population as follows:

Fi ¼ objðXiÞ ð33Þ
Step 2: Determination of the top predator
In this step, the obtained populations are organized in a matrix

(the prey matrix) as follows:

X ¼

X1;1 X1;2

X2;1 X22

� � � X1d

� � � X2;1

..

. ..
.

Xn;1 Xn;2

. .
. ..

.

� � � Xn;d

2
66664

3
77775 ð34Þ

Here, n refers to the number of entire populations, d denoted
the number of the dimensions. The organization of solutions
assigns the best predator according to their objective function val-
ues. Therefore, another matrix is constructed named Elite matrix,
which includes the topmost predators as follows:
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Elite ¼

E1;1 E1;2

E2;1 E22

� � � E1d

� � � E2;1

..

. ..
.

En;1 En;2

. .
. ..

.

� � � En;d

2
66664

3
77775 ð35Þ

Step 3: The Brownian and Lévy Flight orientation
The placement of predators and the preys are updated in the

three phases that depend on their velocity relation between prey
and predator velocity. The detail of MPA phases is given below.

Phase 1: This phase is the exploration phase and functional at
the highest velocity ratio, which means the prey’s velocity is lower
than the predator’s velocity. The predator and the prey are updated
their states through Brownian motion as follows:

SZi ¼ RBr 	 Ei � RBr 	 Xi
� �

ifT � Tmax ð36Þ

Xi ¼ Xi þ P:R
�
	SZi ð37Þ

Where, SZi

�
is the step size vector. RBr

�
vector is represented as

the Brownian motion that contains random numbers, T and Tmax

are the present and maximum iterations number, 	 is the entry
wise multiplication factor while P is the constant value equals to
0.5.

Phase 2: It is an intermittent phase among the exploitation and
exploration phases that will be functional when the velocity of
prey is equal to the velocity of the predator. The populations are
separated into two sets; the first set is exploited while the latter
is set for exploration. For this phase, the following expression
can be written as:

The first group or exploitation group
if 13 Tmax � T � 2

3 Tmax

SZi ¼ RLevy 	 Ei � RLevy 	 Xi
� �

fori ¼ 1;2;3; ::;
n
2

ð38Þ

Xi ¼ Xi þ P:�R 	 SZi ð39Þ
The second group or exploration group

SZi ¼ RBr 	 Ei � RBr 	 Xi
� �

fori ¼ n
2
; � � � ; n ð40Þ

Xi ¼ Xi þ P:CF 	 SZi ð41Þ

Here, RLevy
�

denotes a vector that includes the random numbers
produced using the Lévy distribution that imitators the drive of the
prey in the levy manner. While, CF is an adaptive operator which
aims to control the step size of the predator’s drive.

Phase 3: This is an entire exploitation phase that will be
imposed when the velocity of prey is less than the predators’ veloc-
ity at the final stages.

SZi ¼ RLevy 	 RLevy 	 Ei � Xi
� �

fori ¼ 1;2;3 � � � ; n
2

ð42Þ

Xi ¼ Ei þ P:�R 	 SZi ð43Þ
The predators in this phase are moved by the levy approach. The

above equations describe the prey’s velocity based on the Elite
vector.

Step 4: The movement behavior of the predators is effect by
environmental issues. The predators move in fish aggregating
devices or eddy formations that represent the local optima. While
to find the new environment, they take a long jump which has

abundant the regions. The expression related to this step is given
as follows:

Xi ¼
Xi

�
þCF

Xmin
i þ

R Xmax
i � Xmin

i

� �
2
4

3
5	 U� Ifr � FADS

Xi þ
FADS 1� rð Þþ

r

� 	
Xr1

� �Xr2
�ð ÞIfr > FADS

8>>>>><
>>>>>:

ð44Þ

Where U
�

is a binary vector, r1 and r2 are the random values
from prey matrix, r presents the random number range between
[0,1], FADS is the fish aggregating devices probability and its’ value
is equal to 0.2, respectively.

Step 5: Marine memory
For the best foraging solution, the marine predators remember

their location efficiently. However, in MPA, the updated population
is compared with previous populations based on their objective
function to capture the global solution.

