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Abstract 

Introduction: Automated analysis of the electrocardiogram (ECG) is one of the most 

impactful forms of computerised clinical decision support. Recent advanced in deep learning 

(DL) techniques have shown the potential to overcome historical limitations of manually 

engineered ECG analysis. However, DL-based ECG analysis is a nascent technology and 

questions remain about its limitations and usability. 

Methods: To investigate the limits of DL’s capacity for detecting acute myocardial infarction 

(AMI), a DL classifier was trained to detect early onset of coronary artery occlusion. To 

investigate DL’s ability to broaden access to ECG analysis through high-quality interpretation 

of ECG images, a DL classifier was trained to detect atrial fibrillation (AF) from images of 

ambulatory ECG recordings. To evaluate a novel approach to reducing the volume of training 

data required to train DL-based ECG analysers, a system was developed to simulate ECG 

signals and corresponding wave segmentation masks. DL models were pretrained using this 

synthetic data, fine-tuned to detect AMI and AF from real ECGs, then compared again non-

pretrained models. 

Results: A DL model was unable to detect hyperacute coronary occlusion better than a random 

chance classifier. Performance appeared better in an earlier iteration of the experiment, but this 

appeared to be due to data leakage. A DL model detected AF from ECG images with equivalent 

accuracy to raw ECG samples. Pretraining with synthetic ECG data reduced the need for 

training on real ECGs to achieve comparable accuracy and provided a potential mechanism for 

clinician confidence calibration. 

Conclusion: DL requires large volumes of training data and suffers from a “black box” 

effect. DL can broaden access to automated ECG analysis through high quality interpretation 

of ECG image data. Wave segmentation pretraining reduces the need for training data and 

provides a potential mechanism for confidence calibration. This may ameliorate the black 

box phenomenon. 

 

[299 words] 
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1.1 Introduction 

Computerised electrocardiogram (ECG) analysis was one of the first major applications of 

automated diagnostics in healthcare, having been an active field of research and development 

for over 60 years [1]. However, recent breakthroughs in artificial intelligence (AI) based on 

deep learning (DL) technology have allowed computerised ECG researchers to overcome some 

important long-standing challenges, with two particularly notable studies carried out in 2018 

marking something of a watershed in the evolution of the field [2, 3]. (These will be discussed 

further in the next chapter.) 

Given how recently these developments have occurred, many unanswered questions remain 

about the limitations of AI for ECG interpretation, and about how best to translate this 

technology into safe and effective clinical applications. This thesis aims to address some of 

these research questions over the following five chapters. 

1.2 Thesis outline and research questions 

Chapter 2 presents a more extensive review of the topic of AI for ECG analysis. It is broken 

into two parts.  

The first is a narrative review of the topic as a whole, including a summary of previous work 

in the field. This identifies three key research questions: 

1. Can AI help us detect myocardial ischaemia (“heart attacks”, in lay terms) earlier than 

was previously possible? 

2. Can DL improve the performance ECG image analysis applications (where non-AI 

methods have historically faced significant challenges)? 

3. How can ECG AI be ‘democratised’ to better cater for population groups and disease 

cohorts where there is a relatively paucity of labelled data?  

Following on from the first research question, the second part of chapter 2 presents a 

systematic literature review of DL for ischaemia detection. 

Chapter 3 presents original research that tests the hypothesis that DL methods can allow for 

the hyperacute diagnosis of acute myocardial infarction (AMI). In the event, the results fail to 

reject the null hypothesis. However, they highlight the challenge of identifying confounding 

data features learned by DL models in the clinical setting. This theme is explored throughout 

chapters 4 and 5.  

Chapter 4 moves towards a more translational focus and presents original research 

investigating the possibility that DL methods can improve results in the area of ECG image 

analysis. This is a field of study whose value has been widely noted, but where conventional 

methods have failed to achieve results comparable with raw sample analysis. The results of this 
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chapter support the hypothesis that DL can improve the performance of ECG image analysis 

applications. Chapter 4 also outlines the advantages of ECG image analysis in terms of 

interpretability, which builds on the discussion within the previous chapter of the risks of DL 

models leveraging confounding data features. 

Chapter 5 focuses primarily on representation learning (RL) as a means for pretraining DL 

models that can be ‘fine-tuned’ for a range of downstream ECG tasks with relatively small 

labelled datasets. RL is proposed as a means to more easily bring the advantages of DL to 

applications where data paucity may otherwise have been a barrier. This chapter also 

investigates a different approach to ECG image analysis, and proposes mechanisms by which 

DL applications could be made more interpretable for clinicians. 

Chapter 6 recaps the conclusions of the previous chapters, proposes areas of future research 

within the field of ECG AI, makes a note of related works undertaken during the period of this 

thesis, and suggests how the work presented in this thesis may relate to the wider field of 

medical AI. 

1.3 Research outputs 

1.3.1 Journal papers 

• Brisk, R., Bond, R. R., Finlay, D., McLaughlin, J. A., Piadlo, A. J., & McEneaney, D. 

J. WaSP-ECG: A wave segmentation pretraining toolkit for electrocardiogram analysis. 

Frontiers in Physiology, 2022;13:ePub (https://doi.org/10.3389/fphys.2022.760000) 

• Brisk, R., Bond, R. R., Finlay, D., McLaughlin, J., Piadlo, A., Leslie, S. J., . . . Warren, 

S. The effect of confounding data features on a deep learning algorithm to predict 

complete coronary occlusion in a retrospective observational setting. European Heart 

Journal-Digital Health, 2021;2(1):127-134. 

• Brisk, R., Bond, R. R., Banks, E., Piadlo, A., Finlay, D., McLaughlin, J., & David, 

M. Deep learning to automatically interpret images of the electrocardiogram: Do we 

need the raw samples? Journal of Electrocardiology, 2019;57:65-69.  

1.3.2 Conference contributions 

1.3.2.1 Papers 

• Brisk, R., Bond, R., Finlay, D., & McEneaney, D. Personal ECG devices: How will 

healthcare systems cope? A single centre case study. Proceedings of the 2019 

Computing in Cardiology conference, 2019;1-4. 

1.3.2.2 Posters 
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• Brisk, R., Bond, R., Finlay, D., McLaughlin, J., Jasinska-Piadlo, A., Jennings, M., & 

McEneaney, D. Neural networks for ischaemia detection: Revolution or red herring? A 

systematic review and meta-analysis. 45th International Society for Computerized 

Electrocardiology meeting, Sep 2020 (virtual). 

• Brisk, R., Bond, R., Liu, J., Finlay, D., McLaughlin, J., & McEneaney, D. (2018). AI 

to enhance interactive simulation-based training in resuscitation medicine. British HCI 

Conference, Jul 2018 (Belfast, UK).   

1.3.2.3 Oral presentations 

• Artificial intelligence: the future of automated ECG analysis? STAFF Symposium, Sep 

2019 (Les Diablerets, Switzerland). 

• AI for ECG interpretation: can we overcome the black box effect? 44th International 

Society for Computerized Electrocardiology meeting, Apr 2019 (Atlantic Beach, 

Florida, USA). 

1.3.3 Co-authored journal papers 

• Jasinska-Piadlo, A., Bond, R., Biglarbeigi, P., Brisk, R., Campbell, P., & McEneaneny, 

D. What can machines learn about heart failure? A systematic literature review. 

International Journal of Data Science and Analytics, 2021;1-21. 

• Finlay, D., Bond, R., Jennings, M., McCausland, C., Guldenring, D., Kennedy, A., 

Biglarbegi, P., Al-Zaiti, S. S., Brisk, R., McLaughlin, J. Overview of featurization 

techniques used in traditional versus emerging deep learning-based algorithms for 

automated interpretation of the 12-lead ECG. Journal of Electrocardiology, 2021;69:7-

11. 

• Jasinska-Piadlo, A., Bond, R., Biglarbeigi, P., Brisk, R., Campbell, P., Browne, F., & 

McEneaneny, D. Data-driven versus a domain-led approach to k-means clustering on 

an open heart failure dataset. International Journal of Data Science and Analytics, 

2020;1-18. 

1.3.4 Co-authored conference papers 

• Jennings, M. R., Biglarbeigi, P., Bond, R. R., Brisk, R., Güldenring, D., Kennedy, A., 

McLaughlin, J., Finlay, D. D. Machine learning approach to assess the performance of 

patch based leads in the detection of ischaemic electrocardiogram changes. Proceedings 

of the 2020 Computing in Cardiology conference, 2020;1-4. 

• Jennings, M. R., Rababah, A. S., Biglarbeigi, P., Brisk, R., Güldenring, D., Bond, R., 

McLaughlin, J., Finlay, D. D. Coefficients for the derivation of posterior and right sided 

chest leads from the 12-lead electrocardiogram. Proceedings of the 2020 Computing in 

Cardiology conference, 2020;1-4.  
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• Bond, R. R., Mulvenna, M. D., Wan, H., Finlay, D. D., Wong, A., Koene, A., Brisk, 

R., Boger, T., Adel, T. Human centered artificial intelligence: Weaving UX into 

algorithmic decision making. Proceedings of RoCHI 2019, 2019;2-9. 

 

1.4 References 

[1] Macfarlane PW, Kennedy J. Automated ECG Interpretation—A brief history from high 

expectations to deepest networks. Hearts. 2021;2:433-48. 

[2] Hannun AY, Rajpurkar P, Haghpanahi M, et al. Cardiologist-level arrhythmia detection 

and classification in ambulatory electrocardiograms using a deep neural network. Nat Med. 

2019;25:65-9. 

[3] Attia ZI, Noseworthy PA, Lopez-Jimenez F, et al. An artificial intelligence-enabled ECG 

algorithm for the identification of patients with atrial fibrillation during sinus rhythm: A 

retrospective analysis of outcome prediction. The Lancet. 2019;394:861-7. 
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2.1 Chapter structure 

This chapter is split into two parts: a narrative review of AI for ECG analysis, followed by a 

systematic review and meta-analysis of AI for ischaemia detection. 

2.2 Introduction to the narrative review of AI for ECG analysis 

Unlike in the aviation industry, which has seen substantial success in mitigating the fallibility 

of individuals in life-critical settings, human error remains a major driver of adverse outcomes 

in modern healthcare [1, 2]. Acute cardiology is a particularly high-stakes specialty, where 

simple mistakes sometimes have disastrous consequences [3]. Although it is generally accepted 

that medical errors are an inevitability of complex healthcare environments, it has also been 

shown that effective use of information technology can substantially reduce this risk [4, 5]. 

Historically, the impact of healthcare technology has been limited by computers’ inability to 

undertake some particularly challenging tasks, such as reliably detecting important diagnostic 

features in radiology images, or making sense of natural language to detect symptoms from a 

patient history [6, 7] The advent of modern machine learning (ML)-based AI has caused a 

substantial re-think of what is possible with computers in healthcare [8]. However, what some 

are calling the healthcare ‘AI revolution’ remains in its infancy [9]. Many questions remain, 

both about what is possible and what is advisable [10]. 

A particularly appropriate lens for exploring the potential of AI to reduce the burden of human 

error in healthcare is the ECG. It is one of the most important diagnostic tools in modern 

medicine, but also frequently misinterpreted [11]. The rest of this introductory chapter will 

cover the following points: 

• An overview of the principles of electrocardiography 

• An introduction to computerised ECG analysis 

• An overview of AI and its relevance to ECG analysis 

• A note on key open research questions in AI for ECG analysis 

 

2.3 Electrocardiography basics 

2.3.1 Origins of electrocardiography 

In 1924, Willem Einthoven won the Nobel Prize in Medicine for discovering the ECG [12]. 

An ECG comprises a 2-dimensional (2D) recording of the electrical activity of the heart, with 

time on the X axis and voltage on the Y axis. Einthoven used a device called a ‘string 
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galvanometer’, though modern devices use more sophisticated and practical recording methods 

[13]. 

2.3.2 Naming conventions of the ECG 

Einthoven’s first ECG recording consisted of just two deflections, representing ventricular 

contractions, which he named A and B. When refinement of the technique exposed additional 

deflections that represented atrial contractions, he began to use letters from the middle of the 

alphabet, starting with P. This is supposed to have been inspired by Descartes’ naming 

convention for the points on a curve. When Eindhoven finally produced an ECG waveform 

that it still recognised today as the gold standard, he renamed all the waves beginning with P. 

Hence, the naming convention shown in Figure 2.1 [14]. 

 

 

2.3.3 Relationship between ECG waves and heartbeats 

As Galvani described in the late 1700s, based on his famous experiments with frogs’ legs, 

muscle contractions can be induced by electrical impulses [15]. This is the basic principle upon 

which the heart muscle operates [16].  

In a healthy heart, an electrical impulse originating from the sino-atrial (SA) node propagates 

through the atria to the atrio-ventricular (AV) node (see Figure 2.2). This causes the atria, which 

contain blood returning from venous circulation, to contract and pre-fill the ventricles. This 

electrical activity manifests as the P wave on an ECG.  

Figure 2.1 - The principal waves of the ECG. (Image from Wikimedia Commons under Creative Commons license, no author 
permissions required.) 
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After a brief pause, during which the AV node ‘holds’ the electrical impulse, it is propagated 

into the ventricles. The ventricles, which are larger and more muscular than the atria, contract 

and eject blood into arterial circulation. This manifests as the QRS complex on an ECG. 

Finally, the ventricles repolarise ready for the next heartbeat. This manifests as a T wave. 

2.3.4 The ECG in cardiac diseases 

The heart’s role in maintaining the health of an individual is relatively simple: it acts as a 

unidirectional pump, maintaining circulating blood pressure. Broadly, there are three types of 

heart disease: vascular, electrical and mechanical. Vascular heart disease is the leading cause 

of death globally [17]. Atrial fibrillation (AF), which is a disease of the electrical conduction 

system of the heart, is a common cause of stroke [18]. Primary mechanical disorders of the 

heart are relatively less common than “heart failure” caused by vascular and electrical 

problems, and are often congenital [19]. However, primary mechanical heart disease caused by 

rheumatic fever remains a serious problem in the developing world [20]. 

The ECG is the definitive diagnostic test for most primary electrical diseases of the heart. 

Mechanical and cardiovascular diseases generally require additional testing modalities to 

diagnose with complete confidence. However, the strong correlation between electrical activity 

and mechanical / cardiovascular problems of the heart means the ECG is frequently employed 

as a cheap, accessible, non-invasive first line investigation for all cardiac issues. For this 

reason, the ECG remains critical to modern cardiology [16]. 

2.3.5 Types of ECG 

Figure 1.2 - Electrical pathways in the heart. (Image adapted from Wikimedia Commons under Creative Commons license, no 
author permissions required.) 
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There are different types of ECG recording. The most common is the 12 lead ECG. This 

comprises 10 physical electrodes attached to the patient: one on each limb and six chest (or 

‘precordial’) leads as shown in Figure 2.3. The limb leads are used to infer the “Wilson Central 

Terminal” (WCT) [21]. The WCT is then used to derive unipolar recordings for each ECG 

lead, with the exception of the lower right limb (this is the neutral lead).  

The resultant 9-lead ECG is sometimes used in clinical practice, but an additional three leads 

are usually calculated to create the standard 12-lead ECG. This gives a “view” of the electrical 

activity of the heart seen from 12 different perspectives, which clinicians are expected to 

mentally reconstruct into a 3D electrical model of the heart to localise regional abnormalities 

(such as myocardial ischaemia in the region of a single coronary vessel) [16]. 

A 12-lead ECG is usually recorded over the course of 10 seconds to give a snapshot view of 

electrical activity of the heart. In cases where intermittent electrical issues are suspected, 

continuous ECG monitoring is preferable. For practical reasons (to allow patients to move 

around freely), this usually comprises fewer leads: often three, but sometimes as just one. This 

results in a very limited ability to detect localised abnormalities, so pauci-lead monitoring is 

not usually suitable for detecting regional ischaemic events [22].  

Conversely, body surface potential mapping uses much larger numbers of electrodes to build 

high resolution 3D maps of electrocardiac activity. This has been an active line of research for 

several decades but does not play a major role in many clinical pathways at present [23]. 

2.4 Computerised ECG interpretation 

ECG interpretation is notoriously challenging for clinicians, especially non-cardiologists [24]. 

Attempts to automate ECG analysis using modern computers started over 60 years ago [25]. 

Many applications emerging from this field have been shown to improve clinician 

Figure 2.2 - Placement of the precordial ECG lead. (Image from Wikimedia Commons under Creative Commons license, no 

author permissions required.) 
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interpretation of ECGs [26]. However, there remain significant shortcomings with 

conventional rule-based approaches [27]. 

A major challenge in automated ECG interpretation is feature extraction. This generally 

requires pre-processing steps to boost the signal-to-noise ratio (SNR). Noise types in ECG 

signals include baseline wander, motion artifact, non-cardiac muscle activity, powerline 

interference and electrode contact noise. A range of filtering techniques is employed to deal 

with these [28]. Once a reasonably clean signal is obtained, signal processing techniques can 

be used to detect the key ECG waves and many additional derived features [29].  

A detailed review of conventional filtering and signal processing techniques used in ECG 

processing is beyond the scope of this discussion. From an AI practitioner’s perspective, the 

salient property of these rule-based (i.e. non-machine learned) approaches is that they fall 

consistently short of the ability of a human expert to discern key ECG features and arrive at 

relevant diagnoses [27]. This is proving not to be the case for ML approaches, particularly 

those based on DL [30].  

A possible explanation for this phenomenon is that rule-based approaches can only use logic 

that is fully expounded by human experts (via computer programming languages). For a 

cardiologist, on the other hand, ECG feature extraction is a question of detecting patterns from 

complex visual input. This type of task is known to employ subconscious pathways. Therefore, 

even if most humans are extremely adept at making sense of visual stimuli, they cannot clearly 

articulate how they do it [31].  

Conversely, ML algorithms learn by exposure rather than explicit instruction. They can capture 

logic processes that defy clear explanation [32]. Hence, ML-based AI is driving breakthroughs 

in a range of tasks that involve medical image processing, and also in the domain of ECG 

interpretation [33, 34].  

2.5 AI basics 

There is no widely accepted definition for AI, in part because there is no universally agreed 

definition for ‘natural’ intelligence [35]. At the time of writing, AI is commonly used to refer 

to applications that are based on ML principles [36]. It will be used in this context hereafter. 

ML algorithms are statistical models whose parameterisation is determined by automated trial-

and-error searching rather than classical statistical methods [36]. These parameter searches are 

not generally performed using ‘brute force’ methods, which would render optimal solutions 

computationally intractable. Rather, each update is targeted using an optimisation algorithm, 

generally based on the principle of gradient descent [37]. 

At a high level, gradient descent involves a guided ‘walk’ through the model’s parameter space. 

At each step on this walk, the model predicts an output for a given input. A loss is calculated 
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for the prediction using a loss function (sometimes called a cost function). The loss function 

must be differentiable, because its gradient is used to determine both the direction and 

magnitude of the next step in the walk. The update function for the model parameters will 

endeavour to take the model ‘downhill’ in parameter space, meaning that the model parameters 

are updated in a direction that aims to reduce the loss at each step [32]. See Figure 2.4 for a 

visual illustration. 

2.6 Machine versus deep learning 

There are many types of ML algorithm, ranging from relatively simple logistic regression 

models to multi-trillion parameter ‘transformers’. Over the course of the 21st century, a subtype 

of ML algorithm based on the concept of ‘artificial neural networks’ (ANNs) has emerged as 

particularly potent. Modern ANNs generally comprise many sequential layers, giving them the 

appearance of depth in visual depictions of network architecture. Hence, this type of AI 

application has become known as ‘deep learning’ [38]. DL tends to have a substantially 

diminished reliance on manually engineered features than other ML approaches. Instead, DL 

is often employed in an ‘end-to-end’ fashion. whereby raw data is mapped directly to a desired 

endpoint [32]. This has significant pros and cons, which will be discussed later. 

