
Ensuring the Semantic Correctness of a BAUML Artifact-centric BPM

Montserrat Estañola,∗, Maria-Ribera Sanchoa,b, Ernest Tenientea

aDepartment of Service and Information Systems Engineering
Universitat Politècnica de Catalunya, Barcelona, Spain
bBarcelona Supercomputing Center, Barcelona, Spain

Abstract

Context: Using models to represent business processes provides several advantages, such as facilitating
the communication between the stakeholders or being able to check the correctness of the processes before
their implementation. In contrast to traditional process modeling approaches, the artifact-centric approach
treats data as a key element of the process, also considering the tasks or activities that are performed in it.

Objective: This paper presents a way to verify and validate the semantic correctness of an artifact-
centric business process model defined using a combination of UML and OCL models - a BAUML model.

Method: We achieve our goal by presenting several algorithms that encode the initial models into first-
order logic, which then allows to use an existing satisfiability checking tool to determine their correctness.

Results: An approach to verify and validate an artifact-centric BPM specified in BAUML, which uses a
combination of UML and OCL models. To do this, we provide a method to translate all BAUML components
into a set of logic formulas. The result of this translation ensures that the only changes allowed are those
specified in the model, and that those changes are taking place according the order established by the
model. Having obtained this logic representation, these models can be validated by any existing reasoning
method able to deal with negation of derived predicates. Moreover, we show how to automatically generate
the relevant tests to validate the models. We also show the feasibility of our approach by implementing a
prototype tool and applying it to a running example.

Conclusion: It is feasible to ensure the semantic correctness of an artifact-centric business process
model in practice.

Keywords: verification, validation, reasoning, tool, business process modelling, uml

1. Introduction

Representing business processes using models has several advantages, such as improving communication
between the parties involved in the process or having a reference model to which real executions of the
process can be compared to. Moreover, with models it is possible to check their correctness before business
processes are deployed. Detecting these errors in the early stages of the process definition will help to avoid
the cost of later correction, when the process is already running.

There are different types of tests that can be performed to detect these errors. For example, syntactic
tests would ensure that the language used to represent the business process is used correctly and structural
tests would find errors such as lack of synchronization or deadlocks caused by errors in the flow. Note that
these tests only consider the structure of the model and do not deal with additional elements such as the
actual changes performed by the tasks in the process.

In contrast, semantic tests take into consideration the meaning of the different tasks that are carried out
by the process. Therefore, they can provide the stakeholders with valuable information in terms of what the

∗Corresponding author
Email addresses: estanyol@essi.upc.edu (Montserrat Estañol), ribera@essi.upc.edu (Maria-Ribera Sancho),

teniente@essi.upc.edu (Ernest Teniente)

Preprint submitted to Elsevier July 14, 2017

montse aragues
Texto escrito a máquina
© 2017 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

business process is going to do versus what they expect it to do. However, to be able to define exactly what
each of the tasks is doing, the model will require a representation of the underlying data.

It is hard to perform semantic tests using the traditional process-centric approach to process modeling,
because the resulting models lack the definition of the data and, in consequence, of the tasks in the process.
On the other hand, the artifact-centric approach defines both the structure of the data required by the
process and the precise meaning of the tasks that make it up, which makes it possible to perform semantic
reasoning on these models. This is why we choose an artifact-centric approach in this work.

There are many different ways to represent business processes from an artifact-centric perspective. We
follow here the BAUML framework, which uses a combination of UML and OCL models [1], which are OMG
and ISO standards. Looking at the diagrams in Figures 1, 2 and 3, and at OCL expressions in Section 2.4,
we see that the model provides lots of information and it can be daunting to determine whether there are
any errors. For example, can there be instances of class RejectedSub? or can we really execute task Assign
to Session?.

Most of the existing works that deal with the semantic correctness of an artifact-centric BPM require
models grounded on logic as input, a language which is more complex and less intuitive for business modelers
than using a graphical and standard notation. Moreover, many of these approaches have been formalized
theoretically and there are no tools or prototypes that show the feasibility of the approach in question.

Bearing this in mind, our first contribution is the formalization of an approach to ensure the semantic
correctness of an artifact-centric BAUML model. This is achieved by automatically encoding the model into
a logic formalization that allows performing semantic reasoning by using satisfiability checking techniques
able to deal with negation of derived predicates.

Another contribution of this paper is to present a series of relevant, semantic, tests that can be auto-
matically generated from the input models. We first introduce them intuitively and, after presenting the
translation process required to treat our problem as a satisfiability test, formalize them accordingly. In this
way, the user does not have to worry about which properties to check to ensure that the models are correct.

Finally, we show that all of this is feasible in practice by implementing a prototype tool and applying
it to our running example. This is done transparently from the point of view of the user: given a BAUML
model and a selected test, the prototype just informs the user of whether the test is satisfiable or not; and
he does not have to worry about the translation nor about the required properties to test.

The work we present here extends our previous work in [2] in two main ways. First of all, we introduce
and formalize several properties which can be checked over the initial models. We classify these properties
according to whether they check the internal correctness of the model or its external correctness. Secondly,
we show the feasibility of our approach through the development of a prototype tool. The prototype not
only implements the translation process presented in [2] but is also able to automatically generate some
of the tests presented here, and which we did not consider before. All in all, this paper provides a deeper
insight into reasoning about BAUML models since it matures and further develops the ideas outlined in [2].

2. BAUML in a Nutshell

BAUML is based on the BALSA framework [3], which establishes four dimensions that should always be
present in artifact-centric process models:

• Business Artifacts: They represent the data required by the business, whose evolution we wish to
track. Each artifact has an identifier and may be related to other artifacts.

• Lifecycles: They are used to specify the evolution of an artifact during its life, from the moment it
is created until it is destroyed.

• Associations: They establish the execution flow for services.

• Services (aka tasks): They are atomic units of work in the business process. As such, they make
changes to artifacts by creating, updating and deleting them.

2

 id : Natural
 title : String

Submission
 id : String
 name : String
 email : String
 affiliation : String

Author

 id : String
 date : Date
 time : Time
 room : String

Session

 submissionDate : Date

PendingReviewSub

 reviewDate : Date
 comments : String

ReviewedSub

 withdrawalDate : Date

WithdrawnSub

AcceptedSub

 reason : String

RejectedSub

status

result

1 0..*

1..

writes

is presented in

{disjoint,complete}

{disjoint, complete}

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 1: Class diagram for a conference review system.

Businesses also need to keep data whose evolution does not result in relevant states from the point of view
of the business. To distinguish this data from artifacts, we will refer to it as objects.

The BAUML modeling approach [4, 5] represents the BALSA dimensions using UML and OCL: UML
class diagrams for business artifacts; UML state machine diagrams for lifecycles; UML activity diagrams for
associations, and OCL operation contracts for services.

2.1. Class Diagram
The class diagram in Figure 1 shows the objects and artifacts in our example. In this case, there is only

one artifact: Submission. A Submission may be a WithdrawnSub, if the authors decide to withdraw it; a
PendingRevSub, while it is waiting to be reviewed; or a ReviewedSub, if it has already been reviewed. A
ReviewedSub will either be an AcceptedSub, if it has been accepted for presentation, or a RejectedSub.

Each Submission is related to a least one Author, and an AcceptedSub is related to one Session, where
it will be presented. Both Author and Session correspond to objects, as their evolution does not result in a
specific change of state for the business.

The class diagram is complemented by several OCL constraints which cannot be graphically represented
in the class diagram to state that Submissions, Authors and Sessions are identified by their id:

context Submission inv: Submission.allInstances()−>isUnique(id)

context Author inv: Author.allInstances()−>isUnique(id)

context Session inv: Session. allInstances ()−>isUnique(id)

2.2. State Machine Diagram
Figure 2 shows the state machine diagram for artifact Submission. Note that each state in the state

machine diagram corresponds to one of the subclasses of submission. The exception to this is subclass
ReviewedSub: as it spans a disjoint and complete hierarchy, all instances of ReviewedSub will either be of
type AcceptedSub or RejectedSub, which do appear in the diagram.

When a Submission is created it is in state PendingReviewSub. From there, more authors can be added
to the submission, and it will remain in state PendingReviewSub. If the authors decide to withdraw the
submission, it will change to state WithdrawnSub. Once a submission has been withdrawn, if the authors
regret their decision, they will have to create a new submission. Finally, depending on the outcome of Review
Submission, it will either change its state to AcceptedSub (if the paper is accepted) or to RejectedSub.

Our approach assumes that all the integrity constraints established by the class diagram are checked at
the end of the execution of a transition in the state machine diagram. That is, while a transition executes,
an integrity constraint may be violated, but at the end they must be fulfilled.

3

WithdrawnSub

RejectedSub

AcceptedSubPendingReviewSub

Add Author

Withdraw Submission

Review Submission [failure]

Review Submission [success]Submit Paper

Figure 2: State machine diagram showing the evolution of Submission.

Submit Paper

Withdraw Submission

Review Submission

Register New
Submission

Add Author to
Submission

Withdraw

Add Review Information
and Decide if Accepted

Assign to Session

Add Rejection Comment

Add Author

AddAuthorToSub

<<fail>>

<<succeed>>[true]

[false]

Visual Paradigm for UML Community Edition [not for commercial use]

Submit Paper

Withdraw Submission

Review Submission

Register New
Submission

Add Author to
Submission

Withdraw

Add Review Information
and Decide if Accepted

Assign to Session

Add Rejection Comment

Add Author

AddAuthorToSub

<<fail>>

<<succeed>>[true]

[false]

Visual Paradigm for UML Community Edition [not for commercial use]

Figure 3: Activity diagram for external event Submit Paper and Review Submission.

2.3. Activity Diagrams
Each event in the state machine diagram will be specified using a UML activity diagram. Figure 3 shows

the details of SubmitPaper and ReviewSubmission.
SubmitPaper contains only two tasks, RegisterNewSubmission, which creates a new instance of Submis-

sion, and AddAuthorToSubmission which is in charge of adding an author to it.
Review Submission contains three different tasks and a decision node. The first task, Add Review

Information and Decide If Accepted will add some basic information to the review. Then, if reviewers decide
to accept the paper, they assign it to a conference session (task Assign to Session). Otherwise, they will
add a rejection comment (task Add Rejection Comment).

