15 research outputs found

    Coordinating Large Distributed Process Structures

    Get PDF
    Representing a business process as interacting small processes has become feasible with data-centric business process management paradigms. These small processes have relations and, thereby, form a relational process structure. The interactions of processes within this relational process structure must be coordinated to arrive at a meaningful overall business goal. However, relational process structures may become arbitrarily large and, with cloud technology, they may additionally be distributed over multiple nodes. Coordination processes have been proposed to coordinate relational process structures, where processes have one-to-many and many-to-many relations at run-time. This paper shows how multiple coordination processes can be used in a decentralized fashion to coordinate large, distributed process structures. The main challenge is to effectively realize the coordination responsibility of each coordination process. Key components of the solution are the subsidiary principle and the hierarchy of the relational process structure. Moreover, from these key components and the technical properties of coordination processes, an implementation based on microservices was developed, which allows fast and concurrent enactment of multiple, decentralized coordination processes in large, distributed process structures

    Modeling Process Interactions with Coordination Processes

    Get PDF
    With the rise of data-centric process management paradigms, small and interdependent processes, such as artifacts or object lifecycles, form a business process by interacting with each other. To arrive at a meaningful overall business process, these process interactions must be coordinated. One challenge is the proper consideration of one-to-many and many-to-many relations between interacting processes. Other challenges arise from the flexible, concurrent execution of the processes. Relational process structures and semantic relationships have been proposed for tackling these individual challenges. This paper introduces coordination processes, which bring together both relational process structures and semantic relationships, leveraging their features to enable proper coordination support for interdependent, concurrently running processes. Coordination processes contribute an abstracted and concise model for coordinating the highly complex interactions of interrelated processes

    Specifying artifact-centric business process models in UML: technical report

    Get PDF
    In recent years, the artifact-centric approach to process modeling has attracted a lot of attention. One of the research lines in this area is finding a suitable way to represent the dimensions in this approach. Bearing this in mind, this paper proposes a way to specify artifact-centric business process models by means of well-known UML diagrams, from a high-level of abstraction and with a technology-independent perspective. UML is a graphical language, widely used and with a precise semantics.Preprin

    A Grammatical Model for the Specification of Administrative Workflow Using Scenario as Modelling Unit

    Get PDF
    International audienceProcess modelling is a crucial phase of Business Process Management (BPM). Despite the many efforts made in producing process modelling tools, existing tools (languages) are not commonly accepted. They are mainly criticised for their inability to specify both the tasks making up the processes and their scheduling (their lifecycle models), the data they manipulate (their information models) and their organizational models. Process modelling in these languages often results in a single task graph; such a graph can quickly become difficult to read and maintain. Moreover, these languages are often too general (they have a very high expressiveness); this makes their application to specific types of processes complex: especially for administrative processes. In this paper, we present a new language for administrative processes modelling that allows designers to specify the lifecycle, information and organizational models of such processes using a mathematical tool based on a variant of attributed grammars. The approach imposed by the new language requires the designer to subdivide his process into scenarios, then to model each scenario individually using a simple task graph (an annotated tree) from which a grammatical model is further derived. At each moment then, the designer manipulates only a scenario of the studied process: this approach is more intuitive and modular; it allows to produce task graphs that are more refined and therefore, more readable and easier to maintain

    Ensuring the semantic correctness of a BAUML artifact-centric BPM

    Get PDF
    Context: Using models to represent business processes provides several advantages, such as facilitating the communication between the stakeholders or being able to check the correctness of the processes before their implementation. In contrast to traditional process modeling approaches, the artifact-centric approach treats data as a key element of the process, also considering the tasks or activities that are performed in it. Objective: This paper presents a way to verify and validate the semantic correctness of an artifact-centric business process model defined using a combination of UML and OCL models - a BAUML model. Method: We achieve our goal by presenting several algorithms that encode the initial models into first-order logic, which then allows to use an existing satisfiability checking tool to determine their correctness. Results: An approach to verify and validate an artifact-centric BPM specified in BAUML, which uses a combination of UML and OCL models. To do this, we provide a method to translate all BAUML components into a set of logic formulas. The result of this translation ensures that the only changes allowed are those specified in the model, and that those changes are taking place according the order established by the model. Having obtained this logic representation, these models can be validated by any existing reasoning method able to deal with negation of derived predicates. Moreover, we show how to automatically generate the relevant tests to validate the models. We also show the feasibility of our approach by implementing a prototype tool and applying it to a running example. Conclusion: It is feasible to ensure the semantic correctness of an artifact-centric business process model in practice.Peer ReviewedPostprint (author's final draft

