
HAL Id: hal-01193222
https://hal.inria.fr/hal-01193222

Submitted on 4 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Grammatical Approach to Data-centric Case
Management in a Distributed Collaborative

Environment
Eric Badouel, Loïc Hélouët, Georges-Edouard Kouamou, Christophe Morvan

To cite this version:
Eric Badouel, Loïc Hélouët, Georges-Edouard Kouamou, Christophe Morvan. A Grammatical Ap-
proach to Data-centric Case Management in a Distributed Collaborative Environment. The 30th
ACM/SIGAPP Symposium On Applied Computing, Apr 2015, Salamanca, Spain. pp.1834-1839,
�10.1145/2695664.2695698�. �hal-01193222�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49488812?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01193222
https://hal.archives-ouvertes.fr

A Grammatical Approach to Data-centric Case
Management in a Distributed Collaborative Environment

Eric Badouel
Inria and LIRIMA

Campus de Beaulieu
35042 Rennes, France

eric.badouel@inria.fr

Loïc Hélouët
Inria

Campus de Beaulieu
35042 Rennes, France

loic.helouet@inria.fr

Georges-Edouard
Kouamou

ENSP and LIRIMA
BP 8390, Yaoundé, Cameroon

georges.kouamou@lirima.org

Christophe Morvan
Université Paris-Est
UPEMLV, F-77454

Marne-la-Vallée, France
christophe.morvan@u-pem.fr

ABSTRACT
This paper presents a purely declarative approach to artifact-
centric case management systems. Each case is presented as
a tree-like structure; nodes bear information that combines
data and computations. Each node belongs to a given stake-
holder, and semantic rules govern the evolution of the tree
structure, as well as how data values derive from informa-
tion stemming from the context of the node. Stakeholders
communicate through asynchronous message passing with-
out shared memory, enabling convenient distribution.

Keywords
Business Artifacts, Case Management, Attribute Grammars

1. INTRODUCTION
Case-management consists in assembling relevant infor-

mation during short collaborative processes that may in-
volve human stakeholders. It is frequently addressed using
the notion of Business Artifacts, also known as business en-
tities with lifecycles, as proposed in [8, 6, 3]. An artifact
is a document that conveys all the information concerning
a particular case from its inception in the system until its
completion. It contains all the relevant information about
the entity together with a lifecycle that models its possible
evolutions through the business process.

This paper presents a declarative model for the specifica-
tion of artifact-centric case management systems where the
stakeholders interact according to an asynchronous message-
based communication schema. Case-management usually
consists in assembling relevant information by calling tasks,
which may in turn call subtasks, etc. Case elicitation needs
not be implemented as a sequence of successive calls to sub-
tasks, and several subtasks can be performed in parallel.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’15 April 13-17, 2015, Salamanca, Spain.
Copyright 2015 ACM Copyright is held by the owner/author(s). Publication
rights licensed to ACM.
ACM 978-1-4503-3196-8/15/04...$15.00.
http://dx.doi.org/10.1145/2695664.2695698

To allow as much concurrency as possible in the execution
of tasks, we favor a declarative approach where task depen-
dencies are specified without imposing a particular execution
order.

Attribute grammars are particularly adapted to that pur-
pose. The model proposed in this paper is called Guarded
Attributed Grammars (GAG). A GAG is an extension of
an attribute grammar [7, 9] using a notation reminiscent of
unification grammars. It is made of production rules, that
are used to complete documents (via a standard rewriting
process) and at the same time synthesize and propagate in-
formation via the attributes of the grammar.

A production of a grammar is as usual described by a left
hand side, indicating a non-terminal to expand, and a right
hand side, describing how to expand this non-terminal. We
furthermore interpret a production of the grammar as a way
to decompose a task (the symbol in the left-hand side of the
production) into sub-tasks associated with the symbols in its
right-hand side. The semantics rules basically serve as a glue
between the task and its sub-tasks by making the necessary
connections between the corresponding inputs and outputs
(associated respectively with inherited and synthesized at-
tributes).