2.4. Operation Contracts
For each of the tasks in the activity diagrams, we will have an OCL operation contract which specifies

the precise behavior of the task. Below we show the operation contracts for the tasks in Review Submission:
operat ion AddReviewInfo (sub : Submission , comms : String)
pre : not (sub . oclIsTypeOf (ReviewedSub))
post : sub . oclIsTypeOf (ReviewedSub) and not (sub . oclIsTypeOf (PendingRevSub)) and

sub . oclAsType (ReviewedSub) . reviewDate=today () and sub . oclAsType (ReviewedSub) . comments=comms

The first task, AddReviewInfo, has as input the submission and the comments. Its precondition ensures
that the submission provided as input is not of the ReviewedSub type. The postcondition states that the
submission will be of the ReviewedSub type and assigns values to its attributes: the current date and the
comments provided as input.
operat ion Ass ignToSess ion (sub : Submission , s : Se s s i on)
pre : not sub . oclIsTypeOf (AcceptedSub)
post : sub . oclIsTypeOf (AcceptedSub) and sub . oclAsType (AcceptedSub) . s e s s i o n=s

4

Like in the previous task, AssignToSession ensures in its precondition that the submission provided as
input is not already of the AcceptedSub type. The postcondition changes the state of the submission to
AcceptedSub and relates it to the session given as input.
operat ion AddRejectionReason (sub : Submission , r : String)
pre : not (sub . oclIsTypeOf (RejectedSub))
post : sub . oclIsTypeOf (RejectedSub) and sub . oclAsType (RejectedSub) . reason=r

Finally, task AddRejectionReason changes the state of the submission to RejectedSub and assigns the
reason r provided as input to its attribute reason. Its precondition also ensures that the submission was not
already of the RejectedSub type.

3. Desirable Properties of a BAUML Model

We distinguish between verification, which looks for inherent errors in the model, answering the question
“Is the model right?”; and validation which ensures that the model represents the domain appropriately,
answering the question “Is it the right model?”. In terms of automation, verification can be performed
without user intervention, as it looks for errors and contradictions within the model, while validation requires
a user to ensure that reality is represented correctly in the model.

The verification and validation properties that we present in this section are based on or inspired by the
following works: [6, 7, 8, 9]. This section is not meant to be an exhaustive list of all the necessary tests to
ensure semantic correctness, but rather an illustrative overview of the kind of tests that can be performed
over BAUML models.

3.1. Verification
We have classified verification properties according to the dimension of the BAUML model they focus

on, although all the dimensions are taken into consideration in the reasoning process.

3.1.1. The Class Diagram in a BAUML Model
Liveliness of the classes and associations. Checking that each class and association in the diagram is lively
ensures that there can exist at least one instance of each of the classes and associations. Having a class or
an association which cannot be instantiated implies that there is some mistake in the class diagram, as it
does not make sense to have an element for which no instances can exist.

Correctness of minimum and maximum cardinalities. Cardinalities in the class diagram may contain errors.
In the case of minimum cardinalities, it may be the case that the bound is actually higher than the one
stated. The opposite may also hold for maximum cardinalities: the bound may be actually lower than the
one that appears in the diagram.

Redundancy of integrity constraints. Although this is not strictly a semantic correctness property by itself,
ensuring that the model avoids redundancy and is minimal are also correctness criteria. An integrity
constraint is redundant with another when the fulfillment of the first constraint always implies the fulfillment
of the second.

3.1.2. The State Machine Diagram in a BAUML model
State reachability. It ensures that every state in which an artifact may be can eventually be reached. As
each of the states in the state machine diagram has its corresponding subclass in the class diagram, it is
equivalent to checking the liveliness of each of the subclasses of the artifact.

Transition applicability. It ensures that the required conditions are met for an external event or an effect to
execute. Note that this property does not ensure that the transition executes successfully, but rather that
the conditions can be met for it to begin its execution.

We will consider both external events and effects in the transition as black boxes; therefore, the conditions
for applicability will only take into consideration the source state and the OCL condition in the transition,
if any. Logically, if the source state is the initial one, then there is no restriction in terms of the source state.

5

Transition executability. It guarantees that every transition in the state machine diagram can execute suc-
cessfully. This will happen when the transition itself is applicable and after its execution it leaves the system
in a state that fulfills all the integrity constraints.

3.1.3. Activity Diagrams and Operation Contracts in a BAUML Model
Activity diagrams merely establish the order for the execution of the tasks, and it is the tasks themselves

the ones that contain the semantic information. Therefore, it suffices to check task-related properties to
verify the correctness of activity diagrams.

Precondition Redundancy. A precondition of a task will be redundant if, immediately before the task exe-
cutes, the precondition is already guaranteed.

Task applicability. A task is applicable if the previous task has executed successfully and its precondition is
met. If there is an OCL condition in one of the edges leading to the task, it will also have to be taken into
consideration to study its applicability.

Task executability. A task is executable if it is applicable and its postcondition can be met. Note that, since
the integrity constraints are not checked until the end of the activity diagram execution, in most cases the
tasks will be executable even if they eventually lead to an integrity constraint violation.

3.2. Validation
Validation tests deal with the adequacy of the model in terms of representing the reality appropriately.

Therefore, they can be used to check if the business process meets the requirements. We present some tests
to detect potential errors, but it is ultimately the modeler’s or user’s responsibility to interpret the results.

User-defined Tests. Allowing the user to define his or her own tests can be useful to ensure that the model
fulfills the requirements elicited in the early stages of the process’s definition. This includes the ability to
ensure that business rules, which are closely related to business goals [10], have been incorporated correctly
in the specification of the business process. For instance, we could have in our example a requirement stating
that the emphSession to which an AcceptedSub is assigned must have a later date than the reviewDate of the
AcceptedSub. A user-defined test would then allow us to check that this property is fulfilled by the model.

Path Inclusion or Exclusion. When there are two different associations which link exactly the same classes,
in some cases one relationship should be a subset of the other. In other cases the two paths should be
mutually exclusive. Therefore, checking these properties can provide information about a potential error.

Missing irreflexive constraints. For those associations which relate the same class to itself, in many instances
there may be an irreflexive constraint missing: that is, one instance of a class cannot be related to itself.

Full transition coverage. The full transition coverage property tests that all possible combinations of tran-
sitions, as stated in the state machine diagram, can really take place. If one of these combinations does not
execute successfully, then there is the possibility that something is wrong in the definition of the transitions
or the external events/actions that make them up.

4. Reasoning about BAUML Models

This section explains how to translate the models and the tests appropriately to be able to specify all
tests as satisfiability checking problems. We introduce first the basic concepts and we formalize the models
described in Section 2. Afterwards we explain how we translate the BAUML models into first-order logic
along the lines of [1]. Finally, we show the formalization of the tests presented in Section 3.

6

4.1. Preliminaries
For the formalization of our models, we use formulas in first-order logic. A term T is a variable or a

constant. If p is a n-ary predicate and T1, ..., Tn are terms, then p(T1, ..., Tn) or p(T) is an atom. An ordinary
literal is either an atom or a negated atom. A built-in literal has the form of A1θA2, where A1 and A2 are
terms. θ is either <, ≤, >, ≥, = or 6=.

A normal clause has the form: A ← L1 ∧ ... ∧ Lm with m ≥ 0, where A is an atom and each Li is an
ordinary or built-in literal. All the variables in A, and in each Li, are assumed to be universally quantified
over the whole formula. A is the head and L1 ∧ ...∧Lm is the body of the clause. A normal clause is either
a fact, p(a), where p(a) is a ground atom, or a deductive rule, p(T)← L1 ∧ ... ∧ Lm with m ≥ 1, where p is
the derived predicate defined by the rule.

A condition is a formula of the (denial) form: ← L1∧ ...∧Lm with m ≥ 1. Finally, a schema S is a tuple
(DR, IC) where DR is a finite set of deductive rules and IC is a finite set of conditions. All formulas are
required to be safe, i.e. every variable occurring in their head or in negative or built-in literals must also
occur in an ordinary positive literal of the same body. An instance of a schema S is a tuple (E,S) where E
is a set of facts about base predicates. DR(E) denotes the whole set of ground facts about base and derived
predicates that are inferred from an instance (E,S), and corresponds to the fixpoint model of DR ∪ E.

4.2. BAUML Formalization
This section formalizes the BAUML framework outlined in Section 2 and is structured according to the

diagrams that we use for each dimension in the BALSA framework.

4.2.1. Class Diagram and Integrity Constraints
M is a UML class diagram, in which some classes represent (business) artifacts. Given two classes A

and B, we say that A is a B, written A vM B, if A = B or A is a direct or indirect subclass of B in M.
Furthermore, given a class A and a (binary) association R inM, we write A =M ∃R (A =M ∃R− resp.) if
A is the domain of R (image of R resp.) according to M. We also denote by R|1 and R|2 the role names
attached to the domain and image classes of R. We denote the set of artifacts inM as artifacts(M) and,
when convenient, we use artifacts(B) interchangeably. Each artifact is the top class of a hierarchy whose
leaves are subclasses with a dynamic behavior (their instances change from one subclass to another). Each
subclass represents a specific state in which an artifact instance can be at a certain moment in time. We
denote by a-classes(M) (a-classes(B) resp.) the set of such subclasses, including the artifacts themselves.
These subclasses must fulfill the disjointness constraint (i.e. they must have at most one of the subclasses
type at a certain point in time). Given a class S ∈ a-classes(M), we denote by artS the class S itself if S
is an artifact, or the class A if A is an artifact and S is a possibly indirect subclass of A. Given an artifact
A ∈ artifacts(M), we denote by a-states(A) the set of leaves in the hierarchy with top class A if the
hierarchy is complete (i.e. every superclass must have one of the subtypes). If the hierarchy is incomplete,
a-states(A) will include the set of leaves and the superclass. We denote the classes inM as classes(M),
and the associations in M as associations(M). When convenient, we may refer to them as classes(B)
and associations(B).

A class diagram will also have a set of graphical and textual integrity constraints. The latter will be
represented in OCL. We denote both graphical and textual constraints as O.

4.2.2. State Machine Diagrams
S is a set of UML state machine diagrams, one per artifact in artifacts(M). More formally, for each

artifact A ∈ artifacts(M), S contains a state transition diagram SA = 〈V, vo, vf , E,X, T 〉, where V is a
set of states, vo ∈ V is the initial state, vf ∈ V is the final state, E is a set of events (either external or
time events), X is a set of effects, and T ⊆ V × OCLM × E × C ×X × V is a set of transitions between
pairs of states, where OCLM is an OCL condition overM that must be true in order for the transition to
take place and C is a tag on the result of the execution of the event in E. Note that vo cannot have any
incoming transition, and vf cannot have any outgoing transition.