    A Grammatical Approach to Data-centric Case Management in a Distributed Collaborative Environment

    Get PDF
    This paper presents a purely declarative approach to artifact-centric case management systems, and a decentralization scheme for this model. Each case is presented as a tree-like structure; nodes bear information that combines data and computations. Each node belongs to a given stakeholder, and semantic rules govern the evolution of the tree structure, as well as how data values derive from information stemming from the context of the node. Stakeholders communicate through asynchronous message passing without shared memory, enabling convenient distribution

    A Language and Methodology based on Scenarios, Grammars and Views, for Administrative Business Processes Modelling

    Get PDF
    International audienceIn Business Process Management (BPM), process modelling has been solved in various ways. However, there are no commonly accepted modelling tools (languages). Some of them are criticized for their inability to capture both the lifecycle, informational and organizational models of processes. For some others, process modelling is generally done using a single graph; this does not facilitate modularity, maintenance and scalability. In addition, some of these languages are very general; hence, their application to specific domain processes (such as administrative processes) is very complex. In this paper, we present a new language and a new methodology, dedicated to administrative process modelling. This language is based on a variant of attributed grammars and is able to capture the lifecycle, informational and organizational models of such processes. Also, it proposes a simple graphical formalism allowing to model each process's execution scenario as an annotated tree (modularity). In the new language, a particular emphasis is put on modelling (using "views") the perceptions that actors have on processes and their data

    Reusing artifact-centric business process models : a behavioral consistent specialization approach

    Get PDF
    Process reuse is one of the important research areas that address efficiency issues in business process modeling. Similar to software reuse, business processes should be able to be componentized and specialized in order to enable flexible process expansion and customization. Current activity/control-flow centric workflow modeling approaches face difficulty in supporting highly flexible process reuse, limited by their procedural nature. In comparison, the emerging artifact-centric workflow modeling approach well fits into these reuse requirements. Beyond the classic class level reuse in existing object-oriented approaches, process reuse faces the challenge of handling synchronization dependencies among artifact lifecycles as parts of a business process. In this article, we propose a theoretical framework for business process specialization that comprises an artifact-centric business process model, a set of methods to design and construct a specialized business process model from a base model, and a set of behavioral consistency criteria to help check the consistency between the two process models. © 2020, Springer-Verlag GmbH Austria, part of Springer Nature

    Coordinating Large Distributed Relational Process Structures

    Get PDF
    Representing a business process as a collaboration of interacting processes has become feasible with the emergence of data-centric business process management paradigms. Usually, these interacting processes have relations and, thereby, form a complex relational process structure. The interactions of processes within this relational process structure need to be coordinated to arrive at a meaningful overall business goal. However, relational process structures may become arbitrarily large. With the use of cloud technology, they may additionally be distributed over multiple nodes, allowing for scalability. Coordination processes have been proposed to coordinate relational process structures, where processes may have one-to-many and many-to-many relations at run-time. This paper shows how multiple coordination processes can be used in a decentralized fashion to more efficiently coordinate large, distributed process structures. The main challenge of using multiple coordination processes is to effectively realize the coordination responsibility of each coordination process. Key components of the solution are the subsidiary principle and the hierarchy of the relational process structure. Finally, an implementation of the coordination process concept based on microservices was developed, which allows for fast and concurrent enactment of multiple, decentralized coordination processes in large, distributed process structures

