9 research outputs found

    Signal quality assessment of a novel ecg electrode for motion artifact reduction

    Get PDF
    Background: The presence of noise is problematic in the analysis and interpretation of the ECG, especially in ambulatory monitoring. Restricting the analysis to high-quality signal segments only comes with the risk of excluding significant arrhythmia episodes. Therefore, the development of novel electrode technology, robust to noise, continues to be warranted. Methods: The signal quality of a novel wet ECG electrode (Piotrode) is assessed and compared to a commercially available, commonly used electrode (Ambu). The assessment involves indices of QRS detection and atrial fibrillation detection performance, as well as signal quality indices (ensemble standard deviation and time–frequency repeatability), computed from ECGs recorded simultaneously from 20 healthy subjects performing everyday activities. Results: The QRS detection performance using the Piotrode was considerably better than when using the Ambu, especially for running but also for lighter activities. The two signal quality indices demonstrated similar trends: the gap in quality became increasingly larger as the subjects became increasingly more active. Conclusions: The novel wet ECG electrode produces signals with less motion artifacts, thereby offering the potential to reduce the review burden, and accordingly the cost, associated with ambulatory monitoring

    A comparative study of ECG-derived respiration in ambulatory monitoring using the single-lead ECG

    Get PDF
    Cardiorespiratory monitoring is crucial for the diagnosis and management of multiple conditions such as stress and sleep disorders. Therefore, the development of ambulatory systems providing continuous, comfortable, and inexpensive means for monitoring represents an important research topic. Several techniques have been proposed in the literature to derive respiratory information from the ECG signal. Ten methods to compute single-lead ECG-derived respiration (EDR) were compared under multiple conditions, including different recording systems, baseline wander, normal and abnormal breathing patterns, changes in breathing rate, noise, and artifacts. Respiratory rates, wave morphology, and cardiorespiratory information were derived from the ECG and compared to those extracted from a reference respiratory signal. Three datasets were considered for analysis, involving a total 59 482 one-min, single-lead ECG segments recorded from 156 subjects. The results indicate that the methods based on QRS slopes outperform the other methods. This result is particularly interesting since simplicity is crucial for the development of ECG-based ambulatory systems

    Quality Assessment of Ambulatory Electrocardiogram Signals by Noise Detection using Optimal Binary Classification

    Get PDF
    In order to improve the diagnostic capability in Ambulatory Electrocardiogram signal and to reduce the noise signal impacts, there is a need for more robust models in place. In terms of improvising to the existing solutions, this article explores a novel binary classifier that learns from the features optimized by fusion of diversity assessment measures, which performs Quality Assessment of Ambulatory Electrocardiogram Signals (QAAES) by Noise Detection. The performance of the proposed model QAAES has been scaled by comparing it with contemporary models. Concerning performance analysis, the 10-fold cross-validation has been carried on a benchmark dataset. The results obtained from experiments carried on proposed and other contemporary models for cross-validation metrics have been compared to signify the sensitivity, specificity, and noise detection accuracy