In this declarative model, the lifecycle of artifacts is left
implicit. Artifacts under evaluation can be seen as incom-
plete structured documents, i.e., trees with open nodes cor-
responding to parts of the document that remain to be com-
pleted. Each open node is attached a so-called form inter-
preted as a service call. A form consists of a task together
with some inherited attributes (data resulting from previous
executions) and some synthesized attributes. The latter are
variables subscribing to the values that should emerge from
task execution.

Productions are guarded by patterns occurring at the in-
herited positions of the left-hand side symbol. Thus a pro-
duction is enabled at an open node if the patterns match
with the corresponding attribute values appearing in the
form. The evolution of the artifact thus depends both on
previously computed data (stating which production is en-
abled) and the stakeholder’s decisions (choosing a particular
production amongst those which are enabled at a given mo-
ment, and inputting associated data). Thus GAGs are both
data-driven and user-centric.

Data manipulated in guarded attributed grammars are of
two kinds. First, the tasks communicate using forms which
are temporary information used for communication purpose
only. Second, artifacts are structured documents that record
the history of cases (log of the system). An artifact grows
monotonically (we never erase information) and every part
of it is edited by a unique stakeholder (the owner of the cor-
responding nodes), hence avoiding edition conflicts. These
properties are instrumental to obtain a simple and robust
model that can easily be implemented on a distributed asyn-
chronous architecture.

This paper is organized as follows : Section 2 introduces
the formal notations for GAGs. Section 3 gives a seman-
tics to the model in terms of rewriting steps. Section 4
briefly states some formal properties of the model, before
conclusion. Proofs of theorems are not provided in this pa-
per, but can be found in an extended version, available at
http://hal.inria.fr/hal-00990007.

2. GUARDED ATTRIBUTE GRAMMARS
This section introduces Guarded Attributed Grammars, a

grammatical notation for case management. It is inspired
by the work of [4] relating attribute grammars with logic
programming. Throughout the paper, the term case will
designate a concrete instance of a given business process.
We will use the editorial process of an academic journal as
a running example to illustrate the various notions and no-
tations. A case for this example is the editorial processing
of a particular article submitted to the journal.

The case is handled by various actors involved in the pro-
cess, the so-called stakeholders, namely the editor in chief,
an associate editor and some referees. We associate each
case with a document, called an artifact, that collects all
the information related to the case from its inception in the
process until its completion. When the case is closed this
document constitutes a full history of all the decisions that
led to its completion.

We interpret a case as a problem to be solved, that can be
completed by refining it into sub-tasks using business rules.
This notion of business rule can be modeled by a production
P : s0 ← s1 · · · sn expressing that task s0 can be reduced
to subtasks s1 to sn. If several productions with the same
left-hand side s0 exist then the choice of a particular pro-
duction corresponds to a decision made by some designated
stakeholder. For instance, there are two possible immediate
outcomes for a submitted article: either it is validated by
the editor in chief and it enters the evaluation process of the
journal or it is invalidated because its topic or format is not
adequate. This initial decision can be reflected by the two
following productions:

validate : Proposed submission← Submission
invalidate : Proposed submission←

If P is the unique production having s0 in its left-hand side,
then there is no real decision to make and such a rule is
interpreted as a logical decomposition of the task s0 into
substasks s1 to sn. Such a production will be automatically
triggered without human intervention.

Accordingly, we model an artifact as a tree whose nodes
are sorted. We write X :: s to indicate that node X is of
sort s, where a sort denotes a category of objects sharing
common features. An artifact is given by a set of equations
of the form X = P (X1, . . . , Xn), stating that X :: s is a node

labeled by production P : s ← s1 · · · sn and with successor
nodes X1 :: s1 to Xn :: sn. In that case node X is said to
be a closed node defined by equation X = P (X1, . . . , Xn)
(we henceforth assume that we do not have two equations
with the same left-hand side). A node X :: s defined by no
equation (i.e. that appears only in the right hand side of an
equation) is an open node. It corresponds to a pending task.

