30 research outputs found

    Conservative deflationism?

    Get PDF

    Gödelian sentences and semantic arguments

    Get PDF
    Publisher Copyright: © Sandu G.This paper contains some philosophical reflections on Gödelian (undecidable) sentences and the recognition of their truth using semantic arguments. These reflections are not new, similar matters have been extensively addressed in the philosophical literature. The matter is rather one of emphasis.Peer reviewe

    A Theory of Implicit Commitment for Mathematical Theories

    Get PDF
    The notion of implicit commitment has played a prominent role in recent works in logic and philosophy of mathematics. Although implicit commitment is often associated with highly technical studies, it remains so far an elusive notion. In particular, it is often claimed that the acceptance of a mathematical theory implicitly commits one to the acceptance of a Uniform Reflection Principle for it. However, philosophers agree that a satisfactory analysis of the transition from a theory to its reflection principle is still lacking. We provide an axiomatization of the minimal commitments implicit in the acceptance of a mathematical theory. The theory entails that the Uniform Reflection Principle is part of one's implicit commitments, and sheds light on the reason why this is so. We argue that the theory has interesting epistemological consequences in that it explains how justified belief in the axioms of a theory can be preserved to the corresponding reflection principle. The theory also improves on recent proposals for the analysis of implicit commitment based on truth or epistemic notions

    Primitive Recursion and Isaacson's Thesis

    Get PDF

    The Implicit Commitment of Arithmetical Theories and Its Semantic Core

    Get PDF
    According to the implicit commitment thesis, once accepting a mathematical formal system S, one is implicitly committed to additional resources not immediately available in S. Traditionally, this thesis has been understood as entailing that, in accepting S, we are bound to accept reflection principles for S and therefore claims in the language of S that are not derivable in S itself. It has recently become clear, however, that such reading of the implicit commitment thesis cannot be compatible with well-established positions in the foundations of mathematics which consider a specific theory S as self-justifying and doubt the legitimacy of any principle that is not derivable in S: examples are Tait’s finitism and the role played in it by Primitive Recursive Arithmetic, Isaacson’s thesis and Peano Arithmetic, Nelson’s ultrafinitism and sub-exponential arithmetical systems. This casts doubts on the very adequacy of the implicit commitment thesis for arithmetical theories. In the paper we show that such foundational standpoints are nonetheless compatible with the implicit commitment thesis. We also show that they can even be compatible with genuine soundness extensions of S with suitable form of reflection. The analysis we propose is as follows: when accepting a system S, we are bound to accept a fixed set of principles extending S and expressing minimal soundness requirements for S, such as the fact that the non-logical axioms of S are true. We call this invariant component the semantic core of implicit commitment. But there is also a variable component of implicit commitment that crucially depends on the justification given for our acceptance of S in which, for instance, may or may not appear (proof-theoretic) reflection principles for S. We claim that the proposed framework regulates in a natural and uniform way our acceptance of different arithmetical theories

    Purity in Arithmetic: some Formal and Informal Issues

    Get PDF

    On the relationship between plane and solid geometry

    Get PDF
    Traditional geometry concerns itself with planimetric and stereometric considerations, which are at the root of the division between plane and solid geometry. To raise the issue of the relation between these two areas brings with it a host of different problems that pertain to mathematical practice, epistemology, semantics, ontology, methodology, and logic. In addition, issues of psychology and pedagogy are also important here. To our knowledge there is no single contribution that studies in detail even one of the aforementioned area

    On the depth of G\"{o}del's incompleteness theorem

    Full text link
    In this paper, we use G\"{o}del's incompleteness theorem as a case study for investigating mathematical depth. We take for granted the widespread judgment by mathematical logicians that G\"{o}del's incompleteness theorem is deep, and focus on the philosophical question of what its depth consists in. We focus on the methodological study of the depth of G\"{o}del's incompleteness theorem, and propose three criteria to account for its depth: influence, fruitfulness, and unity. Finally, we give some explanations for our account of the depth of G\"{o}del's incompleteness theorem.Comment: 23 pages, revised version. arXiv admin note: text overlap with arXiv:2009.0488
    corecore