7

The states V ′ ⊂ V of SA, such that V ′ = V −{vo, vf}, exactly mirror the classes in a-states(A), so that
SA encodes the allowed event-driven transitions of an artifact instance of type A from the current state to a
new subclass (i.e. a new artifact state). Moreover, the initial transitions starting from vo always result in
the creation of an instance of the artifact being specified by SA.

We distinguish two different kinds of transitions (elements inside parenthesis are optional):

• ([OCLM]) ExternalEvent(a1, ..., an) ([C]), where a1, ..., an are the artifacts manipulated by
ExternalEvent

• [OCLM] (/X)

In the first case, the transition will take place if OCLM is true when the external event is received and
the execution of the event results in tag C, if any (its possible values are success and fail). In the second
case, it will take place if OCLM is true and it will modify the contents ofM as stated by the effect X.

OCLM is an OCL boolean expression overM, which begins with self or Class.allInstances()->...,
where Class may be any c ∈ classes(M). A TimeEvent represents an instant of time defined by an
expression. This expression may be relative with respect to another point in time or absolute. If it is
relative it uses expression after(time_expression); otherwise it uses at(time_expression), as defined
in [11]. ExternalEvent(a1, ..., an) must appear at least in a transition of the state machine diagram of
each artifact ai. Given a state machine diagram S ∈ S, we denote the set of external events in S as
extEvents(S).

The execution of external events and the tags C resulting from this execution are driven by activity
diagrams. Each effect X corresponds to an atomic task to be performed when making the transition, and
whose parameters are exactly the artifacts involved in the transition. We assume that effects are part of an
activity diagram with only one task, which will correspond to the effect itself. This activity diagram will
have the same name as the effect plus “AD”.

Given an artifact A ∈ artifacts(M), we denote by conditions(A) the set of conditions appearing
in the state transition diagram SA, also considering all activity diagrams related to SA. We then define
conditions(B) =

⋃
A∈artifacts(M) conditions(A).

4.2.3. Activity Diagrams
P is a set of UML activity diagrams, such that for every state machine diagram S = 〈V, vo, vf , E,X, T 〉 ∈

S, and for every event ε ∈ extEvents(S) there exists exactly one activity diagram Pε ∈ P.
Pε is a tuple 〈N,no, nf , F 〉, where N is a set of nodes, no ∈ N is the initial node, nf ⊂ N is the set of

final nodes and F ⊆ N ×G×C×N is a set of transitions between pairs of nodes where C is a tag (success
or fail) denoting the correct or incorrect execution of the transition, and G a guard condition.

There are four different types of nodes n ∈ N in an activity diagram Pε: initial nodes (denoted as
ini(Pε)), final nodes (final(Pε)), gateways (gateways(Pε)) and activities (activities(Pε)).

Initial and final nodes indicate the points where the activity diagram flow begins and ends. Gateways
are used to control the sequence flow. We assume that they may only be a decision node or a merge node.

An activity may be an atomic task or a material action. The set of tasks of an activity diagram p is
Tasks(p). Each task is associated to an operation contract, as explained in the next subsection. Material
actions represent physical work done in the process but that does not change the system. The tasks that
create artifacts should be the first ones in the activity diagram while those that delete them should be the
last ones. This is necessary to ensure the proper tracking of the evolution through the tasks in the activity
diagram in the translated model. We assume that all tasks have different names.

We make the following assumptions over each activity diagram Pε: decision nodes and fork nodes have
one incoming flow and more than one outgoing flow; merge nodes and join nodes have more than one
incoming flow and exactly one outgoing flow; activities have exactly one incoming and one outgoing flow;
initial nodes have no incoming flow and exactly one outgoing flow; and final nodes have one or several
incoming flows but no outgoing flow.

8

We only allow guard conditions over a transition f = 〈ns, g, c, nt〉 ∈ F if ns is a decision node. Then, g
may correspond to an OCL condition overM or to a label representing a user-made decision. Similarly, we
only allow c over f ∈ F such that f = 〈ns, g, c, nt〉 and nt ∈ final(Pε).

With a slight abuse of notation, given a state machine diagram S ∈ S, we denote by PS ⊆ P the set of
activity diagrams referring to all external events appearing in S.

As we have explained previously, during the execution of an activity diagram the constraints in O may
be violated, as we follow a strict interpretation of operation contracts [12]. However, these must be fulfilled
at the end of the execution, otherwise the transition in the state machine diagram does not take place and
all the changes made are “rolled back”.

4.2.4. Tasks
T is a set of atomic tasks, each of which has an OCL operation contract. Its semantics is that the task

can only be executed when the current information base satisfies its precondition, and that, once executed,
the task brings the information base to a new state that satisfies its postcondition. If, during the execution
of an activity diagram the precondition of one of the tasks is not met, then we assume that the corresponding
transition does not take place and that no changes are made.

Given an artifact A ∈M, we denote by tasks(A) the set of tasks appearing in the state machine diagram
SA, also considering all activity diagrams related to SA. We then define tasks(B) =

⋃
A∈artifacts(M) tasks(A).

Moreover, we assume that every task in tasks(A) that does not belong to the activity diagram of an initial
transition has as input an instance of the artifact in Sa.

4.3. Encoding a BAUML model into logic
We must first encode the BAUML model into logic so that satisfiability checking techniques can be used

for reasoning. Roughly, this encoding will map the classes and associations to predicates. Those that are
read-only, will be base predicates, whereas those that are read-write will be derived from the execution of
the tasks that create and/or delete them. These derivation rules will also have to take into consideration
the context in which the tasks execute, determined by the state machine diagram and the activity diagrams.
Finally, the integrity constraints in the class diagram will be translated as logic formulas in the denial form,
considering that they only need to be checked at the end of a transition.

We assume artifact-centric business process models with one artifact type since having two or more
artifact types would require tracking simultaneously the evolution of two artifact types adding much more
complexity. Moreover, we suppose that the initial BAUML model does not have any material actions in its
activity diagrams since they have no impact by themselves on the system. This does not limit our approach
since it is straightforward to transform an activity diagram with material actions into one without.

The work we present here clearly differs from [6], where only class diagrams and operation contracts were
considered. Note that in this case no restrictions were imposed on the execution of the tasks nor on the
checking of the constraints. Therefore, we have had to extend the translation to incorporate the execution
order of operations given by activity and state machine diagrams. Moreover, we no longer assume that all
classes and associations have to be created by the operations in the model.

Our translation process is divided into four steps, shown in Algorithm 1. To begin with, we focus on the
generic steps: obtaining derivation rules for classes and associations, translating the integrity constraints,
generating the derivation rules from the tasks, and adding the required conditions to ensure that tasks
execute properly, in the context given by state transition and activity diagrams.

The first step creates the derivation rules for the read-write classes and associations. This distinction is
made by examining the postcondition of all tasks as described in [6]. The predicate corresponding to each
read-write class and association will have a time component t indicating that the element exists at time t,
whereas read-only elements will be treated as base predicates without the time t.

The algorithm also takes into consideration if a class is created or created and deleted in the model. The
general form of these rules is:

C(p, t)← addC(p, t1) ∧ ¬deletedC(pj , t1, t) ∧ t ≥ t1 ∧ time(t),

9

Algorithm 1 TranslateToLogic(B = 〈M,O,S,P, T 〉)
. Step 1: Creating rules for read/write classes and associations

r := ∅
for all c ∈ classes(M) do

if c is created in P ∧ c is not deleted in P then
r := r ∪ {C(p, t)← addC(p, t1) ∧ time(t) ∧ t ≥ t1}

else if c is created in P ∧ c is deleted in P then
r := r ∪ {C(p, t)← addC(p, t1) ∧ ¬deletedC(pj , t1, t) ∧ t ≥ t1 ∧ time(t)}
r := r ∪ {deletedC(pj , t1, t2)← delC(pj , t) ∧ time(t1) ∧ time(t2) ∧ t ≤ t2 ∧ t > t1}

end if
end for
for all a ∈ associations(M) do

if a is created in P ∧ a is not deleted in P then
r := r ∪ {A(p, t)← addA(p, t1) ∧ time(t) ∧ t ≥ t1}

else if a is created in P ∧ a is deleted in P then
r := r ∪ {A(p, t)← addA(p, t1) ∧ ¬deletedA(pj , t1, t) ∧ t ≥ t1 ∧ time(t)}
r := r ∪ {deletedA(pj , t1, t2)← delA(pj , t) ∧ time(t1) ∧ time(t2) ∧ t ≤ t2 ∧ t > t1}

end if
end for

. Step 2: Translate integrity constraints
icSet := translateIC(O)
for all condition cond ∈ icSet do

cond := cond + {∧validState(t)}
end for
taskRules := ∅

. Step 3: Generate rules for class and association creation and deletion for every task
for all t ∈ T do

resRules := translateTask(t)
taskRules := taskRules ∪ resRules

end for
. Step 4: Generate necessary rules and conditions to ensure correct execution order

taskRules := taskRules ∪ generateConstraintsTaskExecution(B)
return 〈r, icSet, taskRules〉

where p corresponds to the attributes in the class (including its OID [unique object identifier]) or the
participants in the association, pj represents the identifier of the class (its OID) or association (OID of the
classes that participate and identify it) C, and thus pj ⊆ p, and t and t1 represent the time. We will see
how addC(...) and deletedC(...) are obtained later on.

The rule basically states that a class or an association will exist at time t if it has been created previously,
at t1 (t1 ≤ t), and it has not been deleted in the meantime. For instance, Submission is encoded as:

Submission(s, i, title, t)← addSubmission(s, i, title, t1) ∧ time(t) ∧ t1 ≤ t
∧ ¬deletedSubmission(s, t1, t)

Submission is a derived predicate created and deleted by some of the tasks. On the other hand, Author is
a base predicate as it is not created nor deleted by any task.

Step 2 of the algorithm translates the constraints O into a set of formulas in denial form, but we need to
add an atom ∧validState(t) to each of them to ensure that they are only checked at the end of the execution
of a state transition diagram transition, following the semantics of the framework.

For instance, the covering constraint in the hierarchy of Submission indicates that a Submission must
have one of its subclasses’ type. Then the condition:

← Submission(s, i, title, t) ∧ ¬IsKindOfSubmission(s, t) ∧ validState(t)

states that there cannot be a bicycle which has not any of its subtypes (predicate IsKindOfSubmission),
where IsKindOfSubmission is a derived predicate fromWithdrawnSub, PendingReviewSub, ReviewedSub,
AcceptedSub, RejectedSub (see below). This condition only applies when there are no transitions taking

10

place, indicated by predicate validState.