The discrepancy between the performance of modern DL applications versus any other type of 

ML for suitable (usually particularly challenging) tasks is so profound that they are frequently 

referred to as entirely separate entities. Thus, the use of the term ML in modern literature often 

implies that the application in question does not leverage DL [39].  

2.7 The ImageNet milestone and the rise of CNNs 

Though DL is viewed as a modern phenomenon, its fundamental building block – the artificial 

neuron – was proposed in the 1940s by McCulloch and Pitts [40]. Over the following decades, 

optimism about the potential of ANNs waxed and waned, creating periods that are sometimes 

Figure 2.3 - parameter updates guided by gradient descent 
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referred to as ‘AI winters’ and ‘AI springs’ [41]. The breakthrough that is often cited as 

cementing DL’s current position at the cutting edge of modern AI occurred during the 2012 

‘ImageNet’ annual computer vision competition [42].  

ImageNet was designed to be a gold standard benchmark for detecting highly abstract semantic 

features from photographic images: i.e. a bird or a bicycle, as opposed to rudimentary 

geometric shapes like squares and triangles. Prior to the 2012 event, human-level performance 

was widely considered beyond the capabilities of any computer software; although it was clear 

that attaining this level of performance would open the door to breakthroughs such as 

autonomous vehicles, image searching, etc. [43].  

In the 2012 competition, Krizhevsky et al. used a particular variant of ANN, called a deep 

convolutional neural network (CNN), to surpass the previous state of the art by a compelling 

margin and approach human accuracy [44]. The CNN architecture they employed was first 

proposed in a 1998 paper by LeCun et al., who demonstrated that this paradigm was more 

efficient than the conventional multi-layer perceptron (MLP) ANN for recognising hand-

written characters (see Figure 2.5) [45]. However, Krizhevsky et al.’s model was an 

exceptionally deep implementation of this type of AI model.  

Given the speed of processing chips at the time, the size of the model should have made it 

impractically slow to train. However, the team solved this issue by using a graphics processing 

unit (GPU) rather than a conventional central processing unit (CPU) to run the training [44]. 

The key difference is that GPUs leverage highly parallel computation, whereas CPUs perform 

operations serially. The mathematics of DL revolve heavily around matrix operations, which 

are highly parallelisable. Hence, parallel computing can affect very substantial performance 

gains with DL applications. Since 2012, other parallel processors that focus specifically on ML 

have been developed, and they are collectively known as ‘AI accelerators’. However, GPUs 

remain dominant in this market and have played a key role in driving the current ‘AI Spring’ 

[46]. 

The ImageNet moment marked the start of a new era in DL: the combination of more efficient 

ANN architectures and parallel computing allowed AI models to scale to unprecedented size 

and complexity. Other types of DL algorithm have become popular since 2012, but the CNN 

has played a key role in ECG analysis and will be discussed in more detail below. 

2.8 How CNNs work 
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In a conventional MLP, each ‘activation unit’ (AU) within a layer of the network is connected 

to all the AUs in the preceding and proceeding layers by trainable weights, as shown in Figure 

2.5. The activation units comprise nonlinear functions. The ‘tanh’ function was once popular, 

but it has been shown that the more computational efficient rectified linear activation unit 

(ReLU) is equally effective for most tasks [47]. The nonlinearity between linear layer weights 

allows the network to model complex logical operations. Stacking these ‘densely connected’ 

layers can create powerful AI models [32]. 

A major downside to MLP’s is the computational intensity. Ignoring the layer bias, which is a 

single parameter applied uniformly to all the weights in a given layer of the network, the 

number of trainable weights for each additional layer L is DL x DL-1, where D is the dimension, 

or number of AUs, in the layer. Each time the MLP makes a prediction during the training 

process (known as a ‘forward pass’, given the flow of data through the network is 

unidirectional), the relative contribution of each layer weight to the overall error is calculated 

by taking partial derivatives of the loss with respect to each weight. The weights are then 

updated, using the principles of gradient descent, during ‘backpropagation’. Computational 

requirements of forward- and backpropagation increase exponentially with additional trainable 

layers [48].   

By contrast, a CNN employs layer weights more sparsely, but more efficiently, through the use 

of trainable convolutional filters. These filters comprise numerical matrices that are multiplied 

with an input matrix to detect local patterns within the input data. Filters are passed over the 

input data using a sliding window approach. Each filter looks for a single pattern, but multiple 

“stacked” filters are generally used at each layer of the CNN to detect more complex, composite 

patterns.   

Figure 2.6 gives a simple but hopefully intuitive example of how two filters, each detecting a 

straight line in the vertical or horizontal plane, can be used to detect a more complex feature (a 

Figure 2.4 - the MLP architecture compared with a CNN 
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square) in a black and white image. By learning different filter values within a multi-layer 

network using gradient descent-based approaches, modern CNNs can detect extremely 

Figure 2.5 - a basic image analysis workflow using convolutional filters. In the case of a CNN, filter values 
would be learned during the training process. 
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complex patterns within high resolution data [49]. 

It is important to note that, while imaging tasks provide the archetypal use-case for a CNN, 

many other data types (including single- or higher-dimensional data) can be used at input for 

CNNs. A significant limitation of CNNs is the poor ability to detect patterns that are defined 

by a relationship between distant elements of the input data, as each filter can only detect 

patterns that occur within its receptive field. Techniques such as residual layer connections 

have helped to ameliorate this limitation. But the fact remains that the switch from a MLP to a 

CNN is ultimately a trade-off between the ability to model more complex and distant 

relationships within the input data versus a substantial increase in computational efficiency 

[50]. 

2.9 Progress over the last decade 

Since 2012, there have been substantial advances in DL practice. As noted above, residual layer 

connections, in addition to several other architectural improvements, have continued to drive 

progress in CNNs. For much of the 2010s, recurrent neural networks (RNNs), along with long-

short-term memory (LSTM) networks, showed promise in sequence processing. Natural 

language processing (NLP) is among the chief applications within this field [51]. Since a 

seminal paper from scientists at Google in 2018, however, RNNs and LSTMs have largely 

been superseded by ‘transformer’ networks, which leverage multi-headed attention (MHA) 

[52, 53]. At the time of writing (early 2022), transformers are also beginning to achieve state-

of-the-art performance in computer vision.  

2.9.1 Transformers and the implications for the AI ecosystem 

The largest transformer models in production run to over a trillion parameters [54, 55]. There 

is currently a consensus that ‘bigger is better’, as long as you have enough data to feed larger 

models [56]. However, models in excess of a billion parameters usually require very specific 

infrastructure to train. They do not fit within the memory of a single GPU and must be ‘sharded’ 

across multiple GPUs to train using an approach known as ‘model parallelism’. Very large 

models are sharded across multiple GPUs within multiple compute nodes in a cluster. 

The GPUs within a model parallel training pipeline must function effectively as a single 

compute unit, which requires very high bandwidth GPU-GPU communication. Conventional 

high-performance computing (HPC) facilities that are equipped with GPUs generally have the 

accelerators connected via peripheral component interface (PCI) ports. To share data within a 

server (or ‘node’), GPUs must communicate via the PCI bus, which is relatively slow. To share 

data between GPUs spread across multiple nodes, GPUs must communicate via both the PCI 

bus and ethernet switches, which is slower still [57]. 
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Within HPC facilities that cater specifically for training large AI models, each node tends to 

have a high GPU-to-CPU ratio. GPUs within each node are networked directly with high speed, 

multi-lane connections. Nodes are connected with ultra-fast networks that allow remote direct 

memory access (RDMA) between GPUs [58]. This architecture looks very different from 

traditional HPC, which can cause challenges for information technology (IT) teams. It also 

tends to be very expensive. This risks creating a barrier to the democratisation of modern AI 

[59]. Approaches to partially address this challenge will be discussed in subsequent chapters 

on experimental work. 

2.9.2 Graph neural networks 

Graph neural networks (GNNs) have many design features in common with transformers and 

are becoming popular in key domains such as molecular simulation [60]. GNNs can also 

leverage the principles of convolution (graph convolutional neural networks, or GCNNs), and 

can be architected in such a way that they incorporate the principles of Newtonian or even 

quantum physics (physics informed neural networks, or PINNs) [61]. 

The field is evolving quickly. At the time that the work presented in the following chapters was 

commenced, CNNs were emerging as a promising approach in the domain of AI-enabled ECG 

processing [62]. Therefore, newer techniques such as transformers are not explored in the 

original research works. However, they will be further discussed in the final chapter. 

2.10 DL for ECG analysis and areas for further investigation 

The potential value of ANNs in ECG analysis has been discussed for over two decades [63]. 

Prior to 2017, the focus of work in this area was almost exclusively on ‘shallow’ ANNs, with 

no comprehensive evaluation of DL in this area [30]. From 2017 to 2019, there were a number 

of works published in this field, summarised in a systematic review by Ebrahimi and Zahra in 

2020 [64]. DL for AF detection saw a particularly marked surge in publications during 2018 

[65-77]. This may have been partly driven by the 2017 Computing in Cardiology challenge, 

which made a large dataset of single-lead ECG recordings available and tasked participants 

with developing automated AF detectors [78]. The substantial majority of the studies on DL 

for AF detection published in 2018 employed CNNs [65-68, 70-73, 75-77]. 

However, two seminal papers in 2019 claimed to the push the bounds of what was previously 

considered possible in the field of automated AF detection. The first was an article by Hannun 

et al. claiming ‘cardiologist-level’ detection of AF from ambulatory ECG signals [30]. The 

second was a paper by Attia et al. claiming that their algorithm was able to diagnose incipient 

AF from ECGs showing normal sinus rhythm (NSR) [79]. This latter claim was particularly 

noteworthy because this is not something that is general considered possible for human 

cardiologists; thus, the paper was effectively claiming super-human performance. 
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2.10.1 Area for investigation 1: DL for ischaemia detection 

Following the surge in work on DL for arrhythmia detection, and particularly in light of the 

notable breakthroughs from Hannun and Attia’s groups, it appeared likely that progress in the 

domain of DL arrhythmia detection would continue. However, the ECG is also an essential 

first-line investigation for the detection of AMI (or ‘heart attack’ in lay terms). In this setting, 

ECG findings are instrumental in diagnosing the underlying aetiology of the AMI and 

determining whether a patient will benefit from emergency endovascular surgery known as 

primary percutaneous coronary intervention (PPCI). If there is ECG evidence of a transmural 

(‘full thickness’) AMI, generally caused by total or near-total thromboembolic occlusion of a 

major coronary artery, primary (emergency) PPCI is potentially lifesaving. If the ECG is mis-

diagnosed and the patient misses out on this procedure, the consequences can be catastrophic 

[80]. As will be discussed in the next chapter, which presents a systematic literature review of 

works on DL for ischaemia detection, the application of DL to this highly impactful problem 

had been poorly investigated at the time this PhD project was commenced. Therefore, the 

following research question was identified as the focus for chapter 3: 

1. Will AI-enabled ECG analysis allow us to detect hyperacute myocardial ischaemia? 

(Or, in lay terms: can we detect heart attacks earlier using AI?) 

2.10.2 Area for investigation 2: Democratising ECG AI 

The second part of this project is addressed to the topic of how the impact DL-based ECG 

analysis can be maximised from a patient perspective. In 2018, prominent figures from the 

National Institutes of Health, the Radiological Society of North America and the American 

College of Radiology published a position paper on translational research in medical AI. They 

highlighted the mismatch between progress being made at the foundational research level and 

progress at the clinical level. They called for more translational research to address barriers to 

widespread implementation of AI at the point of care [81].  

As noted at the outset of this chapter, the primary motivation for the work presented in this 

thesis is to examine the potential of AI to improve patient care. ECG analysis is proposed as 

an appropriate lens through which to undertake this investigation, but with the intention of 

relating the findings of the ECG-specific research chapters back to broader challenges within 

the world of medical AI in the concluding chapter. Thus, in addition to investigating the 

potential utility of DL for ischaemia detection in a controlled research setting, it was also felt 

to be important to investigate research questions whose primary focus is translational. On this 

basis, two key translational research questions were selected to be the focus of chapters 4 and 

5: 

1. Can DL improve the performance ECG image analysis applications, where non-AI 

methods have historically faced significant challenges?  
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The rationale for investigating this topic is that in many centres, ECG data is still stored as 

paper printouts rather than digital files containing the raw sample readings. Most 

computerised ECG analysers rely on raw samples, which limits the extent to which 

emerging, state-of-the-art methods can be applied to retrospective medical records. 

Historical medical records are often associated with rich multi-modal data and clinical 

outcomes, which makes them highly valuable for developing and testing prognostic 

models, risk scores, etc. [82]. The development of state-of-the-art ECG image analysers 

could open the door to retrospective observational studies that could fuel early stage 

research, particularly in the nascent field of multi-modal clinical AI [83]. 

2. How can DL be ‘democratised’ to better cater for population groups and disease cohorts 

where there is a relatively paucity of labelled data?  

This is a topic with broad application in the field of clinical AI, as DL methods tend to rely 

on large volumes of labelled data relative to other approaches [32]. This can limit the extent 

to which DL-based applications benefit groups who are under-represented in the digital 

world. 

 

2.11 Introduction to the systematic literature review of AI for 

ischaemia detection 

As noted above, early detection of AMI is a central problem of modern cardiology. The advent 

of PPCI has transformed the prognosis of patients suffering AMI due to acute thromboembolic 

occlusion of the coronary arteries [84]. However, PPCI is a time-critical intervention and a 

delay in diagnosis can be catastrophic [85]. The delineation of patients who are and are not 

likely to benefit from PPCI must be based on clinical data that is available at the time of 

presentation: most importantly, the presence of ischaemic chest pain and ST segment elevation 

(STE) on the ECG [86]. 

Using DL to obtain automated, expert-level ischaemia detection from ECG signals would be 

highly desirable, given that the missed case rate for ST elevation myocardial infarction 

(STEMI) in emergency departments is over 10% [87]. Current, rule-based automated ECG 

analysis performs poorly compared with experts [88]. 

The aim of chapter 2 was to give some relevant background on the key concepts underlying 

both ECG analysis and modern, DL-based AI. A narrative review of DL for ECG analysis was 

presented, which noted that the majority of published works at the time this thesis was 

commenced related to arrythmia detection. It was felt that relatively little work had been 

undertaken in the field of DL for ischaemia detection. The aim of this systematic literature 

review and meta-analysis is to take a more rigorous approach to establishing what work has 
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been done in the field to date, and to evaluate the likelihood that DL technology can improve 

upon existing methods. 

2.12 Methods 

2.12.1 Search strategy 

The literature search was conducted according to the PRISMA framework [89]. The titles, 

abstracts and keywords of full-text articles on Medline, Scopus and Web-of-Science were 

searched using the following terms: ((myocardial infarction OR ischaemia) AND (neural 

network OR deep learning) AND (electrocardiogram OR ECG)). The searches were performed 

in November 2019.  

2.12.2 Study selection 

All research articles documenting the analysis of ECG signals via ANNs to detect myocardial 

ischaemia were included. Articles not pertaining to ANNs, or pertaining to ECG analysis for 

other purposes (e.g. arrhythmia detection, hyperkalaemia detection), were excluded. 

Search terms were applied to full texts, but screening was conducted based upon titles and 

abstracts. Studies selected for inclusion were obtained in full for manual analysis. 

2.12.3 Quality evaluation 

The QUADAS 2 framework was used to assess the quality of the studies [90]. The outcomes 

of quality evaluation were noted but no study was excluded on the grounds of poor quality as 

this is a nascent field and all completed work was felt to be relevant for the purposes of this 

review. 

2.12.4 Data extraction 

Data was extracted according to a proforma developed during analysis of the first two studies 

and refined during the analysis of the next two. (See appendix.) 

2.13 Results 

2.13.1 Study selection 

The search terms generated 36 results from Medline, 33 from Scopus and 127 from the Web 

of Science. Of these, 46 studies were deemed suitable for inclusion in this review [91-99]. 

Study characteristics are noted in Table 2.1. 

2.13.2 Study quality 
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As assessed using the QUADAS 2 framework, there was high variability in the quality of the 

studies. In particular, patient selection was poorly defined in many cases (often because the 

studies were conducted using publicly available, anonymised ECG databases). Four of the 

studies took cardiologists’ interpretation of ECG data (either ambulatory or exercise) as the 

reference standard. With the exception of Xiao et al., results of these studies were framed as 

“ischaemia detection”, which makes the assumption that cardiologists’ interpretation of 

ambulatory or exercise ECG data in isolation of other clinical variables correlates well with 

underlying myocardial ischaemia. One study (Neagoe et al.) did not explicitly define their 

reference standard, though they used an annotated ST-T database so the assumption is made 

that ST elevation annotated by domain experts was their target endpoint. Details regarding 

quality evaluation are given in Table 2.2. 

2.13.3 Technology used 

Only two studies used DL technology, defined as ANN architectures with multiple hidden 

layers or a combination of multiple neural networks. All other studies used ANNs consisting 

of an input layer, a single hidden layer and an output layer. In the majority of the studies, 

features were extracted using either rule based methods or dimensionality reduction with 

principal component analysis (PCA). Details in Table 2.1. 

2.13.4 Heterogeneity and statistical analysis 

There was significant variation in the approach to data acquisition, reference standards and 

statistical reporting of results. Only two studies prospectively collected patient data. Four 

studies used a definition of myocardial ischaemia that employed clinical variables independent 

of cardiologist-annotated ECG changes. One study used multi-modal clinical data (including 

ECG signals) as input to the ANN, whereas the other eight only used ECG signals. Seven 

studies reported sensitivity and specificity of the ANNs with respect to the reference standard. 

One only reported area under the receiver operator characteristic curve (AUROC). Another 

reported sensitivity and positive predictive value but not specificity. See Table 2.3 for details. 

2.13.5 Data synthesis 

Results of data synthesis are shown in Table 2.4. The salient result is that ANNs appear to 

perform better in detecting cardiologist-annotated ST segment elevation than in detecting more 

objectively defined myocardial ischaemia. 
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Table 2.1 Study characteristics 

Study No. 

subjects 

M:F 

(%) 

Age 

(mean) 

Positive 

cases 

(%) 

Location of data 

collection 

ECG type Evaluation 

approach 

Technology used Reference standard 

 
 

Xue et al. 

2004 

Trained on 

1358, 

evaluated on 

1902 

N/S N/S N/S Rochester, MN, 

USA 

12 lead Prospective Combination of rule-based 

model and 3 layer ANN to 

enhance clinician 

diagnosis (NB: ANN 

analyses were not 

evaluated independently of 

clinician analysis) 

Composite definition 

AMI as per 1984 WHO 

criteria (below) 

Dehnavi et 

al. 

2011 

70 53 55 86 Khomeinishahr, 

Iran 

12 lead (exercise) Retrospective 

(cross 

validation) 

Feature extraction by 

PCA, with outcomes fed 

to a 3 layer ANN. Process 

repeated with 

vectorcardiograms 

(VCGs) to compare 

results. 

Comparison with 

cardiologist evaluation 

of ischaemic changes 

within ECGs 

Paploukas 

et al. 

2002 

Not clearly 

stated 

N/S N/S N/S Various in USA / 

Europe 

2 lead 

(ambulatory) 

Retrospective 

(hold out) 

Rule-based analysis to 

detect the J point of each 

beat, then following 

400mS fed to a 3 layer 

ANN 

Comparison with 

cardiologist evaluation 

of ischaemic changes 

within ECGs 

Neagoe et 

al. 

2003 

Trained on 

20, 

evaluated on 

20 

N/S N/S N/S Various in USA / 

Europe 

Single lead (V5 

only, ambulatory) 

Retrospective 

(hold out) 

Best model: PCA followed 

by a "fuzzy" ANN (4 

layers) 

ST elevation as 

annotated by human 

experts 
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Forberg et 

al. 