The lifecycle of an artifact is implicitly given by a set of
productions:

1. The artifact initially associated with a case is reduced
to a single open node.

2. An open node X of sort s can be refined by choosing
a production P : s ← s1 . . . sn that fits its sort. The
open nodeX becomes a closed nodeX = P (X1, . . . , Xn)
under the decision of applying production P to it. In
doing so the task s associated with X is replaced by
n subtasks s1 to sn and new open nodes X1 :: s1 to
Xn :: sn are created accordingly.

?

s

P

s

?

s1

?

sn

3. The case has reached completion when its associated
artifact is closed, i.e. it no longer contains open nodes.

However, plain context-free grammars do not model the
interactions and data exchanged between the various tasks
associated with open nodes. To overcome this problem, we
attach additional information to open nodes using attributes.
Each sort s ∈ S comes equipped with a set of inherited at-
tributes and a set of synthesized attributes. Values of at-
tributes are given by terms over a ranked alphabet. Recall
that such a term is either a variable or an expression of
the form c(t1, . . . , tn) where c is a symbol of rank n, and
t1, . . . , tn are terms. In particular a constant c, i.e. a sym-
bol of rank 0, will be identified with the term c(). We will
denote by var(t) the set of variables used in term t.

Definition 2.1. A form of sort s, denoted by F :: s, is
an expression

F = s(t1, . . . , tn)〈u1, . . . , um〉

where t1, . . . , tn (respectively u1, . . . , um) are terms over a
ranked alphabet —the alphabet of attribute’s values— and
a set of variables var(F). Terms t1, . . . , tn give the values
of the inherited attributes and u1, . . . , um the values of
the synthesized attributes attached to form F .

We can now define productions where the left-hand and
right-hand sides of a rule are defined using forms. More
precisely, a production is of the form

s0(p1, . . . , pn)〈u1, . . . , um〉 ← s1(t
(1)
1 , . . . , t

(1)
n1)〈y

(1)
1 , . . . , y

(1)
m1 〉

· · ·
(1) sk(t

(k)
1 , . . . , t

(k)
nk

)〈y(k)1 , . . . , y
(k)
mk
〉

where the pi’s, the uj ’s, and the t
(`)
j ’s are terms and the

y
(`)
j ’s are variables. The forms in the right-hand side of a

production are service calls, namely they are forms F =

s(t1, . . . , tn)〈y1, . . . , ym〉 where the synthesized positions are
(distinct) variables y1, . . . , ym (i.e., they are not instanti-
ated). The rationale is that we invoke a service by filling
in the inherited positions of the form (the entries) and by
indicating the variables that expect to receive the results
returned by the service (the subscriptions).

Any open node is now attached a service call. The corre-
sponding service is supposed to (i) construct the tree that
will refine the open node and (ii) compute the values of the
synthesized attributes (i.e., it should return the subscribed
values). A service is enacted by applying productions. More
precisely, a production such as the one given in formula (1)
can apply in an open node X when its left-hand side matches
with the service call s0(d1, . . . , dn)〈y1, . . . , ym〉 attached to
node X. For that purpose the terms pi’s are used as pat-
terns that should match the corresponding data di’s. When
the production applies, new open nodes are created and they
are respectively associated with the forms (service calls) in
the right-hand side of the production. The values of uj ’s are
then returned to the corresponding variables yj ’s that had
subscribed to these values. For instance applying production

P : s0(a(x1, x2))〈b(y′1), y′2〉 ← s1(c(x1))〈y′1〉 s2(x2, y
′
1)〈y′2〉

to a node associated with service call s0(a(t1, t2))〈y1, y2〉
gives rise to the substitution x1 = t1 and x2 = t2. The two
newly-created open nodes are respectively associated with
the service calls s1(c(t1))〈y′1〉 and s2(t2, y

′
1)〈y′2〉 and the val-

ues b(y′1) and y′2 are substituted to the variables y1 and y2
respectively.

P

s0

?

s1

?

s2

a

?

x2

?

x1

b

y′
1 y′

2

c

x1

?

y′
1

y′
1

x2 ?

y′
2

A Guarded Attributed Grammar (GAG for short) is de-
fined as a set of production rules of the form P : F0 ←
F1 . . . Fk, where all F ′i s are forms.

