
Specifying Artifact-Centric Business Process
Models in UML: Technical Report

Montserrat Estañol1, Anna Queralt2, Maria-Ribera Sancho1,2, and Ernest
Teniente1

1 Universitat Politècnica de Catalunya, Barcelona, Spain
estanyol|ribera|teniente@essi.upc.edu,

2 Barcelona Supercomputing Center, Barcelona, Spain
anna.queralt@bsc.es

Abstract. In recent years, the artifact-centric approach to process mod-
eling has attracted a lot of attention. One of the research lines in this area
is finding a suitable way to represent the dimensions in this approach.
Bearing this in mind, this paper proposes a way to specify artifact-centric
business process models by means of well-known UML diagrams, from a
high-level of abstraction and with a technology-independent perspective.
UML is a graphical language, widely used and with a precise semantics.

Key words: Business Artifacts, BALSA Framework, UML, Business
Process Modeling

1 Introduction

Business process modeling (BPM) is one of the most critical tasks in the busi-
ness’s definition, as business processes are directly involved in the achievement
of an organization’s goals, and thus they are key to its success. When modeling
business processes, it is important that the final models are understandable by
the people involved in them. Moreover, they should be formal and precise enough
in order to be able to automatically check their correctness at definition time,
thus preventing the occurrence of errors when the business is deployed.

Traditionally, business processes have been modeled following a process-
centric approach, which focuses on the activities or tasks in the process, un-
dermining the data needed to carry them out. In contrast, in the artifact-centric
approach the data required by the processes plays a key role in their definition.
In particular, business artifacts model key business-relevant entities which are
updated by a set of services that implement the business process tasks.

In addition to business artifacts, an artifact-centric approach to process mod-
eling should include a way to specify the lifecycle of the artifacts, i.e. the rele-
vant stages in their evolution; their associations, i.e. the conditions under which
changes are made to the artifacts and the services that are in charge of evolv-
ing them. By using different models and constructs in each of these dimensions,
one can obtain different process models with diverse characteristics. One of the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41779461?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
estanyol | ribera | teniente @essi.upc.edu
anna.queralt@bsc.es


2 Montserrat Estañol et al.

research lines in this area is focused on finding a suitable way of representing
these dimensions.

The artifact-centric approach has great intuitive appeal to business man-
agers and developers [1] and it has been successfully applied in practice [2]. An
additional advantage of this approach over the process-centric one is that the
presence of data in the models facilitates performing automated reasoning on
them. That is, it is possible to define formally what each task does and to assess
whether the models are correct considering the meaning of the tasks and the
requirements of the business.

Following these ideas, we propose to specify artifact-centric business process
models by means of well-known UML diagrams, from a high-level of abstraction
and with a technology-independent perspective. UML is a graphical language,
widely used and with a precise semantics. Therefore, it may be understandable
by people involved in the business process, both from the business and from the
system development perspectives. UML provides also extensibility mechanisms
that permit more flexibility without losing its formality. These characteristics
are important requirements in artifact-centric process modeling [3].

Generally, UML diagrams make use of some textual notation to precisely
specify those aspects that cannot be graphically represented. We will use the
OCL (Object Constraint Language) for that purpose.

The choice of using UML diagrams does not necessarily restrict our approach
to this language since alternative diagrams or languages could be used for model-
ing some of the dimensions, provided that they allow specifying all the features
required on it. We have chosen UML for the advantages just mentioned and
because it intuitively maps to the dimensions.

Currently, several alternatives have been proposed to model artifact-centric
business processes, such as Guard-Stage-Milestone (GSM) models [4, 5, 6],
BPMN with data [7] or PHILharmonic Flows [8], to mention a few examples.
However, as we will see, these approaches either do not use the same language to
represent all the dimensions or the chosen representation is not graphical - it is
often based on some variant of logic - making the models difficult to understand.
The use of natural language in some of the proposals may lead to ambiguities
and errors.

Our approach allows also automated reasoning from the business process
models (as shown on [9, 10]), while most of the existing proposals that han-
dle reasoning are based on models which use languages grounded on complex
mathematical notations [11, 12, 13] which are not practical at the business level.

The work we present in this paper extends our work in [14, 15] by presenting
a detailed methodology to model business processes from an artifact-centric per-
spective. We illustrate this methodology by means of a complex example, taken
from [16], which requires handling multiple business artifacts interacting together
(and not only single-artifact systems as considered in our previous work). We
also outline the different alternative diagrams that might be used for modeling
each dimension and provide a more detailed comparison with related work.



Specifying Artifact-Centric Business Process Models in UML 3

2 Our Approach to Artifact-centric Process Modeling

The artifact-centric approach to business process modeling provides four explicit,
inter-related but separable, dimensions in the specification of the business pro-
cess, as described in the BALSA framework [1]: Business Artifacts, Lifecycles,
Associations and Services. We summarize here the most relevant characteristics
of each dimension:

– Business artifacts represent the data required by the business and whose
evolution we wish to track. Each artifact has an identifier and may be related
to other artifacts, as represented by the associations among them.

– The lifecycle of a business artifact states the relevant stages in the evolution of
the artifact, from the moment it is created until it is destroyed. Each business
artifact is going to have a lifecycle.

– Associations establish the conditions under which the activities of the busi-
ness process should be executed. That is, they determine the execution order
of the services to allow the artifact to perform a transition from one stage of
its lifecycle to another.

– Services, or tasks, represent atomic units of work and they are in charge
of creating, updating and deleting the business artifacts. They correspond
to the atomic acitivites of the associations, i.e. those which are not further
decomposed.

Apart from business artifacts, businesses may also need to store data that
does not really evolve. We will refer to this data as objects.

The modeling approach we propose here is based on representing the BALSA
dimensions using UML and OCL: UML class diagrams for business artifacts;
UML state machine diagrams for lifecycles; UML activity diagrams for associa-
tions, and OCL operation contracts for services. However, this choice does not
restrict our approach to this subset of diagrams since, as we shall see, other
alternatives may be used provided that they follow the methodology described.
We call our approach BAUML (BALSA UML, for short).

Figure 1 shows the dimensions in the BALSA framework and their represen-
tation in the BAUML approach. Roughly, our methodology behaves as follows.
Business artifacts correspond to some of the classes in the class diagram. For
each artifact, a state machine diagram is defined stating its lifecycle. Then, each
transition of the state machine diagram is further specified by means of an ac-
tivity diagram determining the associations of the artifact. Finally, the behavior
of the atomic activities from each activity diagram is precisely defined through
an operation contract.

The remainder of this section presents in more detail our methodology for
artifact-centric business process modeling using the BAUML approach. We also
describe the components of the different diagrams and how they relate to the
other diagrams.



4 Montserrat Estañol et al.

Class Diagram

(Artifacts)

State Mach. Diag.

(Lifecycles)

Operation Contracts

(Services)

Activity Diagram

(Associations)

Fig. 1. Representation of the BALSA dimensions in our approach, adapted from [1]
.

2.1 Business Artifacts as a Class Diagram

The class diagram will have a set of classes and associations representing the data
and their relationships as required by the business process. Some of the classes,
those with an important dynamic behavior, will represent business artifacts. An
artifact must necessarily be the top class of a hierarchy whose leaves are dynamic
subclasses so that the artifact can change its type from one subclass to another.

Each subclass represents one of the specific states in the evolution of the
artifact. They must fulfill the disjointness constraint (since an artifact cannot be
in two states at the same time), but they can fulfill the completeness constraint
(i.e. the artifact must have any of its subtypes) or not. If the artifact has a
multi-level hierarchy, these rules apply to all the levels.

The advantage of using a hierarchy of subclasses to represent the potential
states of an artifact is that it is possible to represent the attributes and relation-
ships that are needed in each of the possible states while keeping the artifact’s
original identifier and the relationships that are common to all states (or several
substates).

UML class diagrams can represent, in a graphical way, the classes with their
corresponding attributes, the relationships between those classes, and integrity
constraints. Artifacts will have stereotype «artifact» in their corresponding
class. We will refer to the classes that do not correspond to business artifacts as
objects.

Integrity constraints correspond to restrictions over the classes, the at-
tributes, or the relationships between them. Those integrity constraints that
cannot be represented graphically in the class diagram should be described in
OCL to ensure their formality. However, they could also be specified using nat-
ural language for easier readability.

Alternative representations to the class diagram could be an ER or an ORM
diagram. Both diagrams also allow defining the artifacts, the objects and their
relationships in a graphical way.



Specifying Artifact-Centric Business Process Models in UML 5

2.2 Lifecycles as State Machine Diagrams

Each artifact in the class diagram will have a state machine diagram. This state
machine diagram will have a set of states, a set of events, a set of effects and a
set of transitions between pairs of states.

The states in the state machine diagram will correspond to the subclasses
of the artifact if the hierarchy is complete. If it is incomplete, then the state
machine diagram will have another state for the superclass. In this context, this
state will represent an artifact that does not have any of the subtypes of the
superclass. These rules apply to any multi-level hierarchy in the artifact.

The state machine diagram will also show the allowed transitions between
states. Finally, we also define the initial states as a subset of the states which act
as a target state for the initial transitions. Those initial transitions will always
result in the creation of a new artifact instance.

