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A THEORY OF IMPLICIT COMMITMENT
FOR MATHEMATICAL THEORIES

MATEUSZ ŁEŁYK AND CARLO NICOLAI

Abstract. The notion of implicit commitment has played a prominent role

in recent works in logic and philosophy of mathematics. Although implicit

commitment is often associated with highly technical studies, it remains so

far an elusive notion. In particular, it is often claimed that the acceptance of a

mathematical theory implicitly commits one to the acceptance of a Uniform

Re�ection Principle for it. However, philosophers agree that a satisfactory

analysis of the transition from a theory to its re�ection principle is still lack-

ing. We provide an axiomatization of the minimal commitments implicit in

the acceptance of a mathematical theory. The theory entails that the Uniform

Re�ection Principle is part of one’s implicit commitments, and sheds light on

the reason why this is so. We argue that the theory has interesting epistemo-

logical consequences in that it explains how justi�ed belief in the axioms of a

theory can be preserved to the corresponding re�ection principle. The the-

ory also improves on recent proposals for the analysis of implicit commitment

based on truth or epistemic notions.

1. Introduction

Let a theory be given by a collection X of axioms in a language L and some
consequence relation �. Suppose that some idealised, logically omniscient agent
A is justi�ed in believing X and in the trustworthiness of the principles govern-
ing �. We can say that the agent is explicitly committed to some sentence i of L
if and only if X � i. If there is an e�ective proof system for �, this is equivalent
to saying that A is explicitly committed to i if and only if there is a proof of i
from X .1 Is this all there is to say about A’s commitments? In particular, are all
of A’s commitments explicit?

The phenomenon of incompleteness inmathematical theories provides clear-
cut case studies to address these questions. From the results of Gödel (1931) one
can infer that if A is justi�ed in believing the axioms of a su�ciently powerful
formal mathematical system S, then she will not be explicitly committed to the
the various articulations of the soundness of S in the language LS , including
‘S is consistent’, or ‘all theorems of S are true’. Several authors have proposed

1Our terminology, and more generally the terminology employed in the debate relevant for the
present paper, di�ers from the one employed in some recent literature on ontological commit-
ment (Peacock, 2011; Krämer, 2014), where explicit commitment is not taken to be closed under
logical consequence, and implicit commitment results from this closure.
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strategies to extend S by taking those very soundness assertions as additional
axioms, on the grounds that – although not provable – they are somewhat jus-
ti�ed from the perspective of S (Turing, 1939; Feferman, 1962; Franzén, 2004;
Cieśliński, 2017).2 Underlying such projects there is what is has been referred
to as the implicit commitment thesis by Walter Dean (2015):

Anyone who accepts the axioms of a mathematical theory S is
thereby also committed to accepting various additional state-
ments which are expressible in the language of S but which are
formally independent of its axioms.

The implicit commitment thesis involves the notion of acceptance. Since
there is no agreement on what are the basic properties of the notion of accep-
tance of a mathematical theory (see §2.1 for more details), in this paper we fol-
low Fischer et al. (ming) and analyse the initial acceptance of S in terms of the
more familiar notions of belief and justi�cation.3 Our task will then be twofold.
Starting with justi�ed belief in S, we will investigate what are the commitments
implicit in this justi�ed belief. This will be done axiomatically. We shall argue
for the following, familiar thesis on novel formal and philosophical grounds:

implicit commitment thesis (ict): Anyone who is justi�ed in be-
lieving a mathematical formal system S is also implicitly com-
mitted to various additional statements which are expressible in
the language of S but which are formally independent of its ax-
ioms.

Our second task will be to investigate whether there is, and if yes what are its
fundamental principles, an epistemic attitude that relates whoever is justi�ed in
believing S to such implicit commitments. We will argue that justi�ed belief in
S will be transferred to its (minimal) implicit commitments.

The importance of ict for logic and philosophy of mathematics is undeni-
able. It directly or indirectly motivates Turing’s work on ordinal logics, Fe-
ferman’s foundations of predicative mathematics, the extensions of Feferman’s

2In particular, (Turing, 1939, p. 198) claims that the addition of consistency assertion to a system
enables one:

. . . to obtain a more complete one by the adjunction as axioms of formulae,
seen intuitively to be correct, but which the Gödel’s theorem shows are un-
provable in the original system.

Similarly, Feferman (1962) analyses the result of adding a re�ection principle to a given system
in the following way:

In contrast to an arbitrary procedure for moving from Ak to Ak+1, a re�ection
principle provides that the axioms of Ak+1 shall express a certain trust [our
emphasis] in the system of axioms Ak .

3To our knowledge, a clear distinction between acceptance and belief has only been drawn in the
context of the epistemology of science and constructive empiricism in particular (van Fraassen,
1980).
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techniques to theories of truth, the ordinal analysis of mathematical systems
(Halbach, 2001; Franzén, 2004; Horsten and Leigh, 2017; Cieśliński, 2017;
Fischer et al., 2017; Beklemishev and Pakhomov, 2019). However, there are
are at least three problems with current analysis of implicit commitment for
mathematical theories.

First, we lack an epistemological analysis of the process of re�ection under-
lying ict.4 Second, although we have formal theories capturing the outcomes of
endorsing ict, such as various extensions of formal theories by re�ection princi-
ples, we lack a formal analysis of the basic principles of implicit commitment iself.
Third, ict has recently come under attack. It has been argued that it cannot be
true in general because some restrictive foundational standpoints are incompat-
ible with it.

In this paper we address the problems above by introducing an axiomati-
zation of implicit commitment for reasonable mathematical theories based on
two simple principles: one states that implicit commitments are preserved un-
der recognizable proof-transformations, the other that implicit commitments
for a theory include anything that the theory internally and uniformly recog-
nizes as axioms. We propose an epistemological analysis of the structure of im-
plicit commitment based on such principles, according to which justi�ed belief
in a mathematical theory is inherited to its implicit commitments. Our analysis
also sheds light on the recent approach to the process of re�ection in terms of
epistemic entitlement (Horsten and Leigh, 2017). The theory will also give a
de�nite verdict concerning Dean’s non-uniformity objections to ict: the notion
of epistemic stability, on which Dean’s critique is based, turns out to be much less
appealing.

2. Principles for Implicit Commitment

We aim to articulate necessary conditions for the collection of statements one
is implicitly committed to when justi�ed in believing a mathematical theory. In
what follows, when referring to a theory, we will refer to a formal presentation of
a (elementary) set of sentences of Lℕ in the form of a speci�c axiomatization.
For simplicity we will �x a proof-system for classical logic that will be common
to all theories considered. Thus, we shall identify theories with Δ0-formulae
with one free variable that, provably in EA, de�ne a set of sentences. From
a technical point of view, such an approach is a common practice when talk-
ing about arithmetical re�ection principles over a theory (Beklemishev, 2005).