Definition 2.2 (Guarded Attribute Grammars).
A guarded attribute grammar is a set of productions. In
each production, P : F0 ← F1 · · ·Fk, the Fi :: si are forms,
furthermore, the inherited attributes of left-hand side F0 are
called the patterns of the production. The values of syn-
thesized attributes of forms F1 · · ·Fk, in the right-hand side,
are variables. These occurrence of variables together with
the variables occurring in the patterns are called the input
occurrences of variables. We assume that each variable
has at most one input occurrence.

The inputs are associated with (distinct) variables and the
value of each output is given by a term using these variables.
We refer to these correspondences as the semantic rules.

For our running example, a GAG defining the editorial
process can be defined as follows: A stakeholder has a spe-
cific role in the editorial process: he can be an author, the
editor in chief, an associate editor or a referee. Each role is
associated with a set of services and a set of productions ex-
plaining how each service is provided. For instance an asso-
ciate editor provides the service Submission(article)〈decision〉

consisting in returning an editorial decision about an arti-
cle submitted to the journal. The corresponding produc-
tions are listed in Table 1. The first two productions mean
that an associate editor makes an editorial decision about
a submitted paper on the basis of the evaluation reports
produced by two different referees. He can ask a report
from a reviewer through an invocation of the external service
ToReview(article)〈answer〉. The productions that govern
the actions of a reviewer are given in Table 2.

Productions Decline(msg) and Accepts(msg) reflect a non-
deterministic choice of a reviewer. They are also a way
to input new data by assigning a particular message Msg
to variable msg resulting in the respective attribute values
No(Msg) or Yes(Msg, report).

One can group the productions of Table 1 and Table 2
using an additional parameter reviewer to make as many
disjoint copies of the specification given in Table 2 as there
are individuals playing the role of a referee. The resulting
set of productions (where call to external services have been
eliminated) is given in Table 3. Similarly one has as many
instances of the productions in Table 1 as there are asso-
ciate editors in the editorial board. In the complete spec-
ification one should therefore add an additional parameter
associateEditor to distinguish between all associate editors.
If the specification is large and contains many different roles
the resulting global grammar can be quite complex. Yet, it
is still possible to build an equivalent monolithic grammar
without external service calls.

3. BEHAVIOR OF GAGS
Attribute grammars are traditionally applied to abstract

syntax trees which can be produced by some parsing algo-
rithm during a previous stage. The semantic rules are then
used to decorate the nodes of the tree by attribute values.
In our setting the generation of the tree and evaluation of
attributes, using the semantic rules, are intertwined since
the input tree represents an artifact under construction.

We consider collaborative systems relying on a distributed
memory consisting of the current artifacts. A configuration
of this memory can be represented as follows:

Definition 3.1 (Configuration). A configuration
Γ is an S-sorted set of nodes X ∈ nodes(Γ) each of which
is associated with a defining equation in one of the following
form where var(Γ) is a set of variables associated with Γ:

Closed node: X = P (X1, . . . , Xk) where P : F0 ← F1 . . . Fk

is a production of the grammar and X :: s, and Xi :: si
for 1 ≤ i ≤ k. Production P is the label of node X
and nodes X1 to Xn are its successor nodes.

Open node: X = s(t1, . . . , tn)〈x1, . . . , xm〉 where X is of
sort s and t1, . . . , tk are terms with variables in var(Γ)
that represent the values of the inherited attributes of
X, and x1, . . . , xm are variables in var(Γ) associated
with its synthesized attributes.

Each variable in var(Γ) occurs at most once in a synthesized
position.