IsKindOfSubmission(s, t)←WithdrawnSub(s, d, title, w, t)

IsKindOfSubmission(s, t)← PendingRevSub(s, i, title, su, t)

IsKindOfSubmission(s, t)← ReviewedSub(s, i, title, r, c, t)

IsKindOfSubmission(s, t)← AcceptedSub(s, i, title, r, c, t)

IsKindOfSubmission(s, t)← RejectedSub(s, i, title, r, c, re, t)

Step 3 is the most complex and it is decomposed into various algorithms. It generates the derivation
rules that link the creation and deletion of the classes and associations with the tasks that perform these
changes, and ensures that all tasks execute at the right time. This is done by calling Algorithms 2 and 3.

Finally, step 4 generates the remaining necessary constraints to ensure the correct execution of the tasks
by calling Algorithm 4. For instance, if there is a sequence of tasks that execute in the activity diagram, it
ensures that all of them execute and creates the derivation rules to generate predicate validState at the end
of the execution of the activity diagram.

Algorithm 2 translateTask(task)
rules := ∅
prevRules := getContextPreviousTasks(task, t) . t represents a time term
createList contains the classes and associations created by task
delList contains the classes and associations deleted by task
for all ruleFragment ∈ prevRules do

for all el ∈ createList do
r := addEl(p, t)← task(p, x, t) ∧ pretask(t− 1) ∧ time(t) ∧ ruleFragment
rules := rules ∪ r

end for
for all el ∈ delList do

r := delEl(pj , t)← task(pj , y, t) ∧ pretask(t− 1) ∧ time(t) ∧ ruleFragment
rules := rules ∪ r

end for
rules := rules ∪ {task′(pa, t)← task(pa, z, t) ∧ pretask(t− 1) ∧ time(t) ∧ ruleFragment}

end for
return rules

We will now analyze the details of the remaining algorithms. Algorithm 2 is aimed at translating the
atomic tasks. As they make changes to the instances of the class diagram, this translation will result in the
derivation rules that generate predicates addEl and delEl, where el is a class or an association. These rules
are generated by analyzing the postcondition of each task and determining if the task creates or deletes
some instance. If the task has a precondition, then its translation (following [9]) is also added to the body
of the derivation rule to ensure that it is true at time t− 1, where t represents the time the task executes.

However, this translation does not impose any restrictions over the order for task execution. In BAUML
tasks execute following the restrictions and the order established by the state transition and activity dia-
grams. In particular, taskk can only execute if pretaskk

is true and the previous task taskk−1 has executed
at t− 1.

Algorithm 2 generates the creation and deletion rules as described, invoking Algorithm 3 to obtain the
part of the rule that refers to the successful execution of the previous tasks. At the end, Algorithm 2
generates a rule of the form:

task′(pa, t)← task(pa, z, t) ∧ pretask(t− 1) ∧ time(t) ∧ ruleFragment,

where pa corresponds to the OID of the business artifact, which we use to ensure the proper evolution of
the system, and z corresponds to the remaining parameters or terms of task. The derived predicate of this
rule, task′(...), will be used as an indicator that task has executed properly by the next task.

Algorithm 3 is in charge of generating the part of the derivation rules that depends on the previous
node(s) of a certain node. Its complexity lies in the fact that we consider not only linear activity diagrams,
but that we also allow decision and merge nodes. We assume that control nodes do not add execution time
to our diagrams and that they are traversed immediately. So, given a node n that belongs to an activity
diagram Pε and time t, the algorithm:

11

Algorithm 3 getContextPreviousTasks(n,t)
result := ∅
prevSet contains the previous nodes of n
for all np ∈ prevSet do

if np is task then
result := result ∪ n′

p(pa, t− 1)
else if np is decision node then

guard := getGuard(np, n)
res := getContextPreviousTasks(np, t)
for all el ∈ res do

result := result ∪ {el ∧ guard(t− 1)}
end for

else if np is merge node then
res := getContextPreviousTasks(np, t)
result := result ∪ res

else if np is initial node then
transitions contains the transitions in which the activity diagram appears
for all t ∈ transitions do

ss is the source state of t
cond is the translation of condition of t
if ss is not initial pseudostate ∧ cond is not empty then

result := result ∪ {ss(p, t− 1) ∧ cond(t− 1)}
else if ss is not initial pseudostate then

result := result ∪ {ss(p, t− 1)
else if cond is not empty then

result := result ∪ {cond(t− 1)}
end if

end for
end if
return result

end for

1. Obtains the previous nodes of n, stores them in prevSet and initializes result to the empty set.
2. For each np ∈ prevSet, it checks its type.

(a) If np is a task, it then adds the n′p(...) predicate to the existing result, indicating that the task
np will have executed successfully.

(b) If np is a decision node, the algorithm needs to obtain the predicates corresponding to the tasks
that may execute before np; therefore it invokes itself, but this time with np and t as input. As np
is a decision node, there will be a guard condition in the edge between np and n. This guard will
be translated as if it was a precondition and it will have to be true at t−1 in order for the task to
execute. Then, it will add the guard condition to each rule-part obtained by the self-invocation.

(c) If np is a merge node, it invokes itself with parameters np and t, and it adds the result of this
invocation to variable result.

(d) If, on the other hand, np is an initial node, it adds the source state of the state transition diagram
of the transitions in which the activity diagram appears. If there is an OCL condition, it also
adds the translation of the condition.

3. The algorithm returns variable result, containing a set of rule fragments.

For instance, for task Add Rejection Reason, we have the following rules, among others:

addRejectedSub(s, i, ti, r, c, st, t)← addRejectionReason(s, st, t)

∧Submission(s, i, ti, t) ∧ precondAddRejReas(s, t− 1)

∧Submission(s, id, ti, t− 1) ∧ addReviewInfo′(s, t− 1)

addRejectionReason′(s, t)← addRejectionReason(s, st, t)

∧Submission(s, i, ti, t) ∧ precondAddRejReas(s, t− 1)

∧Submission(s, i, ti, t− 1) ∧ addReviewInfo′(s, t− 1)

The task creates an instance of the RejectedSub class. It has a precondition which must be true at t− 1,
and its translation appears in the derivation rule of addRejectedSub. In addition to this, the body of the
rule includes the predicate addReviewInfo′, that guarantees that the previous operation (Add Review Info)
has executed successfully.

12

Algorithm 4 generateConstraintsTaskExecution(B)
constr := ∅
for all task ∈ tasks(B) do

nn is next node of task
if nn is task then

constr := constr ∪ {← task(pa, z, t) ∧ ¬n′
n(pa, t + 1)}

else if nn is decision node ∨ nn is merge node then
r :=← task(pa, z, t) ∧ ¬nextTask(pa, t + 1)
res := generateConstraintsNextTasks(n, task)
constr := constr ∪ r ∪ res

else if nn is final node then
constr := {validState(t)← task′(pa, t)}

end if
end for
return constr

With the algorithms that we have seen so far we have restricted the order for the tasks execution in one
direction, ensuring that task taskk can only execute if taskk−1 has taken place. We also need to ensure
that, once an activity diagram begins execution, it finishes. Algorithm 4 generates the necessary constraints
to do so. For each task, it obtains its next node and, if the next node nn is a task, it creates a rule of the
form: ← task(pa, z, t) ∧ ¬n′n(pa, t + 1), where predicate n′n corresponds to the derived predicate generated
by Algorithm 2 to ensure that task nn has executed properly. For instance, for the tasks Register New
Submission and Add Author to Submission we have the following condition and derivation rule:

← registerNewSubmission(s, t) ∧ ¬(addAuthorToSubmission(s, t+ 1))

On the other hand, if nn is a decision node or a merge node, there is the possibility that there will be more
than one task that can be executed. For this reason, the algorithm generates this rule: ← task(pa, z, t) ∧
¬nextTask(pa, t + 1), meaning that if task has executed at t one of its next tasks must have executed at
t+1. nextTask is a derived predicate resulting from the execution of any of the next tasks. These derivation
rules are created in Algorithm 5 and have the following form: nextTask(pa, t)← task′n(pa, t). The algorithm
iterates over the nodes until the next task(s) are found. Guard conditions are not considered because they
have already been translated by the other algorithms.

Finally, if a task is followed by a final node, we need to generate rule: validState(t)← task′(pa, t). This
rule will ensure that the restrictions of the model are checked at the end of the execution. For instance, in
our example the successful execution of task Assign To AnchorPoint generates predicate validState as it is
the last task in the activity diagram:

validState(t)← addRejectionReason′(s, st, t).

Algorithm 5 generateConstraintsNextTasks(n,task)
result := ∅
nextSet contains the set of next nodes of n
for all nn ∈ nextSet do

if nn is task then
nextTask(pa, t)← n′

n(pa, t)
else if nn is decision node ∨ nn is merge node then

res := generateConstraintsNextTasks(nn, task)
result := result ∪ res

else if nn is final node ∧ n is decision node then
guard contains the guard condition from n to nn

nextTask(pa, t)← task′(pa, z, t) ∧ guard(y, t)
validState(t)← task′(pa, z, t) ∧ guard(y, t)

end if
end for
return result

There is a special case, however. If there is a decision node n and one of the next nodes nn ∈ final(Pε)

13

is a final node, then these rules are needed:

nextTask(pa, t)← task′(pa, z, t) ∧ guard(y, t)
validState(t)← task′(pa, z, t) ∧ guard(y, t),

which will ensure that after the execution of task, the diagram terminates if the guard condition is met.

4.4. Differences between UML/OCL and First-Order Logic that Impact the Translation Process
The translation of UML and OCL into other formal languages can pose several challenges due to the

differences in semantics [13, 14]. This subsection analyzes some of these issues.

Graphical Elements and Constraints. Our approach considers only the following graphical elements: classes,
association classes, associations, attributes and association multiplicities. This does not include additional
graphical restrictions that UML allows, such as the subset or xor, or the aggregation and composition
associations. However, all of these can be expressed as OCL textual constraints which can be translated by
our approach.

Redefinition of Operations. As the UML/OCL languages follow an object-oriented paradigm, one of its key
characteristics is the ability to redefine operations in a subclass. However, we define operations at the
specification level, where the system is considered to be a black box and hence operations are part of the
system and not of a specific class [15]. Therefore, we do not consider operation redefinition in our approach.

Data Types. Although we assign a specific data type to each attribute, our approach to reasoning ignores
the data types assigned to the attributes, and treats them as integers (an integer can be interpreted as a
string). In contrast, however, our approach does make sure that the input parameters of the operations and
the objects participating in the association do have the right types, as defined in the translation process.