4This witnessed e.g. by the following quote from Horsten (2018):
What is still lacking, and what the subject sorely needs, is a careful phe-
nomenological analysis of the process of re�ecting on one’s implicit commit-
ments.
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Crucially, it accords with our analysis of ‘accepting a theory’ in terms of justi�ed
belief. Primarily, justi�ed belief in a theory is a relation between an agent and
a collection of axioms presented in a concrete way. This also entails that, when
an agent is justi�ed in believing a speci�c theory, she does not need to be aware
that two presentations single out the same theory, even if actually they do.

2.1. Acceptance as Justi�ed Belief. Several recent works on implicit commit-
ment involve the primitive notion of acceptance of a mathematical theory. There
is no satisfactory epistemological analysis of acceptance. As we shall see later on
is some more details, Cieśliński (2017) analyses the notion of acceptance of a
theory in terms of the more amenable notion of belief: in particular, he articu-
lates a theory of believability for the mathematical theory in question. Horsten
and Leigh (2017) and Fischer et al. (ming) choose instead to analyse accep-
tance in terms of justi�ed belief. In this paper we opt for the latter analysis. In
fact, the relevant cases of application of ict that we are interested in – including
Dean’s proposal of epistemically stable theories – are cases of foundational the-
ories, which are rarely believed without justi�cations supporting them. Thus,
in such cases, an agent has a justi�ed belief in a mathematical theory, and our
guiding questions are what the agent is implicitly commitment to, and whether
such justi�ed belief supports soundness assertions for the theory.

Finally, as it happens in these recent works on implicit commitment, we will
set aside worries of logical omniscience. We will be exclusively concerned with
highly idealized agents relating to abstract mathematical entities. In such con-
texts, justi�ed belief in a set of axiom and a proof system can be taken to entail
justify belief in their logical consequences. In particular, we will be only con-
cerned with classical logical consequence.

2.2. The principles of invariance and axiomatic re�ection. Our theory can
be informally motivated by means of two basic principles. We call then princi-
ples of invariance and axiomatic re�ection. When an agent is justi�ed in believing
a theory, she justi�edly believes a certain set of sentences and a body of infer-
ence rules. Our two principles for implicit commitments stem from these two
sources.

The �rst one, the principle of invariance, derives from the agent’s justi�ed
belief in certain inference rules (that is, the agent’s ability to infer, from her
justi�ed belief in the premisses of any such a rule, her justi�ed belief in the con-
clusion). Leaving aside issues of how this justi�ed belief can arise, such an agent
must treat sets of sentences, which are demonstrably equivalent, as being on a
par. More precisely: if such an agent is able to establish that the consequences
of two sets of sentences obtained from her inference rules are the same, then
the two sets should be ‘equally good’ for her. Crucially, this obviously entails
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that she should entertain the same attitude towards the commitments of both
theories.

For instance, consider the standard presentation of Peano Arithmetic (PA),
and its alternative presentation as the union of restricted systems based induc-
tion schemata (

⋃
n IΣn).

5 Suppose our agent is justi�ed in believing a given
proof-system for �rst-order classical logic as well as PA, and has at her disposal a
simple procedure to transform each proof from the axiom set

⋃
n IΣn to a proof

in PA. Then, it’s plausible to claim that she is implicitly committed to – and, as
we shall argue, also justi�ed in believing – the consequences of

⋃
n IΣn as well.

This is the informal reasoning behind a principle of invariance that underlies our
theory:

Principle of Invariance: justi�ed belief in a theory g (and associ-
ated proof-system) commits one to theories that are reducible
to g in a su�ciently simple way.

In what follows we will make precise the meaning of ‘su�ciently simple’: ac-
ceptable proof transformations will be ones in which proofs are transformed by
means of elementary functions.

The second principle underlying our theory concerns the re�ective capabili-
ties of the agent justi�edly believing a theory. Suppose that our agent is justi�ed
in believing PA. Our such as PA can talk about their syntactic structure via
arithmetization. In particular, since PA is a speci�c elementary formula, if it is
indeed the case that the code of a formula i(n) is one of the axioms of PA, then
both PA ` PA(pi(n)q) and PA ` i(n) hold. Indeed, for a speci�c sentence
i(n), the internal and external representations of PA can equally well recognize
whether (or not) it is an axiom. Our second guiding principle generalizes this
scenario: if one is justi�ed in believing a theory such as PA – or a Δ0-formula
g more generally – , and has a decisive evidence that for every n, i(n) is an
axiom of the theory, (i.e. a weak theory of syntax proves that every object x is
such that g (pi( ¤x)q)), then the implicit commitments of the theory g include
∀xi(x).

The example generalizes to our principle of axiomatic re�ection:

Axiomatic Re�ection: justi�ed belief in g (and associated proof-
system) commits one to universal claims whose instances are
uniformly and uncontroversially recognized as axioms of g.

5More precisely, PA is given by the recursive equations for basic arithmetic operaions plus the
full schema of �rst-order induction, and

⋃
n IΣn is given by the union of the systems IΣn , i.e.

the extension of the same recursive equations with induction scheme restricted to sentences in a
Σn-form.
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The formal theory presented below will also make precise the way in which a
sentence is ‘uniformly and uncontroversially’ recognized as an axioms: we will
assume that such facts need to be established in a weak theory of formal syntax.

We will also assume a further, basic principle for implicit commitment. It
will not be part of the theory, because we deem it uncontroversial. It is a clo-
sure principle stating that implicit commitments are closed under logical con-
sequence: if one’s implicit commitments logically entail some proposition, then
this proposition is an explicit commitment of one’s implicit commitments, and
therefore part of her implicit commitments.

In the next section, we present a formal theory of the necessary conditions
for implicit commitment directly inspired by the two principles above. Given a
theory g and an associated proof-system, the implicit commitments stemming
from justi�ed belief in g will contain the consequence of g extended with formal
counterparts of the principles of invariance and axiomatic re�ection.

3. The Formal Theory

3.1. Theories and Coding. All theories we consider are based on the arith-
metical signature with +, ·, 1, 0, exp, ≤ as primitive symbols (the intended
interpretation of exp(x) is 2x). This language will be denoted with Lℕ. The
arithmetical hierarchy for formulae of Lℕ is then de�ned in the standard way
(Beklemishev, 2005, p. 201).