We identify a substitution σ on a set of variables x1, . . . , xk,
called the domain of σ, with a system of equations xi =
σ(xi). The set var(σ) =

⋃
1≤i≤k var(σ(xi)) of variables of

σ is disjoint from the domain of σ. Conversely a system
of equations {xi = ti}1≤i≤k defines a substitution σ with

Table 1: Acting as an associate Editor

DecideSubmission : Submission(article)〈decision〉 ← Evaluate(article)〈report1〉
Evaluate(article)〈report2〉
Decide(report1, report2)〈decision〉

MakeDecision(decision) : Decide(report1, report2)〈decision〉 ←
AskReview(reviewer) : Evaluate(article)〈report〉 ← WaitReport(answer , article)〈report〉

Call(reviewer ,ToReview(article)〈answer〉)
CaseNo〈msg〉 : WaitReport(No(msg), article)〈report〉 ← Evaluate(article)〈report〉
CaseYes〈msg〉 : WaitReport(Yes(msg , report), article)〈report〉 ←

Table 2: Acting as a reviewer

Decline(msg) : ToReview(article)〈No(msg)〉 ←
Accept(msg) : ToReview(article)〈Yes(msg , report)〉 ← Review(article)〈report〉

MakeReview(report) : Review(article)〈report〉 ←

σ(xi) = ti if it is in solved form, i.e., none of the variables
xi appears in some of the terms tj . In order to transform a
system of equations E = {xi = ti}1≤i≤k into an equivalent
system {xi = t′j}1≤j≤m in solved form one can iteratively
replace an occurrence of a variable xi in one of the right-
hand side term tj by its definition ti until no variable xi
occurs in some tj . This process terminates when the rela-
tion xi � xj ⇔ xj ∈ var(σ(xi)) is acyclic. Then the result-
ing system of equations SF (E) = {xi = t′i}1≤i≤n in solved
form does not depend on the order in which the variables xi
have been eliminated from the right-hand sides. When the
above condition is met we say that the set of equations is
acyclic and that it defines the substitution associated with
its solved form.

The composition of two substitutions σ, σ′ is denoted by
σσ′ and defined by σσ′ = {x = tσ′ | x = t ∈ σ }. Similarly,
we let Γσ denote the configuration obtained from Γ by re-
placing the defining equation X = F of each open node X
by X = Fσ.

We now define more precisely when a production is en-
abled at a given open node of a configuration and the ef-
fect of applying the production. First note that variables
of a production are formal parameters whose scope is lim-
ited to that production. They can injectively be renamed
in order to avoid clashes with variables names appearing
in a configuration. Therefore we shall always assume that
the set of variables of a production P is disjoint from the
set of variables of a configuration Γ when applying produc-
tion P to Γ. As informally stated in the previous section,
a production P applies in an open node X when its left-
hand side s(p1, . . . , pn)〈u1, . . . um〉 matches with the defi-
nition X = s(d1, . . . , dn)〈y1, . . . , ym〉, i.e., the service call
attached to X in Γ.

First, the patterns pi should match with the data di ac-
cording to the usual pattern matching operation given by
the following inductive statements

match(c(p′1, . . . , p
′
k), c′(d′1, . . . , d

′
k′)) with c 6= c′ fails

match(c(p′1, . . . , p
′
k), c(d′1, . . . , d

′
k)) =

∑k
i=1 match(p′i, d

′
i)

match(x, d) = {x = d}

where the sum-substitution, σ =
∑k

i=1 σi, of substitutions
σi is defined and equal to

⋃
i∈1..k σi when all substitutions

σi are defined and associated with disjoint sets of variables.
Note that since no variable occurs twice in the whole set of
patterns pi, the various substitutions match(pi, di), when

defined, range over disjoint sets of variables. Note also that
match(c(), c()) = ∅.

Definition 3.2. A form F = s(p1, . . . , pn)〈u1, . . . um〉
matches with a service call F ′ = s(d1, . . . , dn)〈y1, . . . , ym〉
(of the same sort) when

1. the patterns pi’s match with the data di’s, defining a
substitution σin =

∑
1≤i≤n match(pi, di),

2. the set of equations {yj = ujσin | 1 ≤ j ≤ m} is acyclic
and defines a substitution σout .

The resulting substitution σ = match(F, F ′) is given by σ =
σout ∪ σinσout .