    Enhanced IoT-Based Electrocardiogram Monitoring System with Deep Learning

    Full text link
    Due to the rapid development of computing and sensing technologies, Internet of Things (IoT)-based cardiac monitoring plays a crucial role in providing patients with cost-efficient solutions for long-term, continuous, and pervasive electrocardiogram (ECG) monitoring outside a hospital setting. In a typical IoT-based ECG monitoring system, ECG signals are picked up by sensors located on the edge, and then uploaded to the remote cloud servers. ECG interpretation is performed for the collected ECGs in the cloud servers and the analysis results can be made instantly available to the patients as well as their healthcare providers.In this dissertation, we first examine the ECG classification models in the cloud. Although deep learning technologies have shown their great use in extracting ECG signal features and recognizing useful patterns for diagnosis, the existing methods are found to have unacceptable levels of performance (with an accuracy capped at only 60%) in identifying certain abnormal rhythms that can cause life-threating cardiac events. In combating this deficiency, we have developed three methods that help produce, preserve, and sharpen the abnormality-relevant features needed to improve the detection of the abnormalities. These three methods are then integrated into a DNN framework for the detection of the ECG rhythms of interest. The experiment results on a publicly available data set demonstrate the effectiveness of the proposed method with the best accuracy result ever published. On the edge end of the IoT-based ECG monitoring system, both extremely noisy and almost noise-free ECGs could be locked in by the device worn by a mobile patient. However, transmitting an indiscriminate collection of noisy and noise-free ECG cycles to the cloud for the categorization of cardiac abnormalities typically leads to significant false alarm rates. Alternatively, merely relying on a single denoising or quality assessing process on the edge to cope with all the recorded ECG signals can also be problematic, as the former can catastrophically distort those noise-free sections of the ECG signal, while the latter tends to cause notable loss of meaningful clinical information by discarding the signal sections that stand a good chance to be recovered by a denoising process. In this dissertation, we present a series of machine learning based models in support of edge-level stratification and preprocessing, for selecting the ECG signals that either have clear morphologies or retain their morphologies after necessary denoising to upload to the cloud. On the other hand, signals that are useless for diagnosis will be deleted early in the signal chain to lessen the load that would otherwise be imposed on the communication network and the cloud. In specific, the severity of the noise presence in the collected ECG signals is first evaluated right on the edge, after which the ECG signals get stratified into three levels and processed accordingly: (1) Signals that are assessed to have clear morphologies are admitted to the cloud for classification; (2) Signals with significantly corrupted morphologies—caused by baseline wandering, electrode motion, and muscle artifacts—are judged to be useless for classification on the cloud and are therefore dropped right away on the edge; (3) Signals that fall between the previous two extremes with partially corrupted morphologies are warranted to go through a denoising process. This very last type of signals after denoising will be assessed again by a dedicated quality assurance algorithm, and only the denoised signal that carries recognizable diagnostic information will be sent to the cloud for classification. The performances of the proposed method are evaluated using five publicly available datasets, and the results have confirmed a saving of the network traffic and a noticeable load reduction at the cloud, which is critical to an edge-cloud computing environment. Since selective denoising, indicated above, becomes an integral part of ECG processing flow of the proposed (IoT)-based cardiac monitoring system, we have developed a set of machine-learning based denoising models that take into account of the limited power capabilities of the edge. Instead of resting on sophisticated and power-hungry denoising methods to indiscriminately cleanse ECG signals across the whole spectrum of noise conditions, our focus is placed on denoising ECG signals that have moderate noise levels and thus being able to recover useful ECG morphologies for ECG signal stratification purposes described above. Specially, we propose a series of machine-learning based denoising models that allows us (1) to select signals’ spectrums that are most relevant to diagnostically useful morphologies in the frequency domain, and subsequently, (2) recover recognizable diagnostic information from them. The experiment results on five publicly available datasets confirm the effectiveness of the proposed method

    Recent Trends in Computational Research on Diseases

    Get PDF
    Recent advances in information technology have brought forth a paradigm shift in science, especially in the biology and medical fields. Statistical methodologies based on high-performance computing and big data analysis are now indispensable for the qualitative and quantitative understanding of experimental results. In fact, the last few decades have witnessed drastic improvements in high-throughput experiments in health science, for example, mass spectrometry, DNA microarray, next generation sequencing, etc. Those methods have been providing massive data involving four major branches of omics (genomics, transcriptomics, proteomics, and metabolomics). Information about amino acid sequences, protein structures, and molecular structures are fundamental data for the prediction of bioactivity of chemical compounds when screening drugs. On the other hand, cell imaging, clinical imaging, and personal healthcare devices are also providing important data concerning the human body and disease. In parallel, various methods of mathematical modelling such as machine learning have developed rapidly. All of these types of data can be utilized in computational approaches to understand disease mechanisms, diagnosis, prognosis, drug discovery, drug repositioning, disease biomarkers, driver mutations, copy number variations, disease pathways, and much more. In this Special Issue, we have published 8 excellent papers dedicated to a variety of computational problems in the biomedical field from the genomic level to the whole-person physiological level