Each transition will have a source state and a target state. Moreover, it
may also have an OCL condition over the class diagram, an event and a tag
representing the result from the execution of the event. We differentiate between
three types of transitions (the elements inside parenthesis are optional):

– ([OCL]) ExternalEvent ([tag])
– ([OCL]) TimeEvent (/ Effect)
– [OCL] (/ Effect)

The first transition type will take place when ExternalEvent takes place
and the OCL condition is true. If there is a tag, then the result of the execution
of ExternalEvent must coincide with tag for the transition to take place. The
second transition will take place when there is a TimeEvent and the OCL condi-
tion is true. If there is an Effect, the changes specified by it will also be made.
Finally, the last transition type is similar to the second excepting the occurrence
of a time event. These transition types cover the types of transitions allowed
in the UML 2.4.1 specification that are significant at the specification level, as
explained in [17].

An ExternalEvent will have as input parameters the artifacts in whose tran-
sitions it appears or the identifiers of those artifacts. The execution of these
events and their respective tags (if any) will be defined in an activity diagram.
Effects correspond to atomic tasks that have as input parameters the artifacts
involved in the transition.

OCL is an OCL expression which starts from self or
Class.allInstances()->... where Class is any of the classes in the
class diagram. A TimeEvent represents an occurrence of time. We distin-
guish between relative and absolute time expressions. An absolute expression
has the form at(time_expression); a relative expression has the form
after(time_expression).

Notice that this state machine diagram does not follow exactly the UML
standard described in [18]. This is due to the fact that it has tags, which we use
to determine whether the event ends successfully or not. In traditional UML state
machine diagrams, events are atomic and there is no need for such conditions.



6 Montserrat Estañol et al.

In addition, we also allow more than one outgoing transition from the initial
node. This is useful when the artifact can be created in different ways. Alter-
natively, this situation could be represented using one outgoing transition from
the initial node, leading to a state called InitialState. From this state, we could
have the outgoing transitions that start from the initial node and leave the rest
of the state machine diagram as it is. However, representing the lifecycles in this
way does not contribute any relevant information and adds complexity to the
final diagram.

Although we use a variant of UML state machines, any other notation based
on state machines would be useful to represent the lifecycles of the artifacts.

2.3 Associations as Activity Diagrams

For every ExternalEvent in a state machine diagram, there will exist exactly
one activity diagram. An activity diagram will have a set of nodes and a set of
transitions between those nodes. More specifically, the activity diagram will have
exactly one initial node and one or several final nodes. Transitions will determine
the change from one node to the next. Apart from a source node and a target
node, transitions may also have a guard condition and a tag. The tag will
determine the correct or incorrect execution of the activity diagram, and will
connect it to the right transition in the state machine diagram.

We distinguish between the following node types:

– Initial Node: Point where the activity diagram begins
– Final Node: Point where the flow of the activity diagram ends.
– Gateway Node: Gateway nodes are used to control the execution flow. We

distinguish between decision nodes,merge nodes, inclusive-or nodes, fork nodes
and join nodes.

– Activity: An activity represents work that is carried out. We differentiate
three types of activities. A task corresponds to a unit of work with an asso-
ciated operation contract. The operation contract will have a precondition,
stating the conditions that must be true for the task to execute, and a post-
condition, indicating the state of the system after the task’s execution. Both
are formalized using OCL queries over the class diagram. Material actions cor-
respond to physical work which is carried out in the process but that does not
alter the system. Finally, a subprocess represents a “call” to another activity
diagram, and as such may include several tasks and material actions.

We assume the following: decision nodes and fork nodes have one incoming
flow and more than one outgoing flow; merge nodes and join nodes have several
incoming flows and exactly one outgoing flow; activities have one incoming flow
and one outgoing flow; initial flows have no incoming and one outgoing flow; and
final nodes may have several incoming flows but no outgoing flow.

Guard conditions are only allowed over transitions which have a decision or
an inclusive-or node as their source. The guard condition may refer to either:

– The result of the previous task



Specifying Artifact-Centric Business Process Models in UML 7

– An OCL condition over the class diagram
– A user-made decision

On the other hand, tags are only allowed over those transitions that have as
target a final node.

During the execution of the activity diagram we assume that the constraints
established by the class diagram may be violated. However, at the end of the
execution they must be fulfilled, otherwise the transition does not take place and
the changes are rolled back.

Finally, activity diagrams may also represent the main artifact involved in
each of the tasks and its participants (i.e. the role of the person who carries
out a particular activity) using swimlanes and notes, respectively as described
in [14, 15]. However, for easier readability of the diagrams we do not show them
in this paper.

Although we adopt the UML activity diagrams to represent the associations,
they could also be represented using other notations (as long as they follow the
semantics) such as BPMN or DFDs. BPMN is probably the language that is
most used to represent business process models, and as such it offers a great
variety of syntactic sugar for the basic node types described above. Data-Flow
diagrams (DFD) are also another alternative, as they show the task and the
inputs and outputs of data required and generated by them.

2.4 Tasks (Services) as Operation Contracts

As we have mentioned, each of the tasks in the activity diagrams will have an
associated operation contract. The same applies to effects in the state machine
diagrams. The contract will have a set of input parameters, a precondition, a
postcondition and may have an output parameter. The input and output pa-
rameters may be classes or simple types (e.g. strings, integers). If several tasks
belong to the same activity diagram and their input parameters have the same
names, we assume that their value does not change from one task to the next.

The task can only be executed when the precondition is met, and the post-
condition specifies the state of the system after the execution of the operation.
We also assume a strict interpretation of operation contracts to avoid redundan-
cies [19]. Those classes that do not appear in the postcondition keep their state
from before its execution.

We choose OCL to represent the operation contracts because it is a formal
language that avoids ambiguities, it integrates naturally with UML and is in-
dependent from the final implementation of the process. For easier readability,
they could be specified in natural language, although we do not recommend it
because it is prone to ambiguities and errors.

3 Running Example

Our running example is based on the backend process of a CD online shop,
extracted from [16] and remodeled following our approach. The shop splits cus-



8 Montserrat Estañol et al.

tomer requests into different orders to the CD suppliers. The difficulty in this
example lies in the representation of the relationship and the interaction between
two different business artifacts: the quote requests made by the customers and
the orders into which a quote request may be split (which in turn may involve
several quote requests).

In particular, this shop keeps no stock of items, rather, the store obtains the
CDs from its supplier after a customer request. The customer places a quote
request for one or more CDs. Then the CD shop calculates the price of the
order and informs the customer. If the customer accepts the quoted price, then
the shop orders the CD to its suppliers, grouping in a single order to a supplier
several quote requests. When the company receives the orders from the suppliers,
they are then regrouped into the orders for the customers. The CD shop keeps
track of the evolution of the quote requests from the customers and the orders
the company makes to its suppliers.

3.1 Class Diagram

Figure 2 shows the class diagram for our example. There are two business ar-
tifacts: QuoteRequest and Order, as shown by the stereotypes. The rest of the
classes in the diagram, such as Supplier, Customer or CD represent objects:
relevant information for the business but whose evolution we do not track. Each
artifact has its own identifier, in this case, for both QuoteRequest and Order the
identifier is id. The rest of classes in the diagram may also have their identifiers,
for instance, a CD is identified by both its name and author. Each artifact and
object has as many attributes and relationships as relevant for the business1.

Artifact Order is the simpler of the two. It has three different subclasses:
OpenOrder, ClosedOrder and ReceivedOrder which contain the relevant in-
formation for that particular state of the artifact. An OpenOrder is waiting to
be sent to the supplier and additional QuoteRequests can be assigned to it. A
ClosedOrder has already been sent to the supplier. Finally, an Order changes
its state to ReceivedOrder when it has been received at the shop.

On the other hand, artifact QuoteRequest has a first level of sub-
classes which are PendingPriceQR, PendingConfirmationQR, AcceptedQR and
RejectedQR. A PendingPriceQR is waiting for the shop to quote the price. A
PendingConfirmationQR has already a price and is waiting for the customer’s
acceptance or rejection. An AcceptedQR has already been accepted by the cus-
tomer. In contrast, RejectedQR has been rejected.

AcceptedQR has one subclass: OrderedToSuppQR. Notice that the hierarchy
is incomplete. An OrderedToSuppQR has already been split into several Orders
that will eventually be processed and sent to the suppliers. At the same time,
OrderedToSuppQR has two subclasses: ProcessedQR and ClosedQR, and the hi-
erarchy is incomplete. Like in the previous case, an OrderedToSuppQR may not
1 Notice that we have not included the attribute types in the class diagram. This
helps keeping it more compact. The types can be inferred from the OCL operation
contracts.