4.2. Improved Marine Predators’ algorithm (IMPA)

The IMPA is proposed to enhance the searching capabilities of
the traditional MPA by enhancing the exploitation phase. The
exploitation phase of the algorithm is enhanced by the spiral
movement of the predators around the elite solutions as follows:

The first step of modification in traditional MPA is based on spi-
ral orientation is expressed as follows:

Xi ¼ Ei � Xi
� �� ebtcos 2pTð Þ þ Ei ð45Þ

where b denoted as a constant, which describe the logarithmic
spiral shape. Then at the final stage of the iteration process, the
predators updated their location around only the best solution
using adaptive operators:

If rand < 0.5

Xi ¼ Ei þ Bw� r3 ð46Þ
Else

Xi ¼ Ei � Bw� r3 ð47Þ
End
where r3 is a random value in the range [0–1]. Bw is a variable

parameter decreasing dynamically as follows:

w tð Þ ¼ Bwmax � eðC�TÞ ð48Þ

C tð Þ ¼ lnðBwmin

Bwmax
Þ=Tmax


 �
ð49Þ

where Bwmin and Bwmax are the minimum and the maximum
limits of Bw.

The values of the Bwmin and Bwmax are selected to be 0.1 and
0.001, respectively. These values are empirically determined based
on which value gives the best solution.
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Finally, the proposed IMPA algorithm is based on the conven-
tional MPA’s searching capabilities by using two enhancement
strategies. The proposed algorithm is implemented for solving
the ORPD, one of the most important and common optimization
problems. ORPD is solved at deterministic and probabilistic condi-
tions. In deterministic condition, three objective functions are con-
sidered, including the power loss, the VD and the stability index
according to equations (6), (7), and (9) with considering the system
constraints which have been depicted using equations from (12) to
(18). In probabilistic condition, ORPD has been solved to reduce the
expected power loss (50). The uncertainty of the system is modeled

by a scenario-based approach to combine the uncertainty of load,
solar irradiance, and wind speed. The Pseudo-code for the
improved Marian Predator is depicted in Algorithm 1. Fig. 2 also
shows the steps of applying the IMPA for the ORPD solution.

5. Result and discussions

The simulations are performed for all given objectives to solve
ORPD problems on IEEE 30-bus systems with and without RERs
on MATLAB R2019b on PC Core i7 CPU @ 1.80 GHz 8 GB RAM. For

Fig. 1. Trajectories (a) Levy flight motion; (b) Brownian motion.
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all given cases, the population size, maximum number of iterations
and number of trail runs are selected to be 25, 50 and 30, respec-
tively. The IEEE 30-bus standard system consists of 6 generators,

4 transformers, 41 transmission lines, and 9 shunt Var compen-
sators. For IEEE30 bus system using without and with RERs, the
control voltages limits of the generators within range [0.95–1.1]

No

Initializing the  populations randomly 
according to Eq. (32).

Start

Define the IMPA  Parameters  

Read the data of the load demand, and 
the solar irradiance

Generate a set of scenarios using scenario based method 

Is  T< Tmax/3?

Update prey according to Eq. (36&37)

if  Tmax/3 T 2× Tmax/3

No

Update first half populations 
according to Eq. (38&39)

Update first half populations 
according to Eq. (40&41)

No

Is  T > 2× Tmax/3?

Update prey according to Eq. (42&43)

Calculate the objective function of the 
updated populations by running the power 
flow and apply the Marine Memory saving

  Update the populations based on FAD’s 
Eqs (44) effect and Eddy formation 

T Tmax

T= T+1

Obtain the best solution and the corresponding  

End

Yes

Yes

Yes

Is  T <  Tmax/2?

Update prey according to Eq. (45)Update prey according to Eq. (46) & 
(47)

Calculate the objective function of the 
updated preys by running the power flow 

solution

Update the values of Bw and c(t) according 
to (47) and (48)

YesNo

Fig. 2. Application of the IMPA for solving the stochastic ORPD.
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p.u., the transformers tap settings within the range [0.9–1.1] and
output reactive powers of Var compensators are varied within
the range [0–0.5] p.u. The detailed system data are given in [64].
The system’s active and reactive load demands are considered
283.2 MW and 126.2 MVAr, respectively [65].

