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O R I G I N A L A R T I C L E

Primitive Recursion and Isaacson’s Thesis

Oliver Tatton-Brown

University of Bristol

Although Peano arithmetic (PA) is necessarily incomplete, Isaacson argued that it is in a sense
conceptually complete: proving a statement of the language of PA that is independent of PA
will require conceptual resources beyond those needed to understand PA. This paper gives a
test of Isaacon’s thesis. Understanding PA requires understanding the functions of addition and
multiplication. It is argued that grasping these primitive recursive functions involves grasping
the double ancestral, a generalized version of the ancestral operator. Thus, we can test Isaacon’s
thesis by seeing whether when we phrase arithmetic in a context with the double ancestral
operator, the result is conservative over PA. This is a stronger version of the test given by
Smith, who argued that understanding the predicate “natural number” requires understanding
the ancestral operator, but did not investigate what is required to understand the arithmetic
functions.
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Though first-order Peano arithmetic [PA] is necessarily incomplete, Isaacson (1987,
1992) famously argues that there is a sense in which it is complete: it captures
the purely arithmetical content of our concept of natural number. The idea is
that to prove an arithmetical sentence which is unprovable in PA, one will have
to employ further ideas, such as higher order concepts or reflections on the con-
sistency or truth of the axioms of PA. These further ideas go beyond the purely
arithmetic. The thesis that PA is complete in this sense is known as Isaacson’s
thesis.

Isaacson argues mainly by looking at examples of true sentences unprovable in PA,
and seeing what is needed to prove them. Smith (2008) gives a different argument for the
same basic thesis, arguing that understanding the predicate “natural number” amounts to
understanding the ancestral operator—and thus that the truth of Isaacon’s thesis rests on
whether when you supplement PA with the ancestral operator in the appropriate way, the
result is conservative over PA. It is not difficult to show that it is, giving positive support
to Isaacson’s thesis.

This is all very well as far as it goes, but it does not (in my view) go far enough. The same
questions asked of the predicate “natural number” should be asked of the functions of
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addition and multiplication. In PA, these functions are assigned symbols in the language,
governed by the axioms

x + 0 = x

x + Sy = S
(

x + y
)

x × 0 = 0

x × Sy =
(

x × y
)
+ x

where S is the successor operation on numbers. Just as we can ask how we form the
predicate “natural number” and know its axiomatization in PA is appropriate, we can
ask this of + and ×. We are not simply positing these functions, assuming that there are
valid operations on numbers with these properties. We are not imposing these operations
by fiat—perhaps starting with multiple candidate infinite sequences, and then narrowing
our attention to those which happen to allow these operations. We feel we can see that
numbers are the kind of things which can be added and multiplied in the way these
axioms describe. Grasping this is part of grasping the axioms of PA. But how do we grasp
this? How do we come to see that we can introduce functions like this, which are total
and single and satisfy the relevant equations? As we will see, this question has a satisfying
answer in the form of a double version of the ancestral operator.

Since the double ancestral provides a plausible and satisfying account of our grasp
of these primitive recursive functions, we obtain a new test of Isaacson’s thesis: when
arithmetic is phrased in terms of the double ancestral, is the resulting theory conservative
over PA? This is a stronger test than Smith’s since this theory straightforwardly interprets
the ancestral arithmetic used in his test.

As another incidental application, since the double ancestral is an ontologically
innocent operator, it follows that a nominalist can make blameless use of primitive
recursion (without any need to quantify over functions as objects).

1 The thesis

The first task is to clarify what the thesis states. Without going into the details of Isaacson’s
original arguments, one can extract from his writings the following central idea (here we
let LA be the language of PA):

Proving a statement of LA that is unprovable in PA will require employing concepts
beyond those required to grasp the basic concepts of arithmetic: natural number,
successor, induction, addition and multiplication.