    A Deep Learning Approach for Featureless Robust Quality Assessment of Intermittent Atrial Fibrillation Recordings from Portable and Wearable Devices

    Full text link
    [EN] Atrial fibrillation (AF) is the most common heart rhythm disturbance in clinical practice. It often starts with asymptomatic and very short episodes, which are extremely difficult to detect without long-term monitoring of the patient's electrocardiogram (ECG). Although recent portable and wearable devices may become very useful in this context, they often record ECG signals strongly corrupted with noise and artifacts. This impairs automatized ulterior analyses that could only be conducted reliably through a previous stage of automatic identification of high-quality ECG intervals. So far, a variety of techniques for ECG quality assessment have been proposed, but poor performances have been reported on recordings from patients with AF. This work introduces a novel deep learning-based algorithm to robustly identify high-quality ECG segments within the challenging environment of single-lead recordings alternating sinus rhythm, AF episodes and other rhythms. The method is based on the high learning capability of a convolutional neural network, which has been trained with 2-D images obtained when turning ECG signals into wavelet scalograms. For its validation, almost 100,000 ECG segments from three different databases have been analyzed during 500 learning-testing iterations, thus involving more than 320,000 ECGs analyzed in total. The obtained results have revealed a discriminant ability to detect high-quality and discard low-quality ECG excerpts of about 93%, only misclassifying around 5% of clean AF segments as noisy ones. In addition, the method has also been able to deal with raw ECG recordings, without requiring signal preprocessing or feature extraction as previous stages. Consequently, it is particularly suitable for portable and wearable devices embedding, facilitating early detection of AF as well as other automatized diagnostic facilities by reliably providing high-quality ECG excerpts to further processing stages.This research has been supported by grants DPI2017-83952-C3 from MINECO/AEI/FEDER EU, SBPLY/17/180501/000411 from Junta de Comunidades de Castilla-La Mancha and AICO/2019/036 from Generalitat Valenciana.Huerta Herraiz, Á.; Martínez-Rodrigo, A.; Bertomeu-González, V.; Quesada, A.; Rieta, JJ.; Alcaraz, R. (2020). A Deep Learning Approach for Featureless Robust Quality Assessment of Intermittent Atrial Fibrillation Recordings from Portable and Wearable Devices. Entropy. 22(7):1-17. https://doi.org/10.3390/e22070733S117227Lippi, G., Sanchis-Gomar, F., & Cervellin, G. (2020). Global epidemiology of atrial fibrillation: An increasing epidemic and public health challenge. International Journal of Stroke, 16(2), 217-221. doi:10.1177/1747493019897870Krijthe, B. P., Kunst, A., Benjamin, E. J., Lip, G. Y. H., Franco, O. H., Hofman, A., … Heeringa, J. (2013). Projections on the number of individuals with atrial fibrillation in the European Union, from 2000 to 2060. European Heart Journal, 34(35), 2746-2751. doi:10.1093/eurheartj/eht280Colilla, S., Crow, A., Petkun, W., Singer, D. E., Simon, T., & Liu, X. (2013). Estimates of Current and Future Incidence and Prevalence of Atrial Fibrillation in the U.S. Adult Population. The American Journal of Cardiology, 112(8), 1142-1147. doi:10.1016/j.amjcard.2013.05.063Khoo, C. W., Krishnamoorthy, S., Lim, H. S., & Lip, G. Y. H. (2012). Atrial fibrillation, arrhythmia burden and thrombogenesis. International Journal of Cardiology, 157(3), 318-323. doi:10.1016/j.ijcard.2011.06.088Warmus, P., Niedziela, N., Huć, M., Wierzbicki, K., & Adamczyk-Sowa, M. (2020). Assessment