The weakest theory that we shall consider isElementary Arithmetic (EA), whose
axioms are

(i) statements to the e�ect that ≤ is a linear discrete order with 0 as the least
element and x + 1 the immediate successor of x,

(ii) recursive equations for +, ·, exp,

(iii) induction scheme for Δ0-formulae of Lℕ.

For each n, IΣn denotes the extension of EA with induction axioms for Σn for-
mulae. Peano Arithmetic (PA) is given by EA + Ind(Lℕ).
EA enables us to develop in a natural way a theory of syntax for our formal

language and theories. As in (Hájek and Pudlák, 1998, §1.1), we represent in
arithmetical context, by means of the Ackermaniann membership relation, a
standard set-theoretic development of syntactic notions and operations. For a
givenLℕ-formula i, piq denotes the canonical numeral naming its Gödelnum-
ber. For an arbitrary formula i(z), y = pi( ¤x)q denotes the canonical formal-
ization of the relation ‘y results from i(z) by substituting the canonical numeral
naming x for every free occurrence of variable z’. Once again, provably in EA,
y = pi( ¤x)q is a provably total function of x and we shall allow ourselves to
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use the functional notation, using pi( ¤x)q as if it was a term of one free vari-
able. Moreover, we will abuse of this notation and employ the dot notation also
‘internally’ in coded environments, that is for the elementary term formalizing
such a substitution operation in EA (cf for instance (2), Proposition 1).

Throughout the whole paper we identify theories with Δ0-formulae that,
provably in EA, de�ne sets of sentences. In other words, a Δ0-formula g (x)
is a theory if and only if

EA ` ∀x
(
g (x) → SentLℕ

(x)
)
,

where SentLℕ
(x) is the de�nable predicate naturally expressing that x is a code

of an arithmetical sentence. For g , g ′ theories, when working in the metatheory
we will employ the following abbreviations:

x ∈ g :↔ g (x);

g ⊆ g ′ :↔ ∀x(x ∈ g → x ∈ g ′).

If g is a theory, then Proofg (y , x) denotes the canonical elementary formula
representing the relation ‘y is a proof of x from the axioms of g ’. From the
proof predicate we de�ne the notions of provability and consistency (restricted
and unrestricted) in the standard way:

Provg (x) :↔ ∃y Proofg (y , x) ,

Cong (x) :↔ ∀y < x ¬Proofg (y , p0 = 1q) ,

Cong :↔ ∀y ¬Proofg (y , p0 = 1q).

We say that g is Σ1-complete, provably in EA, if for every Σ1 formula i(x)

EA ` ∀x
(
i(x) → Provg (pi( ¤x)q)

)
.

It can be shown that any extension of Robinson’s arithmetic Q is Σ1–complete
provably in EA.

The Principle of Invariance introduced in the previous section made use of
‘simple’ proof transformations. The next de�nition �lls in the details.

Definition 1. Suppose that g and g ′ are two theories. We say that g is elementarily
reducible to g ′, denoted g ≤er g ′, i� there exists an EA-provably total elementary
function f such that

EA ` Proofg (y , x) → Proofg′ ( f (y) , x).

The relation of elementary reducibility is a re�nement of the better-known re-
lation of proof-theoretic reducibility extensively studied by Solomon Feferman
(Feferman, 1993).
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Another important tool for our purposes is proof-theoretic re�ection.6 Proof-
theoretic re�ection principles are schemata that express forms of soundness of
a formal theory. In particular, we will focus on Uniform Re�ection. Suppose that
g is a theory. The Uniform Re�ection Principle over g , denoted RFN(g), is the
following collection of Lℕ sentences

∀z
(
Provg (pi( ¤z)q) → i(z)

)
for all i(v) ∈ Lℕ. Over EA, RFN(g) entails Cong , and hence its addition
amounts to a proper extension of g.

3.2. Axioms for Implicit Commitment. We introduce two simple axioms cor-
responding to the principles of Invariance and Axiomatic Re�ection introduced
above. We axiomatize an operator Ion theories, which takes a concrete axiom
set and associated proof-system and returns a set of sentences, intended to be
part of the implicit commitments of the theory (or more precisely, the implicit
commitments of someone who justi�edly believes g).7 In the de�nition, we �x
a proof system for predicate logic with equality. We denote derivability in such
a proof system with `. It’s important to notice that we do not rely on a speci�c
choice of the proof apparatus: any sound and complete proof-system for pred-
icate logic with equality would work. For this reason we shall only apply the
operator I to sets of sentences, and omit reference to the proof system.

Definition 2 (principles for implicit commitment). Let g , g ′ be Δ0-formulae.

if g ′ ≤er g , then I(g ′) ⊆ I(g);(invariance)

if EA ` ∀x g (pi( ¤x)q), then ∀x i(x) ∈ I(g).(reflection)

Even though we aim to characterize necessary conditions for implicit commit-
ment, it will be useful in what follows to slightly abuse of notation and write
I(g) for the minimal operator on theories satisfying invariance and reflec-
tion. Notice that reflection immediately entails that any theory g is included
in its implicit commitments, since it is allowed for quanti�ers in it to be vacuous.
invariance states that if g ′-proofs can be elementarily transformed into g-

proofs in a way that g recognizes as correct, then the implicit commitments of
g will include all implicit commitments of g ′. For instance, one might consider
PA, i.e. the Δ0-presentation of Peano Arithmetic as EA+ Ind(Lℕ), and theLℕ-
formula

PAI(x) :↔ PA(x) ∨ x = p0 = 0q.

6For a thorough survey of re�ection principles, see again Beklemishev (2005).
7Crucially, since we are aiming to capture necessary conditions for implicit commitment, our
operator Imay not exhaust the implicit commitments of the theory. In fact, at least in the non-
iterated form, our operator will certainly not-exhaust the commiments of a theory even in the
most conservative interpretation of our picture.
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PA(x) and AxI(x) satisfy the premise of invariance (in both directions), even
though they isolate di�erent sets ofLℕ-sentences. 0 = 0 is in fact an immediate
consequence of PA(x). Therefore, invariance entails that I(PAI) = I(PA).

By contrast, if we consider the formula

PAII(x) :↔ PA(x) ∨ (∃y ≤ x) (x = pConZ2 ( ¤y)q) ,

things change. If EA trivially proves that PA(x) is contained in PAII, and there-
fore its commitments are included in those of PAII, the same does not hold for
the converse. PAII is not elementary reducible to PA, and so invariance does
not apply.8

reflection says that if our theory of formal syntax EA can establish the sen-
tence: ‘For every object x, i(x) is a member of g ’ (where x is a name for x),
then it follows from g ’s commitments that every object satis�es i(x). reflec-
tion shares some structure with Kleene’s rule – i.e. the rule version of Uniform
Re�ection – but it is indeed weaker than Uniform Re�ection. In the �rst place,
unlike standard re�ection rules, it concerns the notion of ‘being an axiom’ and
not of ‘being provable from some set of axioms’.9 Moreover, as we shall see
shorty, there is a precise technical sense in which reflection for a theory U is
not stronger thanU itself.