2012 

Trained on 

3000, 

evaluated on 

560 

5500% 70 8 Lund, Sweden 12 lead Prospective Composite model of 25 

ANNs (each 3 layers) 

1) Evaluation of ST 

elevation against 

international criteria 

2) Evaluation of need 

for PPCI against final 

outcome (patient had 

PPCI or not) 

Baxt et al. 

2002 

2204 54 56 16 Philadelphia, PA, 

USA 

12 lead Retrospective 

(cross 

validation) 

3 layer ANN with ECG 

plus multiple clinical 

features as input 

(including biomarkers 

where available) 

Composite definition 

of AMI plus at least 

one 70% coronary 

lesion. For unstable 

angina: clinical history 

plus 70% coronary 

lesion or functional 

evidence of ischaemia 

or elevated creatinine 

kinase 

Sbrollini et 

al. 

2019 

Trained on 

241, 

evaluated on 

241 

N/S N/S 17 Charleston, WV, 

USA and Lund, 

Sweden 

Pairs of 12 lead 

ECGs, where 

positive examples 

contained one 

non-ischaemic 

and one ischaemic 

ECG 

Retrospective 

(hold out) 

3 layer ANN whose input 

features are derived from 

rule-based ECG analysis 

and measurement of 

differences between paired 

ECGs 

Myocardial ischaemia 

assumed after 3 mins 

of complete balloon 

occlusion of a coronary 

artery 

Xiao et al. 

2018 

Trained on 

20, 

evaluated on 

15 

N/S N/S 47 Various in USA / 

Europe 

2 and 3 lead 

(ambulatory) 

Retrospective 

(hold out) 

Inception V3 (48 layer 

convolutional neural 

network with residual 

layer connections) 

ST elevation as 

annotated by human 

experts 



35 
 

Maglaveras 

et al. 

1998 

Not clearly 

stated (90 

records, 

unclear if 

from unique 

patients) 

N/S N/S N/S Various in USA / 

Europe 

7 lead 

(ambulatory) 

Retrospective Rule-based analysis to 

detect the ST segment of 

each beat, then following 

160mS fed to a 3 layer 

ANN 

ST elevation as 

annotated by human 

experts 

Abbreviations: M:F = male:female, N/S = not stated
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Table 2.2 Quality evaluation and additional notes 

Study Quality notes Additional notes 

Xue et al. 

2004 

No demographic details 

available re subjects. Cannot 

evaluate bias. The composite 

AMI endpoint (including 

biomarkers, ECG analysis and 

other clinical variables) was 

felt to be a strength of the 

study. 

3 layer ANN is not truly "deep" learning. The fact 

that computerised ECG analysis was only evaluated 

when used as an adjunct to clinician analysis makes 

an evaluation of the technology itself impossible. 

Dehnavi et 

al. 

2011 

The assumption that 

cardiologists' analysis of 

exercise ECGs is a reliable 

indicator of underlying 

ischaemia is a major weakness 

of this study. 

3 layer ANN is not truly "deep" learning. Due to the 

weakness of the endpoint, results of this study 

should be interpreted with caution. 

Paploukas 

et al. 

2002 

The assumption that 

cardiologists' analysis of 

ambulatory, 3 lead ECGs is a 

reliable indicator of 

underlying ischaemia is a 

weakness of this study. 

3 layer ANN is not truly "deep" learning. Limiting 

the ANN to the segment of ECG signal immediately 

following the J point potentially missed important 

ischaemia indicators in other parts of the ECG. Due 

to the weakness of the endpoint, results of this study 

should be interpreted with caution. 

Neagoe et 

al. 

2003 

The failure to define how the 

"ischaemic" ECGs were 

acquired and diagnosed makes 

it impossible to evaluate the 

quality of this study. 

The ANN was only exposed to the QRST segment 

of a  single ECG lead, presumably to approximate 

ambulatory single lead recordings. However, 

without further information regarding the study 

design, the results of this study should be 

interpreted with extreme caution. 

Forberg et 

al. 

2012 

This appears to be a robust 

study according to analysis 

using the QUADAS-2 

framework. 

Interestingly, the ANN identified 7 patients who 

met international ST elevation criteria on 

subsequent manual analysis, but who were not 

identified as having a STEMI by the on call 

cardiologist. The ANN thus outperformed the 

cardiologist, but in the event, none of these patients 

required PCI. 



37 
 

Baxt et al. 

2002 

This appears to be a robust 

study according to analysis 

using the QUADAS-2 

framework. 

This study employs a particularly strong end point, 

and the idea of a mixed-modality input vector for an 

ischaemic detection model is likely to be explored 

further by future research. However, such a model 

would be less useful for the rapid discrimination of 

patients who would and would not benefit from 

PPCI. Furthermore, this 3 layer ANN has been 

superseded by more sophisticated models in recent 

years and better results may be obtained by 

revisiting the data with new technology. 

Sbrollini et 

al. 

2019 

Unreported demographic data 

precludes evaluation of 

potential bias in this study. 

For a modern study, the technology employed was 

not particularly sophisticated. The authors refer to a 

"deep learning" approach, but with a 3 layer ANN 

this is questionable. There is no benchmark 

included for the complexity of the classification 

task on this particular dataset - comparison with 

human experts may add weight to the findings. 

Xiao et al. 

2018 

Unreported demographic data 

precludes evaluation of 

potential bias in this study. 

Though the reference standard 

is cardiologists’ interpretation 

of ST changes, this is not 

overtly assumed to denote 

underlying myocardial 

ischaemia. 

This study uses a state-of-the-art deep learning 

algorithm and employs transfer learning to improve 

the efficiency of the training process, thus 

demonstrates a promising approach to deep learning 

based ischaemia detection. However, small study 

numbers, the absence of a composite endpoint and a 

poorly defined cohort limit its application at this 

stage. 

Maglaveras 

et al. 

1998 

Unreported demographic data 

precludes evaluation of 

potential bias in this study. 

The assumption that 

cardiologists' analysis of 

ambulatory, 3 lead ECGs is a 

reliable indicator of 

underlying ischaemia is a 

weakness of this study. 

This is the earliest example of ANN-based analysis 

of ECG signals for ischaemia detection within this 

review. 
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Table 2.3 Results of studies 

Study Results 

Xue et al. 

2004 

Cardiologist reader: sensitivity increase from 29% to 37% with CAD. 

ED physician reader: sensitivity increase from 29% to 44% with CAD.  

Specificity unchanged at 99% for both. 

Dehnavi et al. 

2011 

ECGs: sensitivity 60%, specificity 70% 

VCGs: sensitivity 70%, specificity 86% 

Paploukas et al. 

2002 

Best model: sensitivity 91%, specificity 90% 

Neagoe et al. 

2003 

Best model: sensitivity 100%, specificity 100% 

Forberg et al. 

2012 

1) Evaluation of ST elevation against international criteria: sensitivity 95%, 

specificity 68% 

2) Evaluation of need for PPCI against final outcome (patient had PPCI or not): 

sensitivity 97%, specificity 68% 

Baxt et al. 

2002 

Patients presenting with chest pain either diagnosed as being ischaemic or non-

cardiac: 

Sensitivity 80.9%, specificity 81.3% 

Sbrollini et al. 

2019 

AUROC 0.83 

Further breakdown of results not reported. 

Xiao et al. 

2018 

Sensitivity 84.4%, specificity 84.9%, AUROC 0.89 

Maglaveras et 

al. 

1998 

Sensitivity 91%, positive predictive value 83% (specificity not reported) 

 

Table 2.4 Synthesis of data 

 
MI defined by features 

independent of ECG changes 

(n=4) 

MI defined by cardiologist 

annotation of ECG (n=5) 

 
Mean +/- SD Mean +/- SD 

Sensitivity 64.7 +/- 28.9 88.1 +/- 11.6 

Specificity 86.8 +/- 15.1 85.8 +/- 11.6 
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2.14 Discussion 

The evidence base in this field remained small at the time of this systematic review, but 

contained some useful insights. Most importantly, the results reported by these studies 

suggested that DL based analysis of ECG signals is a viable approach to the detection of 

myocardial ischaemia. The study by Xue et al. was particularly noteworthy for having 

demonstrated an improvement in clinician analysis of ECGs when supported by an ANN based 

system. 

The rapidly evolving nature of ML technology represents a challenge in this domain. The 2002 

study by Baxt et al. benefits from robust design and a rich dataset. However, the ANN used to 

predict myocardial ischaemia from multi-modal input features is what is now referred to in the 

data science field as a “vanilla” network, denoting a simplistic architecture and shallow 

structure. Revisiting this dataset with a modern DL model may produce improved results. 

The study by Sbrollini et al. explores the hypothesis that an ML model could learn the 

idiosyncratic morphology of a patient’s ECG and use this to predict ischaemic changes unique 

to that individual. In fact, the scope of their study includes predicting altered cardiac status of 

heart failure patients using the same approach, and their results are reported with respect to 

both ischaemia and heart failure rather than each separately. Drawing firm conclusions 

regarding ischaemia detection in isolation is therefore difficult, but it provides some rationale 

for further work in this area. Coupled with evidence that reliable multi-lead ECG signals can 

be captured from wearable devices, this could form the basis of a method for hyperacute 

detection of myocardial ischaemia in the ambulatory setting [100]. 

Finally, five of these nine studies focussed exclusively on ST segment changes as the ECG 

hallmark of myocardial ischaemia. This may represent a common approach of clinical 

researchers towards working with ML tools: namely, restricting the input of ML models to data 

that has a proven causal link with the desired endpoint. In some instances, this is done 

intentionally to force a model to approximate the established human approach to a given task, 

which may be necessary for an AI tool to function within a wider clinical context [101]. When 

done by default, however, curating the input to a ML model can preclude the possibility of 

discovering novel features that can be used to improve upon the existing approach and even, 

in some instances, surpass expert human performance [102].  

Sbrollini et al. trained their ANN on uncurated ECG signals and labelled each segment 

according to presence or absence of balloon occlusion of a coronary artery at the time of signal 

acquisition, rather than relying on expert analysis of the ECGs or a composite endpoint of 

which expert ECG analysis forms a significant part. Though one may question whether balloon 

occlusion of a vessel inevitably results in myocardial ischaemia (e.g. in the presence of 
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extensive collateralisation or non-viable myocardium), the strength of this approach lies in the 

fact that the ML model is not constrained by human curation of the input data nor reliant on 

human analysis for the reference standard. It is thus conceivable that a sophisticated ANN, by 

virtue of an enormous capacity for discerning subtle patterns within complex high-resolution 

data, may leverage previously unrecognised ECG features of myocardial ischaemia when faced 

with this task. Sbrollini et al. do not report any attempt to interrogate the internal logic of their 

ANN, nor to benchmark its performance against human experts faced with the same dataset, 

but this was felt to represent a promising line of enquiry, and informs the design of study 

presented in a subsequent chapter. 

The heterogeneity of approaches and the questionable quality of some of the studies as 

evaluated by the QUADAS 2 framework should prompt significant caution in interpreting 

synthesised data from this review. 

2.15 Conclusion 

The conclusion drawn from the systematic review and meta-analysis presented in this chapter 

is that DL-based AMI detection from ECG signals is a field that both needs and warrants further 

work. The next chapter presents an original research study undertaken in this field. 
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Chapter 3:  

The effect of confounding data features on a DL 

algorithm to predict complete coronary occlusion 

in a retrospective observational setting  
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3.1 Introduction 

The previous chapter presented a systematic literature review and meta-analysis of DL-based 

AMI detection from ECG signals. It was concluded that previous studies of ML for AMI 

detection had shown promise, but that further work was needed to evaluate the potential of DL 

in this domain. This chapter presents an experiment designed to evaluate the ability of a DL 

algorithm to detect hyper-acute AMI caused by acute complete thrombotic coronary occlusion 

(ACTCO): the pathophysiology underlying STEMI. To set the context for this work, additional 

detail on the history of STEMI and its relationship to non-STEMI (NSTEMI) is given below. 

In 1918, Smith et al. ligated the coronary arteries of canine models [1] while recording ECGs. 

In healthy individuals, most regions of the myocardium derive their blood supply from just one 

of the three major coronary arteries (right coronary artery or RCA: left anterior descending or 

LAD; left circumflex or LCX) [2]. Thus, surgical ligation of a large coronary artery is expected 

to cause transmural (as opposed to partial thickness) ischaemia. In the canine models in Smith 

et al.’s experiment, it was noted that transmural ischaemia was reliably associated with STE on 

the ECG. Since then, STE has been associated with transmural AMI in humans, and has 

become the bedside test of choice for this condition [3]. STEMI in humans is most commonly 

caused by ACTCO [4].  

Patients suffering from STEMI have been consistently shown to benefit from PPCI, whereas 

patients with NSTEMI have not [5, 6]. The decision to activate the PPCI pathway is, therefore, 

largely contingent upon the presence of STE plus a clinical presentation in keeping with AMI 

(usually chest pain) [3]. The limitation of this approach is that, while STE is very specific for 

ACTCO, its sensitivity may be as low as 50% [7].  

There have been few large-scale studies evaluating alternative models for predicting which 

patients will benefit from primary PCI [8]. Furthermore, such attempts have principally 

focussed on extending urgent revascularisation to ‘high risk’ NSTEMIs, generally defined 

using a very small number of hand-crafted features (sometimes just two or three) and not 

incorporating ECG features [9, 10]. It could be argued that such low-dimensional feature 

representations poorly express the complex physiology of the patient with AMI, and that an 

approach incorporating more relevant features might be more effective.  

In the domain of AF detection, DL models have been shown to match “expert level” 

performance in the context of ambulatory recordings [11]. This is the highest possible 

performance one could expect for a task where the gold standard diagnostic criteria are based 

on expert interpretation of ECG data. In the domain of AMI, on the other hand, it is possible to 

use composite definitions that do not rely on ECG criteria but incorporate biochemical and 

angiographic data [4]. Therefore, it is plausible that a DL model could not only match, but also 

outperform, existing gold standard ECG criteria. 
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The aim of this study was to establish whether a DL algorithm can detect ACTCO, as defined 

by angiographically-proven acute coronary occlusion, by leveraging more complex ECG 

features than a manual approach would allow. 

3.2 Methods 

3.2.1 Data acquisition 

ECG signals were downloaded from the STAFF III database (Physionet) [12-14]. This contains 

a collection of ECGs taken from 104 patients undergoing prolonged intracoronary balloon 

inflation. The records consist of nine lead ECGs at 1000Hz (investigators can calculate the 

three augmented limb leads if they wish). 76 records contain baseline ECGs obtained in a 

relaxing room prior to transfer to theatre. The inflations lasted an average of 262 seconds, with 

84 lasting in excess of five minutes. Annotations contain the time of balloon inflations and 

deflations, contrast injection times and anatomical position of the balloons. 

STAFF III remains one of the most valuable datasets for groups studying the early ECG effects 

of prolonged, total coronary occlusion in humans. It is the only publicly available dataset that 

contains angiographically-proven acute coronary artery occlusion without pre-selecting 

subjects based on ECG criteria nor chest pain.   

Basic demographic information from the 76 STAFF III subjects included as per the original 

inclusion criteria (described below) are shown in Table 3.1.  

 

3.2.2 Ethical considerations 

No ethical issues were identified with this study, as it involved open data from an anonymised, 

publicly available database. This decision was ratified by the heads of research governance at 

two of the participating academic centres (Ulster University and Southern Health and Social 

Care Trust). 

3.2.3 Inclusion / exclusion criteria 

Table 3.1 (first iteration) – demographic details, including subgroups defined by anatomical location of balloon inflation. LMS = left 

main stem, LAD = left anterior descending, Diag = diagonal branch, LCx = left circumflex, RCA = right coronary artery 
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Initially, only records that included relaxing room ECGs were deemed eligible, as these were 

used as the non-ischaemic samples. Records where balloon inflations lasted less than 90 

seconds were excluded as they contained insufficient ischaemic samples.  

Several subjects underwent multiple inflations in different anatomical locations. Only data 

from the first inflation was used due to concerns that “hangover” electrical effects from 

previous inflations may confound results. 

The study was executed and written up following completion of this initial protocol. However, 

following a conversation with a group who have worked extensively with the STAFF III 

database (including its creator), it was pointed out that the 28 patients excluded because they 

had no ECG from the relaxing room could be included if the beginning of their theatre ECG 

(taken prior to catheter insertion) was used as an alternative baseline.  

It was decided that the experiment should be re-run with the inclusion criteria thus amended. 

It was also felt that standardising the baseline ECG acquisition by using pre-catheterisation 

theatre ECGs for all patients would be more methodologically sound. 

3.2.4 Algorithm design 

The model was a 34-layer CNN with residual connections culminating in a fully connected 

layer with a single, sigmoid-activated output node. Researchers from the Stanford Machine 

Learning Group have identified this architecture as being particularly well-suited to processing 

ECG signal data [11]. The model was initiated using weights from an AF detection task [15], 

on the assumption that many ECG features learned during arrhythmia analysis would improve 

generalisation in the setting of ischaemia detection. This is known as ‘transfer learning’ and 

can allow DL models to train for complex tasks on relatively small datasets [16].  

During the training process, ECG signals were split into one second segments. Each ECG 

window was reshaped into a 9000 dimensional vector (9 leads x 1000Hz x 1 second). The loss 

was calculated using binary cross-entropy, where non-ischaemic samples were labelled 0, 

ischaemic traces 1.  

3.2.5 Model evaluation 

The model was evaluated using a 5-fold cross validation (CV) process, whereby each of 5 

versions of the model were trained on data from 80% of the patients and tested on data from 

the remaining 20%. The experiment was subsequently repeated using a 10-fold CV process 

whereby data was split into 80% training, 10% validation and 10% test sets. This was to ensure 

the 5-fold CV process did not encourage overfitting. 

Testing was undertaken using one 10 second trace for each patient taken from the baseline 

ECG (non-ischaemic examples) and one 10 second trace for each patient taken 60 seconds into 
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balloon occlusion of a coronary artery (positive examples). 10 seconds was chosen because it 

is the standard length of printed 12 lead ECGs used to diagnose STEMI and would facilitate a 

fair comparison with cardiologist-labelled benchmarks. 

The input vector for the model comprised a tensor of shape [batch size, 10, 9000]. The final 

dimension comprised one second of samples for each of nine leads at 1000Hz concatenated 

into a 9000-dimensional vector (the augmented limb leads were not explicitly calculated for 

the model). The penultimate dimension represented the 10 seconds of the ECG. 

3.2.6 Benchmarks 

Three consultant cardiologists were given all of the test traces in a random order and asked to 

label them as showing either no signs of ischaemia, non-specific ischaemic changes or STE. 

These results were used as a basis for comparison with the DL model performance as described 

below.  

3.2.7 Statistical analysis 

The accuracy of each classifier was calculated by dividing the number of correct labels with 

the total number of ECGs labelled. The consensus opinion of the three cardiologists regarding 

both non-specific ischaemic changes and STE was taken to be the current gold standard in 

clinical practice. This was evaluated against the DL model’s accuracy using the Chi-square 

test. For each classifier sensitivity, specificity, positive predictive value (PPV) and F1 score 

were calculated.  

A receiver operating characteristic (ROC) curve was plotted for the DL model and AUROC 

calculated.  

3.2.8 Interrogating the model 

Attention heatmaps were generated using selective input masking. The fully trained model was 

shown each ECG in the test set with 50 millisecond (mS) segments “blanked out” (by 

substituting voltage values for zero). The greater the difference between the original prediction 

and the new prediction, the higher the value assigned to the masked part of the ECG on the 

heatmap. The process was repeated until a value had been assigned to each 50 mS window of 

each ECG. 