Collections. A collection represents a group of elements of a certain type. OCL distinguishes between bags
(collections with duplicates), sets (collections without), sequences (an ordered bag) and ordered sets [16].
We only consider sets since they are the ones handled by first order logic. Most OCL constraints and OCL
operations will in practice result in sets, which is appropriate for our translation process.

Arithmetic Operations. We do not consider arithmetic operations such as addition, substraction, multipli-
cation and division. Similarly, we do not support if/else conditions.

Model Evolution. First-order logic lacks the ability to represent the evolution of a domain over time, i.e.
it does not inherently consider the notion of state. However, the evolution of a system over time is a key
element in our approach. Therefore, to solve this limitation, we base our work on [12], which add the notion
of a time predicate and represents the derivation rules in a way that considers it, as previously described.

4.5. Formalization of the Tests
Our approach is aimed at providing the designer with different tests that allow him to assess the correct-

ness of the BAUML model. Once we have the model encoded in logic, each validation test is reformulated
into a query satisfiability problem over a derived predicate. So, for each test, a derived predicate that for-
malizes the test is defined. With this input, together with the translated schema, any satisfiability checking
method able to deal with negation of derived predicates can be used to reason about BAUML models.

We formally define in this section the properties in Section 3 in terms of query satisfiability tests over a
derived predicate. We illustrate this formalization through the translation of our running example.

14

4.5.1. Verification Tests
Liveliness of a Class or Association The liveliness test of a class or an association will ensure that

an instance of it can be successfully created and that it persists in the system until the transition that has
created it ends. The general form of the test is the following, where el is the name of the class or association:

livelinessTestEl()← el(p, t) ∧ validState(t).

If the class or association is not created in the business process, then the time component t would
be omitted from the derivation rule shown above. As during the execution of activity diagrams integrity
constraints can be violated, validState(t) ensures that the integrity constraint is only checked when no
activity diagrams are in the middle of an execution.

Minimum cardinality Given a n-ary association asso, with m participants, where m > 0 and a
minimum cardinality of x in the end of class C, we would define the test in the following way:

minCardTest()← asso(p1, ..., pm−1, c1, t) ∧ . . . ∧ asso(p1, . . . , pm−1, cx, t)
∧ ¬extraAsso(p1, . . . , pm−1, c1, . . . , cx, t) ∧ c1 6= c2 ∧ . . . ∧ cx−1 6= cx

∧ validState(t)
extraAsso(p1, . . . , pm−1, c1, . . . , cx, t)← asso(p1, ..., pm−1, cx+1, t) ∧ C(c1)

∧ . . . ∧ C(cx+1) ∧ c1 6= c2 ∧ . . . ∧ cx 6= cx+1

Maximum cardinality To avoid infinite loops, the maximum cardinality should be bounded before
running this test. Given a n-ary association asso, with m participants, and a maximum cardinality of x in
the end of class C, we would define the test in the following way:

maxCardTest()← asso(p1, ..., pm−1, c1, t) ∧ . . . ∧ asso(p1, . . . , pm−1, cx, t)
∧c1 6= c2 ∧ . . . ∧ c1 6= cx ∧ . . . ∧ cx−1 6= cx ∧ . . . ∧ validState(t)

For both cardinality tests, a satisfactory answer means that the cardinalities are correct, whereas a
negative answer means that the cardinality should be greater, for the minimum cardinality test, or lower,
for the maximum.

Redundancy of integrity constraints An integrity constraint ic is redundant if other constraints
subsume it. What we do is to remove the constraint from the schema and test if the model can fulfill it:

icRedundant()← ic(t) ∧ validState(t)

If the result is positive, there is no other constraint restricting ic. Therefore, ic is not redundant.
Otherwise, ic is redundant and can be deleted from the schema.

State reachability Checking the reachability of a state is equivalent to checking the liveliness of the
corresponding class:

stateReachabilityTest()← el(p, t) ∧ validState(t).

Transition Applicability Given a transition t = 〈vs, o, e, c, x, vt〉, checking its applicability means
ensuring that vs is reachable and that o (if any) is true:

transApplTest()← predVs(p, t)[∧ocl(t)] ∧ validState(t)

predVs corresponds to the predicate representing the subclass that corresponds to state vs, ocl the
ocl condition o in the transition (if there is one). We have to ensure that these conditions are met on a
validState(t), as transitions begin their execution in this state.

15

Transition Executability There are many factors that should be considered for the executability of
a transition t = 〈vs, o, e, c, x, vt〉:

1. The source state vs.
2. Any OCL conditions that may appear in the transition: o.
3. The target state vt.
4. The event e or effect x which is part of t.
5. There cannot be any intermediate valid state (validState(t)) between the source state vs and vt.

Conditions 1 and 2 refer to the time, t1, before the execution of the transition begins. Condition 3 refers
to the time, t2, at the end of the execution. Between t1 and t2 the tasks in e or x will execute.

Then, the form of this test will be the following:

transExecTest()← predVs(oid, . . . , t1)[∧ocl(t1)] ∧ validState(t1) ∧ predVt(oid, . . . , t2) ∧ validState(t2)
∧ ¬validState(t3) ∧ time(t3) ∧ t1 < t2 ∧ t1 < t3 ∧ t3 < t2 ∧ execLastTask′(oid, . . . , t2)

execLastTask′(oid, . . . , t2) corresponds to the last task in the activity diagram for event e or effect x.
This ensures we are executing the right event or effect to perform the transition. predVs and predVt are the
predicates representing the subclasses that correspond to the source and the target states, respectively.

Precondition Redundancy Test It checks if the precondition of the task is superfluous. The test is
defined in the following way, for task taski:

precRedTest()← par1(y1) ∧ . . . ∧ parn(yn) ∧ ¬pretaski
(y, t),

where pari corresponds to the input parameters and pretaski
the precondition of the task. If the test

executes successfully, then the precondition is redundant.

Applicability Test It checks whether the necessary requirements for the excution of a certain task
are met. It has the form, for task taski:

applicabilityTask()← pretask(y, t) ∧ task′i−1(pa, t).

task′i−1 represents the predicate corresponding to the successful execution of the previous task to taski.

Executability Test It checks if a certain task can be executed. Particularly useful to ensure that all
paths from a decision node can be taken. The test has the form:

executabilityTask()← task′(pa, t).

Regarding the two last tests, and in particular regarding verification of activity diagrams and operation
contracts, it is worth noting that we have defined the translation of the BAUML models into logic in a way
in which activity diagrams cannot stop in the middle of an execution: they either execute successfully or
they do not execute at all. Therefore, if we do not make some changes, the result of the executability and
applicability tests of the tasks will depend, in the general case, on the executability of the event or effect
they are part of.

What would be interesting to know is if a task is applicable or executable considering only the context
required up to the point of its execution. To achieve this, we generate the logic schema without any of the
predicates and rules produced by Algorithm 4 which force the execution to move forward. We need to keep
the rest of rules for the remaining activity diagrams, to ensure that they execute until the end.

16

4.5.2. Validation Tests
Path Inclusion or Exclusion There are three tests that we can perform to check path inclusion and

exclusion between two relationships, asso1 and asso2, that have the same participants, p1 to pn:

pathIncExcTest1()← asso1(p1, ..., pn, t) ∧ asso2(p1, ..., pn, t) ∧ validState(t)

pathIncExcTest2()← asso1(p1, ..., pn, t) ∧ ¬asso2(p1, ..., pn, t) ∧ validState(t)

pathIncExcTest3()← asso2(p1, ..., pn, t) ∧ ¬asso1(p1, ..., pn, t) ∧ validState(t)

The first test checks if it possible for asso1 and asso2 to have instances with exactly the same participants.
Tests 2 and 3 check the opposite: is it possible to have instances of asso1 (asso2) if there is not the
corresponding instance in asso2 (asso1)?

Test Result
True False

pathIncExcTest1 Allows path inclusion Does not allow path inclusion
→ Path exclusion

pathIncExcTest2 asso1 does not depend on
asso2

asso1 requires asso2→ Path
inclusion

pathIncExcTest3 asso2 does not depend on
asso1

asso2 requires asso1→ Path
inclusion

Table 1: Table showing the interpretation of the different results for the path inclusion and exclusion tests.

Table 1 summarizes the meaning of the results of the tests. A positive result in the tests may indicate that
there is a constraint missing, whereas a negative result will indicate that the paths are mutually exclusive
(pathIncExcTest1) or that they are inclusive (pathIncExcTest2 and pathIncExcTest3).

Missing irreflexive constraints Given an association asso which relates the same class c to itself,
we can check if it is reflexive by performing the following test:

reflexTest()← asso(r1, r1, t) ∧ validState(t)

Full transition coverage The full transition coverage test checks if all potential combinations of
transitions can actually take place.

transCovTest()← lastTask′tr1(oid, ..., t1) ∧ . . . ∧ lastTask
′
trn(oid, ..., tn) ∧ t1 < t2 ∧ . . . ∧ tn−1 < tn∧

¬intV alidState(t1, t2) ∧ . . . ∧ ¬intV alidState(tn−1, tn)
intV alidState(ta, tb)← time(ta) ∧ time(tb) ∧ time(tc) ∧ ta < tc ∧ tc < tb ∧ validState(tc)

Predicate intV alidState is necessary to ensure that the only transitions executed in the diagram are the
ones stated in the first derivation rule. If the test is satisfiable, the sequence of transitions is valid. Otherwise,
this may indicate an error in either the executability of the transitions themselves or in this particular
combination of transitions. If the transitions have been checked satisfactorily for their executability, then
the issue is in the combination of transitions.

5. Automatic Reasoning in our Running Example

With the purpose of showing the feasibility of our approach, we have developed a prototype tool which
is able to automatically translate the models into the required logic for satisfiability checking, and then
determine whether they fulfill certain semantic correctness properties. It is worth mentioning that reasoning

17

in a logic schema as expressive as the one we obtain is known to be a semidecidable problem and, therefore,
it is not possible to always ensure termination. The same remark applies regarding (the lack of) efficiency of
reasoning. However, our goal here is not to present a tool to solve the problem in general, but to show that
we can already find satisfactory results for particular situations when using some of the existing technology.
Then, our goal in this section is to show that our approach is feasible in practice since our implementation
works for the example presented in the paper.

5.1. Implementation of the Approach
Given a BAUML model graphically defined using ArgoUML [17], we export it into an XMI file which is

then provided to the prototype. The prototype applies the translation techniques explained previously and
can generate the verification tests automatically. The user then selects the tests that he wishes to perform
and the translation result obtained previously is transparently provided as input to another tool, SVTe.
Given a certain property over the logic schema, SVTe can tell whether this property is fulfilled. Following
this workflow, the user can answer several questions which deal with the semantic correctness of the model.