It is important to highlight the scope of the quanti�ers in reflection. In
particular, the premise of reflection shouldn’t be read as

for every n, EA proves that i(n) is a member of g.

With such a premise, reflection would amount to

(1) if ∀n EA ` g (pi( ¤n)q) then I(g) ` ∀xi(x).

However, (1) is not a satisfactory principle because it would render I(g) highly
dependent on one’s metatheory. For example, consider

PAIII(x) := PA(x) ∨ ∃y
(
x = pConZFC( ¤y)q ∧ ConZFC(y)

)
.

8To see that it is so, observe that for all g and g ′, which provably in EA are Σ1-complete, EA
proves that

∀y Provg (pCong′ ( ¤y)q) →
(
Cong → Cong′

)
.

This holds, since by a well-known fact (see (Beklemishev, 2005)), for a Σ1-complete theory g ,
Cong is equivalent to uniform re�ection for Π1-formulae over g. And if we have the uniform
Π1 re�ection over g , then Cong′ follows immediately from ∀y Provg (pCong′ ( ¤y)q).
Of course, if one replaced EA with a theory that proves Con(Z2) in the notion of reducibility,
I(PA) and I(PAII) would turn our to be equivalent. However, this would be a highly contro-
versial choice.
9One could succinctly paraphrase the situation by saying that, if Uniform Re�ection can be seen
as an l-rule with recursively enumerable premisses, reflection is an l-rule with elementarily
recognizable premisses.
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PAIII is elementary reducible to PA.10 However, if one assumes ConZFC, and
that implicit commitments are closed under (1) and invariance, then we would
conclude that the implicit commitments of PA include ConZFC.11 Intuitively,
this is because the speci�c formulation of (1) allowEA to access ‘external’, metathe-
oretic facts (such as ConZFC) to satisfy its premise. The premise of reflection,
by contrast, can only be satis�ed by appealing to the uncontroversial resources
of EA. This prevents our characterization of implicit commitment to entail
strong (and unintuitive) consequences such as ConZFC. As we will see shortly,
I(PAIII) will not entail ConZFC.

Finally, the speci�c formulation of reflection given above rests on the avail-
ability of names for all objects in the domain of discourse of quanti�ers. This
assumption is not necessary and can be relaxed. In particular, instead of identi-
fying theories with elementary predicates, we could conceive of them as binary,
elementary relations whose arguments are an elementary predicate and an ob-
jects. We could then write g∗(pi(v)q, x) for ‘the result of applying the elemen-
tary predicate i to the object x is a member of the “theory” g∗’. reflection
would then be reformulated as:

if EA ` ∀x g∗(pi(v)q, x), then ∀xi(x) ∈ I∗(g∗).
All the formal properties of the theory of implicit commitment that we will
present below will transfer to this more general setting with only little modi�-
cation to the formulation of the theory. Speci�cally, we require that g∗ satis�es
the following natural condition

∀x
(
∃y(name(x) = y ∧ g∗(pi(v)q[y/v] , ∅)) → g∗(pi(v)q, x)

)
,

where pi(v)q[y/v] stands for result formally replacing v with the name y of x in
the formula i. The above bridge principle does not require that we have names
for all objects, but only clari�es the connection between an object and its name
when the object can indeed be named.

3.3. Main Properties. We shall now turn to the main properties of our the-
ory of implicit commitment. We show that invariance and reflection, once
taken together, are strong enough to deliver the uniform re�ection principle for
one’s theory of choice. Moreover, we also show that, once taken in isolation,
each principle does not force logical strength as it admits interpretations that
are conservative over the underlying theory.

Proposition 1. If g extends EA, then RFN(g) ⊆ I(g).

10Notice that to establish this elementary reducibility we only appeal to provable Σ1-
completeness, and we do not rely on what’s true in the standard model of PA.
11More generally, any such notion of implicit commitment will re�ect all the Π02-consequences
of one’s metatheory.
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Proof. The proof is essentially Feferman’s reasoning that, for a theory g , clo-
sure of g under the Kleene’s rule is equivalent to the uniform re�ection over g
(Beklemishev, 2005).

Given an arbitrary i(v) ∈ Lℕ, we shall �rst show thatEA ` ∀xProvg
(
p\ ( ¤x)q

)
,

where \ (x) is the so-called small re�ection principle for i and g , de�ned as

\ (x) := ∀y1 , y2
(
y1 = (x)1 ∧ y2 = (x)2 ∧ Proofg (y1 , pi( ¤y2)q) → i(y2)

)
.12

Working in EA, we �x an arbitrary x and let y1 = (x)1 and y2 = (x)2. If
Proofg (y1 , pi( ¤y2)q), then Provg (pi( ¤y2)q) and the claim follows by logical rea-
soning inside the provability predicate for g. Similarly, if¬Proofg (y1 , pi( ¤y2)q),
then provable Σ1-completeness entails that

(2) Provg (p∃y1 , y2
(
y1 = ( ¤x)1 ∧ y2 = ( ¤x)2 ∧ ¬Proof(y1 , pi( ¤y2)q)q).

Therefore, in either case, the claim follows.
Now, for \ as above, we de�ne

g ′(x) := EA(x) ∨ ∃y ≤ x x = p\ ( ¤y)q.

Then the previous argument shows that g ′ ≤er g. So by invariance

(3) I(g ′) ⊆ I(g).

However, by the de�nition of g ′, we obtain that EA ` ∀x g ′(p\ ( ¤x)q
)
. Then, by

reflection, we have ∀x\ (x) ∈ I(g ′). Hence, by the de�nition of \ and the fact
that EA ⊆ g ′ ⊆ I(g ′), we can conclude that

I(g ′) ` ∀x∀y
(
Proofg ( ¤x , pi(y)q) → i(y)

)
,

which entails the uniform re�ection axiom for i. Therefore, by (3) and the
closure of implicit commitments under derivability, we obtain that RFN(g) ⊆
I(g). �

Proposition 1 gives us necessary conditions for implicit commitment. Given
a theory g , I(g) cannot be weaker than g + RFN(g). This claim can be made
even sharper: the implicit commitments of a theory g a�orded by invariance
and reflection alone cannot surpass what is provable in g + RFN(g).13