3.3 Results 

3.3.1 First iteration of the study using original inclusion and exclusion 

criteria 

The results of ECG analysis by ST-elevation criteria (as defined by consensus opinion among 

the three cardiologists), individual analysis by each expert using a combination of both STEMI 
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criteria and non-specific ischaemic changes, consensus opinion among the experts using both 

STEMI criteria and non-specific ischaemic changes, and analysis by the DL model are shown 

in Figure 3.1. The DL model had both the highest accuracy (0.803) and the highest F1 score 

(0.814). Classification using the STEMI criteria produced the highest specificity (0.947). 

Cardiologist 3 achieved the highest sensitivity (0.842). 

 

The confusion matrices used to calculate these results are included in Table 3.3. As previously 

noted, the DL model’s results were calculated by taking the mean results of each cycle of the 

5-fold CV process. Confidence intervals (95%) for these results are shown in Figure 3.2.  
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Difference in accuracy between the DL model and the consensus cardiologist opinion for any 

type of ischaemic change was evaluated using the Chi-square test and found to be significant 

using a threshold of 0.05 (p=0.0469). Marginal homogeneity was evaluated using McNemar’s 

test. Results are shown in Table 3.2. 

 

Figure 3.3 shows ROC curve for the DL model. AUROC was 0.860. Results were reproducible 

using a 10-fold CV process as described in the methods section. Attention heatmaps appeared 

to show that the model was primarily focussing on the latter part of the QRS complex or the 

ST-T segment. See Figure 3.4 for an example. 

3.3.2 Second iteration of the study using amended inclusion and exclusion 

criteria 

Following amendment of the inclusion criteria so that baseline samples were obtained from 

theatre ECGs, 99 patients were included in the second run of the experiment. The model was 

retrained using the same 5-fold CV process, the same data sampling methods and the same 

hyperparameters as the first run. 

Figure 3 - ROC curve for the DL model (AUROC = 0.860). The 
dotted black line represents the ROC for a binary classifier based 
on random chance where AUROC = 0.5. 

Figure 3.3 (first iteration) – ROC curve for the DL model (AUROC = 0.860). The dotted black 

line represents the ROC for a binary classifier based on random chance, where AUROC = 0.5 

Table 3.2 (first iterations) – classifier concordance calculated using McNemar’s test. Statistically significant results (p < 0.05) in 

bold. 

 

 STEMI Cardiologist 1 Cardiologist 2 Cardiologist 3 DL model 

STEMI - 0.193 0.126 0.699 0.177 

Cardiologist 1 0.193 - 0.856 0.238 0.009 

Cardiologist 2 0.126 0.856 - 0.201 0.004 

Cardiologist 3 0.699 0.238 0.201 - 0.065 

DL model 0.177 0.009 0.004 0.065 - 
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Figure 3.4 (first iteration) - an example heat map for an ischaemic example, obtained selectively masking input data to establish 
which parts of the ECG the model relies on most to make its prediction 
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Accuracy was 0.555 (standard deviation 0.08, 95% confidence interval 0.505 – 0.605). F1 score 

was 0.533 (standard deviation 0.17, 95% confidence interval 0.433 – 0.633). The experiment 

was repeated in case the stochastic nature of the DL approach has resulted in particularly poor 

results, but there was no change.  

The results provide a case study of a DL model that, under certain conditions, may achieve 

high accuracy scores due to its ability to also exploit confounders and data leakages. This 

explains why the results in iteration 1 are superior to the results in iteration 2. The high 

performance in iteration 1 is likely due to the DL model detecting ‘noise’ as opposed to 

detecting ischaemia. 

  

Table 3.3 – confusion matrices from the first iteration of the experiment 

STEMI Predicted: YES Predicted: NO 

Actual: YES 39 37 

Actual: NO 4 72 

Cardiologist 1     

Actual: YES 58 18 

Actual: NO 33 43 

Cardiologist 2     

Actual: YES 59 17 

Actual: NO 36 40 

Cardiologist 3     

Actual: YES 67 9 

Actual: NO 35 41 

DL model     

Actual: YES 66 10 

Actual: NO 20 56 

 

3.4 Discussion 

This single centre, retrospective, observational study of 104 patients investigated the ability of 

a DL model to predict hyperacute myocardial ischaemia from ECG recordings. The first 

iteration, which obtained non-ischaemic samples from resting room ECGs, appeared to have 

an ability to detect ischaemia. The second iteration, which obtained non-ischaemic samples 

from inside theatres, did not. In the first iteration, the model appeared to outperform a panel of 
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three cardiologists with statistical significance. On the latter occasion, the model performed at 

the level of a random chance classifier. 

The proposed explanation for the discrepancy in results is that the first model learned to 

associate background electrical noise in theatre with ischaemic samples during the first run of 

the experiment. Background electrical activity in cardiac theatres is known to manifest on 

ECGs (including noise in the 100Hz range from fluoroscopy) [17]. Given that the ‘ischaemic’ 

ECGs exhibited this noise, the algorithm was able to discriminate between ischaemia and non- 

ischaemia by simply detecting the noise in the ‘ischaemic’ ECGs. This is referred to as data 

leakage or a confounding factor.  

During the second run, all samples were acquired in theatre and the model’s true ability to 

discern causative (as opposed to purely correlative) links within the data was revealed. The 

hypothesis had been that transfer learning from an arrythmia detection task may allow the 

model to glean generalisable insights from a small dataset [18], but the results demonstrate that 

this was not the case.  

This experiment is not the first study showcasing how DL models can leverage confounding 

factors within the data to produce spuriously high performance. A number of similar 

occurrences have been described in healthcare and other domains [19-22]. Deep learning is 

currently receiving much attention in the domain of automated ECG interpretation, as it is in 

the fields of cardiac imaging, coronary evaluation and heart failure [23]. It is, therefore, 

particularly important that the cardiology community be aware of its pitfalls as well as its 

strengths. 

It is acknowledged that this was a highly speculative experiment at increased risk of spurious 

results due to a small study cohort and retrospective, observational setting [24]. It is also 

recognised that neither cross-validation nor any other approach to validation guarantees against 

such an outcome, and agree with recent calls for more ML and DL applications to be in 

evaluated prospective, multi-centre clinical trials [25-27]. However, it must be noted that even 

DL algorithms trained on huge datasets and extensively validated by world-leading technical 

experts can behave in surprising, unacceptable and sometimes catastrophic ways [28, 29]. In 

addition, such tools may not integrate well into current clinical practice, where transparency is 

highly prized [30, 31]. 

Based on these results, it is proposed that AI in the medical domain must always retain a degree 

of ‘explainability’ in order to facilitate human oversight and supervision. This does not 

necessarily require an exhaustive account of a DL model’s logic, which is encoded by the state 

of millions of coefficients within a complex computing graph [16] and may be impossible to 

explain in human terms. Rather, it is proposed that the clinical community stipulate a set of 
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minimum requirements for what is determined to be acceptable transparency in future cardiac 

DL applications.  

3.5 Conclusion 

In summary, DL continues to show significant promise and has many potential applications in 

modern medical practice [32]. However, it remains a nascent technology.  It was concluded 

from this study that future research was needed to develop mechanisms to allow clinicians to 

calibrate their confidence in DL applications before using them to inform clinical decision 

making.  

Whilst this chapter uses raw ECG signals that would accessible for analysis, not all raw data 

from ECGs are easily accessed for signal analysis. However, given that all ECGs are presented 

visually as an image or PDF (for example), it is important to determine the value of machine 

learning when using ECG images as opposed to the raw ECG amplitude data. Hence, the next 

chapter focuses on DL for ECG image analysis. This topic was noted in chapter 2 to be an 

important component of democratising ECG AI, and the rationale for that statement will be 

presented shortly. However, DL for ECG image analysis also has important benefits for 

interpretable ECG AI. These will also be explained at the outset of the next chapter, which is 

proposed as an appropriate follow-on from the findings described above. 
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Chapter 4:  

Using deep learning to interpret images of the 

electrocardiogram 
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4.1 Introduction 

To date, the vast majority of research into DL-based ECG interpretation has focussed upon raw 

samples recorded directly from ECG hardware. Yet, there is an enormous body of historical 

ECG data worldwide that exists only in paper form, or as scanned images thereof [1]. These 

ECGs are often associated with medical records containing years of rich clinical information: 

echocardiograms, angiographic findings, cardiac biomarkers, morbidity and mortality 

endpoints, and so on. It has long been acknowledged that such data could provide a rich source 

of insights to inform the science of ECG interpretation. Furthermore, the printed ECG is the 

universal format. Accurate, computerised analysis of ECG images would overcome the 

difficulties arising from proprietary formats and algorithms, long cited by researchers in the 

field as a substantial hindrance [2]. ECG image analysis is, therefore, proposed as an important 

step towards democratising the application of ECG AI. 

4.1.1 ECG images and interpretable DL 

Perhaps even more importantly, given the conclusion of the previous chapter, ECG images are 

interpretable by clinicians. Raw samples are not, or at least they are almost impossible to 

interpret without graphing amplitudes with respect to time. Therefore, DL applications that are 

trained on ECG images may be more interpretable to human experts than applications trained 

on raw samples. 

To elucidate this position with a more concrete example, one might consider a 10 second 12-

lead ECG recorded at 150Hz. In many clinical settings, it is commonplace to print this ECG 

onto thermal paper using a standard 2.5 seconds-per-lead format, then digitize the printed ECG 

using a desktop scanner with resolution as low as 200 dots per inch (DPI). This can be done 

for the purposes of digital storage, or to send the digital image to another centre for review [3-

5].  

The process of printing and scanning the ECG incurs significant signal loss, both through the 

7.5 seconds’ worth of samples that are recorded but not printed for each lead, and through loss 

of resolution during digitization. Yet, the resulting digital image is widely considered adequate 

to inform major clinical decisions, such as whether to activate the PPCI pathway [6]. It seems 

reasonable to conclude, therefore, that the key diagnostic features are retained within the digital 

image. 

Seen through this lens, converting raw samples into digital images can be considered a form of 

‘feature filtering’. In other words, some data features that are not considered diagnostically 

significant are disregarded, while the key diagnostic features are retained. Feature filtering has 

been employed by other researchers training clinical DL models, who posit that it can “‘guide’ 

the model to ‘look’ into more informative regions” [7]. These authors argue that training DL 



 

65 
 

models in this way reduces the likelihood that DL models will leverage confounding data 

features and produces more interpretable clinical applications. By the same logic, training DL 

models on ECG images rather than raw samples could ameliorate the ‘black box’ effect 

described in the previous chapter. 

4.1.2 The diagnostic challenge of ECG images 

The obvious drawback to training DL models on ECG images is that transposing raw ECG 

samples into an image creates a huge amount of non-ECG-related noise. For example, a digital 

ECG image that is 800 x 600 pixels with three colour channels contains over 1.4 million data 

points. Only a tiny fraction of these data points comprise the ECG signal; the rest are image 

background.  

The risk here is not necessarily that the DL model will learn confounding data features within 

background image noise that will subsequently go unnoticed, as was the case with the 

experiment described in the previous chapter. ECG images are human readable, and features 

derived from image regions distant to the ECG lines may be readily identified using semantic 

masks (see next chapter), saliency mapping and similar feature localisation techniques [8]. 

Rather, the key risk is that the SNR within ECG images will prove too low for a DL model to 

learn diagnostically useful features and produce accurate results. 

Much of the previous work on ECG image analysis using rule-based (i.e. non-ML/DL) 

algorithms concluded exactly this [2, 9, 10]. However, as discussed in previous chapters, novel 

DL models (particularly CNNs) have since proven to be extremely adept at handling low SNRs 

in the context of image data [9, 10]. The central hypothesis being tested by the experiment 

described below is that the application of CNNs to ECG images can overcome the increased 

diagnostic challenge associated with low SNR.  

4.1.3 Evaluating CNNs as a potentially effective tool for ECG image analysis 

The following study was designed to compare a CNN trained with ECG images against DL 

models trained with raw samples. AF detection was chosen as the diagnostic task for this 

comparison, as it is a common but clinically important problem with publicly available datasets 

and performance benchmarks that allow for comparative study. To increase the likelihood that 

the results of this experiment would generalise to a real-world setting, a dataset consisting of 

ambulatory ECGs was selected, as these usually contain more noise and environment artifact 

than recordings in a controlled clinical environment [11]. 

4.2 Methods 

4.2.1 Data acquisition 
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The 2017 Physionet AF Challenge (PAFC) was identified as an appropriate dataset for this 

study. It contains 8528 single-lead ambulatory ECG signals, each of which has been labelled 

as showing NSR, AF, ‘other’, or ‘noisy’. The training data and results from several approaches 

(both rule-based and DL-based) are available at https://physionet.org/challenge/2017/ [12]. 

4.2.2 Plotting ECGs to image files 

To generate an image database for this study, all ECG recordings were plotted as RGB image 

files using a standard Python library (MatPlotLib). Original signals were recorded at 300Hz on 

AliveCor devices, thus a 300 pixels / second resolution would have been required to maintain 

full resolution. In fact, a target resolution of 150 pixels / second and 75 pixels / mV was chosen, 

as this corresponds to an ECG printed at 25mm/s and 10mm/mV then scanned using a low-

resolution, 150DPI scanner. (Modern digital scanners are usually much higher resolution than 

this, but 150DPI scanners may still be found in developing health systems and it was felt to be 

an appropriate test of robustness of the computerised analysis pipeline.) Figure 4.1 shows an 

example ECG image generated by this process. 

 

 

4.2.3 Extrapolation of ECG signals from ECG images 

A number of approaches to extrapolating ECG signals from ECG images have been explored 

over previous decades [2].Error! Bookmark not defined. In order to accommodate the unique 

characteristics of the ambulatory ECG dataset, a bespoke extrapolation method was developed 

based upon these approaches. The method consisted of scaling, thresholding, binarization and 

column-wise pixel searching. A thorough discussion of each of these techniques is provided by 

Waits and Soliman [2]. However, a visual summary is presented in Figure 4.2 above, and the 

link to the full code base is provided later in this chapter. As noted above, it was hypothesised 

that the CNN used to interpret the signals generated by this extrapolation method would be 

more robust to noise than most rule-based approaches. Therefore, some noise-filtering 

techniques used by other authors were omitted (e.g. median filtering and interpolation, which 

Ravichandran et al. (2013) applied to deal with the “salt-and-pepper” noise caused by 

thresholding) [9].  

4.2.4 DL model 

Figure 4.1 – an ECG image plotted from raw sample recordings from the PTB database. 

https://physionet.org/challenge/2017/
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As discussed in previous chapters, state-of-the-art arrhythmia detection from ambulatory 

signals has been achieved using a 34-layer CNN with residual connections between layers, 

developed by researchers at Stanford University [13]. This architecture was therefore selected 

for this experiment. 

 

In order to streamline the training process, the model was initiated with pre-trained weights 

published by researchers at Oxford University, who had trained a model with the same 

architecture on the raw signals from the PAFC [14]. After some experimentation, the model 

architecture was modified slightly for handling image-derived data, with two fully connected 

layers each containing 512 nodes interposed between the final convolutional layer and the fully 

connected output layer (which contained four nodes, as this was a four-class problem). The 

weights of the additional fully connected layers of the model were randomly initialised. 

4.2.5 Training and analysis 

Figure 4.1 – overview of signal extrapolation process from ECG images 
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Model performance was evaluated on the entire dataset prior to any training. This was 

necessary to ensure the pre-trained weights obtained from the Oxford team did not cause the 

model to overfit the data.  

The model was then trained and evaluated using a five-fold cross validation (5FCV) process 

with 80% of the data used for training and 20% for validation during each 5FCV cycle. During 

training, the weights of the latter six layers of the network (two fully connected layers and four 

convolutional layers) were progressively unfrozen. Each time a new layer was unfrozen, the 

model was trained until five epochs had passed without improvement in the validation 

accuracy. 

5FCV was chosen because six of the top 10 scoring teams in the PAFC published results from 

5FCV on the training set, so it was possible to make a direct comparison with their models. It 

should be noted that the 5FCV results were published within papers written by each individual 

team; the results from the collective scoreboard were based on a hidden test set. Therefore, 

none of the official competition results in were included in the analysis. 

As in the competition itself, the single performance metric used to undertake a like-for-like 

comparison between models was the combined F1 score, which is the harmonic mean of the 

F1 score for each of the four categories. 

4.3 Results 

The model was evaluated on the full image-based dataset upon initialisation with pre-trained 

weights. The results were in keeping with random chance, with a combined F1 score of 

approximately 0.5. 

Figure 4.3 – F1 scores obtained by the trained CNN using the extrapolated ECG signals 
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Following training, the mean combined F1 score and 95% confidence interval across the five 

cycles of this process was 0.78 (+/- 0.02). The source code for this experiment is available at 

https://github.com/docbrisky/af-challenge. Figure 4.3 gives a visual report of the F1 score 

obtained for each of the four categories, plus error bars reflecting the 95% confidence interval 

across the 5FCV process. 

Official scores from the 2017 AF Challenge were based on a hidden test set, which was not 

available at the time of this study. However, six of the top 10 competitors published 5FCV 

scores obtained on the training set, which is the same data used for this study. The mean 

combined F1 score of those six teams was 0.83. (See 

https://physionet.org/challenge/2017/papers/ for a full list of publications.) 

The model produced by the Oxford University team whose weights were used for model 

initialisation obtained a combined F1 score of 0.72 at 5FCV. 

4.4 Conclusion 

The results produced by this study suggest that CNN-based arrhythmia detection from 

ambulatory ECG images can be undertaken without substantial loss of accuracy compared with 

raw sample analysis. This is despite the fact that (i) ambulatory ECGs generally contain more 

noise and movement artefact than recordings in a controlled environment, (ii) the ECG signals 

in this study were plotted into particularly low resolution images to simulate outdated hardware 

and (iii) several noise-filtering techniques were omitted from the signal extrapolation approach 

[15]. It is proposed that this represents a state-of-the-art result in terms of image-based ECG 

analysis.  

This outcome indicates that there is value in using deep learning to automatically interpret 

images on the ECG. This would allow anyone with a smartphone camera to use the algorithm, 

which could democratise the use of ECG algorithms without the need to have access to raw 

ECG data.  

4.5 Discussion 

A recent paper in the Lancet provides an apt context for the relevance of this finding. By 

undertaking a retrospective analysis of over 600,000 ECGs from nearly 200,000 patients, Attia 

et al. (2019) used a CNN to predict incipient AF among patients currently in normal sinus 

rhythm with approximately 80% sensitivity and specificity [16]. In this case, the researchers 

were investigating a high-incidence endpoint (the development of AF) and were able to obtain 

sufficient digital ECG signals without needing to digitise historic ECG images. However, the 

obvious question arising from this study is whether patients deemed to be ‘at risk of future AF’ 

https://github.com/docbrisky/af-challenge
https://physionet.org/challenge/2017/papers/
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based on an ECG in normal sinus rhythm have a correspondingly increased lifetime risk of 

stroke, and whether they should therefore be prescribed oral anticoagulation. Pending a 

prospective study to answer this question, which may take many decades, it is likely to be 

beneficial to apply Attia et al.’s algorithm to historic ECGs that are already associated with a 

lifetime of follow-up data. Such ECGs will inevitably be images rather than digital signals, in 

which case the findings of this study would suggest that (i) signals generated by digitizing ECG 

images can be used to obtain reliable results from a DL model and (ii) weights obtained by 

training a CNN on raw signal data can be expected to transfer well to the task of analysing 

image-derived ECG data.  

There are, however, important limitations to this study. Firstly, the ECG images were plotted 

directly from signal data, rather than being printed and scanned. They therefore contained 

minimal visual artefact and were unrotated. It is proposed that any additional artefact within 

printed and scanned ECGs compared with the direct-to-image ECGs would be easily overcome 

with established image processing techniques, and therefore that the printing and scanning of 

8528 ECGs was unnecessary to produce meaningful results from this study. (See Figure 4.2 for 

an example ECG image used in this study.) Nevertheless, to confirm that the results obtained 

herein will transfer to printed and scanned ECGs, further work in this area should be 

undertaken. 