Specifying Artifact-Centric Business Process Models in UML 9

 name
 author

CD

 id
 sentDate

<<artifact>>
QuoteRequest  id

 name
 address

Customer

 name

Supplier

 id
 creationDate

<<artifact>>
Order

 date
 finalPrice

AcceptedQR

 date

OrderedToSuppQR

 quantity

RequestedCD

 date
 reason

RejectedQR

 deliveredOn

ClosedQR date
 expectedDelivery

ClosedOrder

 date
 expectedReception
 trackingNr

ProcessedQR date

ReceivedOrder

 finalPrice

PendingConfirmationQR

 deadline

PendingPriceQR

 lastUpdate

OpenOrder

 notificationDate

UnavailableCD

*1

supplies

1..*

0..1*

1

1..* 1..*

*1..*
* 1

/includes

{incomplete}

quote state {disjoint, complete}

{disjoint, complete} order state

orderedToSupp state {disjoint, incomplete}

{incomplete}< is divided into

requested at

< makes

< includes

          

1. Identifiers: (QuoteRequest, id), (Customer, id), (CD, name+author), (Supplier,
name), (Order, id)

2. A ProcessedQR may not have more than one Order for the same Supplier.
3. Derived Relationship includes: A RequestedCD will be related to an Order if the
QuoteRequest of the RequestedCD is linked to an Order requested at its CD Supplier.

4. There can only be at most one OpenOrder per Supplier.
5. The Orders into which a ProcessedQR is divided must be to Suppliers who provide the
CDs included in the ProcessedQR.

6. The sentDate of a QuoteRequest must be earlier than attribute date in any of the
subclasses of QuoteRequest.

7. QuoteRequest.sentDate < PendingPriceQR.deadline
8. AcceptedQR.date ≤ OrderedToSuppQR.date
9. OrderedToSuppQR.date ≤ ProcessedQR.date
10. ProcessedQR.date ≤ ClosedQR.deliveredOn
11. The creation date of Order must be earlier or equal to attribute date in any of its

subclasses.
12. Order.creationDate ≤ OpenOrder.lastUpdate

Fig. 2. Class diagram showing the business artifacts as classes with the corresponding
integrity constraints

have any of the subtypes. ProcessedQR represents a quote request that has al-
ready been sent to the customer, and a ClosedQR corresponds to a quote request
that has already been received by him or her.

Notice the case of class RequestedCD. It is an association class that results
from the reification of the relationship between CD and QuoteRequest, which
allows us to record additional information about the relationship between two or
more classes. In this case, RequestedCD is identified by CD and QuoteRequest.
That is, association classes are identified by the classes that partake in the
relationship.

3.2 State Machine Diagrams

Figures 3 and 4 show the state machine diagrams that correspond to the business
artifacts in this example: Order and QuoteRequest. We will begin by looking
at the state machine diagram for Order, which is simpler. In this case, there



10 Montserrat Estañol et al.

ClosedOrder ReceivedOrderOpenOrder Send to Supplier Receive Order [success]New Order

 

    

  

    

   

          

Fig. 3. State machine diagram for artifact Order.

is a single-level hierarchy in the class diagram with restrictions disjoint and
complete, therefore the states exactly map to the subclasses in the class diagram.
An Order is created when there is a request to create a new order, as shown by
event New Order. This order remains in state OpenOrder until someone decides
that the order can be made to supplier, by executing event Send to Supplier.
Then the order becomes a ClosedOrder and no more AcceptedQRs can be linked
to it. Finally, once the order is received, if event Receive Order executes suc-
cessfully, as indicated by tag success, it changes its state to ReceivedOrder.

ClosedQR ProcessedQR OrderedToSuppQR

RejectedQR AcceptedQR

PendingConfirmationQRPendingPriceQR

at (self.deadline) / Autoreject QR

     

Close QR [All orders received] Send Items

Create Supplier Order

Make Decision [failure]
Make Decision [success]

Calculate PriceNew Quote Request

          

Fig. 4. State machine diagram for artifact QuoteRequest.

On the other hand, artifact QuoteRequest has a more complex state machine
diagram. First of all, it has a multi-level hierarchy. More specifically, it has three
different levels. The first level has constraints disjoint and complete, but the
second and third levels are incomplete. In the first-level hierarchy, the states
are: PendingPriceQR, PendingConfirmationQR, RejectedQR and AcceptedQR.
Although AcceptedQR has two subclasses, it is included because the hierarchy is
incomplete, and therefore, there can exist an AcceptedQR which has no subtypes.

When a customer wishes to make a quote request, New Quote Request
event executes and creates a QuoteRequest in state PendingPriceQR. This
PendingPriceQR has an attribute, deadline, which establishes the last day in
which the customer is wishing to wait for a price. If this deadline is not met,
then the PendingPriceQR is automatically rejected and changes its state to
RejectedQR. Notice that at(self.deadline) is a time event, which results in
the execution of effect Autoreject QR.

On the other hand, if the price for the request is established on time, it
changes its state to PendingConfirmationQR, as now the quote request is waiting
for the customer to decide whether he accepts the price or not. In both cases,
event Make Decision executes, and depending on the outcome of this event,



Specifying Artifact-Centric Business Process Models in UML 11

the quote request changes its state to AcceptedQR (condition success) or to
RejectedQR (condition failure). Eventually, an AcceptedQR will be processed
(event Create Supplier Order) and the requested CDs ordered to the supplier,
prompting a change of state to OrderedToSuppQR.

An OrderedToSuppQR will change state to ProcessedQR when it is sent to
the customer (event Send Items). Notice that this will only happen when the
condition2 is met: all the orders containing products in the quote request must
have been received. Finally, the quote request is closed (state ClosedQR) after
the customer receives the order, indicated by Close QR event.

3.3 Activity Diagrams

As we have explained previously, each external event in the state machine dia-
gram would have the corresponding activity diagram showing its details. Bearing
this in mind, for the state machine diagram of Order, we would have the fol-
lowing activity diagrams: New Order, Send to Supplier, Receive Order. For
the state machine diagram of QuoteRequest, we would have the following activ-
ity diagrams: New Quote Request, Calculate Price, Make Decision, Create
Supplier Order, Send Items, Close QR.

As there are many activity diagrams, we will focus on those that are more use-
ful to illustrate the characteristics of our approach. In particular, we will look at
the following diagrams: Create Supplier Order, Send Items, Make Decision.
The rest of diagrams can be found in the appendix at the end.

Create Supplier Order. Figure 5 depicts the activity diagram of Create
Supplier Order. It first starts the order creation process, and afterwards it
manages the assignment of the items in an AcceptedQR to the right Order. As
each CD is provided by one supplier, the activity diagram checks if there is
an OpenOrder for the given supplier. If there is not, it calls activity diagram
New Order. In any case, it obtains the OpenOrder and links it to the current
QuoteRequest. When there are no CDs left to process, the activity diagram
ends.

Notice that the node in charge of creating the new order is in fact a subprocess
and it is decomposed in another activity diagram, as indicated by the rake-
like symbol on the right-hand side of the node. In fact, this activity diagram
corresponds to event New Order in the state machine diagram of Order. In this
particular example, this is how the evolution of the two artifacts is related: when
linking the quote request to a supplier order, if there is no available order for
the required supplier, a new order is created.

Send Items. Figure 6 shows the activity diagram for event Send Items in the
state machine diagram of Quote Request. It represents the process of sending
the CDs, once they have been received from the supplier(s), to the customer.
2 Condition “All orders received” is defined in OCL as: self.order -> forAll(o |
o.oclIsTypeOf(ReceivedOrder))



12 Montserrat Estañol et al.

New Quote Request

Calculate Price

Make Decision

Create Supplier Order

Send Items

New Order

Send to Supplier

Receive Order

Close QR

Add CDCreate QuoteRequest

Evalute QR and
set price

Accept
QuoteRequest

Reject
QuoteRequest

Start Order Creation

<<material>>
Obtain Items from

Warehouse

<<material>>
Pack Items

<<material>>
Send Package Mark as Sent

Create New Order

Close
Order

<<material>>
Send to Supplier Register Expected Delivery

<<material>>
Check Order

<<material>>
Notify Supplier

Register Order as
Received

Add to Existing
Order

New
Order

Exists
OpenOrder

Close
QuoteRequest

[CDs left to process]

[no CDs left to process]

[false]

[true]

<<fail>>

<<succeed>>
[all items]

[missing items]

<<succeed>>

<<fail>>[reject]

[accept]

[more CDs to add]

[no more CDs to add]

Visual Paradigm for UML Community Edition [not for commercial use] 

Fig. 5. Activity diagram of Create Supplier Order.

First of all, the necessary items for the quote request are picked up from the
warehouse (Obtain Items from Warehouse). After this, they are packed up
and sent to the customer (Pack Items and Send Package). Once they have
been physically sent, the quote request is marked as sent. Notice that this event
is made up of three material actions and one task. The three actions represent
particular physical tasks that are carried out in the process but that do not
directly make changes to the system. The only task that makes changes to the
system is the last one, Mark as Sent.

New Quote Request

Calculate Price

Make Decision

Create Supplier Order

Send Items

New Order

Send to Supplier

Receive Order

Close QR

Add CDCreate QuoteRequest

Evalute QR and
set price

Accept
QuoteRequest

Reject
QuoteRequest

Start Order Creation

<<material>>
Obtain Items from

Warehouse

<<material>>
Pack Items

<<material>>
Send Package Mark as Sent

Create New Order

Close
Order

<<material>>
Send to Supplier Register Expected Delivery

<<material>>
Check Order

<<material>>
Notify Supplier

Register Order as
Received

Add to Existing
Order

New
Order

Exists
OpenOrder

Close
QuoteRequest

[CDs left to process]

[no CDs left to process]

[false]

[true]

<<fail>>

<<succeed>>
[all items]

[missing items]

<<succeed>>

<<fail>>[reject]

[accept]

[more CDs to add]

[no more CDs to add]

Visual Paradigm for UML Community Edition [not for commercial use] 

Fig. 6. Activity diagram of Send Items.