12The parameters y1 and y2 are needed because, whereas we have introduced reflection for g
as featuring one variable only, the claim we are interested in is proved by applying reflection
to a formula featuring two variables. This is why we resort to the EA-de�nable (total) pairing
function to code up pairs of variables in one.
13Let us call IRFN (g) the set of implicit commitments of g given by (the deductive closure
of) g + RFN(g). We show that IRFN (g) satis�es invariance and reflection. For invariance,
assume that g ′ ≤er g. Then, since IRFN (g) ` RFN(g ′), we have that IRFN (g) ⊆ IRFN (g ′).
To verify reflection, �x a formula i(x) and assume that g ` ∀xg (pi( ¤x)q). Then obviously
g ` ∀xProvg (pi( ¤x)q) and consequently ∀xProvg (pi( ¤x)q) ∈ IRFN (g). Now by RFN(g) we
immediately obtain ∀xi(x) ∈ IRFN (g).
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A core feature of our account is that it breaks down the notion of implicit
commitment into two simple clauses. As we will now show, each clause is log-
ically weak if taken in isolation, and yet it produces substantial consequences
when coupled with the other. Let’s consider invariance �rst. An operator on
theories II satisfying invariance would not rule out trivial interpretations. For
instance, one can let II(g) to be g itself. Since EA is arithmetically sound, the
assumption g ′ ≤er g would immediately entail that II(g ′) ⊆ II(g).

Also reflection, by itself, does not force any logical strength. Unlike a re�ec-
tion principle, it involves instances of single axioms and not theorems, and it can
be shown that reflection is properly weaker than a re�ection principle. Con-
sider an arithmetically sound theory such as PA (the standard presentation of
Peano Arithmetic). One can de�ne a functor III(·) satisfying reflection which
is nonetheless conservative over PA. It su�ces to let

III(g) = {∀xi | EA ` ∀x g (pi( ¤x)q)}

Then III(PA) is deductively equivalent to PA.14

4. Justified Belief

In §2.2 we started with the agent’s justi�ed belief in g , and introduced infor-
mal principles to characterize (part of) the agent’s commitments. Such prin-
ciples were then made formally precise. Now we turn to the epistemological
analysis of the agent’s implicit commitments so characterized. If an agent is
justi�ed in believing a theory g , what’s her epistemic attitude towards sentences
in I(g)? We will argue that invariance and reflection preserve justi�ed belief
in a sense that will be made precise shortly. Proposition 1 will then entail that
justi�ed belief in g is preserved to all instances of Uniform Re�ection for g.
Our framework, therefore, strengthens the Implicit Commitment Thesis in a
signi�cant way.

Let us start with invariance. It is uncontroversial that elementary reducibility
preserves justi�ed belief, in the sense that justi�ed belief in g transfers to any g ′

that is elementary reducible to it. The mathematical theories g under consid-
eration contain a fair amount of formalized metamathematics, in particular we
stipulate that EA ⊆ g. Under the assumption that justi�ed belief in g entails
justi�ed belief in the logical consequences of g , the proof-transformations that
are required by the notion of elementary reducibility, if available, are clearly
formalizable in g and therefore amount to justi�ed beliefs. This entails that, if
the justi�cation for g ′ is derived from g via elementary reducibility, and such

14However, other choices of g may lead to much stronger III (g). For instance, III (PAII) will
prove the consistency of Z2.
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justi�cation can be transferred to some member i of the commitments I(g ′),
the sentence i will be justi�ed on the basis of justi�ed belief in g.

We now turn to reflection. Philosophers and logicians have recently started
to pay attention to the epistemology of proof-theoretic re�ection principles
(Horsten and Leigh, 2017; Fischer et al., ming; Cieśliński, 2017). The main
focus has been on the di�erence between entitlement and justi�cation in the
context of re�ection. Essentially, entitlement and justi�cation di�er in the kind
of warrant that they require (Wright and Davies, 2004; Burge, 1996). Justi�ca-
tion requires self-evidence, or a deductive or inductive rule acting on warranted
premisses. Entitlement doesn’t. For instance, perceptual beliefs such as ‘that
one is a sphere’ are typical examples of entitlements, whereas propositions that
are obtained by combining justi�ed premisses via logical reasoning are typical
examples of justi�cations (Graham, 2020).

In the light of this, it seems clear that the justi�cation for a reasonable g does
not immediately transfers to Uniform Re�ection for g. First, there is not a
deductive logical rule that warrants it, as Uniform Re�ection is unprovable in
g.15 Also, inductive rules have little role to play in such abstract contexts such
as mathematical theories. Is Uniform Re�ection self-evident? One may argue
that, given a reliable process of formalization in the background, justi�ed be-
lief in g may be ‘expressed’ by Uniform Re�ection, and this would guarantee
its self-evidence. This conclusion should be resisted, even if one disregards the
di�cult choices of implementation details in the process of formalization. For
instance, as argued in Dean (2015), one can reasonably consider as self-evident
fragments of �rst-order arithmetic – based for instance on some combinatorial
or other apriori evidence (Tait, 1981; Parsons, 2007) –, and yet consider Uni-
form Re�ection as unwarranted given the equivalence of Uniform Re�ection
and full number-theoretic induction.16

For similar reasons, Horsten and Leigh (2017) and Fischer et al. (ming) ar-
gue that, although one cannot be immediately justi�ed in believing in Uniform
Re�ection for g , she can at least be entitled to it. The warrant for Uniform
Re�ection for a reasonable g consists in fact in a cognitive project meeting the
following additional two conditions (Wright, 2004): (i) We have no su�cient

15Although Uniform Re�ection for g can be derived from non-logical rules of inference such as
Kleene’s rule. However, Kleene’s rule is equivalent to Uniform Re�ection, and is therefore in
need of justi�cation in the same way as Uniform Re�ection is.
16Another possibility may be to resort to ideological expansions of the theory, for instance by
means of a truth predicate. In this scenario, the justi�ed belief in g would entail a justi�ed belief
in a theory of truth of g , ideally one that proves RFN(g) (Shapiro, 1998; Franzén, 2004; Ket-
land, 2005). However, this strategy does not directly help us, because it only shifts the required
preservation of justi�ed belief from the re�ection principle for g to a theory of truth for g. And
it is far from clear that justi�ed belief in g warrants a justi�ed belief in a non-conservative theory
of truth for g. Moreover, in the context of theories of truth the addition of Uniform Re�ection
is more prone to brute error than in the purely arithmetical context (Fischer et al., 2017).
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reason to believe that Uniform Re�ection for g does not hold; (ii) Any attempt
to justify suchUniformRe�ection would involve further presuppositions in turn
of no more secure a prior standing. The idea is that we have some form of pro-
cedural warrant for Uniform Re�ection that is not appropriate for justi�cation.
We believe that claim (ii) is not correct. We will provide an alternative, deduc-
tive route to the justi�cation of Uniform Re�ection that is based on more basic
principles.