Secondly, the pretrained weights used to initialise the convolutional layers of the network had, 

presumably, been exposed to all of the ECG examples in the Physionet Challenge, albeit in raw 

signal form. Although three fully-connected layers were appended to the network and randomly 

initialised, and the performance of the newly-formed network was then confirmed to be 

approximately equal to a random-chance classifier, there is nonetheless a risk that the early 

convolutional layers of the network have overfit the data. This may explain why the results 

obtained from this experiment were substantially better than those obtained by the model whose 

weights were used for initialisation, though it is proposed that the improvement is down to a 

greater level of data augmentation and the two additional, fully-connected layers. The only way 

to evaluate this would be to re-train the network from randomly initialised weights, though any 

drop in performance of the randomly initialised model could also be ascribed to the stochastic 

nature of the training process.  

Nonetheless, it is proposed that the advent of DL-based ECG interpretation, and particularly 

its increased robustness to noise and resolution loss, should catalyse a renewed interest in high-

quality, automated interpretation of image-based ECGs. In addition to the ability to apply 

cutting edge diagnostics to historical ECGs, as discussed on the previous page, the results of 

this study provide a rationale for proceeding to investigate ECG images as a form of feature-

filtered data that will promote the development of explainable AI. 
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The next chapter presents further experimental work in the domain of ECG image analysis. 

There is a particular focus on mechanisms for interpretable ECG AI, and an investigation of 

methods for making any form of ECG AI (whether for raw samples or images) more 

applicable to data-poor areas. In our previous two studies we have shown the challenges (e.g. 

data leakage) and the value of deep learning with ECG images but there is a need to explore 

different approaches to ‘explainable’ ECG algorithms.  
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Chapter 5:  

A wave segmentation pretraining toolkit for 

electrocardiogram analysis 
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5.1 Introduction 

To recap on the key points from previous chapters, correct ECG interpretation is key to the 

diagnosis and treatment of myocardial infarction and life-threatening arrhythmias, among 

many other conditions [1]. Computerised ECG analysers have been in existence for over 50 

years [2]. However, semantic interpretation of ECG data requires the identification of subtle 

patterns from a complex signal. It is challenging to describe this process in conventional 

computer code. AI can perform strongly in this field because it does not rely on the ability of 

human experts to expound process knowledge. AI-enabled analysis has led to state-of-the-art 

performance across a range of ECG interpretations tasks [3]. 

5.1.1 Types of AI for ECG interpretation 

Machine learning-based AI refers to a set of automated statistical modelling techniques. AI 

models learn through trial and error. At each step of the learning process, the model makes a 

prediction. An error is calculated based on a loss function. A new set of model parameters is 

discerned using an optimisation function. Further steps are taken until some endpoint is reached 

[4].  

As discussed in chapter 2, DL arose from the study of artificial neural networks ANNs [5]. 

ANNs are computational graphs comprising densely interconnected MLPs. They are inspired 

by the biological brain. The difference between ‘classical’ ML and DL is often summarised 

thus: ML techniques generally rely on prior processing of input data to extract key features 

using expert domain knowledge; DL techniques learn end-to-end processing, which includes 

feature extraction [6] In practice, this results in a trade-off: DL techniques are able to detect 

more complex patterns in higher dimensional data compared with ML approaches. They can 

also function with lower signal-to-noise ratios. However, this is at the cost of being less 

interpretable. 

In the domain of ECG processing, it is the feature extraction step that presents the greatest 

challenge for conventional (non-AI) applications. As discussed in the previous chapter, this is 

particularly true of ECG images. However, feature extraction is also a major challenge for raw 

sample analysis. Filtering noise and other electrical artefact from ECG signals, then identifying 

key features such as the primary waves, has been a major research theme in automated ECG 

analysis for decades but is by no means a solved problem [7]. This limits the utility of ML 

algorithms, where knowledge-based feature extraction remains an important part of the 

pipeline [8]. It is here that DL algorithms can excel.  

5.1.2 State of the art in DL for ECG interpretation 

As a variant of ANNs, CNNs leverage large numbers of learnable convolutional filters to detect 

important signals within high-noise data [5]. They were developed primarily for semantic 
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analysis of real-world images, but the technology transfers well to ECG signals and has been 

applied to a broad range of clinical problems [9-12]. As already discussed, this includes a 

landmark 2019 study by Hannun et al. that claimed ‘cardiologist level’ diagnosis of atrial 

fibrillation, and even a study later that year by Attia et al. that described a DL algorithm able 

to detect incipient atrial fibrillation [13, 14]. In the context of raw sample analysis, it is likely 

that convolutional filters in the earlier layers of a CNN learn filtering methods to deal with 

common ECG noise and artifact, such as baseline wander, powerline interference and non-

cardiac muscle activity. This reduces or negates the need for traditional filtering methods [15]. 

5.1.3 Possible future directions 

As noted in the introductory chapter, transformer neural networks, or just ‘transformers’, 

emerged from the field of NLP. They use attention mechanisms to parallelise sequential data 

processing. Attention mechanisms can evaluate the relative importance of distant features 

within data, whereas CNNs have a limited capacity for this. This can be advantageous when 

relationships between non-local features are important, such as in multi-clause sentences or 

even entire documents [16]. However, it has recently been shown that transformer models can 

scale to sizes up to hundreds of billions of trainable parameters with a relatively linear 

improvement in performance [17]. The sheer power of these ‘mega-AI models’ means that they 

are beginning to attain state-of-the-art performance in domains where CNNs have traditionally 

dominated, such as image processing [18]. Transformers for ECG signal analysis is an active 

research area, and it may be that this is the place to look for the next wave of breakthroughs in 

this field [19, 20].  

5.1.4 Current challenges 

5.1.4a Data paucity 

As AI models grow larger and more sophisticated, they need more data to maximise their 

learning potential. This is becoming particularly true as transformers are being applied in new 

domains. In the field of ECG analysis, this challenge is being actively addressed by the creation 

of large public datasets such as Physionet's PTB-XL [21]. However, in rarer ECG conditions, 

data paucity remains a bottleneck to training even small AI models. As noted in the last chapter, 

data paucity is also a challenge for ECG image analysis, where SNR is much lower than in raw 

signal format, and where more training data are needed to compensate for this [22]. 

5.1.4b Explainable AI 

Elucidating the process logic encoded by networks comprising millions of parameters is 

extremely difficult. This is often referred to as the 'black box effect', which has given rise of a 

field of study known as ‘explainable AI’ [23]. The black box effect can make it difficult for 

humans to exercise oversight of an AI system's decision logic. Without this oversight, it is 
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difficult to be sure that AI models are not leveraging confounding data features and generating 

results through flawed logical processes. This was demonstrated during an experiment 

described in a previous chapter. Thus, it is challenging for clinicians to calibrate their 

confidence in the outputs of an AI systems. Confidence calibration is known to play a key role 

in ECG interpretation [24]. It was proposed in the previous chapter that ECG image analysis 

may have a key role to play in this area. 

5.1.5 Related work 

5.1.5a Overcoming data paucity 

RL lessens the need for labelled training data. In RL, an AI model is trained for a task that 

forces it to learn useful ‘latent representations’ of the data without manually assigned labels. 

This can be hard to intuit for non-data scientists, and a full explanation is beyond the scope of 

this chapter. Interested readers are directed to a review by Bengio et al. (2013) [25].  

RL is used for some of the most sophisticated AI models in existence today [16]. Models are 

pre-trained using RL and then fine-tuned for specific tasks using labelled training data, which 

is to say that they undergo a further training period for a specific task with constraints placed 

upon the rate at which they learn [26]. The constrained learning rate means that the fine-tuning 

period serves to refine the latent representations acquired during pretraining, rather than simply 

overwriting previous representations with new ones. This latter phenomenon is known as 

‘catastrophic forgetting’ [27]. 

RL has been investigated in the domain of ECG interpretation by a small number of studies. A 

recent example is from Sarkar et al. in 2020 [28]. They tasked a model with identifying which 

augmentations had been applied to ECG signals, such as addition of Gaussian noise or signal 

flipping. This reduced the need for labelled data when fine-tuning for downstream tasks. 

However, this is a sparsely explored topic to date. 

5.1.5b Explainable DL for ECG analysis 

Several approaches to make DL-enabled ECG analysis more explainable have been 

investigated. A recent paper by Maweu et al. infers the relative importance of key ECG waves 

with respect to a DL model's output [18]. This approach of retrospectively interrogating trained 

models to infer logic processes is widely used. An experiment described in a previous chapter 

describes the use of one such technique known as saliency mapping. It was found that the 

outputs provided false reassurance, in that they appeared to show that the DL model was 

leveraging the ST segment to diagnose acute myocardial ischaemia. This supported the idea 

that the model was leveraging features in the input data known to relate closely to the target 

label, whereas it was later discovered that this was not the case [29]. 
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A study by Jo et al. prioritises explainable outputs at the algorithm design stage [30]. They 

detect AF by using two linked AI models. One is for detecting the presence or absence of P 

waves. The other is for detecting regular or irregular R-R intervals. This follows the established 

decision logic of clinical experts and results in relatively interpretable outputs. It is unclear that 

this approach would generalise well to more complex diagnostic patterns. 

5.1.6 Focus of the experimental work described in this chapter 

Wave identification is a fundamental step for any ECG analysis by a human expert. Therefore, 

it was hypothesised that a DL model trained to segment key waves from ECG signals (either 

in raw sample or image format) could: 

1. Hypothesis 1: Learn generalisable representations of ECG data and be fine-tuned for 

downstream tasks with relatively small labelled datasets. This may be particularly 

useful in ECG image analysis. Pretrained RL models could cater more effectively for 

rarer ECG diagnoses and promote the democratisation of AI. 

2. Hypothesis 2: Be guided to learn features that are recognised by human experts as being 

diagnostically important. As noted in the last chapter, this ‘feature filtering’ approach 

has been used by other groups to develop interpretable DL applications [31].  

It was also hypothesised that human-readable wave segmentation masks (see Figure 

5.2b) could provide an indication of both the nature and quality of features learned by 

the DL model. This could act as a mechanism for confidence calibration and help build 

trust among clinicians. 

3. Hypothesis 3: Facilitate a choice between using DL technology as a feature extractor 

for explainable downstream analysis using rule-based algorithms, or using DL for end-

to-end ECG analysis. 

Testing these hypotheses would require a dataset of ECG traces where the individual waves 

had been accurately segmented, which would be used pretrain a DL model. However, manual 

segmentation of waves within 12-lead ECGs is extremely laborious and RL approaches 

generally require very large datasets. They usually circumvent the data labelling bottleneck by 

leveraging self- or semi-supervised methods [25].  

Manual wave segmentation was not, therefore, felt to be practical for this experiment. This led 

to a further hypothesis, whose evaluation is proposed as the most significant contribution of 

this study to the field: 

4. Hypothesis 4: Representations learned from pretraining on synthetic data and labels 

will transfer to downstream tasks using real ECG data. 
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5.2 Methods 

5.2.1 Overview 

The following approach was designed to test hypotheses (1-4) described above. Steps 2 – 7 

below were repeated for raw sample and image formats. Steps 8 and 9 were only undertaken 

for the image-based experiment. 

1. Develop an ECG and segmentation mask generator. 

2. Train an AI model to predict segmentation masks using a synthetised dataset: referred 

to hereafter as Wave Segmentation Pretraining, or WaSP. 

3. Predict segmentation masks for a database of real ECGs (for analysis at step 7). 

4. Fine-tune the model for downstream diagnostic tasks using database of labelled real 

ECGs. 

5. Re-initialise the model with pre-WaSP weights and train this model for downstream 

diagnostic tasks using database of labelled real ECGs. 

6. Compare the results from steps 4 and 5 to test hypothesis (1). 

7. Undertake a qualitative analysis of segmentation masks from step 3 to test hypothesis 

(2). 

8. Develop and evaluate a rule-based diagnostic pipeline to evaluate hypothesis (3). 

9. Train a ‘mixed modality’ model for diagnostic tasks, whereby an ECG signal is read 

back from the predicted segmentation mask and fed into a 1D AI model. 

5.2.2 Terminology 

A segmentation mask is a set of labels that overlays some input data, denoting the semantic 

category to which each datum belongs. In the case of image data, the segmentation mask has 

the same height and width as the pixel array of the original image. Where the original image 

contains colour channel values at each position in the pixel array, however, the segmentation 

mask contains an integer value. This value denotes the semantic class to which each pixel 

belongs. In the case of a single-class segmentation task – for example, segmenting human faces 

from photographs – all pixels belonging to a face will be represented by a 1, whereas all other 

pixels will be considered as background and will be assigned a 0. For the purposes of this 

experiment, the following target classes were defined: 

0 Background 

1 P wave 
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2 P-R interval 

3 QRS complex 

4 ST segment 

5 T wave 

6 T-P segment 

7 T/P overlap 

 

Downstream tasks can be any task for which a pretrained AI model is subsequently re-trained. 

In the case of this experiment, these tasks are described in the ‘Fine-tuning for diagnostic 

classification’ section below.  

5.2.3 Synthetic ECG generation 

An application was developed to simulate 12-lead ECG signals. The Python programming 

language was used. The aim of the simulator development was to produce a broad spectrum of 

realistic ECG phenotypes. The parameters determining rhythm and morphology of ECGs were 

governed by pseudo-random number generation to ensure each ECG was unique. Random 

noise and baseline wander were added to each signal. Voltages were scaled randomly.  

In effect, the simulator was a form of expert system informed by key works in the field such as 

[1], in addition to the developer’s own experience as a practising cardiologist [32]. The ECG 

signals were also plotted into 12-lead ECG images. Segmentation masks were generated for 

each ECG signal and image. 

5.2.4 Wave Segmentation Pretraining (WaSP) 

5.2.4a Model architecture 

U-Net model architectures were used for ECG segmentation. The U-Net is a popular CNN-

based architecture for image segmentation. It comprises two halves: an encoder and a decoder. 

The encoder abstracts high level features from the input image. The decoder generates a 

segmentation mask based on the encoder feature map [33]. See Figure 5.1a for a visual 

depiction. 

The encoder used for each model was based on the SEResNet architecture [34]. This is one of 

many permutations of the 'vanilla' CNN. A full review of CNN types is beyond the scope of 

this work, though such reviews exist [35]. SEResNet was felt to represent a demonstrably 

performant architecture that would fit with the compute constraints of the experiment. The 

signal-based model used a 1D U-Net with a SEResNet encoder. The image-based model used 

a 2D U-Net with a SEResNet152 encoder. 
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The 1D models were initialised with random parameter values (commonly known as model 

weights). The 2D models were initialised with weights derived from real-world image 

classification training with the ImageNet database [36].  

5.2.4b Training protocol 

For the self-supervised pretraining, 32 000 ECGs and segmentation masks were synthesised. 

The segmentation models were trained during a single pass through the dataset (known as an 

epoch). A dice loss function was use with Jaccard smoothing [37]. Hyperparameters 

(parameters that control the training process, rather than forming part of the model itself) were 

manually tuned based on the training loss, training F1 score and a visual inspection of 

segmentation masks at the end of each training cycle.  

An enhanced pretraining step was undertaken as an additional experiment. A further 12 000 

ECGs and segmentation masks were synthesised. Each ECG showed either SR or AF. Each 

ECG also showed one of six morphological phenotypes: normal, left anterior hemiblock, left 

posterior hemiblock, high take-off, left bundle branch block or anterior ST-elevation. A 

classification head was added to the model encoder to predict the rhythm and morphological 

phenotype of each ECG. The model was simultaneously trained for both segmentation and 

classification using a multi-task learning approach. 

5.2.5 Fine-tuning for diagnostic classification 

The Physionet PTB-XL database was downloaded, along with the label files [21]. This is one 

of the largest publicly available repositories of labelled ECG signals, comprising 21,837 ECGs 

from 18,885 subjects. The labels for each ECG include one or more of 71 ECG-SCP statements, 

and each ECG is assigned one of five diagnostic super-classes. The raw samples were converted 

to Numpy arrays. They were also plotted into ECG images using the software developed for 

this experiment. 

Two diagnostic classification tasks were undertaken: SR vs AF and normal morphology vs 

AMI. Following the same logic as the previous chapter, these diagnostic tasks were selected 

because they are both common but clinically impactful, with high quality labelled datasets and 

benchmarks publicly available. For each of these tasks, the signals were divided into training, 

validation and test sets using a 60:20:20 split. A hold-out test set approach was used. 

To fine-tune the models for diagnostic classification, average pooling was applied to the output 

of the final convolutional filter of the U-Net encoder. Two densely connected layers were 

appended, and a sigmoid activation function applied to the output nodes. See Figure 5.1a for a 

visual representation. 

5.2.6 Rule-based AF detector 
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A rule-based AF detector was designed to investigate the possibility of using a DL model for 

feature extraction, then passing the features into a fully explainable rule-based classifier. To 

create the rule-based AF detector, segmentation masks were predicted for ECG images using 

the pretrained 2D U-Net model. A rule-based algorithm was used to determine the locations of 

QRS complexes, based on clusters of pixels assigned to the QRS class. The standard deviation 

of the R-R intervals was calculated. The area approximately 250mS prior to each QRS complex 

was evaluated for the presence of a P wave, based on cluster of pixels assigned to the P wave 

class. See Figure 5.1b for a visualisation. 

If the number of QRS complexes preceded by a P wave was less than threshold X, and the 

standard deviation of R-R intervals was greater than threshold Y, the ECG was classified as AF. 

Thresholds X and Y were set using a brute force search on the validation set, where the 

combination maximising the F1 score was selected. 

5.2.7 Mixed modality model  

Segmentation masks were predicted for ECG images using the pretrained 2D U-Net model. A 

rule-based algorithm was used to read back the ECG signal. This employed a grid search 

method described by this group in a previous paper [22]. The extrapolated ECG signal was fed 

into a 1D ResNet encoder which made a diagnostic prediction. See Figure 5.1c for a 

visualisation. 

5.2.8 Analysis 

Sensitivity, specificity, positive predictive value and F1 score were calculated with respect to 

the AF and MI classes. The F1 score was used as the primary metric for comparing the models 

and testing hypothesis (1). Training loss curves were plotted. No additional statistical analysis 

was undertaken. 

This experiment resulted in three sets of results for each of the two diagnostic tasks for the raw 

samples dataset: 

1. Results from the non-pretrained model 

2. Results from the model pretrained using wave segmentation 

3. Results from enhanced pretraining 

For the ECG image dataset, three additional sets of results were produced: 

4. Results from a model initiated with random weights (as opposed to ImageNet weights) 

without WaSP 

5. Results from the mixed modality model 

6. Results from the rule-based AF detector 
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Segmentation masks for selected ECGs from the PTB-XL dataset were predicted at the end of 

pretraining. Another set of masks were predicted after fine-tuning the models. The 

segmentation masks predicted by the raw samples model were transposed into images for 

manual inspection.  

A small subset of ECG images were printed and either photographed or scanned. Segmentation 

masks were predicted using the pretrained 2D U-Net model to evaluate robustness to real-world 

image artifact. 

5.3 Results 

5.3.1 Data 

5.3.1a ECG generator 

The source code for the ECG generator can be found here: https://github.com/docbrisky/WaSP-

ECG  

5.3.1b Synthetic dataset 

Case studies of ECGs and segmentation masks produced by the ECG generator can be seen in 

Figures 5.2a-b. 

5.3.1c Real dataset 

Characteristics of the PTB-XL database are described by Wagner et al. [21]. 

5.3.2 Segmentation pretraining 

Case studies of predicted segmentation masks for real ECGs can be seen in Figures 5.3a-e. This 

includes predicted segmentation masks for ECG images that were printed and either 

photographed or scanned, some with additional artifact added. The models pretrained 

exclusively on synthetic data were felt to generalise well to real-world ECG data. Robustness 

to image artifact was variable. 