Make Decision. We include a final diagram in Figure 7 to illustrate the use
of stereotypes in the activity diagram and how they connect to the state ma-
chine diagram. The activity diagram corresponds to event Make Decision of
QuoteRequest. It basically represents the user’s decision to either accept the
quote request or to reject it. Depending on the user’s decision, either task Accept
QuoteRequest or task Reject QuoteRequest executes. The activity diagram
ends in stereotype succeed in the first case or fail in the second, which con-
nect directly with the event-dependent conditions in the state machine diagram
of QuoteRequest.

New Quote Request

Calculate Price

Make Decision

Create Supplier Order

Send Items

New Order

Send to Supplier

Receive Order

Close QR

Add CDCreate QuoteRequest

Evalute QR and
set price

Accept
QuoteRequest

Reject
QuoteRequest

Start Order Creation

<<material>>
Obtain Items from

Warehouse

<<material>>
Pack Items

<<material>>
Send Package Mark as Sent

Create New Order

Close
Order

<<material>>
Send to Supplier Register Expected Delivery

<<material>>
Check Order

<<material>>
Notify Supplier

Register Order as
Received

Add to Existing
Order

New
Order

Exists
OpenOrder

Close
QuoteRequest

[CDs left to process]

[no CDs left to process]

[false]

[true]

<<fail>>

<<succeed>>
[all items]

[missing items]

<<succeed>>

<<fail>>[reject]

[accept]

[more CDs to add]

[no more CDs to add]

Visual Paradigm for UML Community Edition [not for commercial use] 

Fig. 7. Activity diagram of Make Decision.



Specifying Artifact-Centric Business Process Models in UML 13

3.4 Operation Contracts

This section presents the OCL operation contracts of some of the tasks in our
example. In particular, it will focus on the tasks that belong to activity diagram
Make Decision and on the specification of the only effect that we have in the
state machine diagram of QuoteRequest: Autoreject QR.

Listing 1. Code for task AcceptQuoteRequest

action AcceptQuoteRequest(quoteID: Natural)
localPre: -
localPost:
let quote: QuoteRequest =

QuoteRequest.allInstances()->select(qr | qr.id=quoteID) in
quote.oclIsTypeOf(AcceptedQR) and not

(quote.oclIsTypeOf(PendingConfirmationQR)) and
quote.oclAsType(AcceptedQR).date=today() and
quote.oclAsType(AcceptedQR).finalPrice =
quote@pre.oclAsType(PendingConfirmationQR).finalPrice

Listing 1 shows the operation contract of service Accept QuoteRequest. It
has as input parameter the quoteID of the QuoteRequest that the customer
wishes to accept. Then the service changes the state of the QuoteRequest to
AcceptedQR and stores the final price and the date in which the QuoteRequest
has been accepted.

Listing 2. Code for task RejectQuoteRequest

action RejectQuoteRequest(quoteID: Natural, reason:String)
localPre: -
localPost:
let quote: QuoteRequest =

QuoteRequest.allInstances()->select(qr | qr.id=quoteID) in
quote.oclIsTypeOf(RejectedQR) and not

quote.oclIsTypeOf(PendingConfirmationQR)) and
quote.oclAsType(RejectedQR).date=today() and
quote.oclAsType(RejectedQR).reason=reason

Listing 2 shows the OCL code for Reject QuoteRequest. Given a quoteID
identifying a QuoteRequest and a reason for the rejection as input, it changes
the QuoteRequest to state RejectedQR, storing the date in which the decision
was made and the reason for the rejection (given as input).

Finally, we believe it is interesting to look at the specification of Autoreject
QR. Remember that this effect executes when time event at(self.deadline)
takes place, that is, when the deadline established by the customer is reached and
a PendingPriceQR has not changed its state because the shop has not established
a price.

Listing 3 shows the OCL code for the effect. It has as input the quote re-
quest which has reached the deadline, and the postcondition changes its state to
RejectedQR stating the reason for the change.



14 Montserrat Estañol et al.

Listing 3. Code for task AutorejectQR

action RejectQuoteRequest(quote: QuoteRequest)
localPre: -
localPost:
quote.oclIsTypeOf(RejectedQR) and not

(quote.oclIsTypeOf(PendingPriceQR)) and
quote.oclAsType(RejectedQR).date=today() and
quote.oclAsType(RejectedQR).reason=‘‘Deadline reached’’

4 Related Work

In this section we analyze different alternatives to represent business process
models. We first begin by examining process-centric approaches, and afterwards
we look at artifact-centric alternatives.

4.1 Process-centric Approaches

There are several languages available to represent business process models fol-
lowing a traditional, or process-centric, approach. One of the most well-known
is probably BPMN (Business Process Modeling Notation); however, there are
several others such as UML activity diagrams, Workflow nets or YAWL (Yet
Another Workflow Language) [20]. Although some of these languages have the
ability to represent the data needed in the flow, their focus is on the sequenc-
ing of the tasks that are carried out in the process. DFDs (data-flow diagrams)
would be one example of this. Although they place high importance on the data,
the focus is on how these data move in the process, from one task to next, and
little importance is given to their details or on the precise meaning of the tasks
[21].

Another well-known language is BPEL (Business Process Execution Lan-
guage). However, it is meant to be a web-service composition language following
XML notation, and our focus is on defining processes at a high level of abstrac-
tion.

There are some process-centric works that do take data into consideration.
For instance, [22] represents the associations between services in a WFD-net
(WorkFlow nets annotated with Data). The tasks are annotated with the data
that is created, read or written by the task. Similarly, [23] uses WSM nets which
represent both the control flow and the data flow, although the data flow is lim-
ited to read and write dependencies between activities and data. [24] represents
associations in an operational model, which shows tasks (or services) as nodes
connected using arrows or edges. The operational model also shows the transfer
of artifacts between tasks by indicating them over the edges. However, details of
artifacts are not shown.



Specifying Artifact-Centric Business Process Models in UML 15

4.2 Artifact-centric Approaches

After giving an overview of process-centric approaches, we will deal with works
that specify business processes from an artifact-centric perspective.To facilitate
the analysis, this subsection is structured according to the dimensions of the
BALSA framework for easier readability and comparison. At the end of the
subsection we include a table which summarizes our analysis.

Business Artifacts Business artifacts can be represented in several ways. Many
authors opt for a database schema [25, 11, 26, 27, 7], while others consider
artifacts as a set of attributes or variables [28, 12, 29, 3]. Another alternative is to
add an ontology represented by means of description logics on top of a relational
database [30]. Although some of these alternatives describe the artifacts in a
formal way, none of them represent the artifacts in a graphical way. This has
some disadvantages: the models are more difficult to understand, e.g. it is more
difficult to see how the artifacts relate to one another and to other objects.

There are also many works that represent artifacts in a graphical and formal
way. For instance, [4, 5, 6] represent the business artifact and its lifecycle in
one model, GSM, that includes the artifact’s attributes. However, the relation-
ships between artifacts are not made explicit. On the other hand, [31] represents
artifacts as state machine diagrams defined by Petri nets, but does not give de-
tails on how the attributes of an artifact are represented. Closer to a UML class
diagram is the Entity-Relationship model used in [32]. [16] uses a UML class
diagram. Both the ER diagram and the UML class diagram are graphical and
formal (or semi-formal) alternatives.

Finally, [8] defines its own framework, the PHILharmonicFlows, which uses
a diagram that falls in-between a UML diagram and a database schema repre-
sentation. Although it is a semi formal representation, it has the drawback of
not using any well-known languages.

Lifecycles The lifecycle of a business artifact may be implicitly represented by
using dynamic constraints in logic [25] or the tasks (or actions in the terminology
of the papers) that make changes to the artifacts [26, 27, 11, 30]. [7] derives the
artifact’s lifecycle from a BPMN model annotated with data.

In this context, however, we are interested in approaches that represent the
lifecycles explicitly. In many cases, such as [32], they are based on state machine
diagrams, as they show very clearly the states in the evolution of the artifact
and how each state is reached and under which conditions.

The GSM approach is a similar alternative to state machine diagrams, as it
also represents in a graphical way the stages in the evolution of an artifact and
the guard conditions, but adding the concept of milestone to them. A milestone
is a condition that, once it is fulfilled, it closes a state. Another difference with
state machine diagrams is that the sequencing of stages is determined by the
guard conditions and not by edges connecting the states, making it much less
straightforward than state machine diagrams. However, it is possible to use edges
as a macro. GSM was first defined in [4] and further studied and formalized in
[5, 6].



16 Montserrat Estañol et al.

Another alternative to represent lifecycles is to use variants of Petri nets
[16, 31, 33]. These representations are both graphical and formal. [8], within the
PHILharmonicsFlows framework, uses a micro process to represent the evolution
of an artifact and its states, which results in a graphical representation similar
to GSM, without its strong formality.