This is what I mean by Isaacson’s thesis in this paper.
How strong a thesis this is will depend on how strong a notion of “grasp” one works

with—to fully understand a certain concept, how much further one’s understanding
should extend. In general, these questions can be difficult. Sometimes there is a consensus,
as in the generally held view that one can properly grasp first-order logic without being
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able to understand second-order logic. Things are not always so clear though—can one
fully grasp fifth-order logic without being able to grasp sixth-order logic?

What the thesis amounts to may also depend on what one takes the right interpretation
of arithmetic to be. For instance, suppose one defended a conception of arithmetic
as being about strings formed from some particular symbol ∣. This is essentially the
conception of Hilbert (1990), and is developed in more detail by Parsons (2007), though
they are concerned particularly with intuitive aspects of the theory and avoid arbitrary
quantification over the domain. It may be that one could describe a first-order theory
of the strings, interpret PA in this theory, and argue that our grasp of the concepts of
arithmetic amounted to a grasp of this theory of strings (this is not what the authors
mentioned argue). Then if one could show that this theory of strings was conservative
over PA, one would have evidence for one version of Isaacson’s thesis. However, this
would be a very limited version of Isaacson’s thesis, entirely dependent on the claim
that a proper grasp of arithmetic amounts to a grasp of this theory of strings and
should be expected to extend no further. It would be more an argument for a particular
interpretation of arithmetic than for Isaacson’s thesis in general.

The best defense of Isaacson’s thesis would be one which examines the axioms of PA
themselves, rather than relying on any particular interpretation of them. One will also
obtain a stronger version of Isaacson’s thesis if one is liberal in the notion of “grasp” one
uses—liberal in questions of what further concepts proper grasp of a particular concept
entails.

2 The argument

Smith (2008) gives a better argument for the thesis than the hypothetical string based one
just sketched. He focuses on what is required to grasp the concept of natural number. The
basic thought is that

understanding quantification over the [natural] numbers involves understanding
that the numbers are zero, the next number, the one after that, and so on, without
limit —and understanding too that these are the only numbers. Which is in effect to
grasp the thought that every number stands in the ancestral of the successor relation
to zero. (ibid., pp. 3–4, emphasis his)

Smith thus argues that grasping the concept “natural number” amounts to grasping the
ancestral operator. This allows him to set a test for Isaacson’s thesis. He supplements
PA with the ancestral operator, to give what he calls “ancestral arithmetic.” Then, if
grasping the concept “natural number” amounts to grasping the ancestral operator,
Isaacson’s thesis requires that anything provable in this ancestral arithmetic is already
provable in PA, that is, that ancestral arithmetic is conservative over PA. This Smith shows
straightforwardly, giving positive support to Isaacson’s thesis.

However, Smith’s account misses out a crucial part of arithmetic, as discussed initially:
the functions of addition and multiplication. We want to know how we grasp that
numbers are the kinds of things that can be added and multiplied. One approach is to
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define addition and multiplication in full second-order logic, which one can do given
the successor operation and a second-order induction axiom. It would be a surprise if
quantifying over relations was necessary to grasp these primitive recursive functions,
however. If true, that would presumably disprove Isaacson’s thesis as understood here.

It would also suggest that primitive recursion will be unavailable to a nominalist:
although a nominalist will not be discussing addition and multiplication of numbers,
there may be other contexts where they wish to use primitive recursion, for instance
involving concretely instantiated infinite sequences. If understanding primitive recursion
required quantifying over relations that looks impossible, however.

The main claim of this paper is that the double ancestral gives us a satisfying analysis
of how one can grasp these kinds of primitive recursive functions, in the same way the
ancestral does for the concept of “natural number.” This gives rise to a new, stronger test
of Isaacson’s thesis, in terms of what I call double ancestral arithmetic.