5.3.3 Fine tuning  

Loss curves for 1D and 2D models can be seen in Figure 5.4a-d. Across modalities, models 

with randomly initialised weights converged more slowly than pretrained models. Among the 

2D models, those with weights derived from non-enhanced WaSP converged more slowly than 

either models that had undergone enhanced pretraining or models that were initialised with 

ImageNet-derived weights. 

5.3.4 Diagnostic classification 

https://github.com/docbrisky/WaSP-ECG
https://github.com/docbrisky/WaSP-ECG
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The sensitivity, specificity, positive predictive value and F1 scores for the diagnostic tasks can 

be seen in Tables 5.1-5.4. 

 

 

For the ECG images, the models that underwent enhanced pretraining achieved the highest F1 

score in both AF and MI detection. For the raw samples, the enhanced pretrained model scored 

highest for MI detection. The unenhanced pretrained model scored highest for AF detection. 

 

 

 

 

Tables 5.1-4: Test set results for the two diagnostic classification tasks. Highest and lowest scores for each set of results are 

highlighted in green and yellow, respectively. 
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Figure 5.1a: Illustration of how a 2D U-Net model can be applied to segmentation and classification tasks 
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Figure 5.1b: Visualisation of the rule-based AF detector 
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Figure 5.1c: Visualisation of the mixed modality analyser 
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Figure 5.2a: Synthetic ECG showing SR with anterior ST elevation 
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Figure 5.2b: The same image with the ground truth wave segmentation mask superimposed 
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Figure 5.3a: A segmentation mask for a randomly selected ECG signal from the PTB database. This mask was predicted for the raw ECG signal using a 1D U-Net. Both the raw signal and the 
segmentation mask were subsequently plotted into an image file. The model that predicted this mask was pretrained exclusively on synthetic ECG signals. 
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Figure 5.3b: Segmentation mask for a randomly selected PTB signal that was (i) plotted into an ECG image using the software developed for this experiment; (ii) printed using a standard 
desktop printer (HP Envy 4520 series); photographed using a Samsung Galaxy S10 mobile phone (flash off, bright daylight). The mask was then predicted by a 2D U-Net model that had 

been pretrained exclusively on synthetic data. 
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Figure 5.3c: This segmentation was produced using the same process as fig 5b, except that the photograph was taken in more challenging lighting conditions (at night, flash off, xenon strip 
lighting with shadows on image) 
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Figure 5.3d: This segmentation was produced using the same process as fig 5b, except that the printed ECG was (i) crumpled up; (ii) sprinkled with coffee; (iii) smeared with tomato sauce; 
(iv) scanned using an HP Envy 4520 desktop scanner (at 600DPI). This process was the result of a discussion about how to recreate a level of image artifact that might represent real-world 
clinical practice. Author DJM noted that he is regularly asked to review ECGs that have been stained with blood or coffee, and occasionally ECGs that have been thrown in the bin and 
subsequently retrieved. 



 

93 
 

 

Figure 5.3e: This segmentation was produced using the same process as fig 5b, except that manual annotation artefact was added and the image was scanned using an HP Envy 4520 series 
scanned (at 600DPI). 
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Figure 5.4a/b: Training losses for 1D models on diagnostic classification tasks with PTB ECGs. Each training run comprised a 
single epoch. WASP = WaSP 
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Figure 5.4c/d: Training losses for 2D models on diagnostic classification tasks with PTB ECGs.  
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Figure 5.5: Output of the rule-based AF detection algorithm. The authors propose that this is highly explainable compared with end-to-end AI analysis. 
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Figure 5.6: Segmentation mask produced by a 2D model initiated with ImageNet weights, but not having undergone any further training on ECG segmentation nor classification tasks. 
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For the ECG image set, the non-pretrained models predicted all samples as normal. 

Consequently, the sensitivity and positive predictive value for both models was zero. The rule-

based AF detector scored lower than any pretrained model, although the F1 scores for the rule-

based detector and the unenhanced pretrained model were close at 0.52 and 0.53, respectively. 

The mixed modality model outperformed the rule-based and unenhanced pretrained models, 

but underperformed the enhanced pretrained and ImageNet-trained models. 

5.3.5 Confidence calibration and explainable outputs 

In addition to Figures 5.3a-e, which show examples of segmentation masks, Figure 5.5 shows 

an example output from the rule-based AF classifier. Figure 5.6 shows a segmentation mask 

produced by a model that has been newly initialised with ImageNet weights. This model can 

be assumed to have no diagnostic capabilities with respect to ECG analysis. It is proposed that 

this segmentation mask would cause a clinician to place low confidence in the model's outputs, 

whereas the segmentation masks shown in Figures 5.3a-b may warrant relative high 

confidence. The segmentation masks in Figures 5.3c-e may alert the clinician to some issues 

caused by image artifact, and trigger additional caution when considering the model's final 

diagnostic output. 

5.4 Conclusion 

This study shows that WaSP using a synthetic dataset can improve training efficiency for 

downstream ECG tasks with real ECG data. The impact of pretraining was particularly marked 

with ECG image analysis. WaSP also enables meaningful intermediate output from the AI 

model. 

The rule-based AF detection algorithm demonstrated a novel approach to ECG image analysis 

that benefits from advances in modern AI but is proposed to be highly explainable. Accuracy 

was limited but refinement of the technique may result in performance improvements. 

Reading back signals from ECG image segmentation masks allowed a 1D classifier to detect 

both MI and AF with moderate accuracy. This shows that the SNR within the extrapolated data 

is high enough to facilitate some degree of downstream analysis. The motivation for 

investigating this is discussed under ‘future work’ below.  

5.5 Discussion 

5.5.1 Limitations 

The diagnostic tasks chosen for this study are not representative of the spectrum of clinical 

ECG phenotypes encountered in real-world practice. The absolute results from these tasks add 
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little to the field; rather, it is intended that the relative results serve as an early evaluation of 

WaSP and of pretraining with synthetic ECG data. More work is needed to determine whether 

the findings of this study would generalise to a wider range of diagnostic problems.  

One of the stated motivations for investigating WaSP was that it may facilitate clinician 

confidence calibration. The figures shown in this study may enable readers to begin forming 

their own conclusions on this matter. However, this hypothesis was not formally evaluated and 

can be considered unproven to date. 

This study was undertaken in a retrospective observational setting. A single dataset was used 

for training, testing and validation. There is an increased risk of over-fitting a particular data 

distribution in this context. Results shown here may not generalise to other datasets or 

populations. 

For the diagnostic classification evaluation, ECG images were plotted directly from the signals 

in silico. In a clinical setting, ECG images would be printed and either scanned or 

photographed. This would introduce image artifact that may alter the accuracy of downstream 

tasks, as illustrated in Figures 5.3d-e. For any future work aiming to establish whether the novel 

image-based techniques described here are useful for downstream clinical applications, it is 

likely that the full evaluation would need to be conducted with paper ECGs. 

The rule-based AF detector was only evaluated with ECG images and not raw samples as this 

would have required a substantial re-write of the application, which was not felt to be warranted 

as there are already many rule-based AF detection algorithms for raw sample data. 

5.5.2 Comparison with existing approaches 

As discussed during the introduction section, approaches to both pretraining and explainable 

DL for ECG analysis have been explored by other groups. To the best of the author’s 

knowledge, however, this is the first demonstration that pretraining with synthetic data is 

effective. 

This has potentially significant implications for the fast-growing field of ECG AI. The 

increasing number of large public ECG databases like PTB-XL is helping to drive research in 

this field. However, such databases are finite and may be subject to bias: centres with the 

expertise and resources to produce such datasets tend to exist in more affluent global regions 

and may over-represent certain demographic groups; rare diseases and paediatric conditions 

are often under-represented in such biobanks [38]; studies from patients suffering with 

emerging diseases that may have cardiac involvement (e.g. COVID-19) may take some time to 

reach these datasets. 

Knowledge-based engineering of synthetic datasets allows much greater control over the 

distribution of covariates-of-interest within the training data. This can help to counterbalance 
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bias and to increase the occurrence of rare but important features. It can also facilitate the 

creation of much larger datasets than would be possible using real patient data. Historically, 

supplementing labelled datasets with synthetic samples for task-specific training has been 

problematic [39]. For learning general representations during pretraining, however, it is 

proposed that a lower fidelity is acceptable: the model will learn additional or altered features 

that occur in real-world datasets during fine-tuning. 

5.5.3 Additional points of interest  

ECG image models pretrained on ImageNet performed significantly better than models 

initialised with random weights. This implies that some features learned from analysing 

photographs of real-world scenes transfer well to ECG analysis. 

Performance worsened when the ImageNet-trained models underwent non-enhanced WaSP. A 

possible explanation for this is that WaSP caused catastrophic forgetting. It may be possible to 

overcome this issue by freezing early convolutional layers and reducing the learning rate [40]. 

Enhanced WaSP involved the addition of a diagnostic labelling task in addition to wave 

segmentation; the model was asked to output both types of label for each sample using an 

approach known as ‘multi-task learning’. This seemed to improve performance significantly 

compared with non-enhanced WaSP. The same black box nature of AI that was one of the 

motivating factors for this study makes it difficult to ascertain exactly why this was the case. 

However, the authors posit that the addition of a diagnostic label for the whole ECG forced the 

model to learn about relationship between more distant parts of the ECG (for example, the 

diagnosis of left bundle branch block requires that the model evaluate the QRS-T morphology 

in multiple leads simultaneously), whereas wave segmentation can be achieved by leveraging 

only very local parts of the data. 

5.5.4 Relevance of this work to the wider field  

As state-of-the-art AI models grow in size and complexity, more training data is required to 

capitalise on their increased pattern recognition capabilities [41]. In this study, WaSP expedited 

convergence during fine-tuning and produced higher results after a single training epoch. 

Therefore, WaSP can reduce the need for labelled training to produce equivalent results. This 

approach may allow larger AI model architectures to be used for ECG tasks where there would 

otherwise be insufficient labelled training data.  

Explainable AI is an active research topic in healthcare [42]. Mechanisms by which clinicians 

can calibrate confidence or review decision logic may provide key to adoption of AI in practice. 

The work undertaken for this study may catalyse future research into segmentation masks as a 

mechanism for confidence calibration in ECG analysis, and mixed AI and rule-based analysis 

as a mechanism for explainable ECG image analysis. 
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The code base for this experiment has been published under a permissive open source license. 

The application has been named WaSP-ECG. The intention is to facilitate reproduction of 

results and accelerate future research in the field. The inclusion of Zero optimisation 

functionality in the code base [43] allows researchers to train larger models on their existing 

infrastructure than would have otherwise been possible, or to use higher resolution input data. 

This may allow researchers to extend existing AI techniques and improve model performance. 

5.5.6 Future work 

Only two rhythm types and six morphological phenotypes were simulated during the enhanced 

pretraining phase of this study. Given the performance improvement observed with enhanced 

pretraining over non-enhanced WaSP in the context of ECG images, it may be that a wider 

repertoire of simulated ECG phenotypes would further improve downstream performance.  

The robustness of AI techniques to image artifact (see Figures 5.3d-e) was felt by the authors 

to be limited. The ability to photograph ECG images on a mobile phone and upload for cloud-

based analysis is proposed to be a worthwhile goal, as it would decrease the dependence on 

hardware-bound analysers. This, in turn, would allow for more agile development of novel 

ECG applications and easier integration with multi-model clinical data, such as 

symptomatology, biochemical results, cardiac imaging, etc. There is an emerging body of 

evidence that fusing multi-modal data leads to improved performance of medical AI systems 

[44]. For this reason, investigating approaches to improve robustness to image artifact, 

challenging lighting conditions, etc. may be a valuable research avenue. 

Evaluating WaSP for diagnostic tasks more representative of real-world clinical problems 

would be a key next step for the line of investigation presented in this study. The use of data 

from additional patient populations and evaluation of diagnostic capabilities in a prospective 

setting would help to establish the generalisability of the results presented here.  
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Chapter 6:  

Discussion and conclusions 
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6.1 Introduction 

At the outset of the thesis, modern AI was presented as a technology with the potential to reduce 

the burden of human error in healthcare. ECG analysis was proposed as an appropriate lens 

through which to investigate some of the salient issues within this field. Chapter 2 provided an 

overview of the ECG, AI, and DL for ECG analysis. Outstanding areas identified for further 

investigation included DL for ischaemia detection, and two key translational research 

questions. These latter topics were: the use of DL for ECG image analysis, and the application 

of AI to rarer diagnoses where there is a relatively paucity of labelled data. The interpretability 

of DL-based applications was raised as an important issue in chapter 3, and became a third 

translational theme during chapters 4 and 5. 

Chapters 2-5 described investigations of specific aspects of: 

• DL for AMI detection 

• DL for ECG image analysis 

• RL as a means to develop more explainable ECG AI, particularly for applications where 

there is a paucity of labelled data. 

This final chapter aims to review the key conclusions of the presented in previous sections, 

propose how they may impact future research, and discuss their implications with respect to 

their broader field of AI in healthcare. A note will also be made of related work not detailed in 

the previous chapters. 

6.2 Review of conclusions from previous chapters 

6.2.1 DL for AMI detection 

As previously noted, AMI detection could be a particularly impactful application for DL. 

STEMIs are the type of AMI where PPCI has proven morbidity and mortality benefits [1]. In 

real-world practice, the diagnosis of STEMI is often delayed or missed altogether, for a variety 

of reasons that largely stem from human fallibility exacerbated by complex clinical problems 

and environments [2]. It has been proposed that these are exactly the kind of circumstances 

where AI can help by automating complex diagnostic processes [3]. 

Chapter 2 presented a systematic literature review on the use of DL for AMI detection from 

ECG data. It concluded that relatively little work had been done in that field at the time of the 

review, although it should be noted that this is a fast moving research field and a number of 

works have been published in this vein since, such as [4-7].  

Chapter 3 described an original research work that investigated an approach to hyperacute 

detection of AMI using DL. It was hypothesised that latent space representations learned from 

an arrhythmia detection task would transfer across to ischaemia detection and allow for 



 

108 
 

effective training with a small cohort. This ‘transfer learning’ approach follows very similar 

principles to RL, which was discussed extensively in chapter 5. On the initial iteration of the 

experiment, it appeared that the DL model was able to reliably detect hyperacute infarction. 

However, a further iteration produced results in keeping with a random chance classifier. It 

was concluded that the first model had learned features based on confounding elements within 

the data. Specifically, it was proposed that the model learned to detect background electrical 

noise associated with cardiac theatres, which bore a correlative rather than causative 

relationship to the experiment’s endpoint. 

The contribution of this result to the body of research on DL for AMI detection was relatively 

small. However, it did serve as an illustration of the broader challenges and dangers around the 

use of DL methods in the clinical setting. In particular, it highlighted the difficulties posed by 

the relatively uninterpretable logic processes employed by end-to-end DL, where both the 

features and the decision logic are learned with no direct input from human experts. In the 

presence of a ‘data leak’, the DL model can learn features that allow it to produce compelling 

results using spurious logic. It can be very difficult for a human user of such an application to 

detect this phenomenon. The experience described in chapter 3 led to an increased emphasis 

on mechanisms to promote interpretability during subsequent chapters. 

6.2.2 DL for ECG image analysis 

Chapter 4 described an experiment designed to test the hypothesis that DL methods may allow 

an ECG image analysis application to attain results comparable with raw sample analysis. The 

PAFC dataset was selected because it is a large, high quality labelled dataset and also because 

a number of other groups have published the results of their raw sample applications on this 

data. An application was developed to transpose raw samples into ECG images. A DL-based 

application was then developed to infer the raw samples (or, more accurately, scaled and 

downsampled equivalents) from the ECG images, and to predict a diagnostic class for each 

ECG. This application was able to produce results comparable with raw sample-based 

applications developed by other groups.  

The introduction to this chapter also outlined the role that ECG image analysis may play in 

making DL-based ECG analysers more interpretable. Namely, transposing raw samples to an 

image file provides a form of ‘feature filtering’. The focus of the rest of the chapter was on 

investigating the potential of DL methods to improve performance in ECG image analysis. 

However, having obtained results that suggested DL methods do indeed have a role to play in 

this field, the following chapter returned to this theme. 

6.2.3 RL to help address data paucity  

Chapter 5 introduced the concept of RL as a means to guide DL models to learn generalisable 

latent representations of data features using general purpose, often self-supervised, tasks. These 
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models can then be fine-tuned using smaller labelled datasets. In the domain of NLP, where 

transformer models can be pretrained on vast quantities of unlabelled data and learn very 

effective feature representations, the term ‘few shot learners’ [8]. This term refers to the fact 

that, following extensive RL-based pretraining, these models may only need a very small 

number of labelled data points to ‘get the hang’ of a new downstream task. 

In other domains such as NLP and image processing, RL commonly employs a ‘fill in the 

blank’ task. In the case of masked language models, this means removing one or more words 

in a sentence or paragraph and tasking the model predicting the word that has been removed 

[9]. Alternatively, autoregressive language models are trained to predict multiple missing 

words at the end of a sentence [10]. Image transformers take a similar approach, whereby a 

patch of pixels are removed and must be predicted back in [11]. All of these methods allow for 

very large scale transforming without the need for any manual data labelling. 

The regularly repeating nature of ECG signals does not lend itself well to this approach. For 

example, if one was to take a single-lead ECG recording and blank out a QRS complex, this 

complex would be identical to most others within the recording in the vast majority of cases. 

Thus, the task becomes trivial for a sufficiency powerful DL model. Other researchers have 

addressed this challenge by employing alternative self-supervised methods, whereby the ECG 

signals are augmented and the original recordings must be matched with their augmented 

counterparts [12]. This is a form of ‘pretext invariant’ RL (PIRL), which has been used 

effectively in a number of contexts [13]. The major downside to PIRL within the context of 

chapter 5 was it offers little in terms of mechanisms for making the DL model more 

interpretable. Hence, WaSP was proposed as a novel approach for RL in the context of ECG 

analysis. 

The quantitative results of the experiment described in chapter 5 showed that WaSP was 

effective in the context of both ECGs as raw samples and for ECG image analysis for AF and 

AMI detection, particularly when combined with multi-task learning to predict both rhythm 

and morphology abnormalities (‘enhanced WaSP’). This is not to say that WaSP will work well 

for every downstream diagnostic task, but good performance on both arrhythmia detection and 

AMI detection does point to a certain level of generalisability. 

Chapter 5 also proposed mechanisms to make the DL application more interpretable to 

clinicians and to enable confidence calibration. The wave segmentation mask was proposed as 

a way to sanity check the features learned and used by the DL model and minimise the risk of 

confounding data features being leveraged unnoticed. The ability to use the DL model for 

feature extraction and then to undertake downstream diagnostic classification using rule-based 

methods was demonstrated via the AF detection algorithm. However, a major limitation of the 

study was that these mechanisms were proposed but not evaluated. 
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6.2.4 Different methods for ECG image analysis 

The use of synthetic data as part of the WaSP workflow facilitated the generation of a very 

large dataset. This allowed for an alternative approach to ECG image analysis, whereby the 

whole image was fed to a CNN. In chapter 4, conversely, the ECG image analyser relied on 

rule-based extrapolation of raw sample equivalents from the ECG image. This substantially 

reduced the dimensionality of the training data for the DL model, such that the model was 

effectively trained on 1D data. Dimensionality reduction is known to avoid issues such as 

overfitting on small datasets [14]. 

The other challenge to training the CNN directly on image files in the chapter 4 experiment 

was the inability to use transfer learning. ECG images produced from continuous single lead 

recordings have unusual dimensions (i.e. they are very wide and very short). Whereas the 

experiment described in chapter 5 initiated the 2D CNNs with weights derived from ImageNet 

pretraining, the unusual dimensions of the ambulatory ECG images in chapter 4 was felt to 

preclude this. 