Definition 3.3 (Applying a Production). Let P =
F ← F1 . . . Fk be a production, Γ be a configuration, and X
be an open node with definition X = s(d1, . . . , dn)〈y1, . . . , ym〉
in Γ. We assume that P and Γ are defined over disjoint sets
of variables. We say that P is enabled in X and write
Γ[P/X〉, if the left-hand side of P matches with the defi-
nition of X. Then applying production P in X transforms
configuration Γ into Γ′, denoted as Γ[P/X〉Γ′, where:

Γ′ = {X = P (X1, . . . , Xk)}
∪ {X1 = F1σ, . . . ,Xk = Fkσ}
∪ {X ′ = Fσ | (X ′ = F) ∈ Γ ∧ X ′ 6= X }

where σ = match(F,X), and X1, . . . , Xk are new nodes
added to Γ′.

Thus the first effect of applying production P to an open
node X is that X becomes a closed node with label P and
successor nodes X1 to Xk. The latter are new nodes added
to Γ′. They are associated respectively with the instances of
the k forms in the right-hand side of P obtained by applying
substitution σ to these forms. The definitions of the other
nodes of Γ are updated using substitution σ (or equivalently
σout). This update has no effect on the closed nodes because
their defining equations in Γ contain no variable.

One can show that applying a production P in an open
node X of a configuration Γ with Γ[P/X〉Γ′ cannot create a
variable with several occurrences in synthesized position, i.e.
the resulting set of equations Γ′ is also a configuration. Thus
applying an enabled production defines a binary relation on
configurations.

Table 3: Making a decision on a submitted paper

DecideSubmission : Submission(article)〈decision〉 ← Evaluate(article)〈report1〉
Evaluate(article)〈report2〉
Decide(report1, report2)〈decision〉

MakeDecision(decision) : Decide(report1, report2)〈decision〉 ←
AskReview(reviewer) : Evaluate(article)〈report〉 ← WaitReport(answer , article)〈report〉

ToReview(reviewer , article)〈answer〉)
Decline(msg)〈reviewer〉 : ToReview(reviewer , article)〈No(msg)〉 ←
Accept(msg)〈reviewer〉 : ToReview(reviewer , article)〈Yes(msg , report)〉 ← Review(reviewer , article)〈report〉
MakeReview(report)〈reviewer〉 : Review(reviewer , article)〈report〉 ←
CaseNo〈msg〉 : WaitReport(No(msg), article)〈report〉 ← Evaluate(article)〈report〉
CaseYes〈msg〉 : WaitReport(Yes(msg , report), article)〈report〉 ←

Definition 3.4. A configuration Γ′ is directly reach-
able from Γ, denoted by Γ[〉Γ′, whenever Γ[P/X〉Γ′ for some
production P enabled in node X of configuration Γ. Further-
more, a configuration Γ′ is reachable from configuration Γ
when Γ[∗〉Γ′ where [∗〉 is the reflexive and transitive closure
of relation [〉.

As already mentioned, an artifact is refined by applying a
production to one of its open node. However we also need
means to initiate cases. To this extent, we define interfaces
for GAGs, that describe how services can initialize new ar-
tifacts.

Definition 3.5. The interface of a GAG is given by
a subset I of forms F = s(t1, . . . , tn)〈x1, . . . , xm〉, called
the service calls, where the synthesized positions are (dis-
tinct) variables x1, . . . , xm. This set is closed by substitu-
tions whose domains are disjoints from the set of synthesized
variables, namely Fσ ∈ I whenever F ∈ I and σ is a sub-
stitution with σ(xj) = xj for 1 ≤ j ≤ m. The invocation of
the service produces a new artifact reduced to a single open
node defined by F , it is associated with initial configura-
tion Γ0 = {X0 = s(t1, . . . , tn)〈x1, . . . , xm〉}. A reachable
configuration of a guarded attribute grammar is a configu-
ration reachable from one of its initial configurations.

4. FORMAL PROPERTIES OF GAGS
Allowing rewriting using attributes that take values over

unbounded terms makes the model very expressive. Un-
surprisingly, this expressive power implies that some formal
properties are undecidable.