There are three study cases are presented for ORPD solutions
without and with RERs integration; the details of the study cases
are given below:

� Case A: Optimal Reactive Power Dispatch Without Integration
of RERs (IEEE 30)

� Case B: Optimal Reactive Power Dispatch with Integration of
RERs (IEEE 30)

5.1. Case A: Optimal reactive power Dispatch without integration of
RERs (IEEE 30)

In the case of A, the ORPD problem is solved without consider-
ing RERs by application of the MPA and the IMPA. The considered
objective functions are transmission losses reduction, voltage devi-
ations reduction enhancement of the voltage stability. In the initial
case, the power loss is 5.811 MW [1], summation of the voltage
deviations is 0.8691p.u. [46] and the voltage stability index is
0.1723p.u. [32]. To demonstrate the best performance that
achieved by the proposed IMPA algorithm, the results are com-
pared to the initial case, the standard MPA and those obtained by
other techniques.

5.1.1. Minimization of power losses
The simulations are performed between the IMPA and tradi-

tional MPA in order to minimize power losses. The worst, best,
average values, as well as simulation time of both algorithms, are
reported in Table 2.

Table 2
Statistical results of MPA and IMPA for Different Considered Objective Functions (IEEE 30 BUS STANDARD).

Power Losses (MW) Voltage Deviation (p.u) Voltage Stability (p.u)

MPA IMPA MPA IMPA MPA IMPA

Average 4.6216 4.5677 0.1549 0.1250 0.1141 0.1135
Best 4.5801 4.5430 0.1380 0.1096 0.1132 0.1129
Worst 4.6724 4.6028 0.1807 0.1493 0.1154 0.1142
Time (Sec) 12.142 19.3487 12.2126 19.7413 11.9291 11.7932

Table 3
Optimal control variables Values for power losses, voltage deviations and voltage stability by application MPA and IMPA.

Control Variables Min Max Power Losses (MW) Voltage Deviation (p.u) Voltage Stability (p.u)

MPA IMPA MPA IMPA MPA IMPA

Generator Voltages
V1 (p.u) 0.9 1.1 1.100000 1.099996 1.006944 0.999664 1.096081 1.099749
V2 (p.u) 0.9 1.1 1.095235 1.094483 1.041686 0.948244 1.088062 1.099607
V5 (p.u) 0.9 1.1 1.076817 1.074851 1.011228 1.065047 1.08578 1.099849
V8 (p.u) 0.9 1.1 1.07877 1.077199 0.996304 1.038354 1.100000 1.098322
V11 (p.u) 0.9 1.1 1.099991 1.098760 1.099806 1.026251 1.097505 1.099941
V13 (p.u) 0.9 1.1 1.099744 1.100000 1.026884 1.033202 1.099958 1.099947

Transformer Tap Ratios
T11 0.9 1.1 1.003265 1.034555 1.058206 0.997727 1.011192 1.021702
T12 0.9 1.1 0.991808 0.904526 0.952344 0.914335 1.098784 0.929464
T15 0.9 1.1 1.005639 0.980967 0.984524 1.018208 0.973701 1.010951
T36 0.9 1.1 0.994341 0.983898 0.956384 0.967076 0.976312 0.987341

Shunt VAR Compensators
Q10 (p.u) 0 0.05 0.003728 0.448733 0.407815 0.109906 0.49999 0.494074
Q12 (p.u) 0 0.05 0.125029 0.498782 0.306809 0.026837 0.495167 0.497984
Q15 (p.u) 0 0.05 0.406421 0.066142 0.133845 0.495746 0.499992 0.468622
Q17 (p.u) 0 0.05 0.294272 0.385893 0.267874 0.000472 0.494656 0.498651
Q20 (p.u) 0 0.05 0.487133 0.499977 0.343778 0.500000 0.499942 0.487517
Q21 (p.u) 0 0.05 0.466238 0.499696 0.103920 0.297825 0.499985 0.500000
Q23 (p.u) 0 0.05 0.203727 0.468633 0.157127 0.498606 0.495253 0.496884
Q24 (p.u) 0 0.05 0.461544 0.497548 0.499220 0.287937 0.497917 0.495558
Q29 (p.u) 0 0.05 0.497379 0.452891 0.173972 0.490328 0.498188 0.494459

Objective Functions
Objectives 4.5801 MW 4.5430 MW 0.1380p.u 0.1096p.u 0.1132p.u 0.1129p.u
Reduction in % 21.18 % 21.82 % 84.12 % 87.34 % 34.30 % 34.47 %

Fig. 3. The convergence characteristics of Power Losses (MW) using MPA and IMPA
for power loss.
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From the statistical results of Table 2, the IMPA is better than
the standard MPA for power loss reduction. Table 3 shows the best
control variables obtained by applying the IMPA and the tradi-
tional MPA. Judging from Table 3, the best value of IMPA is
4.5430 MW which is 0.81% less than the traditional MPA. Fig. 3
illustrates the best and convergence response achieved by IMPA
algorithm over traditional MPA where the power losses are con-
verged at 42th iteration by application MPA while it is converged
at 38th iteration by application of the IMPA.