    Artifact-centric business process models in UML : specification and reasoning

    Get PDF
    Business processes are directly involved in the achievement of an organization's goals, and for this reason they should be performed in the best possible way. Modeling business processes can help to achieve this as, for instance, models can facilitate the communication between the people involved in the process, they provide a basis for process improvement and they can help perform process management. Processes can be modeled from many different perspectives. Traditional process modeling has followed the process-centric (or activity-centric) perspective, where the focus is on the sequencing of activities (i.e. the control flow), largely ignoring or underspecifying the data required by these tasks. In contrast, the artifact-centric (or data-centric) approach to process modeling focuses on defining the data required by the tasks and the details of the tasks themselves in terms of the changes they make to the data. The BALSA framework defines four dimensions which should be represented in any artifact-centric business process model: business artifacts, lifecycle, services (i.e. tasks) and associations. Using different types of models to represent these dimensions will result in distinct representations, whose differing characteristics (e.g. the degree of formality or understandability) will make them more appropriate for one purpose or another. Considering this, in the first part of this thesis we propose a framework, BAUML, for modeling business processes following an artifact-centric perspective. This framework is based on using a combination of UML and OCL models, and its goal is to have a final representation of the process which is both understandable and formal, to avoid ambiguities and errors. However, once a process model has been defined, it is important to ensure its quality. This will avoid the propagation of errors to the process's implementation. Although there are many different quality criteria, we focus on the semantic correctness of the model, answering questions such as "does it represent reality correctly?" or "are there any errors and contradictions in it?". Therefore, the second part of this thesis is concerned with finding a way to determine the semantic correctness of our BAUML models. We are interested in considering the BAUML model as a whole, including the meaning of the tasks. To do so, we first translate our models into a well-known framework, a DCDS (Data-centric Dynamic System) to which then modelchecking techniques can be applied. However, DCDSs have been defined theoretically and there is no tool that implements them. For this reason, we also created a prototype tool, AuRUS-BAUML, which is able to translate our BAUML models into logic and to reason on their semantic correctness using an existing tool, SVTe. The integration between AuRUS-BAUML and SVTe is transparent to the user. Logically, the thesis also presents the logic translation which is performed by the tool.Els processos de negoci estan directament relacionats amb els objectius de negoci, i per tant és important que aquests processos es duguin a terme de la millor manera possible. Optar per modelar-los pot ajudar a aconseguir-ho, ja que els models proporcionen nombrosos avantatges. Per exemple: faciliten la comunicació entre les parts involucrades en el procés, proporcionen una base a partir del qual millorar-lo, i poden ajudar a gestionar-lo. Els processos es poden modelar des de diferents perspectives. El modelat tradicional de processos s'ha basat molt en la perspectiva anomenada "process-centric" (centrada en processos) o "activity-centric" (centrada en activitats), que posa l'èmfasi en la seqüència d'activitats o tasques que s'han d'executar, ignorant en gran mesura les dades necessàries per dur a terme aquestes tasques. Per altra banda, la perspectiva "artifact-centric" (centrada en artefactes) o "data-centric" es basa en definir les dades que necessiten les tasques i els detalls de les tasques en si, representant els canvis que aquestes fan a les dades. El framework BALSA defineix quatre dimensions que haurien de representar-se en qualsevol model artifact-centric: els artefactes de negoci (business artifacts), els cicles de vida (lifecycles), els serveis (services) i les associacions (associations). Utilitzant diferents tipus de models per representar aquestes dimensions porta a obtenir diverses representacions amb característiques diferents. Aquesta varietat de característiques farà que els models resultants siguin més apropiats per un propòsit o per un altre. Considerant això, en la primera part d'aquesta tesi proposem un framework, BAUML, per modelar processos de negoci seguint una perspectiva artifact-centric. El framework es basa en utilitzar una combinació de models UML i OCL, i el seu objectiu és obtenir una representació final del procés que sigui a la vegada comprensible i formal, per tal d'evitar ambigüitats i errors. Un cop definit el procés, és important assegurar-ne la qualitat. Això evitarà la propagació d'errors a la implementació final del procés. Malgrat que hi ha molts criteris de qualitat diferents, ens centrarem en la correctesa semàntica del model, per respondre a preguntes com ara "representa la realitat correctament?" o "conté errors o contradiccions?". En conseqüència, la segona part d'aquesta tesi se centra en buscar una manera per determinar la correctesa semàntica d'un model BAUML. Ens interessa considerar el model com un tot, incloent el significat de les tasques (és a dir, el detall del que fan). Per aconseguir-ho, primer traduïm les tasques a un framework reconegut, DCDSs (Data-centric Dynamic Systems). Un cop obtingut, s'hi poden aplicar tècniques de model-checking per determinar si compleix certes propietats. Malauradament, els DCDSs s'han definit a nivell teòric i no hi ha cap eina que els implementi. Per aquest motiu, hem creat un prototip d'eina, AuRUS-BAUML, que és capaç de traduir els nostres models BAUML a lògica i aplicar-hi tècniques de raonament per determinar-ne la correctesa semàntica. Per la part de raonament, l'AuRUS-BAUML fa servir una eina existent, l'SVTe. La integració entre l'AuRUS-BAUML i l'SVTe és transparent de cara a l'usuari. Lògicament, la tesi també presenta la traducció a lògica que porta a terme l'eina.Postprint (published version
    corecore