A crucial feature of reflection is that it is deductively light, in the sense that
its range of applicability is well-delineated and is never confused with the de-
ductive apparatus of g. This feature of reflection manifests itself in di�erent
ways. First, the possibility of conservatively interpreting reflection over g in
g itself shows that the deductive apparatus of g is rich enough to represent the
logical structure of reflection.17 Second, the premiss of reflection involves
an elementarily decidable property – being a member of the set g –, whereas
Uniform Re�ection involves a signi�cantly more complex property – indeed,
a recursively enumerably complete property. And elementary properties are
completely transparent to any choice of g : there is always an elementary pro-
cedure for deciding whether or not some sentence is a member of g or not, and
therefore this procedure is always available in g itself. Third, the addition of
reflection to g is fully grounded in g-provability and does not allow for any
new proofs obtained from the combination of g rules with reflection. Since re-
flection cannot be iterated, it only adds one layer of proofs to the pre-existing
structure of g-proofs. This is in stark contrast with standard procedures for
extending theories such as g with new axioms or new rules of inference.

These distinctive properties of reflection entail that the possibility of error
is substantially less likely when extending g with reflection in place of Uniform
Re�ection. This can for instance be seen if one considers the paradigmatic case
of consistent but l-inconsistent theories. Whereas the addition of Uniform
Re�ection can result in inconsistency when g is l-inconsistent, reflection de-
termines an inconsistency only if the l-inconsistency is evident in the concrete
presentation of g itself: e.g. if g has axioms P (n) for all n, and ¬∃xP (x). For in-
stance, one may be justi�ed in believing in the theory FS from (Friedman and
Sheard, 1987; Halbach, 1994) on the grounds of its arithmetical soundness.
Now FS + RFN(FS) is inconsistent, whereas FS+reflection for FS is not. Of
course, we are not claiming that l-inconsistent theories should have interesting
implicit commitments – in fact, in our theory, canonical l-inconsistency will
result in inconsistent implicit commitments! –18, but that the standard obstacles

17While conservativeness is not a su�cient reason for justi�cation (Fischer et al., ming, §4.3), it
is its combination with the other features that makes reflection special.
18By ‘canonical l-inconsistency’ in this context we mean an l-inconsistency that can be for-
malized in EA.
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to the transition from justi�ed belief in g to justi�ed belief in RFN(g) are not
immediately present when considering reflection.

To sum up, in our re�ection process we start with the justi�ed belief in g and
in ∀x g (pi( ¤x)q). Speci�cally, the justi�cation for ∀x g (pi( ¤x)q) is given by one’s
justi�ed belief in our formal syntax theory EA, and it is a basic assumption of
our framework that such justi�cation is compatible with any of the particular
justi�cations one might have for di�erent choices of g. The deductive lightness
of reflection just described enables one to justi�edly believe ∀xi.

Consequently, given one’s justi�cation for g , all reasoning steps in Proposi-
tion 1 can be seen to preserve such a justi�cation. Closure of justi�ed belief
under logical context in our abstract and mathematical context then entails that
Uniform Re�ection is also justi�ed on the basis of g.

5. Epistemic Stability

Walter Dean has recently proposed the notion of epistemic stability to unify
di�erent foundational standpoints by emphasizing analogies between their epis-
temic commitments. A formal mathematical theory is said to be epistemically
stable if ‘there exists a coherent rationale for accepting [it] which does not en-
tail or otherwise oblige a theorist to accept statements which cannot be derived
from [its] axioms’ (Dean, 2015). Epistemic stability intends to explain how the
�nitist, the predicativist, the �rst-orderist,19 although advocating systems that
greatly di�er in strength and scope, can nonetheless share a common attitude
towards their preferred formal systems.

Our theory of implicit commitment puts the notion of epistemic stability
into question. We argue that, if one sticks with the given de�nition of epistemic
stability, there cannot be epistemically stable theories. We also suggest a possible
way out for the advocate of epistemic stability, based on a weaker formulation
of it.

On the most straightforward understanding of Dean’s de�nition of epistemic
stability, the agent is aware of a coherent rationale for believing in the mathe-
matical theory under consideration. What has been said in the previous section,
however, can be adapted to show that such a coherent rationale is preserved to
the consequences of invariance and reflection for the theory. In addition, we
take to be a basic presupposition of this coherent rationale that whoever pos-
sesses it possesses also the capability of recognizing whether or not a syntactic
object is an axiom of the theory. Proposition 1 then tells us that all instances of

19We are employing here the terminology from (Dean, 2015): a �rst-orderist is someone who
believes that Peano Arithmetic is sound and complete with respect to �nite mathematics. This
position is close to what is known as Isaacson’s Thesis.
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Uniform Re�ection for the theory can be warranted by this rationale. There-
fore, no theory can be epistemically stable after all.

For instance, let’s consider the example of a �rst-orderist as depicted by Isaac-
son (1987). According to Isaacson, PA is sound and complete with respect
to �nite mathematics. This is essentially because the axioms of PA are ‘�rst-
orderizations’ of the second-order arithmetical axioms, whose truth can be di-
rectly perceivable on the basis of our grasp of the structure of natural numbers.
This rationale is taken by Dean to witness the epistemic stability of PA, and
it ‘stands in con�ict with the version of ICT which holds that acceptance of a
theory [PA] always entails commitment to principles such as RFN(PA)’ (Dean,
2015, p. 59). We do not take a stance on whether Isaacson’s account of PA
actually amounts to a coherent rationale that �ts Dean’s de�nition of epistemic
stability. For our purposes, it su�ces to point out that it would not be possible
to accept PA without possessing a general notion of what an axiom of PA is. And
this for us su�cient to transfer acceptance of PA on the basis of this rationale
to the consequences of invariance and reflection for PA. And this, as shown
above, include several PA-unprovable statements in Lℕ.

To avoid this conclusion, the advocate of epistemic stability could dispense
with the notion of acceptance or belief altogether in the formulation of epis-
temic stability. An epistemically stable theory g would then be one for which
there exists a coherent rationale for working in it which does not entail state-
ments that cannot be derived from its axioms. To illustrate this, let’s consider
the example of a �nitist as depicted by Tait (1981). As Tait admits, the char-
acterization of primitive recursive functions as the �nitist ones is out of reach
for the �nitist theorist. Consequently, so is the formulation of PRA as a formal
system. However, the simple combinatorial intuition of a �nite sequence may
be su�cient to locally ground all �nitist proofs (Tait, 1981, p. 529�). In other
words, one may regard PRA as sound and complete with respect to �nitistic rea-
soning, and at the same time deny that any actual �nitist believes in PRA in its
full form. In fact, any justi�cation of PRA that involves a global understanding
of its syntactic structure qua formal system, by our results, would support also
PRA-unprovable claims.