We use SVTe [18] as a satisfiability checking engine because it is developed by our research group.
Moreover, it is one of the few satisfiability checkers able to deal with negative derived predicates. Not only
does it indicate whether the tested query is satisfiable, but also provides a sample instance if the test is
satisfied or, otherwise, the subset of constraints that prevent it from being satisfied.

SVTe handles each test as a satisfiability problem and it uses the CQCE method [19], aimed at building
a consistent state of a database schema that satisfies a given goal, represented as a set of one or more literals.
The method starts with an empty solution, and given the goal, the database schema, the constraints and
the derivation rules, it tries to obtain a set of base facts that satisfy the goal and all constraints. The
CQCE method is a semidecision procedure for finite satisfiability. This means that it does not terminate in
the presence of solutions with infinite elements. However, termination is ensured if the model satisfies the
conditions identified in [4].

To instantiate the variables during the inference process, the method uses Variable Instantiation Patterns
(VIPs), which generate only the relevant facts that need to be added to the schema to satisfy the goal. If
no instance that satisfies the database schema and the constraints is found, then the VIPs guarantee that
the goal cannot be achieved with the given schema and constraints.

Logically, we consider all the elements in the BAUML framework (the class, state machine, activity
diagrams and OCL operation contracts) when reasoning. It is important to point out that our reasoning
approach works only with the specification of the model and does not need an initial instance of the model
to obtain results.

5.2. Some Test Examples
Liveliness Tests. These tests show whether the classes in our model (both artifacts and objects) can have
at least one instance. Figure 4 shows the result of the execution of the liveliness tests for all the classes in
the model. As it can be seen, all the tests have executed successfully.

Let’s look at the result for the liveliness test of AcceptedSub. By double-clicking on the result, the proto-
type opens a new window (Figure 5, left) stating the base predicates required to achieve the goal of having
an instance of AcceptedSub at a valid state. They correspond to classes (Author and Session) and to tasks
(e.g. AssignToSession, RegisterNewSubmission). The predicates representing classes correspond to those
that are not created by the operations in the model, and therefore they do not include a time component.
On the other hand, the predicates corresponding to the operations have a component representing time (the
last term). By analyzing the time component, we can see the execution order which has to be followed
by the operations. According to the result, the order is: RegisterNewSubmission, AddAuthorToSubmission,
AddReviewInfo and AssignToSession, which is the one established by the transitions in the state machine
diagram and the activity diagrams.

18

Figure 4: Selection and result of the execution for the liveliness tests of all the classes in the class diagram

Figure 5: Base predicates to achieve AcceptedSub (left) and to ensure the successful execution of transition AddAuthor (right).

Transition Executability Tests. The transition executability tests prove that a certain transition in the state
machine diagram is executable. If we focus on the transition containing event Add Author, its executability
test would be defined in the following way:

execTransTest()← PendingRevSub(s, id, t, d, t0) ∧ validState(t0) ∧ PendingRevSub(s, id, t, d, t1)
∧ validState(t1) ∧AddAuthorToSub(a, s, t1) ∧ t0 < t1 ∧ ¬(intermediateV alidState(t0, t1))

In our example, all transitions are executable. If we check the details for Add Author in Figure 5,
right, we see the necessary base predicates that will eventually lead to the successful execution. In this
case, we need to have two different Authors, and we will need to execute tasks RegisterNewSubmission and
AddAuthorToSubmission, which correspond to transition SubmitPaper. Then, once the submission has been
created, we need to execute task AddAuthorToSub which is in the transition that corresponds to AddAuthor.

19

5.3. Performance
Our reasoning approach is based on satisfiability checking, which is a well-known NP-complete problem

and, as such, no algorithm has been found that can solve the problem efficiently. Therefore, it cannot be
expected that the prototype we have created will provide fast execution times. It works and provides results
for the tests related to our example; however, it suffers from efficiency issues and termination in reasonable
time cannot be guaranteed for every example.

This section briefly analyses the performance of the tool for the running example. The resulting transla-
tion contains approximately1 74 constraints and 60 derivation rules. Table 2 shows the execution times for
the verification tests, which have been generated automatically.

Table 2: Table showing execution times of the tests in our example
Tests Time (ms) Time (min.)

Liveliness
Submission 20676 0,3446
WithdrawnSub 81192 1,3532
PendingRevSub 21678 0,3613
ReviewedSub 5327900 88,79833333
AcceptedSub 823072 13,71786667
RejectedSub 439559 7,325983333
writes 2497 0,041616667
presented in 806750 13,44583333

Min. Cardinality Constraints
writes 2537 0,042283333
presented in 834450 13,9075

Max. Cardinality Constraints
presented in 836167 13,93611667

Trans. Applicability Tests
Add Author 21899 0,364983333
Review Submission 21938 0,365633333
Withdraw Submission 21928 0,365466667

Trans. Executability Tests
Add Author 740174 12,33623333
Review Submission (fail) 2985656 49,76093333
Withdraw Submission 867448 14,45746667
Review Submission (success) 4739054 78,98423333
Submit Paper 5790 0,0965

Precondition Redundancy Tests
Add Author to Submission 1750 0,029166667
Add Review Info 25682 0,428033333
Assign to Session 2854 0,047566667
Add Rejection Reason 2408 0,040133333
Withdraw 2434 0,040566667
Add Author to Sub 2733 0,04555

Op. Applicability Tests
Add Author to Submission 1006 0,016766667
Add Review Info 2783 0,046383333
Assign to Session 3223 0,053716667
Add Rejection Reason 2774 0,046233333
Withdraw 2841 0,04735
Add Author to Sub 2123 0,035383333

Op. Executability Tests
Register New Submission 575 0,009583333
Add Author to Submission 1743 0,02905
Add Review Info 7398 0,1233
Assign to Session 212789 3,546483333
Add Rejection Reason 115237 1,920616667
Withdraw 15113 0,251883333
Add Author to Sub 15782 0,263033333

1Numbers may vary a little depending on the test being performed.

20

As it can be seen, there is a wide range of execution times. The fastest test (executability of task Register
New Submission) took about half a second, whereas the longest (liveliness of ReviewedSub) took almost 90
minutes. This variety in execution times can be mostly explained by their different complexity.

Operation executability and applicability tests are among the fastest. The reason is that some integrity
constraints are disabled in order for these tests to provide meaningful results. Therefore, in these cases there
is no need to force the execution to move forward, just ensure that up to that point the operations have
executed in the right order. This is guaranteed by the derivation rules. Similarly, precondition redundancy
tests are also quite fast, as they do not require the system to be in a valid state.

Transition applicability tests provide the results in a very reasonable time. Except for SubmitPaper -
which has no actual requirements for being applied - the rest of tests only need an instance of PendingRevSub,
which can only be obtained by executing transition SubmitPaper. Therefore, in this particular example they
are very straightforward.

Transition executability tests are more complex since their definition needs ensuring that initial and final
states are correct, that the right event is executed and that there are no valid intermediate states in-between.
Moreover, all integrity constraints need to be considered. For this reason, they are costly, especially Review
Submission, which requires a PendingRevSub at the start and whose activity diagram has three tasks.

Liveliness tests can also be quite costly, because their result depends on figuring out the right combination
of operations or tasks that leads to obtaining an instance of the class or relationship. In general, the more
tasks required (AcceptedSub, RejectedSub), the longer the test takes. It is noteworthy that the liveliness
test of ReviewedSub, a superclass of both AcceptedSub and RejectedSub, took around 88 minutes instead of
the 13 minutes or 7 minutes (respectively) for the subclasses. This is probably due to the fact that SVTe
performs an iterative deepening depth-first search to find a solution and, in this particular example, there
two possible paths to obtain a ReviewedSub. Minimum and maximum cardinality tests require instances
of the classes that define the association. For this reason, they should take as long, or longer, than the
corresponding liveliness tests, as shown here.

To summarize, as we have seen with our running example the tool can obtain results but in some cases
the time required to do so is too high. The bottleneck is not in the translation process itself, but in the
reasoner. A possible area for improvement would be to introduce parallelism or to tweak the algorithm in
the reasoner that searches for a solution.

6. Related Work

We focus mainly on reasoning on business process models and reasoning on UML/OCL models. However,
it is worth mentioning that there are similar approaches in other areas such as Multi-Agent Systems, which
are out of the scope of this paper. For example, [20] formalizes and validates SEA_ML models, a domain-
specific modeling language, by using the Alloy analyzer. We distinguish between proposals dealing with
syntactical and structural reasoning, and approaches that focus on semantic reasoning and existing tools for
reasoning on artifact-centric business process models.

6.1. Syntactical & Structural Reasoning
Most of this research follows a process-centric perspective and it has centered on detecting errors in the

flow of activities. This is why many authors translate workflow models into Petri nets, which are formal.
Some works translate generic workflows into graphs to check certain properties such as soundness, exis-

tence of deadlocks, etc. For instance, Choi and Zhao [21] consider cyclic workflows, whereas Lin et al. [22]
do not. A more informal approach is used by van Dongen, van der Aalst and Verbeek [23], where EPCs
(Event-driven Process Chains) are first reduced and then translated into a Petri net. However, this approach
may require user intervention to determine whether a potentially conflictive situation is erroneous or not.

Störrle [24] gives a formal definition of UML activity diagrams, by mapping the elements of activity
diagrams, including the data flow, to colored Petri-nets. Then, standard properties of Petri nets like state
reachability can be checked in the activity diagrams. However, data is only considered in terms of the flow
of the diagram and no formal definition of the tasks and their impact on the data is given.

21

A seminal paper by van der Aalst et al. deals with structural reasoning [25]. It studies different variations
of Workflow nets and how the different notions of soundness apply to them. Although focused on whether
it is decidable to verify the workflows, the paper offers an overview of existing techniques to verify them.

All these works make an important contribution by providing methods for the verification of the syntac-
tical or structural business process models and their results can be applied to our approach. However, being
process-centric, they do not deal with artifacts nor the meaning of tasks, both of which are key elements in
our proposal.

6.2. Semantic Reasoning
We examine semantic reasoning in data-aware approaches, artifact-centric business process models and

UML diagrams, since these are the three main features covered by BAUML models.