of the manifestations of atrial fibrillation in patients with acute cerebral stroke – a single-center study based on 998 patients. Neurological Research, 42(6), 471-476. doi:10.1080/01616412.2020.1746508Sposato, L. A., Cipriano, L. E., Saposnik, G., Vargas, E. R., Riccio, P. M., & Hachinski, V. (2015). Diagnosis of atrial fibrillation after stroke and transient ischaemic attack: a systematic review and meta-analysis. The Lancet Neurology, 14(4), 377-387. doi:10.1016/s1474-4422(15)70027-xSchotten, U., Dobrev, D., Platonov, P. G., Kottkamp, H., & Hindricks, G. (2016). Current controversies in determining the main mechanisms of atrial fibrillation. Journal of Internal Medicine, 279(5), 428-438. doi:10.1111/joim.12492Ferrari, R., Bertini, M., Blomstrom-Lundqvist, C., Dobrev, D., Kirchhof, P., Pappone, C., … Vicedomini, G. G. (2016). An update on atrial fibrillation in 2014: From pathophysiology to treatment. International Journal of Cardiology, 203, 22-29. doi:10.1016/j.ijcard.2015.10.089Meyre, P., Blum, S., Berger, S., Aeschbacher, S., Schoepfer, H., Briel, M., … Conen, D. (2019). Risk of Hospital Admissions in Patients With Atrial Fibrillation: A Systematic Review and Meta-analysis. Canadian Journal of Cardiology, 35(10), 1332-1343. doi:10.1016/j.cjca.2019.05.024Van Wagoner, D. R., Piccini, J. P., Albert, C. M., Anderson, M. E., Benjamin, E. J., Brundel, B., … Wehrens, X. H. T. (2015). Progress toward the prevention and treatment of atrial fibrillation: A summary of the Heart Rhythm Society Research Forum on the Treatment and Prevention of Atrial Fibrillation, Washington, DC, December 9–10, 2013. Heart Rhythm, 12(1), e5-e29. doi:10.1016/j.hrthm.2014.11.011De Vos, C. B., Pisters, R., Nieuwlaat, R., Prins, M. H., Tieleman, R. G., Coelen, R.-J. S., … Crijns, H. J. G. M. (2010). Progression From Paroxysmal to Persistent Atrial Fibrillation. Journal of the American College of Cardiology, 55(8), 725-731. doi:10.1016/j.jacc.2009.11.040SCHUCHERT, A., BEHRENS, G., & MEINERTZ, T. (1999). Impact of Long-Term ECG Recording on the Detection of Paroxysmal Atrial Fibrillation in Patients After an Acute Ischemic Stroke. Pacing and Clinical Electrophysiology, 22(7), 1082-1084. doi:10.1111/j.1540-8159.1999.tb00574.xPagola, J., Juega, J., Francisco-Pascual, J., Moya, A., Sanchis, M., Bustamante, A., … Arenillas, J. F. (2018). Yield of atrial fibrillation detection with Textile Wearable Holter from the acute phase of stroke: Pilot study of Crypto-AF registry. International Journal of Cardiology, 251, 45-50. doi:10.1016/j.ijcard.2017.10.063Luong, D. T., Ha, N. T., & Thuan, N. D. (2019). Android Smart Phones Application in Tele-monitoring Electrocardiogram (ECG). American Journal of Biomedical Sciences, 15-21. doi:10.5099/aj190100015Haverkamp, H. T., Fosse, S. O., & Schuster, P. (2019). Accuracy and usability of single-lead ECG from smartphones - A clinical study. Indian Pacing and Electrophysiology Journal, 19(4), 145-149. doi:10.1016/j.ipej.2019.02.006Nagai, S., Anzai, D., & Wang, J. (2017). Motion artefact removals for wearable ECG using stationary wavelet transform. Healthcare Technology Letters, 4(4), 138-141. doi:10.1049/htl.2016.0100Satija, U., Ramkumar, B., & Manikandan, M. S. (2018). A Review of Signal Processing Techniques for Electrocardiogram Signal Quality Assessment. IEEE Reviews in Biomedical Engineering, 11, 36-52. doi:10.1109/rbme.2018.2810957Aboukhalil, A., Nielsen, L., Saeed, M., Mark, R. G., & Clifford, G. D. (2008). Reducing false alarm rates for critical arrhythmias using the arterial blood pressure waveform. Journal of Biomedical Informatics, 41(3), 442-451. doi:10.1016/j.jbi.2008.03.003Bashar, S. K., Ding, E., Walkey, A. J., McManus, D. D., & Chon, K. H. (2019). Noise Detection