In addition, Table 4 signified the results of different meta-
heuristic techniques to solve ORPD problem, where the IMPA
reported its efficient performance with the reduction of power
losses to 21.82 % in comparison with Sine-cosine Algorithm
(SCA), Quasi-oppositional Teaching Learning-based Optimization
(QOTLBO), Particle Swarm Optimization and Grey-wolf Optimiza-
tion (PSOGWO), Firefly Algorithm and the Adaptive Particularly
Tunable Fuzzy Particle Swarm Optimization (FA-APTFPSO-IV),
Self-balanced Differential Evolution (SBDE), Jaya Algorithm (JA),
Harmony Search Algorithm (HAS), Whale Optimization Algorithm
(WOA), Tabu Search (TS), Artificial Bee Colony (ABC), Improved
Marine Predators Algorithm and Particle Swarm Optimization
(IMPAPSO), Differential Evolution (DE) and Firefly Algorithm (FA),
respectively. The overall results indicated the efficiency of the pro-
posed IMPA.

5.1.2. Minimization of voltage Deviation
In this case, the objective is to minimize the voltage deviations

using IMPA and traditional MPA. The best average, worst and the
simulation time are given in Table 2. Referring to Table 2, the
obtained results obtained by IMPA are better than those obtained
by applying the traditional MPA. The optimal control variables
for this case obtained by application the MPA and the IMPA are
listed in the 6th and 7th columns of Table 3, respectively. The min-
imum VD that obtained by IMPA is 0.1096p.u which is less by
20.58% compared with MPA. Moreover, to validate the efficiency

of IMPA, the results are compared to different meta-heuristic opti-
mization techniques given in Table 5.

The overall results demonstrated that the proposed IMPA is
reduced the voltage deviations to 87.34 % and the reduction per-
centage is less than the reported algorithms in Table 5, such as;
Self-organizing Hierarchical Particle Swarm Optimization with
Time-varying Acceleration Coefficients (SPSO-TVAC), Stochastic
Weight Tradeoff Particle Swarm Optimization (SWT-PSO), Symbi-
otic Organisms Search (SSO), Ant Lion Optimizer (ALO), pseudo-
gradient Particle Swarm Optimization (PG-PSO), Improved Marine
Predators Algorithm and Particle Swarm Optimization (IMPAPSO),
Genetic Particle Swarm Optimization Algorithm with Symbiotic
Organisms Search (HGPSOS), Gravitational Search Algorithm and
Conditional Selection Strategies (GSA-CSS), Particle Swarm Opti-
mization and Time-varying Acceleration (PSO-TVA), Particle
Swarm Optimization with Constriction Factor (PSO-CF), Gravita-

Table 4
A Comparison of Power Losses by Application of Different Algorithms.

Algorithm Plosses (MW) Reduction % Algorithm Plosses (MW) Reduction %

SCA [10] 4.5538 21.63 TS [56] 4.9203 15.32
QOTLBO [24] 4.5594 21.54 WOA [53] 4.5943 20.40
PSOGWO [52] 5.09037 12.40 ABC [14] 5.790 0.36
FA-APTFPSO-IV [48] 4.8664 16.25 IMPAPSO [55] 5.07510941 15.57
SBDE [51] 4.590 21.01 DE [50] 4.5550 21.61
JA [49] 4.625 20.93 FA [57] 4.5691 21.37
HSA [54] 4.9059 12.66 TS [56] 4.9203 15.32

Table 5
A Comparison of Voltage Deviation by Application of Different Algorithms.