A specification is sound if every case can reach completion
no matter how its execution started. A case is a service call
in the interface of the GAG (Definition 3.5) which already
contains all the information coming from the environment
of the guarded attribute grammar.

Definition 4.1. Given a guarded attribute grammar with
its interface, a case c = s(t1, . . . , tn)〈x1, . . . , xm〉 is an el-
ement of the interface such that var(ti) ⊆ {x1, . . . , xm}.
Stated otherwise a case is, but for the variables with a syn-
thesized value, a closed instance of a service.

Definition 4.2. A configuration is closed if it contains
only closed nodes. A guarded attribute grammar is sound
if a closed configuration is reachable from any configuration
Γ reachable from the initial configuration Γ0(c) = {X0 = c}
associated with a case c.

Let γ denote the set of configurations reachable from the
initial configuration of some case. We consider the finite se-
quences (Γi)0<i≤n and the infinite sequences (Γi)0<i of con-
figurations in γ such that Γi[〉Γi+1. A finite and maximal
sequence is said to be terminal, i.e., a terminal sequence
leads to a configuration that enables no production. Sound-
ness can the be rephrased by the two following conditions.

1. Every terminal sequence leads to a closed configura-
tion.

2. Every configuration on an infinite sequence also be-
longs to some terminal sequence.

We define the soundness problem as follows : Given a
GAG G, is G sound? We define two reachability problems
as follows: given a GAG G and a configuration Γ, is Γ a
reachable configuration of G ? Given a configuration Γ′, is
Γ reachable from Γ′ using productions of G ? These prob-
lems can unfortunately be proved undecidable by a simple
encoding of Minsky machines.

Theorem 4.3. The soundness and reachability problems
are undecidable in general for guarded attribute grammars.

Despite this result, interesting subclasses of the model en-
joy some monotony properties, and are well suited to distri-
bution.

The principle of a distribution of a GAG on a set of loca-
tions is as follows: A GAG is distributed by partitionning its
set of sorts according to locations. Each location maintains
a local configuration, and subscribes to results provided by
other locations. Productions are applied locally. When vari-
ables are given a value by a production, the location that
computed this value sends messages to the locations that
subscribed to this result. Messages are simply equations
defining the value of a particular variable. Upon reception
of a message, a subscriber updates its local configuration,
that is update some of its variables, and may in turn pro-
duce new messages sent to subscribers of affected variables.
A formal definition of the distribution framework is provided
in the extended version. A GAG is said to be distributable
if the above distribution scheme preserves its behaviour.

Recall that application of a production P to a node X
requires a matching condition, that is construction of a pair
of matchings σin and σout . We say that a production P
is triggered in node X if substitution σin is defined, i.e.,
the patterns pi match the data di. A specification can be
considered erroneous when a triggered transition is not en-
abled because the set of equations {yj = ujσin | 1 ≤ j ≤ m}
is cyclic.

Substitution σin , given by pattern matching, is monotonous
w.r.t. incoming information and thus it causes no problem
for a distributed implementation of a model. However sub-
stitution σout is not monotonous: it may be undefined when
information coming from a distant location makes the match
of output attributes a cyclic set of equations.

Definition 4.4. A guarded attribute grammar is input-
enabled if every production that is triggered in a reachable
configuration is also enabled.

For input-enabled GAGs, messages consumptions and ap-
plication of productions commute (we refer interested reader
to extended version for details). This property means in par-
ticular that distribution does not affect the global behavior
of an input-enabled GAG.

Theorem 4.5. An input-enabled GAG is distributable.

However, input-enabledness is a property of the whole set
of reachable configurations, and is thus undecidable. Nev-
ertheless one can find a decidable sufficient condition for
input-enabledness (called strong-acyclicity), similar to the
strong non-circularity of attribute grammars [2], and which
can be checked by a simple fixed-point computation.

Theorem 4.6. Strong-acyclicity can be checked in poly-
nomial time and a strongly-acyclic GAG is input-enabled
(hence distributable).