in Electrocardiogram Signals for Intensive Care Unit Patients. IEEE Access, 7, 88357-88368. doi:10.1109/access.2019.2926199Yoon, D., Lim, H. S., Jung, K., Kim, T. Y., & Lee, S. (2019). Deep Learning-Based Electrocardiogram Signal Noise Detection and Screening Model. Healthcare Informatics Research, 25(3), 201. doi:10.4258/hir.2019.25.3.201Oster, J., Behar, J., Sayadi, O., Nemati, S., Johnson, A. E. W., & Clifford, G. D. (2015). Semisupervised ECG Ventricular Beat Classification With Novelty Detection Based on Switching Kalman Filters. IEEE Transactions on Biomedical Engineering, 62(9), 2125-2134. doi:10.1109/tbme.2015.2402236Levkov, C., Mihov, G., Ivanov, R., Daskalov, I., Christov, I., & Dotsinsky, I. (2005). Removal of power-line interference from the ECG: a review of the subtraction procedure. BioMedical Engineering OnLine, 4(1). doi:10.1186/1475-925x-4-50Luo, S., & Johnston, P. (2010). A review of electrocardiogram filtering. Journal of Electrocardiology, 43(6), 486-496. doi:10.1016/j.jelectrocard.2010.07.007Martínez, A., Alcaraz, R., & Rieta, J. J. (2010). Application of the phasor transform for automatic delineation of single-lead ECG fiducial points. Physiological Measurement, 31(11), 1467-1485. doi:10.1088/0967-3334/31/11/005Manikandan, M. S., & Ramkumar, B. (2014). Straightforward and robust QRS detection algorithm for wearable cardiac monitor. Healthcare Technology Letters, 1(1), 40-44. doi:10.1049/htl.2013.0019Satija, U., Ramkumar, B., & Manikandan, M. S. (2018). An automated ECG signal quality assessment method for unsupervised diagnostic systems. Biocybernetics and Biomedical Engineering, 38(1), 54-70. doi:10.1016/j.bbe.2017.10.002Satija, U., Ramkumar, B., & Manikandan, M. S. (2018). Automated ECG Noise Detection and Classification System for Unsupervised Healthcare Monitoring. IEEE Journal of Biomedical and Health Informatics, 22(3), 722-732. doi:10.1109/jbhi.2017.2686436Zhang, Q., Fu, L., & Gu, L. (2019). A Cascaded Convolutional Neural Network for Assessing Signal Quality of Dynamic ECG. Computational and Mathematical Methods in Medicine, 2019, 1-12. doi:10.1155/2019/7095137Xu, X., Wei, S., Ma, C., Luo, K., Zhang, L., & Liu, C. (2018). Atrial Fibrillation Beat Identification Using the Combination of Modified Frequency Slice Wavelet Transform and Convolutional Neural Networks. Journal of Healthcare Engineering, 2018, 1-8. doi:10.1155/2018/2102918Al Rahhal, M. M., Bazi, Y., Al Zuair, M., Othman, E., & BenJdira, B. (2018). Convolutional Neural Networks for Electrocardiogram Classification. Journal of Medical and Biological Engineering, 38(6), 1014-1025. doi:10.1007/s40846-018-0389-7He, R., Wang, K., Zhao, N., Liu, Y., Yuan, Y., Li, Q., & Zhang, H. (2018). Automatic Detection of Atrial Fibrillation Based on Continuous Wavelet Transform and 2D Convolutional Neural Networks. Frontiers in Physiology, 9. doi:10.3389/fphys.2018.01206Yildirim, O., Talo, M., Ay, B., Baloglu, U. B., Aydin, G., & Acharya, U. R. (2019). Automated detection of diabetic subject using pre-trained 2D-CNN models with frequency spectrum images extracted from heart rate signals. Computers in Biology and Medicine, 113, 103387. doi:10.1016/j.compbiomed.2019.103387SINGH, S. A., & MAJUMDER, S. (2019). A NOVEL APPROACH OSA DETECTION USING SINGLE-LEAD ECG SCALOGRAM BASED ON DEEP NEURAL NETWORK. Journal of Mechanics in Medicine and Biology, 19(04), 1950026. doi:10.1142/s021951941950026xByeon, Y.-H., Pan, S.-B., & Kwak, K.-C. (2019). Intelligent Deep Models Based on Scalograms of Electrocardiogram Signals for Biometrics. Sensors, 19(4), 935. doi:10.3390/s19040935Clifford, G., Liu, C., Moody, B., Lehman, L., Silva, I., Li, Q., … Mark, R. (2017). AF Classification from a Short Single Lead ECG Recording: the Physionet Computing in Cardiology Challenge 2017. 