Algorithm VDðp:uÞ Reduction % Algorithm VDðp:uÞ Reduction %

SPSO-TVAC [58] 0.1354 84.42 HGPSOS [61] 0.1179 86.43

SWT-PSO [58] 0.1614 81.42 GSA-CSS [62] 0.12394 85.73

SSO [60] 0.19304 77.78 PSO-TVA [58] 0.2064 76.25

ALO [59] 0.1192 86.28 PSO-CF [58] 0.1287 85.19

PG-PSO [58] 0.1202 86.16 GSA [62] 0.17241 80.16

SWT-PSO [58] 0.1614 81.42 PSO [62] 0.10462 87.96

IMPAPSO [55] 0.2487 71.38 AEFA [34] 0.1313 84.89

SPSO-TVAC [58] 0.1354 84.42

Fig. 4. The convergence characteristics of Voltage Deviation (p.u) using MPA and
IMPA.
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tional Search Algorithm (GSA), Particle Swarm Optimization (PSO)
and Artificial Electric Field Algorithm (AEFA), respectively. Fig. 4
demonstrates the best convergence performance achieved by the
proposed IMPA. However, The VD is converged at 44th and 42th

by application of the MPA and the IMPA; respectively, the obtained
results by the IMPA are better than those obtained by MPA.

5.1.3. Enhancement of the voltage stability index
The third objective is to enhance the voltage stability for which

the simulations are carried out using the proposed IMPA and tradi-
tional MPA. The outcomes of both algorithms are mentioned in
Table 2, where the voltage stability value of IMPA is 0.1129p.u.
which is 0.26% less reported to the traditional MPA. The optimal
control variables obtained by applying the MPA and the IMPA tech-
niques for voltage stability enhancement are depicted in the 8th
and 9th columns of Table 3.

A comparison between the proposed IMPA technique and other
algorithms for this case are depicted in Table 6. Judging from
Table 6, the outputs of the proposed IMPA are compared to the
base case and other meta-heuristic techniques, which is at the
highest values of reduction to 34.47 % more than the reported algo-
rithms such as; Hybrid Genetic Particle Swarm Optimization Algo-
rithm with Symbiotic Organisms Search (HGPSOS), Particle swarm
Optimization and Artificial Physics Optimization (APOPSO), Artifi-
cial Physics Optimization (APO), Improved Ant Lion Optimization
(IALO), Differential Evolution (DE), Gravitational Search Algorithm
(GSA) and Ant Lion Optimization (ALO), respectively. Fig. 5 illus-
trates the best convergence response achieved by the proposed

Table 6
A Comparison of Voltage Stability Enhancement by Application of Different Algorithms.

Algorithm Lmaxðp:uÞ Reduction % Algorithm Lmaxðp:uÞ Reduction %

HGPSOS [61] 0.1315 23.67 DE [50] 0.1246 27.68
APOPSO [61] 0.1377 20.08 GSA [61] 0.1349 21.70
APO [63] 0.1239 28.09 ALO [59] 0.1253 27.27
IALO [59] 0.1246 27.68

Fig. 5. The convergence characteristics of Voltage Stability (p.u) using MPA and
IMPA.

Table 7
The Generated Scenarios of Load Demand, Solar Irradiation, Wind Speed with their Corresponding Probabilities.

Scenario Loading % Solar Irradiance (W/m2) Wind Speed (m/s) sd, i s Solar, m s wind, k sS

S1 58.5892 691.4611 5.3953 0.3085 0.1255 0.6321 0.01851
S2 58.5892 691.4611 11.1082 0.3085 0.1255 0.2789 0.009255
S3 58.5892 691.4611 16.4918 0.3085 0.1255 0.0889 0.003085
S4 58.5892 857.2083 5.3953 0.3085 0.1671 0.6321 0.03702
S5 58.5892 857.2083 11.1082 0.3085 0.1671 0.2789 0.01851
S6 58.5892 857.2083 16.4918 0.3085 0.1671 0.0889 0.00617
S7 58.5892 970.6447 5.3953 0.3085 0.7075 0.6321 0.12957
S8 58.5892 970.6447 11.1082 0.3085 0.7075 0.2789 0.064785
S9 58.5892 970.6447 16.4918 0.3085 0.7075 0.0889 0.021595
S10 72.0663 691.4611 5.3953 0.5328 0.1255 0.6321 0.031968
S11 72.0663 691.4611 11.1082 0.5328 0.1255 0.2789 0.015984
S12 72.0663 691.4611 16.4918 0.5328 0.1255 0.0889 0.005328
S13 72.0663 857.2083 5.3953 0.5328 0.1671 0.6321 0.063936
S14 72.0663 857.2083 11.1082 0.5328 0.1671 0.2789 0.031968
S15 72.0663 857.2083 16.4918 0.5328 0.1671 0.0889 0.010656
S16 72.0663 970.6447 5.3953 0.5328 0.7075 0.6321 0.223776
S17 72.0663 970.6447 11.1082 0.5328 0.7075 0.2789 0.111888
S18 72.0663 970.6447 16.4918 0.5328 0.7075 0.0889 0.037296
S19 85.2514 691.4611 5.3953 0.1587 0.1255 0.6321 0.009522
S20 85.2514 691.4611 11.1082 0.1587 0.1255 0.2789 0.004761
S21 85.2514 691.4611 16.4918 0.1587 0.1255 0.0889 0.001587
S22 85.2514 857.2083 5.3953 0.1587 0.1671 0.6321 0.019044
S23 85.2514 857.2083 11.1082 0.1587 0.1671 0.2789 0.009522
S24 85.2514 857.2083 16.4918 0.1587 0.1671 0.0889 0.003174
S25 85.2514 970.6447 5.3953 0.1587 0.7075 0.6321 0.066654
S26 85.2514 970.6447 11.1082 0.1587 0.7075 0.2789 0.033327
S27 85.2514 970.6447 16.4918 0.1587 0.7075 0.0889 0.011109
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Fig. 6. The single line diagram of the modified IEEE 30-bus system with Integration of RERs.