Finally, some works opt for using a variable to store the artifact’s state [12,
28]. Although it is an explicit representation, it only stores the current state of
the artifact, instead of showing how it will evolve from one stage to the next.
Therefore, it is a poorer form of representation in contrast to state machine
diagrams, variants of Petri nets or GSM.

Associations In general, the different ways of representing associations can be
classified on whether they represent them graphically or not. Many non-graphical
alternatives are based on variants on condition-action rules. These alternatives
have one main disadvantage over graphical ones: in order to know the order in
which the tasks can execute, it will be necessary to carefully examine the rules.
In contrast, graphical alternatives are easier to understand at a glance.

For instance, [25, 11, 27, 30] use a set of condition-action rules defined in logic.
In [12], preconditions determine the execution of the actions; as such, they act
as associations. As they are defined in logic, they are formal and unambiguous.

Likewise, [32] uses event-condition-action rules, but they are defined in nat-
ural language. Using natural language makes them easier to understand than
those defined in logic, but they have a severe drawback: they are not formal and
because of this they may have ambiguities and errors.

Alternatively, [16] uses channels to define the connections between proclets.
A proclet is a labeled Petri net with ports that describes the internal lifecycle of
an artifact. On the other hand, DecSerFlow allows specifying restrictions on the
sequencing of tasks, and it is used in [33]. It is a language grounded on temporal
logic but also includes a graphical representation.

When it comes to graphical representations, [8] uses micro and macro pro-
cesses to represent the associations between the services. [7] uses a BPMN di-
agram to represent the associations between the tasks. In this sense, it is very
similar to our proposal to use UML activity diagrams. All these approaches are
graphical and formal.

In contrast, [3, 2] opt for a graphical representation using flowcharts and,
because of this, the resulting models can be easily understood. However, they
do not use any particular language to define the flow and they do not define the
semantics of flowchart.

Services Services are also referred to as tasks or actions in the literature. In
general, they are described by using pre and postconditions (also called effects).
Different variants of logic are used in [25, 11, 12, 28, 29, 26, 30] for this purpose.
[27, 5] omit the preconditions. The use of logic implies that the definition of
services is precise, formal and unambiguous, but it is hardly understandable by
the people involved in the business process.



Specifying Artifact-Centric Business Process Models in UML 17

Conversely, [32] uses natural language to specify pre and postconditions. In
contrast to logic, natural language is easy to understand, but it is an informal
description of services: this implies that the service definition may be ambiguous
and error-prone.

Finally, [7] expresses the preconditions and postconditions of services by
means of data objects associated to the services. These data objects are an-
notated with additional information such as what is read or written. [8] defines
“micro steps” in the stages of their model which correspond to attributes that
are modified. Neither of this two proposals are as powerful as using logic nor
OCL operation contracts.

Table 1. Overview of alternative representations of data-centric process models. P.F
stands for PHILharmonicFlows

Approach Graphical? Formal?

A
rt

if
ac

ts

DB Schemas [25, 27, 26, 11, 7] X
Attributes [12, 28, 29, 3]
Ontology [30] X
ER Model [32] X X

UML Class Diagram [16] X X
Data diagr. (P.F.) [8] X X
GSM’s attributes [4, 5, 6] X

Petri-Nets [31] X X

L
if
ec

yc
le

State Machine [32] X X
Variants of Petri-Nets [33, 16, 31] X X

GSM [4, 5, 6] X X
Micro proc. (P.F.) [8] X X

Variable [12, 28]

A
ss

oc
ia

ti
on

s

CA Rules - Logic [25, 11, 27, 30] X
Preconditions [12] X

ECA Rul. - Nat. L. [32]
DecSerFlow [33] X X

Channels (Proclets) [16] X X
Micro/macro proc. (P.F.) [8] X X

BPMN [7] X X
Flowcharts [3, 2] X

S
er

v.

Pre / Post. in Logic [25, 12, 28, 29, 26, 30, 11, 27, 5] X
Natural Language [32]
Micro steps (P.F.) [8] X X

Data Objects [7] X

Summary To conclude this section, Table 1 shows a summary of the artifact-
centric approaches. As the table shows, none of the analyzed approaches uses
the same language to represent all these dimensions in artifact-centric business



18 Montserrat Estañol et al.

processes. In many cases, the chosen system of representation is not graphical,
which makes the models more difficult to understand. To complicate matters
further, in many instances the language that is used is grounded on logic. Al-
though formal, it is not understandable by business people. Natural language,
on the other hand, is not a good option either: it can be easily understood, but
it may lead to ambiguities and errors.

5 Conclusions

In this paper we have presented a methodology to model business process models
from an artifact-centric perspective. To do so we have used the BALSA frame-
work as a basis, proposing a different model for each dimension in the framework.
As we have seen, the artifact-centric approach to business process modeling con-
siders the data needed by the process, and because of this, it is possible to define
formally the meaning of the tasks in the process.

To represent the diagrams in the example we have opted for a combination of
models using the UML and OCL languages, because they integrate naturally and
they give an homogeneous view (as it uses the same language) for the business.
These languages can be understood by domain experts and they provide a high
level of abstraction. Another advantage of using these combination of models is
that, as we have shown in previous work [9], it is possible to perform semantic
reasoning on the models to ensure that they fulfill the user requirements.

However, as long as the semantics of our models are respected, other alter-
natives are viable, with the same results, as we have outlined in this paper.
Moreover, it is also possible to establish restrictions over these models to ensure
that the verification that can be performed on them is decidable [10].

We have illustrated our approach by means of an example based on a CD
online shop. This complexity in this example lies in the fact that there is a
many-to-many relationship between the two artifacts in the model.

As further work, we would like to create a tool that given these set of models,
is able to automatically check their correctness. In addition, it would also be
interesting to carry out user-defined tests for those requirements that cannot be
directly inferred from the model.

Acknowledgements

This work has been partially supported by the Ministerio de Ciencia e Innovación
under project TIN2011-24747 and by Universitat Politècnica de Catalunya.

References

1. Hull, R.: Artifact-centric business process models: Brief survey of research results
and challenges. In Meersman, R., Tari, Z., eds.: OTM 2008. Volume 5332 of LNCS.
Springer Berlin / Heidelberg (2008) 1152–1163



Specifying Artifact-Centric Business Process Models in UML 19

2. Bhattacharya, K., Caswell, N.S., Kumaran, S., Nigam, A., Wu, F.Y.: Artifact-
centered operational modeling: lessons from customer engagements. IBM Syst. J.
46(4) (October 2007) 703–721

3. Nigam, A., Caswell, N.S.: Business artifacts: an approach to operational specifica-
tion. IBM Syst. J. 42(3) (2003) 428–445

4. Hull, R., et al.: Introducing the Guard-Stage-Milestone Approach for Specifying
Business Entity Lifecycles. In Bravetti, M., Bultan, T., eds.: WS-FM 2010. Volume
6551 of LNCS. (2011) 1–24

5. Damaggio, E., Hull, R., Vaculín, R.: On the equivalence of incremental and fix-
point semantics for business artifacts with Guard – Stage – Milestone lifecycles.
Information Systems 38(4) (2013) 561 – 584 Special section on BPM 2011 confer-
ence.

6. Hull, R., et al.: Business artifacts with guard-stage-milestone lifecycles: managing
artifact interactions with conditions and events. In Eyers, D.M., Etzion, O., Gal,
A., Zdonik, S.B., Vincent, P., eds.: DEBS, ACM (2011) 51–62

7. Meyer, A., Pufahl, L., Fahland, D., Weske, M.: Modeling and enacting complex
data dependencies in business processes. In Daniel, F., Wang, J., Weber, B., eds.:
Business Process Management - 11th International Conference, BPM 2013, Bei-
jing, China, August 26-30, 2013. Proceedings. Volume 8094 of Lecture Notes in
Computer Science., Springer (2013) 171–186

8. Künzle, V., Reichert, M.: Philharmonicflows: towards a framework for object-aware
process management. Journal of Software Maintenance 23(4) (2011) 205–244

9. Estañol, M., Sancho, M., Teniente, E.: Reasoning on UML data-centric business
process models. In Basu, S., Pautasso, C., Zhang, L., Fu, X., eds.: Service-Oriented
Computing - 11th International Conference, ICSOC 2013, Berlin, Germany, De-
cember 2-5, 2013, Proceedings. Volume 8274 of Lecture Notes in Computer Sci-
ence., Springer (2013) 437–445

10. Calvanese, D., Montali, M., Estañol, M., Teniente, E.: Verifiable UML artifact-
centric business process models. In Li, J., Wang, X.S., Garofalakis, M.N., Soboroff,
I., Suel, T., Wang, M., eds.: CIKM 2014, ACM (2014) 1289–1298

11. Bagheri Hariri, B., et al.: Verification of relational data-centric dynamic systems
with external services. In: PODS, ACM (2013) 163–174

12. Damaggio, E., Deutsch, A., Vianu, V.: Artifact systems with data dependencies
and arithmetic. ACM Trans. Database Syst. 37(3) (2012) 22

13. Gerede, C.E., Su, J.: Specification and verification of artifact behaviors in business
process models. In Krämer, B.J., Lin, K.J., Narasimhan, P., eds.: ICSOC 2007.
Volume 4749 of LNCS., Springer (2007) 181–192

14. Estañol, M., Queralt, A., Sancho, M.R., Teniente, E.: Artifact-centric business pro-
cess models in UML. In La Rosa, M., Soffer, P., eds.: Business Process Management
Workshops 2012. Volume 132 of LNBIP., Springer (2013) 292–303

15. Estañol, M., Queralt, A., Sancho, M.R., Teniente, E.: Using UML to spec-
ify artifact-centric business process models. In: BMSD 2014 : Proceedings of
the Fourth International Symposium on Business Modeling and Software Design,
SciTePress (2014) 84–93

16. Fahland, D., Leoni, M.D., van Dongen, B.F., van der Aalst, W.M.P.: Behavioral
conformance of artifact-centric process models. In Abramowicz, W., ed.: BIS 2011.
Volume 87 of LNBIP., Springer (2011) 37–49

17. Olivé, A.: Conceptual Modeling of Information Systems. Springer, Berlin (2007)
18. ISO: ISO/IEC 19505-2:2012 - OMG UML superstructure 2.4.1 (2012) Available

at: http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.
htm?csnumber=52854.