2017 Computing in Cardiology Conference (CinC). doi:10.22489/cinc.2017.065-469Redmond, S. J., Xie, Y., Chang, D., Basilakis, J., & Lovell, N. H. (2012). Electrocardiogram signal quality measures for unsupervised telehealth environments. Physiological Measurement, 33(9), 1517-1533. doi:10.1088/0967-3334/33/9/1517Li, T., & Zhou, M. (2016). ECG Classification Using Wavelet Packet Entropy and Random Forests. Entropy, 18(8), 285. doi:10.3390/e18080285Khorrami, H., & Moavenian, M. (2010). A comparative study of DWT, CWT and DCT transformations in ECG arrhythmias classification. Expert Systems with Applications, 37(8), 5751-5757. doi:10.1016/j.eswa.2010.02.033Lyon, A., Mincholé, A., Martínez, J. P., Laguna, P., & Rodriguez, B. (2018). Computational techniques for ECG analysis and interpretation in light of their contribution to medical advances. Journal of The Royal Society Interface, 15(138), 20170821. doi:10.1098/rsif.2017.0821Mincholé, A., & Rodriguez, B. (2019). Artificial intelligence for the electrocardiogram. Nature Medicine, 25(1), 22-23. doi:10.1038/s41591-018-0306-1Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., & Lew, M. S. (2016). Deep learning for visual understanding: A review. Neurocomputing, 187, 27-48. doi:10.1016/j.neucom.2015.09.116Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84-90. doi:10.1145/3065386Li, Q., Rajagopalan, C., & Clifford, G. D. (2014). A machine learning approach to multi-level ECG signal quality classification. Computer Methods and Programs in Biomedicine, 117(3), 435-447. doi:10.1016/j.cmpb.2014.09.002Zhao, Z., & Zhang, Y. (2018). SQI Quality Evaluation Mechanism of Single-Lead ECG Signal Based on Simple Heuristic Fusion and Fuzzy Comprehensive Evaluation. Frontiers in Physiology, 9. doi:10.3389/fphys.2018.00727Moeyersons, J., Smets, E., Morales, J., Villa, A., De Raedt, W., Testelmans, D., … Varon, C. (2019). Artefact detection and quality assessment of ambulatory ECG signals. Computer Methods and Programs in Biomedicine, 182, 105050. doi:10.1016/j.cmpb.2019.105050Clifford, G. D., Behar, J., Li, Q., & Rezek, I. (2012). Signal quality indices and data fusion for determining clinical acceptability of electrocardiograms. Physiological Measurement, 33(9), 1419-1433. doi:10.1088/0967-3334/33/9/1419Orphanidou, C., Bonnici, T., Charlton, P., Clifton, D., Vallance, D., & Tarassenko, L. (2014). Signal Quality Indices for the Electrocardiogram and Photoplethysmogram: Derivation and Applications to Wireless Monitoring. IEEE Journal of Biomedical and Health Informatics, 1-1. doi:10.1109/jbhi.2014.2338351Hayn, D., Jammerbund, B., & Schreier, G. (2012). QRS detection based ECG quality assessment. Physiological Measurement, 33(9), 1449-1461. doi:10.1088/0967-3334/33/9/1449Casey, S., Avalos, G., & Dowling, M. (2018). Critical care nurses’ knowledge of alarm fatigue and practices towards alarms: A multicentre study. Intensive and Critical Care Nursing, 48, 36-41. doi:10.1016/j.iccn.2018.05.004Nattel, S., Guasch, E., Savelieva, I., Cosio, F. G., Valverde, I., Halperin, J. L., … Camm, A. J. (2014). Early management of atrial fibrillation to prevent cardiovascular complications. European Heart Journal, 35(22), 1448-1456. doi:10.1093/eurheartj/ehu028Zhao, Z., Liu, C., Li, Y., Li, Y., Wang, J., Lin, B.-S., & Li, J. (2019). Noise Rejection for Wearable ECGs Using Modified Frequency Slice Wavelet Transform and Convolutional Neural Networks. IEEE Access, 7, 34060-34067. doi:10.1109/access.2019.2900719Petrėnas, A., Marozas, V., & Sörnmo, L. (2015). Low-complexity detection of atrial fibrillation in continuous long-term monitoring. Computers in Biology and Medicine, 65, 184-191. doi:10.1016/j.compbiomed.2015.01.01