Table 8
Selected Scenarios and the Corresponding Output Powers of Renewable Systems and The Expected Power Losses.

Scenario Output Power of RERs
(PV + Wind)

MPA IMPA MPA IMPA

PsðMWÞ PwðMWÞ PLossðMWÞ PLossðMWÞ EPLðMWÞ EPLðMWÞ
S1 34.5731 13.8190 1.7233 1.3828 0.0319 0.0256
S2 34.5731 46.7781 1.7486 0.9973 0.0162 0.0092
S3 34.5731 75.0000 2.8075 1.4348 0.0087 0.0044
S4 42.8604 13.8190 1.7397 1.4273 0.0644 0.0528
S5 42.8604 46.7781 1.334 1.1348 0.0247 0.0210
S6 42.8604 75.0000 1.8374 1.4962 0.0113 0.0092
S7 48.5322 13.8190 1.5680 1.3499 0.2032 0.1749
S8 48.5322 46.7781 1.5510 1.0420 0.1005 0.0675
S9 48.5322 75.0000 2.1840 1.5182 0.0472 0.0328
S10 34.5731 13.8190 3.0660 2.3495 0.0980 0.0751
S11 34.5731 46.7781 1.5935 1.4536 0.0255 0.0232
S12 34.5731 75.0000 1.6190 1.2587 0.0086 0.0067
S13 42.8604 13.8190 2.9748 2.1922 0.1902 0.1402
S14 42.8604 46.7781 1.7095 1.3033 0.0546 0.0417
S15 42.8604 75.0000 1.5964 1.3104 0.0170 0.0140
S16 48.5322 13.8190 2.5309 2.0957 0.5663 0.4690
S17 48.5322 46.7781 1.4970 1.2995 0.1675 0.1454
S18 48.5322 75.0000 1.5216 1.2399 0.0567 0.0462
S19 34.5731 13.8190 5.7422 4.2806 0.0547 0.0408
S20 34.5731 46.7781 3.3229 2.5349 0.0158 0.0121
S21 34.5731 75.0000 1.9961 1.7790 0.0032 0.0028
S22 42.8604 13.8190 5.5598 3.8647 0.1059 0.0736
S23 42.8604 46.7781 2.7496 2.5376 0.0262 0.0242
S24 42.8604 75.0000 1.9498 1.7617 0.0062 0.0056
S25 48.5322 13.8190 4.4727 3.5586 0.2981 0.2372
S26 48.5322 46.7781 2.5271 2.1273 0.0842 0.0709
S27 48.5322 75.0000 1.9031 1.5764 0.0211 0.0175
TEPL (MW) 2.3079 1.8436

N. Habib Khan, R. Jamal, M. Ebeed et al. Ain Shams Engineering Journal 13 (2022) 101726

11



IMPA. From Fig. 5, it is clear that the stability index is converged at
22th and 36th by application of the MPA and the IMPA, respec-
tively. However, the obtained results by IMPA are better than those
obtained by application of the MPA. Judging from Table 6, the out-
puts of the proposed IMPA are compared to the base case and other
meta-heuristic techniques, which is at the highest values of reduc-
tion to 34.47 % more than the reported algorithms such as;
HGPSOS, APOPSO, APO, IALO, DE, GSA and ALO, respectively.