6.2.1. Data-Aware Approaches
There are some approaches that, although not specifically artifact-centric, do consider the data [26, 27,

28]. Sidorova, Stahl and Trcka [27] deal with soundness in WFD-nets considering the read/write/delete
operations in the process. Awad, Decker and Lohnmann [26] detect errors in the flow by considering the
evolution of data from one state to the next. Given various Petri nets representing the evolution of artifacts,
Lohmann and Wolf [28] create a valid choreography taking into consideration the policies that restrict the
valid interaction and the goal states. However, in contrast to our work, none of these approaches deals with
the detailed meaning of the tasks and they do not have an underlying conceptual schema representing the
data and its relationships.

Similarly, Rinderle-Ma [29] studies the conditions which guarantee the correctness of the data flow when
making changes to the control flow or the data flow of a business process. Nevertheless, it mainly focuses
on read-write dependencies and there is no data model.

Knuplesch et al. [30] check if the business process model fulfills certain properties that may take the
data into consideration. They create an abstraction of the model to avoid the state explosion caused by the
data. However, the structure of the data is not fully represented.

To sum up, although these works follow approaches that could be considered similar to the one in this
paper, they do not use models as complex as ours and tend to simplify the underlying data.

6.2.2. Semantic Reasoning on Artifact-centric BPM
Several approaches use data-centric dynamic systems (DCDSs), grounded on logic, as the basis for

reasoning [31, 32, 33]. There are several ways to represent the data. Bagheri Hariri et al. use a relational
database together with a set of condition-action rules and actions defined in logic [31]. In another work,
Bagheri Hariri et al. [33] use a Knowledge and Action Base defined in a variant of Description Logics.
Similarly, Calvanese et al. [32] map an ontology to a DCDS in order to verify certain temporal properties
expressed in a variant of µ-calculus.

Damaggio et al. [34] represent artifacts using a set of variables, which are updated by services defined
by pre and postconditions in first-order logic. This work is actually a summary of the results of Damaggio,
Deutsch and Vianu [35], and Deutsch et al. [36]. The authors check whether the model fulfills a set of
properties defined in LTL-FO , which is not as powerful as µL. Despite this, they can represent integrity
constraints, such as primary keys and foreign keys, and they allow arithmetic constraints in the services’
definition, something not permitted in other works [31].

Similarly, Belardinelli, Lomuscio and Patrizi [37] check whether a deployed artifact system, defined in
logic, fulfills a property defined in FO-CTL (a first-order extension of CTL). The fact that the artifact system
has been deployed implies that it does not deal with infinite data, but there is rather an upper bound on
the number of elements in each state.

Gerede and Su [38] define a specification language, ABSL, based on CTL, to specify the artifacts’ lifecycle
behavior and is able to check if the model satisfies a certain property defined in ABSL. However, like in the
case of LTL-FO, CTL is not as powerful as µ-calculus.

Bhattacharya et al. [39] reason on reachability, dead-ends and redundancy. Artifacts are represented
using a set of attributes, an identifier and a state. Services are defined by means of predicates new, defined

22

and assignations between variables. Business rules are defined by means of if rules. However, this proposal
does not deal with actual data, but rather an abstraction of it.

Sumarizing, all these works represent, in contrast to our approach, artifact-centric business process
models and the properties to be checked, in languages derived from logic. Consequently, the models under
consideration are formal, but they are not intuitive nor practical from the point of view of the business.
Moreover, desirable properties have to be defined manually. In addition to this, they have been proposed at
a theoretical level and there is no tool yet to show its feasibility in practice.

From a different perspective, the Guard-Stage-Milestone (GSM) approach provides a more business-
friendly representation of artifact-centric business processes, and several works study reasoning on these
models. So, Heath et al. present a system to model and execute artifact systems [40] but it is limited to
simulating the behavior of the model given certain data, instead of reasoning on generic properties. Other
works use the GSMC tool to reason on GSM models [41, 42]. However, several restrictions are imposed on
the data types and they only allows one instance per artifact [41]. A follow-up work by the same authors
[42] perform model checking over GSM models from a multi-agent perspective; however the bound placed
on the number of objects may sometimes lead to unreliable results when this bound is exceeded.

Hence, although GSM approaches follow a more user-friendly notation, the reasoning approaches have
either been presented theoretically or the existing tools are limited, such as allowing only one instance per
artifact.

Closer to our work, Weber, Hoffman and Mendling [43] perform verification over process models consid-
ering the meaning of the tasks. They use BPMN diagrams whose tasks may be annotated with preconditions
and effects defined in logic, and use an optional ontology to define the underlying data. Time is not con-
sidered explicitly, but they have implemented a prototype tool that can perform some verification tests.
However, as neither the ontology nor the details tasks are compulsory, the final results can only be partial
or provide an intuitive idea of potential issues.

On the other hand, Borrego, Gasca and Gómez-López [44] use artifact union graphs (a Petri-net like
notation) to check state reachability and weak termination. The artifact union graphs represent the states
and the services that trigger the transitions between those states. Constraints and details of the services
are defined in pre and postconditions following a certain grammar. They also have a tool which is able to
perform the verification. Although their approach deals with several artifacts, the domain of the artifacts’
attributes is constrained and the type of tests that can be performed is limited.

Finally, Lohmann [45] follows a completely different approach. Instead of checking the business process
model’s conformance to certain rules , the author uses a compliance by design approach: it generates business
process models that already comply with the rules. However, it requires an initial business process model
on top of which a new model is built which fulfills the rules. This means that there may be errors in the
model which may not be detected. In addition, the notation used to represent the artifact-centric models is
based on Petri nets to represent the lifecycle of the artifact, and no details of the tasks are given.

6.2.3. Semantic Reasoning on UML models
Most of the proposals for reasoning on UML models deal only with one diagram. For instance, several

works [9, 46] focus on the class diagram, others handle state-machine diagrams [47] or focus on activity
diagrams [48]. On the other hand, Lucas, Molina and Toval Álvarez [49] performed a systematic literature
review of works dealing with various UML diagrams but only four of the analyzed papers perform reasoning
on more than one of the diagrams in our approach: they can handle class and state machine diagrams.

Eshuis [48] checks the consistency between UML activity diagrams and class diagrams. However, instead
of dealing with the activity diagram’s actions specification, it considers that the object flow acts as a
precondition and postcondition of the actions. These constraints are derived automatically from the diagram.
Therefore, it only focuses on create, read, write and update dependencies among tasks.

Straeten, Simmonds and Mens [50] check the consistency between different UML diagrams using De-
scription Logics, but target very basic properties and do not consider the definition of the operations or the
additional constraints in the process, like we do.

Although not explicitly an artifact-centric approach, Reggio, Leotta and Ricca [51] study the quality of
business processes represented using UML activity diagrams.

23

Summarizing, and despite the significant results on semantic reasoning on UML models, none of the
current proposal is able to handle together all the elements of a BAUML model.

7. Conclusions and Further Work

Checking the correctness of BAUML models as early as possible is important to avoid the propagation of
errors to the implementation of the processes. There are different tests that can be performed to determine
the correctness. We focus on semantic tests, as they take into consideration the data and the meaning of
the tasks when providing their results. Most of the available methods for performing semantic reasoning on
artifact-centric business processes use as input models grounded on logic. These models are very formal and
so they are not practical from the point of view of the business, as they are difficult to understand.

Bearing this in mind, in this paper we have proposed an approach to perform semantic reasoning on
an artifact-centric business process model defined using the BAUML framework, which uses a combination
of UML and OCL models. UML and OCL are standard, well-known languages, and UML is based on a
graphical notation, which makes it easier to understand than languages such as logic. To be able to perform
the reasoning with these models, we have used an existing method for satisfiability checking, which requires
a set of derivation rules in first order logic and a goal.

We have shown how to automatically translate the BAUML models into a set of rules as required by
the satisfiability methods, and we have detailed the algorithms that are able to do so. Moreover, we have
formalized several tests that can be automatically generated and then applied to determine the semantic
correctness of the BAUML model.

Hence, the advantage of this approach is that, starting from models which have a high-level of abstraction
and are more intuitive, we show a way to check automatically check their correctness without requiring user
intervention or knowledge of formal languages, such as first-order logic.

We have also shown the feasibility of our approach by a prototype that automatically translates a BAUML
model into logic and can also generate the verification tests automatically.

Further work is required towards improving efficiency of the reasoner and identifying conditions that
allow ensuring termination of reasoning for the input BAUML models.

Acknowledgments

This work has been partially supported by the Ministerio de Economía y Competitividad, under project
TIN2014-52938-C2-2-R and by the Secretaria d’Universitats i Recerca de la Generalitat de Catalunya under
project 2014 SGR 1534.

References

[1] M. Estañol, A. Queralt, M. R. Sancho, E. Teniente, Specifying artifact-centric business process models in UML, in:
B. Shishkov (Ed.), BMSD 2014, Revised Selected Papers, volume 220 of LNBIP, Springer, 2015, pp. 62–81.

[2] M. Estañol, M. Sancho, E. Teniente, Verification and validation of UML artifact-centric business process models, in:
J. Zdravkovic, M. Kirikova, P. Johannesson (Eds.), Advanced Information Systems Engineering - 27th International
Conference, CAiSE 2015, Proceedings, volume 9097 of LNCS, Springer, 2015, pp. 434–449.

[3] R. Hull, Artifact-centric business process models: Brief survey of research results and challenges, in: R. Meersman, Z. Tari
(Eds.), OTM 2008, volume 5332 of LNCS, Springer, 2008, pp. 1152–1163.

[4] D. Calvanese, M. Montali, M. Estañol, E. Teniente, Verifiable UML artifact-centric business process models, in: J. Li,
X. S. Wang, M. N. Garofalakis, I. Soboroff, T. Suel, M. Wang (Eds.), CIKM 2014, ACM, 2014, pp. 1289–1298.

[5] M. Estañol, M.-R. Sancho, E. Teniente, Reasoning on UML data-centric business process models, in: [52], 2013, pp.
437–445.

[6] A. Queralt, E. Teniente, Reasoning on UML conceptual schemas with operations, in: P. van Eck, J. Gordijn, R. Wieringa
(Eds.), CAiSE 2009, LNCS, Springer, 2009, pp. 47–62.

[7] G. Rull, C. Farré, A. Queralt, E. Teniente, T. Urpí, AuRUS: explaining the validation of UML/OCL conceptual schemas,
Software & Systems Modeling 14 (2015) 953–980.

[8] M. Utting, B. Legeard, Practical Model-Based Testing: A Tools Approach, Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2007.

24

[9] A. Queralt, E. Teniente, Verification and validation of UML conceptual schemas with OCL constraints, ACM Trans.
Softw. Eng. Methodol. 21 (2012) 13.

[10] P. Kardasis, P. Loucopoulos, Expressing and organising business rules, Information & Software Technology 46 (2004)
701–718.