    Artefact detection and quality assessment of ambulatory ECG signals

    No full text
    BACKGROUND AND OBJECTIVES: The presence of noise sources could reduce the diagnostic capability of the ECG signal and result in inappropriate treatment decisions. To mitigate this problem, automated algorithms to detect artefacts and quantify the quality of the recorded signal are needed. In this study we present an automated method for the detection of artefacts and quantification of the signal quality. The suggested methodology extracts descriptive features from the autocorrelation function and feeds these to a RUSBoost classifier. The posterior probability of the clean class is used to create a continuous signal quality assessment index. Firstly, the robustness of the proposed algorithm is investigated and secondly, the novel signal quality assessment index is evaluated. METHODS: Data were used from three different studies: a Sleep study, the PhysioNet 2017 Challenge and a Stress study. Binary labels, clean or contaminated, were available from different annotators with experience in ECG analysis. Two types of realistic ECG noise from the MIT-BIH Noise Stress Test Database (NSTDB) were added to the Sleep study to test the quality index. Firstly, the model was trained on the Sleep dataset and subsequently tested on a subset of the other two datasets. Secondly, all recording conditions were taken into account by training the model on a subset derived from the three datasets. Lastly, the posterior probabilities of the model for the different levels of agreement between the annotators were compared. RESULTS: AUC values between 0.988 and 1.000 were obtained when training the model on the Sleep dataset. These results were further improved when training on the three datasets and thus taking all recording conditions into account. A Pearson correlation coefficient of 0.8131 was observed between the score of the clean class and the level of agreement. Additionally, significant quality decreases per noise level for both types of added noise were observed. CONCLUSIONS: The main novelty of this study is the new approach to ECG signal quality assessment based on the posterior clean class probability of the classifier.status: publishe
    corecore