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=52854
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=52854


20 Montserrat Estañol et al.

19. Queralt, A., Teniente, E.: Specifying the semantics of operation contracts in con-
ceptual modeling. In: Journal on Data Semantics VII. Volume 4244 of LNCS.
Springer Berlin / Heidelberg (2006) 33–56

20. Weske, M.: Business Process Management: Concepts, Languages, Architectures.
Springer, Berlin Heidelberg (2007)

21. Yourdon, E.: Just enough structured analysis (2006) Available at: http://www.
yourdon.com/jesa/pdf/JESA_p.pdf.

22. Trcka, N., Aalst, W.M.P.V.D., Sidorova, N.: Data-Flow Anti-patterns : Discovering
Data-Flow Errors in Workflows. In van Eck, P., Gordijn, J., Wieringa, R., eds.:
CAiSE 2009. Volume 5565 of LNCS. (2009) 425–439

23. Ly, L.T., Rinderle, S., Dadam, P.: Semantic Correctness in Adaptive Process
Management Systems. In Dustdar, S., Fiadeiro, J., Sheth, A., eds.: BPM 2006.
Volume 4102 of LNCS., LNCS (2006) 193–208

24. Liu, R., Bhattacharya, K., Wu, F.Y.: Modeling Business Contexture and Behavior
Using Business Artifacts. In Krogstie, J., Opdahl, A., Sindre, G., eds.: CAiSE
2007. Volume 4495 of LNCS., Springer (2007) 324–339

25. Bagheri Hariri, B., Calvanese, D., De Giacomo, G., De Masellis, R., Felli, P.: Foun-
dations of relational artifacts verification. In Rinderle-Ma, S., Toumani, F., Wolf,
K., eds.: BPM 2011. Volume 6896 of LNCS., Springer (2011) 379–395

26. Belardinelli, F., Lomuscio, A., Patrizi, F.: Verification of deployed artifact systems
via data abstraction. In Kappel, G., Maamar, Z., Nezhad, H.R.M., eds.: ICSOC
2011. Volume 7084 of LNCS., Springer Berlin Heidelberg (2011) 142–156

27. Cangialosi, P., Giacomo, G.D., Masellis, R.D., Rosati, R.: Conjunctive artifact-
centric services. In Maglio, P.P., Weske, M., Yang, J., Fantinato, M., eds.: ICSOC
2010. Volume 6470 of LNCS., Springer (2010) 318–333

28. Bhattacharya, K., Gerede, C., Hull, R., Liu, R., Su, J.: Towards formal analysis
of artifact-centric business process models. In Alonso, G., Dadam, P., Rosemann,
M., eds.: BPM 2007. Volume 4714 of LNCS., Springer (2007) 288–304

29. Fritz, C., Hull, R., Su, J.: Automatic construction of simple artifact-based business
processes. In Fagin, R., ed.: ICDT 2009. Volume 361., ACM (2009) 225–238

30. Calvanese, D., Giacomo, G.D., Lembo, D., Montali, M., Santoso, A.: Ontology-
based governance of data-aware processes. In Krötzsch, M., Straccia, U., eds.: RR.
Volume 7497 of LNCS., Springer (2012) 25–41

31. Lohmann, N., Wolf, K.: Artifact-Centric Choreographies. In Maglio, P.P., Weske,
M., Yang, J., Fantinato, M., eds.: ICSOC 2010. Volume 6470 of LNCS., Springer
(2010) 32–46

32. Bhattacharya, K., Hull, R., Su, J.: A Data-Centric Design Methodology for Busi-
ness Processes. In: Handbook of Research on Business Process Management. (2009)
1–28

33. Kucukoguz, E., Su, J.: On lifecycle constraints of artifact-centric workflows. In
Bravetti, M., Bultan, T., eds.: WS-FM 2010. Volume 6551 of LNCS., Springer
(2011) 71–85

http://www.yourdon.com/jesa/pdf/JESA_p.pdf
http://www.yourdon.com/jesa/pdf/JESA_p.pdf


Appendices

21





A Specification of the Whole Example

This appendix presents the whole specification of the example following our
approach. For easier reference, we include again the class diagram, state machine
diagrams and activity diagrams (with the respective operation contracts) for
those elements already described in the paper.

1 Class Diagram

Figure 8 shows the class diagram for our example. There are two business ar-
tifacts: QuoteRequest and Order, as shown by the stereotypes. The rest of the
classes in the diagram, such as Supplier, Customer or CD represent objects:
relevant information for the business but whose evolution we do not track. Each
artifact has its own identifier, in this case, for both QuoteRequest and Order the
identifier is id. The rest of classes in the diagram may also have their identifiers,
for instance, a CD is identified by both its name and author. Each artifact and
object has as many attributes and relationships as relevant for the business.

Artifact Order is the simpler of the two. It has three different subclasses:
OpenOrder, ClosedOrder and ReceivedOrder which contain the relevant in-
formation for that particular state of the artifact. An OpenOrder is waiting to
be sent to the supplier and additional QuoteRequests can be assigned to it. A
ClosedOrder has already been sent to the supplier. Finally, an Order changes
its state to ReceivedOrder when it has been received at the shop.

On the other hand, artifact QuoteRequest has a first level of sub-
classes which are PendingPriceQR, PendingConfirmationQR, AcceptedQR and
RejectedQR. A PendingPriceQR is waiting for the shop to quote the price. A
PendingConfirmationQR has already a price and is waiting for the customer’s
acceptance or rejection. An AcceptedQR has already been accepted by the cus-
tomer. In contrast, RejectedQR has been rejected.

AcceptedQR has one subclass: OrderedToSuppQR. Notice that the hierarchy
is incomplete. An OrderedToSuppQR has already been split into several Orders
that will eventually be processed and sent to the suppliers. At the same time,
OrderedToSuppQR has two subclasses: ProcessedQR and ClosedQR, and the hi-
erarchy is incomplete. Like in the previous case, an OrderedToSuppQR may not
have any of the subtypes. ProcessedQR represents a quote request that has al-
ready been sent to the customer, and a ClosedQR corresponds to a quote request
that has already been received by him or her.



24

 name
 author

CD

 id
 sentDate

<<artifact>>
QuoteRequest  id

 name
 address

Customer

 name

Supplier

 id
 creationDate

<<artifact>>
Order

 date
 finalPrice

AcceptedQR

 date

OrderedToSuppQR

 quantity

RequestedCD

 date
 reason

RejectedQR

 deliveredOn

ClosedQR date
 expectedDelivery

ClosedOrder

 date
 expectedReception
 trackingNr

ProcessedQR date

ReceivedOrder

 finalPrice

PendingConfirmationQR

 deadline

PendingPriceQR

 lastUpdate

OpenOrder

 notificationDate

UnavailableCD

*1

supplies

1..*

0..1*

1

1..* 1..*

*1..*
* 1

/includes

{incomplete}

quote state {disjoint, complete}

{disjoint, complete} order state

orderedToSupp state {disjoint, incomplete}

{incomplete}< is divided into

requested at

< makes

< includes

          

1. Identifiers: (QuoteRequest, id), (Customer, id), (CD, name+author), (Supplier,
name), (Order, id)

2. A ProcessedQR may not have more than one Order for the same Supplier.
3. Derived Relationship includes: A RequestedCD will be related to an Order if the

QuoteRequest of the RequestedCD is linked to an Order requested at its CD Supplier.
4. There can only be at most one OpenOrder per Supplier.
5. The Orders into which a ProcessedQR is divided must be to Suppliers who provide the

CDs included in the ProcessedQR.
6. The sentDate of a QuoteRequest must be earlier than attribute date in any of the

subclasses of QuoteRequest.
7. QuoteRequest.sentDate < PendingPriceQR.deadline
8. AcceptedQR.date ≤ OrderedToSuppQR.date
9. OrderedToSuppQR.date ≤ ProcessedQR.date
10. ProcessedQR.date ≤ ClosedQR.deliveredOn
11. The creation date of Order must be earlier or equal to attribute date in any of its

subclasses.
12. Order.creationDate ≤ OpenOrder.lastUpdate

Fig. 8. Class diagram showing the business artifacts as classes with the corresponding
integrity constraints

2 State Machine Diagrams

ClosedOrder ReceivedOrderOpenOrder Send to Supplier Receive Order [success]New Order

 

    

  

    

   

          

Fig. 9. State machine diagram for artifact Order.