[11] ISO, ISO/IEC 19505-2:2012 - OMG UML superstructure 2.4.1, 2012. Available at: http://www.iso.org/iso/iso_
catalogue/catalogue_tc/catalogue_detail.htm?csnumber=52854.

[12] A. Queralt, E. Teniente, Specifying the semantics of operation contracts in conceptual modeling, in: Journal on Data
Semantics VII, volume 4244 of LNCS, Springer, 2006, pp. 33–56.

[13] J. Cabot, R. Pau, R. Raventós, From UML/OCL to SBVR specifications: A challenging transformation, Inf. Syst. 35
(2010) 417–440.

[14] K. Anastasakis, B. Bordbar, G. Georg, I. Ray, On challenges of model transformation from UML to alloy, Software and
System Modeling 9 (2010) 69–86.

[15] C. Larman, Applying UML and Patterns, 2nd edition ed., Prentice Hall, 2002.
[16] ISO, ISO/IEC 19507:2012 - OMG OCL version 2.3.1, 2012. Available at: http://www.iso.org/iso/iso_catalogue/

catalogue_tc/catalogue_detail.htm?csnumber=57306.
[17] ArgoUML, ArgoUML, 2017. URL: http://argouml.tigris.org/.
[18] C. Farré, G. Rull, E. Teniente, T. Urpí, SVTe: a tool to validate database schemas giving explanations, in: L. Giakoumakis,

D. Kossmann (Eds.), DBTest 2008, ACM, 2008, pp. 1–6.
[19] G. Rull, C. Farré, E. Teniente, T. Urpí, Providing explanations for database schema validation, in: S. S. Bhowmick,

J. Küng, R. Wagner (Eds.), DEXA, volume 5181 of LNCS, Springer, 2008, pp. 660–667.
[20] S. Getir, M. Challenger, G. Kardas, The formal semantics of a domain-specific modeling language for semantic web

enabled multi-agent systems, Int. J. Cooperative Inf. Syst. 23 (2014).
[21] Y. Choi, J. L. Zhao, Decomposition-Based Verification of Cyclic Workflows, in: D. Peled, Y.-K. Tsay (Eds.), ATVA 2005,

volume 3707 of LNCS, Springer, 2005, pp. 84–98.
[22] H. Lin, Z. Zhao, H. Li, Z. Chen, A novel graph reduction algorithm to identify structural conflicts, in: HICSS, IEEE

Computer Society, 2002, p. 289.
[23] B. F. van Dongen, W. M. P. van der Aalst, H. M. W. Verbeek, Verification of EPCs: Using reduction rules and Petri nets,

in: O. Pastor, J. Falcão e Cunha (Eds.), CAiSE 2005, volume 3520 of LNCS, Springer, 2005, pp. 372–386.
[24] H. Störrle, Semantics and verification of data flow in UML 2.0 activities, Electr. Notes Theor. Comput. Sci. 127 (2005)

35–52.
[25] W. M. P. van der Aalst, K. M. Hee, A. H. M. ter Hofstede, N. Sidorova, H. M. W. Verbeek, M. Voorhoeve, M. T. Wynn,

Soundness of workflow nets: classification, decidability, and analysis, Formal Aspects of Computing 23 (2011) 333–363.
[26] A. Awad, G. Decker, N. Lohmann, Diagnosing and repairing data anomalies in process models, in: S. Rinderle-Ma, S. W.

Sadiq, F. Leymann (Eds.), Business Process Management Workshops, volume 43 of LNBIP, Springer, 2009, pp. 5–16.
[27] N. Sidorova, C. Stahl, N. Trcka, Soundness verification for conceptual workflow nets with data: Early detection of errors

with the most precision possible, Inf. Syst. 36 (2011) 1026–1043.
[28] N. Lohmann, K. Wolf, Artifact-centric choreographies, in: P. P. Maglio, M. Weske, J. Yang, M. Fantinato (Eds.), ICSOC

2010, volume 6470 of LNCS, Springer, 2010, pp. 32–46.
[29] S. Rinderle-Ma, Data flow correctness in adaptive workflow systems, EMISA Forum 29 (2009) 25–35.
[30] D. Knuplesch, L. T. Ly, S. Rinderle-Ma, H. Pfeifer, P. Dadam, On enabling data-aware compliance checking of business

process models, in: J. Parsons, M. Saeki, P. Shoval, C. C. Woo, Y. Wand (Eds.), ER 2010, volume 6412 of LNCS, Springer,
2010, pp. 332–346.

[31] B. Bagheri Hariri, D. Calvanese, G. D. Giacomo, A. Deutsch, M. Montali, Verification of relational data-centric dynamic
systems with external services, in: R. Hull, W. Fan (Eds.), PODS, ACM, 2013, pp. 163–174.

[32] D. Calvanese, G. D. Giacomo, D. Lembo, M. Montali, A. Santoso, Ontology-based governance of data-aware processes,
in: M. Krötzsch, U. Straccia (Eds.), RR, volume 7497 of LNCS, Springer, 2012, pp. 25–41.

[33] B. Bagheri Hariri, et al., Verification of description logic knowledge and action bases, in: L. D. Raedt, et al. (Eds.), ECAI,
volume 242 of Frontiers in Artificial Intelligence and Applications, IOS Press, 2012, pp. 103–108.

[34] E. Damaggio, A. Deutsch, R. Hull, V. Vianu, Automatic verification of data-centric business processes, in: S. Rinderle-Ma,
F. Toumani, K. Wolf (Eds.), BPM 2011, volume 6896 of LNCS, Springer, 2011, pp. 3–16.

[35] E. Damaggio, A. Deutsch, V. Vianu, Artifact systems with data dependencies and arithmetic, ACM Trans. Database
Syst. 37 (2012) 22.

[36] A. Deutsch, R. Hull, F. Patrizi, V. Vianu, Automatic verification of data-centric business processes, in: R. Fagin (Ed.),
ICDT, volume 361 of ACM International Conference Proceeding Series, ACM, 2009, pp. 252–267.

[37] F. Belardinelli, A. Lomuscio, F. Patrizi, Verification of deployed artifact systems via data abstraction, in: G. Kappel,
Z. Maamar, H. R. M. Nezhad (Eds.), ICSOC 2011, volume 7084 of LNCS, Springer, 2011, pp. 142–156.

[38] C. E. Gerede, J. Su, Specification and verification of artifact behaviors in business process models, in: B. J. Krämer, K.-J.
Lin, P. Narasimhan (Eds.), ICSOC 2007, volume 4749 of LNCS, Springer, 2007, pp. 181–192.

[39] K. Bhattacharya, C. Gerede, R. Hull, R. Liu, J. Su, Towards formal analysis of artifact-centric business process models,
in: G. Alonso, P. Dadam, M. Rosemann (Eds.), BPM 2007, volume 4714 of LNCS, Springer, 2007, pp. 288–304.

[40] F. T. Heath, et al., Barcelona: A design and runtime environment for declarative artifact-centric BPM, in: [52], 2013,
pp. 705–709.

[41] P. Gonzalez, A. Griesmayer, A. Lomuscio, Verifying GSM-based business artifacts, in: C. A. Goble, P. P. Chen, J. Zhang
(Eds.), 2012 IEEE 19th International Conference on Web Services, IEEE Computer Society, 2012, pp. 25–32.

[42] P. Gonzalez, A. Griesmayer, A. Lomuscio, Model checking GSM-based multi-agent systems, in: A. Lomuscio, S. Nepal,

25

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=52854
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=52854
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57306
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57306
http://argouml.tigris.org/

F. Patrizi, B. Benatallah, I. Brandic (Eds.), ICSOC 2013 Workshops, volume 8377 of LNCS, Springer, 2013, pp. 54–68.
[43] I. Weber, J. Hoffmann, J. Mendling, Beyond soundness: on the verification of semantic business process models, Distributed

and Parallel Databases 27 (2010) 271–343.
[44] D. Borrego, R. M. Gasca, M. T. Gómez-López, Automating correctness verification of artifact-centric business process

models, Information & Software Technology 62 (2015) 187–197.
[45] N. Lohmann, Compliance by design for artifact-centric business processes, Inf. Syst. 38 (2013) 606–618.
[46] A. Queralt, A. Artale, D. Calvanese, E. Teniente, OCL-Lite: Finite reasoning on UML/OCL conceptual schemas, Data

Knowl. Eng. 73 (2012) 1–22.
[47] C. Choppy, K. Klai, H. Zidani, Formal verification of UML state diagrams: a Petri net based approach, ACM SIGSOFT

Soft. Eng. Notes 36 (2011) 1–8.
[48] R. Eshuis, Symbolic model checking of UML activity diagrams, ACM Trans. Softw. Eng. Methodol. 15 (2006) 1–38.
[49] F. J. Lucas, F. Molina, J. A. Toval Álvarez, A systematic review of UML model consistency management, Information &

Software Technology 51 (2009) 1631–1645.
[50] R. V. D. Straeten, J. Simmonds, T. Mens, Detecting inconsistencies between UML models using Description Logic, in:

D. Calvanese, et al. (Eds.), Description Logics, volume 81 of CEUR Workshop Proceedings, CEUR-WS.org, 2003.
[51] G. Reggio, M. Leotta, F. Ricca, "Precise is better than light" a document analysis study about quality of business process

models, in: EmpiRE 2011, IEEE, 2011, pp. 61–68.
[52] S. Basu, et al. (Eds.), Service-Oriented Computing - 11th International Conference, ICSOC 2013, volume 8274 of LNCS,

Springer, 2013.

26

	Introduction
	BAUML in a Nutshell
	Class Diagram
	State Machine Diagram
	Activity Diagrams
	Operation Contracts

	Desirable Properties of a BAUML Model
	Verification
	The Class Diagram in a BAUML Model
	The State Machine Diagram in a BAUML model
	Activity Diagrams and Operation Contracts in a BAUML Model

	Validation

	Reasoning about BAUML Models
	Preliminaries
	BAUML Formalization
	Class Diagram and Integrity Constraints
	State Machine Diagrams
	Activity Diagrams
	Tasks

	Encoding a BAUML model into logic
	Differences between UML/OCL and First-Order Logic that Impact the Translation Process
	Formalization of the Tests
	Verification Tests
	Validation Tests

	Automatic Reasoning in our Running Example
	Implementation of the Approach
	Some Test Examples
	Performance

	Related Work
	Syntactical & Structural Reasoning
	Semantic Reasoning
	Data-Aware Approaches
	Semantic Reasoning on Artifact-centric BPM
	Semantic Reasoning on UML models

	Conclusions and Further Work