The example of PRA makes it clear that, although this reformulation of
epistemic stability would not immediately contradict the Implicit Commitment
Thesis, there are serious issues with it. The advocate of this form of epistemic
stability would need to clarify in which way a theorist could coherently hold
some foundational standpoint without having access to the very axioms that
capture it. We feel that the burden of the proof is on the defender of the new
version of epistemic stability, and rest content with pointing out the the original
version of epistemic stability is not a viable option.
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Finally, in §6.3 we will discuss another potential problem for epistemic sta-
bility, applying to any advocate of the epistemic stability of a theory g who is
happy to commit to minimal truth-theoretic extensions of g.

6. Other Proposals

In this section we connect our proposal with other approaches in the liteature.

6.1. Re�ection as Entitlement. Although we have argued that both invariance
and reflection preserve justi�ed belief, our formal theory can shed light on po-
sitions that regard soundness statements for a base theory g as warranted by
entitlements and not directly by justi�cations. One such view is advanced in
Horsten and Leigh (2017), where it is argued that whenever one is justi�ed in
believing a base theory g , one is entitled to a uniform re�ection principle for g.
Horsten and Leigh’s picture apply this idea to the case in which g is a theory
of disquotational truth, and use re�ection to obtain compositional principles for
truth: ‘the compositionality of truth is implicitly contained in disquotational ax-
ioms’ (Horsten and Leigh, 2017, p. 209). It’s not entirely clear what is the status
of such compositional principles in Horsten and Leigh’s picture – whether we
are only entitled to them, or fully justi�ed in believing them –, but they are cer-
tainly logical consequences of a complex net of justi�cations and entitlements.

A more articulated picture is given in Fischer et al. (ming). There it is argued
that, given one’s justi�ed belief in a base theory g in a suitable nonclassical logic,
the interplay between two kinds of entitlements (one to full disquotational truth,
and the other to uniform re�ection) can yield justi�ed belief of some newmath-
ematical theorems. The proposal is reminiscent of Crispin Wright’s accout of
logical knowledge, in which the transition between entitlements to logical prin-
ciples and their justi�cation is tracked by the distinction between rule formula-
tion of such principles and their object-linguistic formulation by means of the
material conditional.

Both approaches are based on the idea that justi�ed belief in g supports an
entitlement to Uniform Re�ection for g. Our formal theory of implicit com-
mitment presented in §3.2 provides a further analysis of the structure of the
entitlements involved in the re�ection process. In §4 we argued that invariance
preserves justi�ed belief because all the transformations required by elementary
reducibility are completely transparent to the theory g one starts with. We be-
lieve that our line of reasoning is available to the proponent of the entitlement-
only approach to Uniform Re�ection as well. Hence our formal framework
can be used to locate the source of the entitlement in a principle that is properly
weaker than Uniform Re�ection. This is a precise sense in which the analysis of
implicit commitment via entitlement may be sharpened by our proposal.
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6.2. Believability. Cezary Cieśliński analyses the notion of acceptance and pro-
vides a formal model for it. After critically evaluating some alternatives, he
�nally adopts the following reading of ‘agent S accepts g ’:

S believes that for every theorem i of g there is a normally-
good-enough reason to believe that i. (Cieśliński, 2017, p. 251)

‘Having a normally-good-enough reason’ is abbreviated as ‘being believable’,20

so we shall employ it as well in the context of Cieśliński’s system.
Cieśliński de�nes a formal theory of believability for a system g (denoted

Bel (g)). It contains an additional predicate B for ‘believable’ and extends g

with the following axioms, where gB denotes the trivial extension of g with no
non-logical axioms for the predicate B:

REF ∀i ProvgB (i) → B(i).
MP ∀i, k B(i) ∧ B(i→ k) → B(k).
lR ∀i B(∀xB(i( ¤x))) → B(∀xi(x))

Finally, the entire system is closed under the necessitation rule, nec,
i

B(piq) .

Then, the implicit commitments of g are de�ned as the internal theory ofBel (g),
i.e. the set

IntBel (g) = {i ∈ LB | Bel (g) ` B(i)}.
Crucially, Cieśliński shows that IntBel (g) contains l-iterations of Uniform Re-
�ection over g , and therefore a highly non-trivial set of commitments for g.

The �rst di�erence between Cieśliński’s approach and ours is that he investi-
gates the notion of believability (as explained above), while we stick to the more
familiar one of justi�ed belief. The di�erence between the two is substantial: for
Cieśliński the transition from ‘i is believable’ to ‘I believe i’ is not immediate,
for there might be some independent reasons which make us reject i. In such
a situation it might even be the case that both i and ¬i are believable. This
virtue makes the notion of commitment based on believability rather weak and
a conditional one: if i is believable, then we are committed to it unless ¬i is
believable as well. As a consequence, we cannot conclude that ict holds un-
conditionally, even with respect to arithmetical theories. Admittedly, this does
not do much harm to the main claim of Cieśliński’s. However, it makes his
conceptual analysis not applicable to our project of vindicating ict.

The next di�erence lies in the complexity of rules used in the formal model.
Although lR (and its predeccesor gen from Cieśliński (2017)) inspired our re-
flection, we think that our axiom is signi�cantly simpler: Cieśliński assumes

20Although perhaps ‘believable’ is not the best choice, since it may be confused with the weaker
‘it’s possible to believe’.
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that the set of believable sentences is closed under lR. Together with nec this
yields closure under the following rule of reasoning

∀xB(i( ¤x))
B(p∀xi(x)q) .

Our reflection axiom rests on weaker assumptions: wemight infer∀xi(x) only
if we establish (i.e. prove in g) that for every x, i(x) is an axiom of the accepted
theory. Moreover, g (x) is an elementary formula, hence membership in g can
easily be decided.

We �nally come to our main worry concerning Cieśliński’s theory of believ-
ability. It concerns the closure under the rule nec. Cieśliński argues that it is
justi�ed, since ‘a proof of i in Bel (g) is provided, it is simply the proof itself,
which is seen as good reason to accept i’ (Cieśliński, 2017, p. 254-55). We
have no doubt that, if g is accepted, proofs in g amount to good reasons to accept
their conclusions. But what grounds our acceptance of proofs in Bel(g)? This is
left unjusti�ed by Cieśliński. One might try to overcome the issue by showing
that applying nec to derivations outside of g is not necessary to yield non-trivial
implicit commitments. Let us de�ne the system Bel ′(g) to be the restriction of
Bel (g) in which the rule nec can be applied only once and only to consequences
of g. Unfortunately, in all cases of interest, this system does not produce any
non-trivial implicit commitments. The following proposition shows that the
strength of IntBel (g) essentially lies in the interplay between the rule NEC and
the the axioms for the believability predicate.