Figures 9 and 10 show the state machine diagrams that correspond to the
business artifacts in this example: Order and QuoteRequest. We will begin by
looking at the state machine diagram for Order, which is simpler. In this case,
there is a single-level hierarchy in the class diagram with restrictions disjoint
and complete, therefore the states exactly map to the subclasses in the class
diagram. An Order is created when there is a request to create a new or-
der, as shown by event New Order. This order remains in state OpenOrder



25

ClosedQR ProcessedQR OrderedToSuppQR

RejectedQR AcceptedQR

PendingConfirmationQRPendingPriceQR

at (self.deadline) / Autoreject QR

     

Close QR [All orders received] Send Items

Create Supplier Order

Make Decision [failure]
Make Decision [success]

Calculate PriceNew Quote Request

          

Fig. 10. State machine diagram for artifact QuoteRequest.

until someone decides that the order can be made to supplier, by executing
event Send to Supplier. Then the order becomes a ClosedOrder and no more
AcceptedQRs can be linked to it. Finally, once the order is received, if event
Receive Order executes successfully, as indicated by tag success, it changes
its state to ReceivedOrder.

On the other hand, artifact QuoteRequest has a more complex state machine
diagram. First of all, it has a multi-level hierarchy. More specifically, it has three
different levels. The first level has constraints disjoint and complete, but the
second and third levels are incomplete. In the first-level hierarchy, the states
are: PendingPriceQR, PendingConfirmationQR, RejectedQR and AcceptedQR.
Although AcceptedQR has two subclasses, it is included because the hierarchy is
incomplete, and therefore, there can exist an AcceptedQR which has no subtypes.

When a customer wishes to make a quote request, New Quote Request
event executes and creates a QuoteRequest in state PendingPriceQR. This
PendingPriceQR has an attribute, deadline, which establishes the last day in
which the customer is wishing to wait for a price. If this deadline is not met,
then the PendingPriceQR is automatically rejected and changes its state to
RejectedQR. Notice that at(self.deadline) is a time event, which results in
the execution of effect Autoreject QR.

On the other hand, if the price for the request is established on time, it
changes its state to PendingConfirmationQR, as now the quote request is wait-
ing for the customer to decide whether he accepts the price or not. In both
cases, event Make Decision executes, and depending on the outcome of this
event, the quote request changes its state to AcceptedQR (condition success) or
to RejectedQR (condition fail). Eventually, an AcceptedQR will be processed
(event Create Supplier Order) and the requested CDs ordered to the supplier,
prompting a change of state to OrderedToSuppQR.

An OrderedToSuppQR will change state to ProcessedQR when it is sent to
the customer (event Send Items). Notice that this will only happen when the
condition3 is met: all the orders containing products in the quote request must
3 Condition “All orders received” is defined in OCL as: self.order -> forAll(o |
o.oclIsTypeOf(ReceivedOrder))



26

have been received. Finally, the quote request is closed (state ClosedQR) after
the customer receives the order, indicated by Close QR event.

3 Activity Diagrams and Operation Contracts

New Quote Request

 

 

  

 

 

  

 

 

Add CDCreate QuoteRequest

  
 

  

  
  

  

  

  
  

 

 

  

  

   

    

 

 

[more CDs to add]

[no more CDs to add]

          

Fig. 11. Activity diagram of New Quote Request.

New Quote Request New Quote Request is in charge of creating a new quote
request, and while there are CDs to add to the QuoteRequest, it keeps adding
them.

Create QuoteRequest

action CreateQuoteRequest(cust: String, quoteID: Natural,
deadlineDate: Date)

localPre: not(QuoteRequest.allInstances()->exists(qr |
qr.id=quoteID))

localPost: PendingPriceQR.allInstances()->exists(qr |
qr.oclIsNew() and qr.id=quoteID and qr.customer.id=cust and
qr.sentDate=today() and qr.deadline=deadlineDate)

Task Create QuoteRequest creates a new QuoteRequest for the given customer
and with the given id and deadline.

Add CD

action AddCD(cdName: String, cdAuthor: String, qty:Natural,
quoteID: Natural)

localPre: not(RequestedCD.allInstances()->exists(rcd |
rcd.cD.name=cdName and rcd.cD.author=cdAuthor and
rcd.quoteRequest.id=quoteID))

localPost: RequestedCD.allInstances()->exists(rcd |
rcd.oclIsNew() and rcd.quantity=qty and
rcd.cD.author=cdAuthor and rcd.cD.name=cdName and
rcd.quoteRequest.id=quoteID)

Add CD adds the given CD (identified by cdName and cdAuthor) in the
given quantity to the order identified by quoteID.



27

  

Calculate Price

 

  

 

 

  

 

 

  

Evalute QR and
set price

  

  
  

  

  

  
  

 

 

  

  

   

    

 

 

   

    

          

Fig. 12. Activity diagram of Calculate Price.

Calculate Price This activity diagram sets the price for the QuoteRequest.

Evaluate QR and Set Price

action EvaluateQRAndSetPrice(quoteID: Natural, price: Real)
localPre: -
localPost:
let quote: QuoteRequest =

QuoteRequest.allInstances()->select(qr | qr.id=quoteID) in
quote.oclIsTypeOf(PendingConfirmationQR) and not

quote.oclIsTypeOf(PendingPriceQR) and
quote.oclAsType(PendingConfirmationQR).finalPrice=price

Task EvaluateQRAndSetPrice changes the state of the QuoteRequest to
PendingConfirmationQR and sets its price to the given input price.

Make Decision Activity diagram Make Decision shows the decision making
process after the price has been set for the QuoteRequest. If the customer wishes
to accept the price, task Accept QuoteRequest executes. Otherwise, task Reject
QuoteRequest executes.

New Quote Request

Calculate Price

Make Decision

Create Supplier Order

Send Items

New Order

Send to Supplier

Receive Order

Close QR

Add CDCreate QuoteRequest

Evalute QR and
set price

Accept
QuoteRequest

Reject
QuoteRequest

Start Order Creation

<<material>>
Obtain Items from

Warehouse

<<material>>
Pack Items

<<material>>
Send Package Mark as Sent

Create New Order

Close
Order

<<material>>
Send to Supplier Register Expected Delivery

<<material>>
Check Order

<<material>>
Notify Supplier

Register Order as
Received

Add to Existing
Order

New
Order

Exists
OpenOrder

Close
QuoteRequest

[CDs left to process]

[no CDs left to process]

[false]

[true]

<<fail>>

<<succeed>>
[all items]

[missing items]

<<succeed>>

<<fail>>[reject]

[accept]

[more CDs to add]

[no more CDs to add]

Visual Paradigm for UML Community Edition [not for commercial use] 

Fig. 13. Activity diagram of Make Decision.

Accept QuoteRequest

action AcceptQuoteRequest(quoteID: Natural)
localPre: -
localPost:
let quote: QuoteRequest =

QuoteRequest.allInstances()->select(qr | qr.id=quoteID) in



28

quote.oclIsTypeOf(AcceptedQR) and not
(quote.oclIsTypeOf(PendingConfirmationQR)) and
quote.oclAsType(AcceptedQR).date=today() and
quote.oclAsType(AcceptedQR).finalPrice =
quote@pre.oclAsType(PendingConfirmationQR).finalPrice

Task Accept QuoteRequest has as input parameter the quoteID of the
QuoteRequest that the customer wishes to accept. Then the service changes
the state of the QuoteRequest to AcceptedQR and stores the final price and the
date in which the QuoteRequest has been accepted.

Reject QuoteRequest

action RejectQuoteRequest(quoteID: Natural, reason:String)
localPre: -
localPost:
let quote: QuoteRequest =

QuoteRequest.allInstances()->select(qr | qr.id=quoteID) in
quote.oclIsTypeOf(RejectedQR) and not

quote.oclIsTypeOf(PendingConfirmationQR)) and
quote.oclAsType(RejectedQR).date=today() and
quote.oclAsType(RejectedQR).reason=reason

Given a quoteID identifying a QuoteRequest and a reason for the rejection as
input, task RejectQuoteRequest changes the QuoteRequest to state RejectedQR,
storing the date in which the decision was made and the reason for the rejection
(given as input).

Create Supplier Order Figure 14 depicts the activity diagram of Create Sup-
plier Order. It begins by starting the order creation process process. After this,
for each CD in the quote request, it checks if there is an open order to the sup-
plier of the CD in question. If there is, it adds the CD to the order. Otherwise,
it creates a new order and adds the CD to it. When there are no CDs left to
process, the activity diagram ends.

Notice that the node in charge of creating the new order is in fact a subprocess
and it is decomposed in another activity diagram, as indicated by the rake-
like symbol on the right-hand side of the node. In fact, this activity diagram
corresponds to event New Order in the state machine diagram of Order. In this
particular example, this is how the evolution of the two artifacts is related: when
linking the quote request to a supplier order, if there is no available order for
the required supplier, a new order is created.