5.2. Case B: Optimal reactive power Dispatch wit integration of
renewable energy resources

In this case, the ORPD is solved in the presence of renewable
energy resources. The IEEE 30-bus system is modified by incorpo-

rating the wind and solar generator units at 5 and 8 buses, recep-
tively as depicted in Fig. 6.

Due to the stochastic nature of RERs, the uncertainty of solar
and wind are considered as well as the uncertainties of the load
demands. A 75 MWwindfarm is connected to bus 5, which consist-
ing 25 turbines of 3 MW rated power. Each connected turbine in
windfarm has cut-in, cut-out and the rated speed are 3, 25 and
16 m/s, respectively. Whereas the 50 MW PV system is connected
at bus 8 and its solar irradiance is considered 1000 W/m2 [32].

The three individual scenarios with their probabilities to model
the uncertainty of wind speed, solar irradiance and load demands
are given in Table 1. To combine these uncertainties, the total num-
ber of scenarios will be 27 using Eq. (31), and the detail of these
scenarios are given in Table 7. The aim of solving the OPRD prob-
lem is to minimize the expected power losses under uncertainty
which can be formulated as follows:

TEPL ¼
XNGS

r¼1

EPLr ¼
XNGS

r¼1

sS;r � PLosses;r ð50Þ

where TEPL is the total expected losses, EPLr presents the expected
power losses for rth scenario while NGS is the number of generated
scenarios. The total expected power losses without considering
RERs are 5.2456 MW, while after incorporating solar and wind
power into the system, the TEPL with the application of the MPA
and the IMPA values are 1.8436 MW and 2.3079 MW, respectively.
In other words, the percentage reductions of the expected power
losses by applying the MPA and the IMPA are reported to 56.00 %
and 64.85%, respectively.

Table 8 shows the outpower power of wind turbine and PV gen-
eration systems as well as the corresponding power losses and the
probabilities of different scenarios with the application of the MPA
and the IMPA. It is clear that the power losses are varied with the
output powers of the RER. Fig. 7 illustrates the best convergence
response achieved by the proposed IMPA compared to traditional
MPA. From Fig. 7, it is clear to mention that the power losses are
converged at 42th and 33th by application of the MPA and the
IMPA, respectively. Fig. 8 shows the voltage profile for each sce-
nario for the IEEE 30-bus system. It is obvious that the voltages
are within their allowable limits.

Fig. 9(a), (b) and (c) illustrate the optimal values of the control
variables, including the voltages of at each generation buses, trans-
former taps and the injected reactive powers by compensation
units which IMPA has obtained. It is clear that the settings of the
control variables have different values for each scenario.

It should be highlighted here that to evaluate the proposed
improvement, Figs. 3, 4, 5, 7 and 8 give the convergence curves
of the considered objective functions. According to these figures,
the IMPA has fast convergance charactristics at the beginning of
search, indicating that the good search regions can be obtained
due to the proposed explotation process.

Fig. 7. The convergence characteristics of Power Losses (p.u) using MPA and IMPA
considering RERs.

Fig. 8. The system voltage profile for generated scenarios by application the IMPA.
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Fig. 9. The optimal values for studied scenarios of (a) the voltages at the generation buses, (b) the VAR compensators for the generated scenarios, (c) The injected VAR in
MVAr.
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6. Conclusion

In this research, an Improved Marine Predators Algorithm
(IMPA) is efficiently applied to solve the ORPD problem with and
without considering RERs to minimize the power losses, voltage
deviations, and enhance the voltage stability. The modification in
IMPA is based on updating the positions of the predators in a spiral
path around the sorted elite predators, while in the final iterative
process, the positions of the predators are updated close to the best
predator in adaptive steps. The proposed algorithm has been suc-
cessfully implemented for solving the ORPD on IEEE 30-bus and
the outcomes have been compared with the traditional MPA and
other reported techniques.

In addition, ORPD has been solved with the integration of wind
and PV systems considering the uncertainties of three parameters,
including wind speed, solar irradiation, and load demands. The
uncertainty models of these parameters are represented by Wei-
bull PDF, Beta PDF and normal PDF, respectively. Then, the
scenario-based model has been employed to combine the uncer-
tainties of these parameters where a set of scenarios have been
generated due to the combination of these parameters. The simu-
lation results verified the superiority of the proposed algorithm
compared with the traditional MPA and the other reported algo-
rithms for solving the ORPD. In addition, the reduction in expected
power losses is achieved 64.85% by integrating the RERs into the
system using IMPA.
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