The possible advantage to training DL models directly with ECG images, as opposed to using 

extrapolated signals, is that end-to-end DL methods can be particularly effective at denoising 

images [15]. In real-world clinical practice, the digitisation of paper ECGs can introduce a lot 

of noise and artefact [16]. This may lead to poor quality extrapolated signals using the rigid, 

rule-based approach described in chapter 4. The direct-from-image DL training method 

employed in chapter 5, on the other hand, may be more robust under these circumstances.  

6.3 Implications for future ECG AI research 

6.3.1 DL for AMI detection 

As previously noted, this has been an active research field over the last few years. Figure 6.1 

shows an approximate quantification of this trend. 
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In terms of a more rigorous and detailed update: in 2021, Al Hinai et al. published a systematic 

literature review, broadly similar to the one presented in chapter 2 [17]. Whereas the chapter 2 

review considered DL methods exclusively for the detection of myocardial ischaemia, the 

scope of the 2021 review extended to myocardial dysfunction more broadly, which notably 

included myocardial hypertrophy in addition to ischaemia. Those authors also limited inclusion 

criteria to studies that used end-to-end DL, rather than DL only for feature extraction, and to 

studies that used resting 12 lead ECGs. Both reviews used the PRISMA guidelines. 

Al Hinai et al. identified six recent original research publications that employed DL for AMI 

detection and met the inclusion criteria. The results reported from these studies showed high 

sensitivity and specificity compared with conventional methods, leading the authors to 

conclude that DL technology is starting to show significant promise for AMI detection. CNNs 

were the dominant DL model architecture, in keeping with the trend identified in the 

introductory chapter of this thesis. In terms of future research, the two main challenges 

identified by the more recent systematic review were (1) interpretability of DL in this context 

and (2) a paucity of high quality training data.  

As noted earlier, the results of the experiment described in chapter 3 offered limited insight 

into the broader ability of DL to detect AMI from ECG signals. Under those specific 
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PUBMED SEARCH TERMS: ((((artificial intelligence[Title/Abstract]) OR (deep 

learning[Title/Abstract])) AND ((electrocardiogram[Title/Abstract]) OR 

(ECG[Title/Abstract])) AND ((ischaemia[Title/Abstract]) OR (ischemia[Title/Abstract]) OR 

(myocardial infarction[Title/Abstract]))) AND (("2018/01/01"[Date - Publication] : 

"3000"[Date - Publication]))) 

Figures 6.1a & 6.1b: approximate trend in the rate of publications on ECG AI for ischaemia detection over the last 3-4 years. 
Note this search was undertaken on the 14th May 2022. Assuming an even distribution of publications over a 12 month 
period, the strong upwards trend is set to continue beyond 2022. 
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experimental conditions, the DL approach employed in that study was unable to predict 

accurate diagnostic labels. That is not to say that the results would be the same under different 

conditions, or with a different DL approach.  

However, the experiment was not without implications for future research in this field, nor 

beyond. Indeed, the work in this PhD was the subject of an editorial article in the EHJ Digital 

Health, which highlighted its importance for the clinical readership [18]. The key finding cited 

by the editorial was that the DL training and evaluation workflow used in the study, widely 

used within other medical AI research, offered little or no effective mechanism for detecting 

confounding data features learned by the DL model. This illustration of the need for greater 

interpretability of DL-enabled medical applications corresponded well with the subsequent 

findings of Al Hinai et al. Nonetheless, the implications of that experiment for future research 

specifically into DL for AMI detection are not held as the major contribution of this thesis. 

6.3.2 DL for ECG image analysis 

The results of the experiments described in chapters 4 and 5 suggest that DL methods may 

allow for more accurate ECG image analysis than conventional, non-ML methods. The 

motivation for further work in this field is discussed in those chapters. Broadly, there are three 

strands to the argument for a greater focus on ECG image, as opposed to raw sample, analysis. 

1. Advances in ECG image analysis techniques can be applied directly to historical ECG data, 

which generally exists in paper form. To date, applying state-of-the-art analytics to these data 

has meant first recovering the raw samples from ECG images. Non-ML methods have not 

proven sufficiently robust for widespread adoption of this approach. 

2. By the same token, advances in ECG image analysis can be potentially leveraged at the point 

of care by any clinician with access to a paper ECG and a mobile phone equipped with a 

camera. Conversely, access to state-of-the-art raw sample analysis is generally contingent upon 

owning expensive state-of-the-art ECG hardware and/or having the specification and computer 

program to parse proprietary file formats. Applying DL methods to ECG image analysis in 

addition to raw sample analysis can thus be seen as ‘democratising’ access to AI. 

3. As discussed during chapters 4 and 5, transposing ECG samples to images can provide 

additional mechanisms to promote interpretable AI. These include the ability to visualise 

learned features in a human readable format prior to downstream analysis. The act of 

transposing an ECG signal into an ECG image may also act as a form of feature filtering to 

reduce the risk of confounding data features. 

6.3.3 ECG image analysis using sample recapture 

The work presented in chapters 4 and 5 is proposed to have several implications for future 

research into ECG image analysis. Firstly, the experiment in chapter 4 used non-ML methods 
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to recapture raw sample equivalents from an ECG image and analysed these ‘extrapolated 

samples’ using a DL model. The results suggested that the ability of this application to 

differentiate between normal sinus rhythm and AF was equivalent to applications trained 

directly on raw samples. This is held to be the first peer-reviewed experiment investigating the 

plausibility of sample recapture from ECG images followed by DL analysis. Other authors 

have since pursued a similar approach, only with DL methods incorporated into the sample 

recapture method, in addition to a separate DL model for diagnostic classification [19]. Li et 

al. investigated an end-to-end DL approach to sample recapture and diagnostic classification. 

They noted that the multi-stage approach described in chapter 4 has distinct advantages by 

comparison, and cited the write-up of the chapter 4 experiment as an alternative approach in 

their discussion [20]. 

Further research in this direction is felt to be warranted, both to establish the extent to which 

DL analysis of recaptured samples is effective across different ECG abnormalities, and to 

investigate whether this approach is robust enough to handle real-world data in a prospective 

setting. The advantage of the sample recapture approach, as opposed to the direct-from-image 

DL training described in chapter 5, is that sample recapture results in a 1D signal vector that is 

approximately a scaled version of the original raw sample recordings. Most emerging DL-

enabled ECG analysers expect data in this format, and it is plausible that these models could 

be fine-tuned to analyse extrapolated samples relatively easily. They could not, on the other 

hand, be fine-tuned to handle 2D image files. Therefore, ECG image analysis using the sample 

recapture method may be the most effective way of applying state-of-the-art ECG analysis to 

historical data. 

6.3.4 Direct-from-image analysis 

Chapter 5 highlights a number of themes that may be promising avenues for future research. 

Firstly, the results for both AMI and AF detection obtained by DL models trained with ECG 

images suggests that direct-from-image ECG analysis using DL methods is a viable approach. 

At the time the experiment described in chapter 5 was undertaken, there was no known 

precedent for training DL models directly using 12-lead ECG images and this was held to be a 

first-in-field result. While corresponding article was being prepared for publication, however, 

Anwar et al. published a study investigating direct-from-image detection of AMI and COVID-

19 using a DL model (21). Less than a fortnight after the chapter 5 experiment was published, 

Bridge et al. published a study investigating arrhythmia detection using a DL model trained 

directly with 12-lead ECGs [22]. Although the authors would not have had time to read the 

report of the chapter 5 study prior to submitting their own article, they did cite the chapter 4 

experiment as an alternative approach worth considering for future work. 

The key advantages of the direct-from-image approach, as opposed to the sample recapture 

approach, are: 
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1. An increased robustness to noise [20]. 

2. The ability to leverage advances in DL for image processing, as opposed to relying 

on the more niche area of DL for 1D signal analysis.  

As discussed in the introductory chapter, the computer vision research community are widely 

held to be responsible for the major breakthrough in modern DL: the ‘ImageNet moment’. The 

medical field continues to benefit from a large and active community of computer vision 

researchers [23]. ECG image analysis can benefit from the outputs of this community in a way 

that raw sample analysis cannot. 

6.3.5 Synthetic ECG data for DL model training 

The two other themes from chapter 5 that are felt to warrant further research are RL based on 

wave segmentation and the use of synthetic ECGs for training DL models. The latter theme has 

already been investigated by two other groups. However, there was an important difference in 

approaches. These groups both used a DL model to simulate ECGs, in addition to training a 

second DL model to analyse the ECGs [24, 25].  These two ‘opposing’ DL models are known 

as generative adversarial networks, or GANs. The ‘generator’ of the GAN pair is analogous to 

a forger, whose primary goal is to fool the detective or ‘discriminator’. If the training of two 

models (also known as ‘networks’, as they are both ANNs) is properly synchronised, they 

remain neck-and-neck throughout, learning from each other as they improve [26]. 

The downside to this approach is that it remains entirely data driven, with no scope for input 

from human domain experts beyond the extent to which those experts can curate the training 

data. Consequently, the models can only learn features that are represented within the 

distribution of the training data. This can introduce significant bias into the model, which is 

held to be a major limitation of DL in the medical domain [27]. Noseworthy et al. have also 

demonstrated the effects of race and ethnicity on bias displayed by DL models specifically 

trained for ECG analysis [28]. 

Synthetising ECG data using a hand-crafted algorithm by no means negates the risk of bias. 

Rather, it gives domain experts a very high level of control over the feature distribution within 

the dataset. By extension, this confers some control over the types of bias contained within the 

data. Such control is important in a domain where certain types of error can be much more 

impactful than others [29]. Thus, while research into ECG GANs is ongoing, it is proposed that 

further research into training DL models with non-ML-based simulation methods is also 

important. It is posited that the work described in chapter 5, along with the accompanying open 

source ECG simulation toolkit, could provide an important catalyst for such work. 

6.3.6 Wave segmentation as a type of RL 
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Finally, RL through wave segmentation pretraining is felt to be a particularly promising avenue 

for future research. As noted in chapter 5, other groups have investigated RL in the domain of 

ECG analysis. However, the use of a task that forces DL models to learn human-interpretable 

features addresses both the problem of learning generalisable representations and the problem 

of explainable AI. The generalisability of the features learned through WaSP was, to an extent, 

formally evaluated during the chapter 5 experiment. Further study in this direction should focus 

on its utility for diagnostic challenges beyond AF and AMI detection. The hypothesis that wave 

segmentation creates more explainable ECG AI, on the other hand, was proposed but not 

formally evaluated. In future, it will be important to investigate this more fully and, ideally, 

through some form of quantitative evaluation. 

6.4 Related work 

6.4.1 Personal ECG devices 

During the course of this PhD programme, two related articles were published as part of this 

project. One was a review of the implications of consumer ECG wearables for current 

cardiology services, seen through the lens of a single centre case study [30]. This article served 

to elucidate the need for a new generation of AI-enabled ECG analysers to cope with an 

anticipated deluge of patient-instigated ECG recordings over the coming years. It was 

published in the proceedings of the 2019 Computing in Cardiology conference (IEEE), and can 

be found in appendix 1.  

6.4.2 Reinforcement learning for resuscitation training 

The second article was a position paper describing the role that reinforcement learning may 

play in digital clinical simulation for advanced life support (ALS) training. Reinforcement 

learning is an AI framework whose basic premise is the same as the generic ML training 

pipeline described in chapter 2. That is to say, a set of inputs and target outputs are given, and 

the ML model attempts to learn mapping between the two using a loss function and gradient 

descent-based trial and error. However, in reinforcement learning problems, the input is a ‘state 

vector’ that generally described some external environment and the output is an ‘action vector’. 

The actions taken by the ML model have some impact on the external environment, and a new 

state vector is returned, and so on. The logic process learned by the ML model is described as 

a ‘behaviour policy’. 

The argument put forward in the position paper can be summarised thus: 

• There are a high number of preventable deaths among acutely unwell patients, even in 

advanced healthcare systems like the National Health Service (NHS) (31-34). 

• High fidelity simulation-based training is the most effective intervention to improve 

patient outcomes [35, 36]. The optimal frequency for this ALS training may be as often 
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as six-weekly [37]. Unfortunately, a shortage of trainers means real-world frequency is 

a low as four-yearly [38]. 

• Digital simulation has proven highly effective for clinical training [39]. A digital 

resuscitation simulator was developer prior to the commencement of this PhD project, 

so it is known to be feasible [40]. 

• The challenge is that real-world clinical emergencies evolve unpredictably. Research 

from the aviation industry has shown that unpredictable simulation training is the best 

way to prepare for such situations [41)]. Automated assessment of trainee performance 

during unpredictable (or ‘stochastic’) resuscitation simulation is felt to be intractable 

using conventional techniques. The ‘correctness’ of any action is determined by too 

many interdependent variables to faithfully capture in a hardcoded evaluation 

algorithm. 

• Reinforcement learning is proposed as a means to (i) learn a behaviour policy that ranks 

a given set of actions for any state of the simulation; (ii) rate the actions of trainees in 

order to provide real-time feedback, which is considered essential for an effective 

training experience [42]. 

This article may seem very distantly related to the work presented in previous chapters. 

However, there was a clear segue from the reinforcement learning research into the ECG 

research presented in this thesis. Rather than train the reinforcement learning agent using raw 

data outputs from the resuscitation simulator, it was decided that the agent should be trained 

using an audio-visual feed. The idea was that this approach would allow for the agent to be 

fine-tuned on real-world audio-visual feeds at a later date. As noted at the end of the position 

paper, the longer term ambition was to create an AI application that could not only provide 

feedback to trainees using a simulator, but could also provide real-time decision support to 

clinicians in real-world emergencies. 

Therefore, the first experiment following the position paper involved training the agent to 

analyse ECG traces shown on the screen of the defibrillator within the training environment. 

During the preliminary literature review on ECG image analysis technology, it was noted that 

there were a number of open research questions in the domain of DL-enabled ECG analysis. 

The research questions described in chapter 2 arose from this process, and it was decided that 

this research would have more immediate impact than the somewhat ‘blue sky’ topic of 

reinforcement learning in the context of medical emergencies. 

Nonetheless, as a final note on future research directions, it is still felt that this topic would be 

an interesting and worthwhile one to explore as the field of medical DL evolves. 

6.5 Overall contributions of this work 
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Chapter 2 of this thesis provided relevant background on the field of computerised ECG 

analysis, DL, and DL for ECG analysis. Three key research questions were identified: 

1. Can DL be used to improve the detection of AMI from ECG signals? 

2. Can DL improve the quality of ECG image analysis? 

3. How can DL methods be ‘democratised’ so that their application is not limited 

to data-rich problems? 

Chapter 2 also presented systematic literature review of DL for AMI detection, and concluded 

that this topic had been relatively underexplored compared to DL for arrhythmia detection.  

Chapter 3 presented an investigation of DL methods for hyperacute detection of AMI. The 

results showed that the DL algorithm’s performance was equivalent to a random chance 

classifier. However, the results also highlighted the risk of confounding data features going 

undetected using conventional AI research techniques. The importance of this finding for future 

research was highlighted by an editorial piece in the EHJ Digital Health journal. 

Chapter 4 presented an investigation of DL for ECG image analysis using rule-based sample 

recapture. The results showed that the DL algorithm’s performance was equivalent to models 

trained directly on raw samples for the same task. This was a first-in-field finding and the 

results have been cited by several original papers by author authors since. 

Chapter 5 presented an investigation wave segmentation pretraining as a form of ECG RL. The 

results showed that the models pretrained using WaSP performed better than non-pretrained 

models, and than models pretrained using data from other domains, across both AF detection 

and AMI detection, and across both raw samples and ECG images. This suggests that the 

representations learned during WaSP can generalise to multiple downstream tasks. It was also 

proposed that WaSP allows for more interpretable AI applications than other approaches, given 

that clinicians are able to interrogate the quality of the learned features. However, this 

hypothesis was not objectively assessed. This study was only published very recently and does 

not yet have any citations, but its implications for future research are discussed in this chapter. 

This sixth chapter summarised the conclusions of previous chapters, highlighted implications 

for future research, and described two related articles that were written and published as part 

of the work towards this thesis, but were not addressed directly the research questions described 

in chapter 2. 

In summary, while the results presented in chapter 3 provide a relevant illustration of the pitfalls 

of the “black box” effect in DL, the key novel contributions of this thesis are as follows: 

1) At the time that the study presented in chapter 4 was published, it was among the first pieces 

of peer-reviewed evidence to show that DL may be transformative for the field of ECG image 
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analysis. As discussed in chapters 4 and 5, this has significant implications for the 

democratisation of automated ECG analysis and, therefore, its global clinical impact. 

2) The wavelet segmentation pretraining described in chapter 5 is one of the earliest pretraining 

techniques shown to be effective for DL-based ECG analysis, and the first to be made available 

to the wider ECG research community via an open-source toolkit. At time of thesis submission, 

it remains the only pretraining method shown to be effective across both major ECG data 

modalities (raw samples and images), and the only method for pretraining ECG image DL 

models that improves upon pretraining with “ordinary” image data (e.g. ImageNet). 

At present, minority population groups, residents of the developing world, and sufferers of rare 

cardiac conditions are under-represented among digital ECG research datasets. This means that 

applications developed using these datasets are likely to serve them less well than groups well-

represented within that data. 

The option for including ECG images in future increases the likelihood that less digitally 

mature healthcare systems will be able contribute data from their patient populations. Effective 

pretraining methods reduce the need for task-specific training data, increasingly the likelihood 

that emerging DL-based applications can be applied to digitally under-represented groups. 

Therefore, it is proposed that the two key novel contributions of this thesis comprise a 

significant step towards to the broadening access to state-of-the-art ECG diagnostics for 

underserved patient populations. 

6.6 Summary of limitations 

A major limitation of this thesis is that all conclusions are drawn from experiments conducted 

with either retrospective observational data or synthetic data. A key part of the motivation for 

this work, as stated in section 1.1, was to explore some of the barriers to implementing AI at 

the point of care. Although this has been a consistent theme running through the research 

chapters, the lack on any prospective real-world validation of the conclusions presented here 

increases the risk that they will not generalise to clinical practice. 

The three conclusions that may be particularly useful to test prospectively are: 

1. That AI-enabled ECG image analysis can produce clinically useful outputs. 

2. That pretraining on synthetic ECG data reduces the volume of training data 

required to achieve diagnostic accuracy equivalent to a non-pretrained 

model. 

3. That segmentation masks provide a useful means for confidence calibration 

in a real-world setting. 

In addition, the fast-moving nature of this field meant that the literature review presented in 

chapter 2 does not necessarily reflect the state of the art at the time of completing this thesis. 
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Over the last two years there have been significant advances in AI technology, of which the 

rise of transformer neural networks is a particular feature. There has also been progress in terms 

of guidance and regulation, such as the US Food and Drug Administration’s “AI/ML-based 

Software as a Medical Device (SaMD) Action Plan” [43]. However, the field is continuing to 

evolve quickly, and it seems likely that by the time the work here was significantly updated, it 

would once again be out of date. 

6.6 Concluding remarks 

This research provides an important contribution to the field of AI-enabled ECG analysis. In 

particular, it highlights the importance of (1) interpretability, insofar as the mechanisms for this 

allow clinicians to effectively calibrate the confidence they place in AI-based analysis; (2) ECG 

image analysis as a means for democratising access to emerging AI technology and facilitating 

its application to historical data; (3) techniques that allow AI models to be applied to rarer 

diseases and minority patient groups where large volumes of data may be harder to come by.  