Create Supplier Order manages the assignment of the items in an AcceptedQR
to the right Order. As each CD is provided by one supplier, the activity diagram
checks if there is an OpenOrder for the given supplier. If there is not, it calls
activity diagram New Order. In any case, it obtains the OpenOrder and links it
to the current QuoteRequest.



29

New Quote Request

Calculate Price

Make Decision

Create Supplier Order

Send Items

New Order

Send to Supplier

Receive Order

Close QR

Add CDCreate QuoteRequest

Evalute QR and
set price

Accept
QuoteRequest

Reject
QuoteRequest

Start Order Creation

<<material>>
Obtain Items from

Warehouse

<<material>>
Pack Items

<<material>>
Send Package Mark as Sent

Create New Order

Close
Order

<<material>>
Send to Supplier Register Expected Delivery

<<material>>
Check Order

<<material>>
Notify Supplier

Register Order as
Received

Add to Existing
Order

New
Order

Exists
OpenOrder

Close
QuoteRequest

[CDs left to process]

[no CDs left to process]

[false]

[true]

<<fail>>

<<succeed>>
[all items]

[missing items]

<<succeed>>

<<fail>>[reject]

[accept]

[more CDs to add]

[no more CDs to add]

Visual Paradigm for UML Community Edition [not for commercial use] 

Fig. 14. Activity diagram of Create Supplier Order.

Start Order Creation

action StartOrderCreation (quoteID: Natural)
localPre: -
localPost:
let qr: QuoteRequest = QuoteRequest.allInstances()->select(qr |

qr.id=quoteID) in
qr.oclIsTypeOf(OrderedToSuppQR) and

qr.oclAsType(OrderedToSuppQR).date=today()

Task Start Order Creation changes the state of the QuoteRequest to begin
the process of relating the OrderedToSuppQR and the Orders.

Exists OpenOrder

action ExistsOpenOrder(quoteID: Natural, suppName: String):
Boolean

localPre:
let quoteR = OrderedToSuppQR.allInstances()->select(qr |

qr.id=quoteID) in
quoteR.order.supplier.name->excludes(suppName) and

quoteR.cd.supplier.name->includes(suppName)
localPost: result = OpenOrder.allInstances()->exists(oo |

oo.supplier.name=suppName)

Exists OpenOrder checks if there is an OpenOrder for the given supplier’s
name and returns a boolean value which will be true if there is indeed an
OpenOrder. Notice that there is only one supplier per CD. Otherwise, it will
return false. However, the task has a strong precondition. First of all, it ensures
that the link between the given QuoteRequest and Order has not been created
yet and that the given supplier actually supplies at least one of the CDs in the
QuoteRequest.

New Order This is a call to another activity diagram. In this particular case, it
triggers the transition to create a new order, in the state machine diagram of
Order. The results is a new artifact Order.



30

Add to Existing Order

action AddToExistingOrder(quoteID: Natural, suppName: String)
localPre: -
localPost: OpenOrder.allInstances()->select(oo |

oo.supplier.name).orderedToSuppQR.id->includes(quoteID)

AddToExistingOrder simply creates the link between the given QuoteRequest,
identified by quoteID, and the given Supplier, identified by suppName.

Send Items Send Items represents the process of sending the CDs, once they
have been received from the supplier(s), to the customer. The activity diagram
has three material tasks: Obtain Items from Warehouse, Pack Items and Send
Package. As their names imply, they represent the process of physically packing
up the CDs and sending them to the customer. The last task is used to store
in the system that the items have been sent and all the relevant information
relating to that event.

New Quote Request

Calculate Price

Make Decision

Create Supplier Order

Send Items

New Order

Send to Supplier

Receive Order

Close QR

Add CDCreate QuoteRequest

Evalute QR and
set price

Accept
QuoteRequest

Reject
QuoteRequest

Start Order Creation

<<material>>
Obtain Items from

Warehouse

<<material>>
Pack Items

<<material>>
Send Package Mark as Sent

Create New Order

Close
Order

<<material>>
Send to Supplier Register Expected Delivery

<<material>>
Check Order

<<material>>
Notify Supplier

Register Order as
Received

Add to Existing
Order

New
Order

Exists
OpenOrder

Close
QuoteRequest

[CDs left to process]

[no CDs left to process]

[false]

[true]

<<fail>>

<<succeed>>
[all items]

[missing items]

<<succeed>>

<<fail>>[reject]

[accept]

[more CDs to add]

[no more CDs to add]

Visual Paradigm for UML Community Edition [not for commercial use] 

Fig. 15. Activity diagram of Send Items.

Mark as Sent

action MarkAsSent(quoteID: Natural, receptionDate: Date,
trackNr: Natural)

localPre: -
localPost:
let quoteReq: QuoteRequest =

QuoteRequest.allInstances()->select(qr | qr.id=quoteID) in
quoteReq.oclIsTypeOf(ProcessedQR) and

quoteReq.oclAsType(ProcessedQR).date=today() and
quoteReq.oclAsType(ProcessedQR).expectedReception=receptionDate
and
quoteReq.oclAsType(ProcessedQR).trackingNr=trackNr

Task Mark as Sent changes the state of the QuoteRequest into ProcessedQR
and stores the current date, the expected reception date and the tracking number
of the package.

Close QR Activity diagram Close QR closes the QuoteRequest after it has been
received by the customer. As shown on the diagram, it has only one task.



31

  

 

 

  

 

 

  

 

Close QR

  

  
 

  

  
  

  

  

  
  

 

 

  

  

Close
QuoteRequest

   

    

 

 

   

    

          

Fig. 16. Activity diagram of Close QuoteRequest.

Close QuoteRequest

action CloseQuoteRequest(quoteID: Natural, delivery: Date)
localPre: -
localPost:
let quoteReq: QuoteRequest =

QuoteRequest.allInstances()->select(qr | qr.id=quoteID) in
quoteReq.oclIsTypeOf(ClosedQR) and not

quoteReq.oclIsTypeOf(ProcessedQR) and
quoteReq.oclAsType(ClosedQR).deliveredOn=delivery

Close QuoteRequest changes the state of the QuoteRequest to ClosedQR and
stores its delivery date.

3.1 Order

Order is the artifact that keeps information about the orders that are placed to
the supplier. This subsection presents the activity diagrams showing the details
of the events in its state machine diagram.

New Order Activity diagram New Order basically creates a new order.

  

 

 

  

 

New Order

  

 

 

  

  
 

  

  
  

  

Create New Order

  
  

 

 

  

  

   

    

 

 

   

    

          

Fig. 17. Activity diagram of New Quote Request.

Create New Order

action CreateNewOrder(orderID: Natural, supplierName: String)
localPre: not(Order.allInstances()->exists(o | o.id=orderID))
localPost:
OpenOrder.allInstances()->exists(o | o.oclIsNew() and

o.id=orderID and o.date=today() and
o.supplier.name=supplierName and
o.processedQR.id->includes(quoteID))



32

Create New Order creates a new order with the given id and for the supplier
identified by supplierName. It also stores the date in which the order is created.

Send to Supplier This activity diagram closes the order and sends it to the
provider. Afterwards, it registers the expected delivery date of the order.

  

 

 

  

 

 

Send to Supplier

 

 

  

  
 

  

  
  

  

  

Close
Order

<<material>>
Send to Supplier

Register Expected Delivery

 

 

  

  

   

    

 

 

   

    

          

Fig. 18. Activity diagram of Send to Supplier.

Close Order

action CloseOrder(orderID: Natural, supplierName: String)
localPre: -
localPost:
let ord:Order = Order.allInstances()->select(o | o.id=orderID)

in
ord.oclIsTypeOf(ClosedOrder) and not ord.oclIsTypeOf(OpenOrder)

and ord.oclAsType(ClosedOrder).date=today()

Task Close Order, as the name implies, closes an OpenOrder and stores the
date in which it is closed.

Register Expected Delivery

action RegisterExpectedDelivery(orderID: Natural, expectedDel:
Date)

localPre:
localPost:
ClosedOrder.allInstances()->select(o |

o.id=orderID).expectedDelivery=expectedDel

Register Expected Delivery stores the expected delivery date after the order
has been sent.

Receive Order This activity diagram deals with the reception of an order.

Register Order as Received

action RegisterOrderAsReceived(orderID: Natural)
localPre: -



33

  

 

 

  

 

 

  

Receive Order

 

  

  
 

  

  
  

  

  

  
  

<<material>>
Check Order

<<material>>
Notify Supplier

Register Order as
Received

  

   

    

<<fail>>

<<succeed>>[all items]

[missing items]

   

    

          

Fig. 19. Activity diagram of ReceiveOrder.

localPost:
let ord: Order = Order.allInstances()->select(o | o.id=orderID)

in
ord.oclIsTypeOf(ReceivedOrder) and

ord.oclAsType(ReceivedOrder).date=today()

Task Register Order as Received selects the order identified by orderID and
changes its state to ReceivedOrder and stores the date of reception.


	Specifying Artifact-Centric Business Process Models in UML: Technical Report
	Montserrat Estañol, Anna Queralt, Maria-Ribera Sancho, Ernest Teniente
	Specification of the Whole Example