5. CONCLUSION
Guarded attribute grammar is a model of data-centric col-

laborative systems where emphasis is put on a simple math-
ematical syntax and semantics which can ease formal rea-
soning, a clear identification of stakeholder’s decisions (the
system is totally driven by user interactions), and an im-
plicit lifecycle of artifacts which allows maximal concurrency
and a straightforward distribution scheme. As already men-
tionned, our formalism is similar to logic formalisms such as
Datalog or Prolog with, nonetheless, a distinction between
inherited and synthesized positions of attributes. Work-
flow models such as BPMN have also been considered to
describe case management systems. They allow for intuitive
definition of concurrent threads, but usually abstract data
from the descriptions. Distributed implementation has been
considered for other artifact models, such as Guard-Stage-
Milestone1 [5]. However, it may require restructuring the
original GSM schema and relies on locking protocols to en-
sure that the outcome of the global execution is preserved.

An artifact is a structured document with some active
parts. Indeed, an open node is associated with a service call
that implicitly describes the data to be further substituted
to the node. This notion of active documents is close to
the model of Active XML introduced by Abiteboul et al. [1]
which consists of semi-structured documents with embedded
service calls. Such an embedded service call is a query on
another document, triggered when a corresponding guard is
satisfied. The model of active documents can be distributed
over a network of machines. This setting can be instancied
in many ways, according to the formalism used for specifying
the guards, the query language, and the class of documents.
The model of guarded attribute grammars is close to this

1model for artifacts lifecycles used as a basis for the OMG
standard Case Management Model and Notation (CMMN).

general scheme with some differences: First of all guards
in GAG apply to a single node and its attributes, while
guards in AXML are properties that can be checked on a
complete document. The invocation of a service in AXML
creates a temporary document (called the workspace) that
is removed from the document when the service call returns.
In GAGs, a service call adds new children to a node, and all
computations performed for a service are preserved in the
artifact. This provides a kind of monotony to artifacts, that
can be an useful property for verification techniques.

In the future, we plan to design prototypes to analyze and
implement a GAG description together with the required
support tools (editor, parser, checker, simulators ...) to de-
velop some representative case studies to check applicability
and limitations of the model. In particular, in order to com-
ply with real-life applications, we might have to use non-
autonomous GAG systems, i.e., systems whose basic layer is
given by a guarded attribute grammar but which is coupled
with external facilities as making a query to a database or
calling a web service. The main concern is then to evalu-
ate the impact of these couplings on the distribution of the
model (we should avoid distributed conflits).

6. REFERENCES
[1] S. Abiteboul, O. Benjelloun, I. Manolescu, T. Milo, and

R. Weber. Active xml: A data-centric perspective on
web services. In BDA’02, 2002.

[2] B. Courcelle and P. Franchi-Zannettacci. Attribute
grammars and recursive program schemes i and ii.
Theor. Comput. Sci., 17:163–191 and 235–257, 1982.

[3] E. Damaggio, A. Deutsch, and V. Vianu. Artifact
systems with data dependencies and arithmetic. ACM
Trans. Database Syst., 37(3):22, 2012.

[4] P. Deransart and J. Maluszynski. A grammatical view
of logic programming. MIT Press, 1993.

[5] R. Eshuis, R. Hull, Y. Sun, and R. Vacuĺın. Splitting
gsm schemas: A framework for outsourcing of
declarative artifact systems. In BPM, volume 8094 of
LNCS, pages 259–274. Springer, 2013.

[6] R. Hull. Artifact-centric business process models: Brief
survey of research results and challenges. In OTM 2008,
volume 5332 of LNCS, pages 1152–1163. Springer, 2008.

[7] D.E. Knuth. Semantics of context free languages.
Mathematical System Theory, 2(2):127–145, 1968.

[8] A. Nigam and N. S. Caswell. Business artifacts: An
approach to operational specification. IBM Syst. J.,
42:428–445, July 2003.

[9] J. Paakki. Attribute grammar paradigms - a high-level
methodology in language implementation. ACM
Computing Surveys, 27(2):196–255, 1995.