Through a combination of reviewing the existing knowledge base and original research, these 

three key themes are described, their limits explored, and proposals for future work to further 

advance the field are proposed. 
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7.1 Introduction 

With the prevalence of personal ECG devices already on the rise and the Apple Watch Series 4 

recently hitting the market, the number of daily ECG recordings in the developed world is poised 

to explode [1]. While some individuals will undoubtedly benefit from enhanced diagnosis of 

cardiac arrhythmias, the consequences of false alarms are likely to be detrimental to patients and 

clinicians alike. This article aims to describe the possible impact of this technology on a typical 

cardiology department of a UK NHS Trust. 

7.1.1 The clinical setting 

The NHS is the largest single-payer healthcare system, the fifth largest employer globally (after 

the US Department of Defense, the Chinese People’s Liberation Army, Wallmart and 

MacDonald’s) and is responsible for a population of approximately 66 million [2,3]. For this 

reason, it is often considered to be a particularly good test bed for emerging healthcare technologies 

[4]. 

The Southern Health and Social Care Trust (SHSCT) is an NHS trust in Northern Ireland. The 

population of the SHSCT’s catchment area is approximately 360,000, which has grown 

substantially over the last decade [5]. The Northern Irish population is ageing more rapidly, scores 

lower on socioeconomic metrics and has a lower average life expectancy than the rest of the UK 

[6-9]. Waiting times for outpatient consultations are correspondingly longer than the national 

average [10].  

The cardiology department of the SHSCT runs a coronary care unit at each of two teaching 

hospitals, with six and eight beds respectively. There are an additional 25 permanent inpatient 

cardiology beds at the larger of the two hospitals, along with two interventional cardiac 

catheterisation laboratories. The department records about 55,000 inpatient episodes yearly and 

has a high volume of outpatient encounters (internal statistics). 

7.1.2 Current ambulatory ECG service 

At present, Holter monitors and cardiac event recorders can be requested directly by physicians 

outside the cardiology department, including general practitioners (GPs). Implantable loop 

recorders (ILRs) are only requested by members of the cardiology team and must be approved by 

a consultant prior to implantation. 
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Recordings from wearable devices are automatically annotated by specialized software (Sentinel, 

Spacelabs Healthcare, Snoqualmie, WA, US) and reviewed by one of 13 full time equivalent 

cardiac physiologists (CPs). Approximately 2,500 studies are undertaken and reported annually. 

According to SHSCT CPs, reporting a single study takes between 15 minutes and several hours. 

The responsibility for acting upon the report generated by a wearable ECG monitor lies with the 

requesting consultant. No study is undertaken without a responsible consultant physician 

designated on the request form. 

7.2 Personal ECG devices 

In their 2018 review, Banshal and Joshi identified 15 widely available personal ECG devices, but 

only six that were associated with Pubmed-listed studies [11]. Three of these are currently intended 

for prescription by medical professionals and three are available to individual consumers online. 

Table 7.1 shows representative prices for the commercially available devices, with the addition of 

the Apple Series 4 Watch (not included in the 2018 review as it had not been released). 

This review will focus primarily on the impact of two devices: the AliveCor Mobile device and 

the Apple smartwatch. 

7.2.1 Characteristics of selected devices 

The AliveCor device is chosen as both the most affordable of the peer reviewed devices and the 

best supported by published evidence. It has been reviewed favourably by the National Institute 

for Clinical Excellence (NICE), who noted that the sensitivity and specificity for the automated 

detection of AF has been reported in multiple studies as above 85% and 90%, respectively [12]. 

 

Figure 7.1. An Apple Watch. The Series 4 model is ECG capable. 
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The ECG-enabled Apple Series 4 Watch is chosen for having, by far, the highest predicted sales 

figures. In 2018, prior to the introduction of ECG capabilities, Apple is estimated to have shipped 

22.5 million watches globally. [13] It is not clear how many of the Series 4 watches have been 

bought in the UK since it went on sale in September 2018, nor how many owners use the ECG 

technology. However, the authors of this study consider these sales figures to be the most 

compelling reason to begin thinking about the logistics of the widespread use of self-prescribed 

ECG monitoring.  

 

Device  Cost Outlet 

Omron Heart Scan  £699.99 Amazon.co.uk 

AliveCor Mobile £99 AliveCor.com 

REKA Health N/A  

Zenicor ECG N/A  

Schiller MINISCOPE £1134 EKGshop.com 

ZioPatch N/A  

Apple Series 4 Watch £389 John Lewis 

 

Table 7.1. Representative costs of personal ECG devices. 

 

According to a press release by Apple, the sensitivity and specificity for the automated detection 

of AF is 98.3% and 99.6%, respectively [14]. The study from which these figures were obtained 

has not yet been published in a peer reviewed journal. It is felt that there is currently insufficient 

evidence to support a significant difference in device performance between the Apple Watch and 

the AliveCor device, and will assume parity henceforth. 

At present, both AliveCor and Apple aim to automatically diagnose NSR and AF. Other 

classifications are tachycardia, bradycardia or inconclusive / unreadable. Diagnoses of such traces 

must be made manually. To this end, both devices can store ECG tracings in PDF format for 
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transmission to the patient’s clinician.  

AliveCor offers US customers a free manual analysis of their first ECG trace by a cardiologist, 

and analysis of future recordings for a fee. 

ECG recordings are single-lead and must be user-initiated on both devices. On the Apple Watch, 

users touch a finger to the digital crown of the watch. On the AliveCor device, users place a finger 

from each hand on the electrodes. Recordings on the Apple device last 30 seconds. Recordings on 

the AliveCor device last 40 seconds [15,16]. 

7.3 Pathway for abnormal recordings 

If either Apple or AliveCor applications detect rhythms other than NSR, both companies return 

responsibility to the user by suggesting they consult a physician. It is at the point where a UK user 

sends ECG data to a physician that problems may begin arise from a healthcare provider’s 

perspective. Within the NHS, self-referral to a specialist is only possible under exceptional 

circumstances (for example, one may see an ophthalmologist directly in eye casualty) or via a 

private clinic for a fee. In general, however, a patient’s first point of contact is their GP or an 

emergency department (ED) physician. For personal ECGs, it is likely be the former. 

At present, there appears to be significant variation in how comfortable GPs are with ECG 

interpretation. In the experience of the SHSCT cardiology department, some referrals from the 

community arrive with accurate interpretation of even relatively rare ECG abnormalities (e.g. 

“?Brugada”), whereas others include fundamental mistakes such as confusing sinus arrhythmia for 

AF due to irregular R-R intervals but in the presence of clear P waves.  

Regardless of individual competence, however, there can be little doubt that primary care is under 

unprecedented pressure and that GPs are unlikely to relish the prospect of an additional source of 

work [17]. It is anticipated, therefore, that most personal ECG recordings submitted to GPs will 

be referred to the cardiology department for review.  

7.4 Impact on cardiology services 

In the SHSCT, the current wait for a routine Holter monitor is around 52 weeks (internal statistic). 

However, all studies are currently ordered by a qualified clinician who, if they deem the test to be 

urgent, can stipulate a shorter time frame. In the absence of any clear way to triage personal 

recordings, it seems likely that ECGs mandated directly by patients will be considered a lower 
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priority than studies ordered by qualified medical professionals. It is therefore likely that they will 

be associated with a substantial delay in reporting. This would put some patients at risk, 

particularly if they have declined to seek expert attention via established channels as a consequence 

of having submitted potentially diagnostic information. 

Furthermore, if the uptake of personal ECG monitoring among SHSCT patients is significant, the 

extra workload could cause delays across the CP service. This includes all ambulatory ECG 

monitoring, pacemaker checks, exercise stress testing, echocardiography services and all cath lab 

sessions. 

Let it be assumed that, two years from now, the entire Apple smartwatch range is ECG capable 

and continues to sell at 22.5 million units per year. If one disregards a likely preponderance of 

sales towards industrialised nations like the UK and instead assumes an even global sales 

distribution among 7 billion people, approximately 1000 watches would be acquired by the 

SHSCT population. 

Selder et al. (2019) found that patients using the AliveCor Kardia Mobile device submitted a 

median of 28 ECGs per patient per year, though this was among patients presenting to cardiology 

services with palpitations and is likely to be higher than a non-selected population [18]. Indeed, 

19% of ECGs submitted showed AF, whereas AF prevalence among under 65s in the general 

population (the demographic into which the majority of Apple Watch owners fall) is around 2% 

[19, 20]. 

Nonetheless, 20% of all ECGs submitted were flagged as potentially abnormal by the device 

software and subsequently found to either show NSR or be unclassifiable. A press release from 

Stanford University regarding the Apple Heart Study noted that a little over half of users receiving 

an abnormal pulse warning sought medical attention [21]. If there was a similar false positive rate 

among Apple Watch owners, and if 50% decided to seek medical review of these recordings, this 

 

Figure 7.2. The AliveCor Kardia Mobile device. 
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could result in 2,800 additional ECGs being analysed by SHSCT staff per year: a 100% increase 

in outpatient studies analysed. 

7.5 Benefit to patients 

Halcox et al. (2017) report AF diagnosis rates among over 65s undergoing routine care (RC) vs 

twice-weekly ECG monitoring with the AliveCor device. 5 patients receiving RC were diagnosed 

with AF over the course of a year, compared with 19 in the AliveCor group (hazard ratio 3.9, 

p=0.007) [22]. They were unable to demonstrate a statistically significant difference in rates of 

cerebrovascular events over the 12-month study, but Boriani et al. (2014) previously concluded 

that silent AF is associated with a modifiable risk of embolic stroke if anticoagulants are 

appropriately prescribed [23]. Though the duration of AF warranting anticoagulation remains a 

matter of debate, it seems reasonable to conclude that higher rates of AF and appropriate 

anticoagulant prescription may be associated with lower rates of embolic stroke. 

However, the authors note that the population prevalence of AF among Halcox’s over 65 subjects 

is 9%, compared with 2% among most Apple Watch owners [20]. Furthermore, the rate of embolic 

stroke among otherwise well, young patients diagnosed with AF on routine screening is unknown 

(Boriani studied patients with pre-existing cardiac conditions). There is, therefore, insufficient data 

to estimate the cost per quality adjusted life year (QALY) of personal ECG monitoring, nor to 

quantify the impact of high false positive rates on the wider cardiology service and the 

psychological wellbeing of patients. It is felt that it is not clear that the widespread uptake of 

personal ECG devices will benefit patients in the SHSCT. 

7.6 A technological solution to a technological problem? 

As a final note, recent developments in deep learning-based arrhythmia detection may prove timely 

in light of the issues discussed in this review. Hannun et al. (2019) claim to have achieved 

“cardiologist-level” using a 34-layer convolutional neural network trained on large scale 

ambulatory ECG data [24]. This is a relatively nascent technology but if the results reported in this 

paper are reproducible by other groups, this may substantially reduce the number of false positive 

results and shift the risk-benefit balance in favour of personal ECG devices.  
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Appendix 2:  

AI to enhance interactive simulation-based 

training in resuscitation medicine 
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8.1 Introduction 

Much is made of the potential of emerging AI technology to bring badly-needed innovation to 

the field of medicine. Yet we see little evidence of this on the wards each day. Part of the 

problem might be that the vanguard of this progress is comprised almost exclusively of data 

scientists and ML researchers. Most healthcare workers remain entirely ignorant of even the 

basic concepts underpinning ML and, by extension, the technology we commonly define as 

being “artificially intelligent”. Practitioners of ML are likely to gravitate towards clinical 

problems that present favourable targets for their science, for example single-step classification 

tasks in data-rich areas. Hence, disciplines like radiology are enjoying the lion’s share of the 

attention from the ML community [1]. 

Here, the application of ML to a sequential decision-making task in a simulated clinical 

environment is described 

8.2 The clinical need 

There are over 10, 000 in-hospital cardiac 

arrests annually in the UK [2]. Outcomes for 

these patients are poor. Only one in five will 

survive to hospital discharge. Over half of 

these survivors will have some degree of 

neurological (brain) damage [3]. Some 

cardiac arrests happen “out of the blue”, due 

to sudden events such as myocardial 

infarction or pulmonary embolus. But a 

significant proportion will be preceded by a gradual deterioration in the patient’s condition. It 

has been concluded that as many as 5% of hospital deaths may be averted, largely by the prompt 

identification and effective treatment of acute illness [4 – 7]. The key question is: how do we 

improve the recognition and treatment of the deteriorating patient? 

There are a range of novel technology-based solutions on the market but their efficacy remains 

unproven [8]. High quality simulation training for clinical staff is still by far the best-evidenced 

intervention [9, 10]. However, the resource-intensive nature of existing, face-to-face simulation 

methods is a limiting factor. This is due largely to the requirement for a high ratio of expert 

instructors to trainees.  

There is evidence to suggest that the optimal training frequency might be as often as six-weekly 

[11]. In ever-shorter-staffed healthcare systems, even the logistic challenge of ensuring 

practitioners have access to an ALS course once every four years has necessitated a push by 

the European Resuscitation Council to streamline training and cut courses from two days to 

Figure 8.6: High-fidelity, face-to-face clinical simulation 

(Reproduced with permission. © University of Dundee) 

https://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwiP9ov9iO_ZAhXqI8AKHZuiBZEQjRx6BAgAEAU&url=http://www.inpass.de/en/simulation-training/&psig=AOvVaw3ySqH21RFaQtGxFh5JsMAU&ust=1521228782500110
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one [12]. It is in this context that a novel human computer interaction-based solution is 

explored. This solution takes the form of an AI-supported digital simulation system. By 

negating the need for an expert human presence, this solution could facilitate the delivery of 

low-cost, high-impact training at unprecedented frequency. 

8.3 Digital resuscitation simulation 

The rationale for digital simulation in clinical training is well established. In fact, for certain 

procedural skills, such as those required to perform laparoscopic surgery, it has proven more 

efficacious even than conventional training methods [13].  

At the simplest level, gated progression through a surgical simulation can be achieved using 

single-condition “if-then-else” statements. For example:  

If [the trainee performs step A according to the optimal method] then [the trainee is deemed 

to have demonstrated proficiency and can progress to step B] else [they receive constructive 

feedback and retry step A].  

This is both educationally viable, as it allows for the integration of a proficiency-based 

progression model [14], and computationally favourable. By restricting the permissible action 

space, the number of resultant states for which the simulation must account is very limited. 

Naturally, modern simulators have built upon this basic framework to develop less obviously 

linear narratives and to account for a number of common procedural complications. However, 

by continuing to restrict permissible user 

actions, they can continue to limit the state 

space to manageable dimensions.  

Resuscitation simulation cannot take 

advantage of the same approach. The focus 

when training for ALS moves from 

procedural to conceptual knowledge [15]. 

ALS providers are not required to become 

expert at tackling a fixed problem like their 

surgical colleagues. Rather, then need to 

develop cognitive processes that are 

generalizable to a wide range of disparate 

clinical scenarios. Research from the aviation industry has shown that unpredictable, or 

‘stochastic’, simulation is most effective in this context [16]. 

Anyone who is familiar with model-free reinforcement learning will understand that 

development of generalizable behaviour policies first requires exploration of the action-state 

space [17] The same is true for humans, though psychologists would more likely term this as 

Figure 8.7: Digital simulation for laparoscopic surgery 

Reproduced with permission. © Marcus Rall 
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the “active experimentation” phase of Kolb’s experiential learning cycle [18]. In lay terms, this 

is simply known as trial-and-error learning. Thus, a simulator designed to develop 

generalizable behaviour is likely to maximise its efficacy by allowing users access to action-

state spaces that reflect the true diversity of real-world experience. Hence, the need for 

stochastic simulation. 

To test the feasibility of stochastic simulation for resuscitation training, a prototype stochastic 

resuscitation simulator was developed [19]. Figure 8.3 presents several screenshots from this 

programme. Stochastic simulation was felt by the developers to be a reasonable approach, and 

feedback from users was very positive. However, the downside is that the ‘correct’ path 

through the simulation cannot be determined in advance. Thus, it becomes much harder to give 

automated real-time feedback to trainees, which is considered vital for an effective educational 

experience [20].  

8.4 The role of ML 

Prespecifying a set of rules to evaluate the quality of a trainee’s action for any given state is 

extremely challenging in a stochastic, high fidelity clinical simulation. The ‘correctness’ of 

actions depends on many interdependent variables. Hardcoding a set of rules to encapsulate 

Figure 8.3: A prototype digital resuscitation simulator, produced with the Unity games physics engine. The detailed, 

stochastically-generated clinical environment makes for a particularly high-fidelity experience but necessitates a novel 

approach to automated trainee evaluation. 
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this knowledge was deemed to be infeasible. However, it was felt that the problem may be 

more tractable using ML methods. 

The proposed approach takes its precedent largely from the seminal work by researchers at 

DeepMind in the field of deep reinforcement learning [21 – 23]. In the initial 2013 study, they 

employed a deep Q-learning strategy to attain human level performance in three of six complex 

reinforcement learning tasks involving Atari games. Their system, in short, consisted of a deep 

neural network tasked with predicting the action-value (“Q”) function for a given behaviour 

policy (usually referred to as “π”). The network was updated during the training process using 

stochastic gradient descent, and the update process smoothed out using an experience replay 

mechanism (to avoid, say, a promising behaviour strategy being too heavily penalised for a 

single bad outcome). In 2015, further refinements to this process allowed them to surpass 

human performance in a large number of similar tasks. 

This approach works well for environments like the game Space Invaders, where the action-

state space is limited and there is minimal need for long-term planning. The ML model can 

develop generalizable skills quickly and rapidly transition to an “epsilon greedy” strategy, 

whereby it spends more time exploiting its new skillset and less time exploring its environment 

(or, as it was described earlier, engaging in trial-and-error learning). 

The prototype simulator developed for resuscitation training, however, has a comparatively 

high-dimensional action space, a more diverse state space, and a greater need for long-term 

planning. A ML model targeted at this application would need both a much longer period of 

exploration (or “a slower epsilon decay”) and less frequent policy updates to achieve a similar 

level of efficacy using Q-learning. This would result in exponentially increased computational 

cost. Furthermore, the stochastic nature of the simulator may confound attempts to learn an 

effective action-value policy (because the same action taken in the same state could potentially 

result in two different “rewards”). 

The aim, therefore, is to take a further lead from the DeepMind researchers. In 2016, they 

revisited some of the Atari problems, but this time using an “actor-critic” approach. Instead of 

trying to learn an optimal action-value function (from which the behaviour policy is then 

implied in a straight Q-learning approach), the actor-critic method employs two asynchronous 

models: an “actor” whose task is to directly learn an optimal behaviour policy and a “critic” 

whose task is to learn an action-value policy upon which the actor bases its updates. This has 

a few key advantages over the Q-learning framework. Namely, direct policy optimisation 

allows the model to more effectively deal with high-dimensional action spaces and to learn 

stochastic policies. The addition of a critic model as an action-value estimator offsets the 

increased variance and allows for more frequent policy updates than, say, a Monte Carlo 

approach to policy optimisation [24]. For this reason, it is proposed that the actor-critic 

framework represents the most promising solution to this particular problem. 
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8.5 Conclusions and future work 

Based on the above review, it is proposed that an actor-critic model could be trained to 

resuscitate virtual patients within a stochastic clinical simulator. The intention would then be 

to employ the “critic” network from such a model as a means of evaluating the actions of our 

human trainees within any given state of the simulation, thus providing a basis upon which to 

provide constructive, real-time feedback within a complex, stochastic clinical simulation.  

If this approach was successful, it could solve the problem of delivering high-frequency 

resuscitation simulation training within a resource-constrained healthcare system, and 

plausibly improve patient outcomes as a result. However, it could also open up a new paradigm 

of digital medical education. In this paradigm, medical students could hone their clinical skills 

on simulated wards, receiving constructive feedback as they assessed and treated virtual 

patients, before they ever made a management decision regarding a real-world patient. 

Furthermore, a successful outcome from this research would lay the ground for an investigation 

of whether this framework – i.e. clinical simulation as a training environment for reinforcement 

learning models – could one day be used to train AI models to take decisions directly affecting 

patient care. 
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