Proposition 2. Let g be Σ1-sound. Then IntBel′ (g) is conservative over g .

Proof. Fix g. We shall show how to interpret Bel ′(g) in g. Let us de�ne the
translation ∗ by recursion in g , putting

B(t)∗ = ProvgB (t)

and letting ∗ be identity on the arithmetical formulae and commute with con-
nectives and quanti�ers (hence ∗ does not relativize quanti�ers). Now, we check
that if i is an axiom of Bel ′(g), then g ` i∗. For (REF) and (MP) this is obvious.
Let us check lR. Observe that(

∀i(B(∀xB(i( ¤x))) → B(∀xi(x)))
)∗

is equal to
∀i

(
ProvgB (∀xB(i( ¤x))) → ProvgB (∀xi(x))

)
.

Reasoning in g , we see that for every i the antecedent of the implication is false,
since it is consistent with pure logic that the extension of B is empty. Hence
(lR)∗ is provable in g as well. Finally, we deal with NEC: whenever we have a
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Bel ′(g) proof
(i0 , . . . , ik , B(pikq))

ending with an application of the NEC rule, then we know (by the restriction
on Bel ′), that

(i0 , . . . , ik)
is a proof in g. Hence g ` Provg (pikq), since Provg weakly represents prov-
ability in g. Consequently, g ` Provg (pikq), which witnesses that ∗ is indeed
an interpretation.

Now it follows that for every arithmetical i, if IntBel′ (g) ` i, and thenBel ′(g) `
B(piq). Hence, by the above considerations, g ` ProvgB (piq). ByΣ1-soundness
of g , it follows that gB ` i. However, gB is trivially conservative over g , so it
follows that g ` i. �

6.3. The semantic core. Nicolai and Piazza (2018) react to Dean’s counterex-
amples to ict. They argued that, even in epistemically stable theories g , one
can isolate a set of non-trivial implicit commitments, which are nonetheless
conservative over g. This is the basic idea of their semantic core, a minimal set
of implicit commitments that is shared by anyone accepting g. Formally, the
semantic core consists in an extension of g with a compositional theory of truth
over g and the sentence

(∗) All sentences in g are true.

Let is call such an extension of g CT− [g]. Crucially, in many natural cases
CT− [g] is a conservative extension of g. Building on this, Nicolai and Piazza
argue that epistemic stability is compatible with non-trivial commitments. In
other words, they o�er the following Weak Implicit Commitments Thesis:

wict: In accepting a formal system g one is also committed
to additional resources not available in the starting theory g –
i.e.CT− [g] – but whose acceptance is implicit in the acceptance
of g.

We shall now show that, modulo invariance, wict implies its original, stronger
version.

The theory CT− [PA] is conservative over PA if PA is formally represented
as �nitely many axioms ofQ and the induction scheme (Kotlarski et al., 1981).
However, consider

PARFN := EA + RFN(EA).
Kreisel showed that PARFN and PA are the same theory, and this fact can be
formalized in EA. The two theories are then elementarily equivalent (Beklemi-
shev, 2005). However, CT− [PARFN] proves the global re�ection principle over
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EA,21 i.e. the sentence

∀i
(
ProvEA (i) → T(i)

)
.

By a result Cieślńiski (2010), already the assertion that logical validites are true,
that is

CT−(PA) + ∀i
(
Prov∅ (i) → T(i)

)
implies the Global Re�ection principle for PA, that is the sentence:

∀i
(
ProvPA (i) → T(i)

)
.

Therefore,CT− [PARFN] is non-conservative overPA. In fact, it is much stronger:
not only CT− [PARFN] proves the uniform re�ection over PA, but it also able
to demonstrate each �nite number of iterations of uniform re�ection over PA
(Kotlarski, 1986; Smoryński, 1977; Cieśliński, 2017; Łełyk, 2017).

Nicolai and Piazza (2018)’s proposal only applies to schematic theories, that is
theories that g can be presented bymeans of some �rst order formula i(P) with
a free second order variable P such that g (x) says:22

There is a k (y) such that x is the result of replacing P (y) with k (y) in i.

Admittedly, schematic theories include a substantial variety of natural axioma-
tizations of foundationally relevant mathematical theories. However, what we
said about invariance, we should not disregard non-schematic presentations of
theories such as PARFN: they are also quite natural qua axiomatizations by re-
�eciton and are elementarily equivalent to schematic presentations.

That being said, we believe that the semantic core captures a very natural no-
tion of implicit commitment involving a truth predicate. Our observations can
therefore be also seen as a reductio argument for the notion of epistemic sta-
bility. If one accepts truth-theoretic extensions of g to articulate impilcit com-
mitment, the fact that even wict leads beyond what’s provable in g amounts to
additional evidence of the problematic nature of the notion of epistemic stabil-
ity.

21Indeed, reasoning internally in CT− [PARFN] for every i the sentence

ProvEA (i) → i

is an axiom of PARFN. Hence, within CT− [PARFN] we have ∀iT(ProvEA ( ¤i)→. i) and by com-
positional axioms we deduce

∀i
(
ProvEA ( ¤i) → T(i)

)
.

22Leigh (2015) proves in fact that, for schematic theories g , CT− [g] is always conservative over
g.
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7. Conclusion

In this paper we have proposed a theory of (the necessary conditions for)
implicit commitment for formal mathematical theories. The theory aims to
justify the move from justi�ed belief in a theory to its own soundness assertions,
and to provide a better framework to study the epistemology involved in the
process.

From the formal point of view, the theory provides an analysis of one’s mini-
mal commitments implicit in the acceptance of a theory g in terms of two simple
axioms, invariance and reflection. Unlike standard formal soundness claims
for g , these axioms may be conservatively interpreted in g. However, when
combined, they necessarily entail the uniform re�ection for g.

The main consequence of this formal framework is that justi�ed belief in g

can be preserved, via the principles of invariance and reflection, to Uniform
Re�ection for g. The framework has consequences for other aspects of the epis-
temology of proof-theoretic re�ection. On the one hand, the recent analysis of
it in terms of entitlement can be substantially re�ned by it. Moreover, our the-
ory puts into question the notion of epistemic stability, which has been recently
employed to support foundational standpoints that aim to isolate epistemolog-
ically privileged portions of the mathematical universe.
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