In the course of this argument, certain judgments about what is involved in the grasp
of some concept are required. As noted above, these will be a necessary part of any
discussion of Isaacson’s thesis. In particular, I will take it as given that appealing to a
pairing function for natural numbers would be a very bad explanation of our grasp of
addition and multiplication. The ability to form a pair (m, n) of two natural numbers,
either as a self-standing object or via an injectionℕ2 →ℕ, seems to be no part of our usual
understanding of PA. Pedagogically, our understanding of addition and multiplication
has nothing to do with a pairing function ℕ2 →ℕ—we learn addition and multiplication
long before learning about a pairing function, and students are often surprised to discover
that such an injection exists. Grasping abstract pairs or general tuples of natural numbers
also seems to be no part of our initial conception of arithmetic.

One issue I will not address is the Neo-Fregean analysis of arithmetic. They might
argue that arithmetic is properly understood in terms of cardinality, using second-order
logic augmented with Hume’s principle. If that were true it would present a major chal-
lenge to Isaacson’s thesis as understood here. I do not find the Neo-Fregean arguments
convincing, but they are not the subject of this paper, and will have to be set to one side.

3 The ancestral and the double ancestral

The prototypical instance of the ancestral operator is the relation “ancestor.” Similarly a
prototypical example of the double ancestral operator is the relation “ancestor of the same
generation.” Figure 1 illustrates this diagrammatically: illustrating the relation ASG(x, y)
between ancestors of Jeff and ancestors of Sarah, of x being an ancestor of Jeff of the same
generation as y is an ancestor of Sarah.

We can illustrate the general case of the double ancestral operator in the same way,
seen in Figure 2. To better suit its application to primitive recursive functions, we will
use the reflexive form—this corresponds to a modification of the “ancestor of the same
generation” relation to include Jeff as an ancestor of Jeff of the same generation as Sarah
is of Sarah. We let ϕ(x, y) and ψ(w, z) be two place relations, and write (ϕ,ψ)*(c, d, x, y)
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Figure 1: The “ancestor of the same generation” relation.

to indicate that the double ancestral of ϕ and ψ holds of c, d, x and y. In Figure 2, we use

a
ϕ
−−→ b to indicate that ϕ(a, b) holds, a

ψ
−−→ b similarly.

We can also informally explain (ϕ,ψ)* in prose. We have that the relation
(ϕ,ψ)*(c, d, x, y) holds iff

• x= c and y= d
• Or ϕ(c, x) and ψ(d, y)
• Or there are u and v such that ϕ(c, u) and ϕ(u, x), and ψ(d, v) and ψ(v, y)
• Or there are u, u′ and v, v′ such that ϕ(c, u) and ϕ(u, u′) and ϕ(u′ , x), and ψ(d, v)

and ψ(v, v′) and ψ(v′ , y)
• Or there are u, u′ , u′′ and v, v′ , v′′ such that ϕ(c, u) and ϕ(u, u′) and ϕ(u′ , u′′) and

ϕ(u′′ , x), and ψ(d, v) and ψ(v, v′) and ψ(v′ , v′′) and ψ(v′′ , y)
• …

and so on (and these are the only objects related by (ϕ,ψ)*). This is strictly analogous
to how one would informally explain the ancestral, except that it is a simultaneous
description involving two relations ϕ and ψ rather than just one—if you left out all
mention of d, y and ψ from the above you would have a description of what is required
for the ancestral ϕ*(c, x) to hold.

One can give a precise definition of the double ancestral using finite sequences. We
have that (ϕ,ψ)*(c, d, x, y) holds iff for some n≥ 0 we have sequences (a0, … an) and
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…

Any x up here

(φ,ψ )*(c, d, x, y )
with any y
down here

Figure 2: The double ancestral of ϕ and ψ.

(b0 … bn) such that c= a0, d= b0, x= an, y= bn, and for all i= 0… (n− 1) we have
ϕ(ai, ai+ 1) and ψ(bi, bi+ 1). One can also give a definition in second-order logic, where
the relation {(x, y) * (ϕ,ψ)*(c, d, x, y)} is the intersection of all relations R such that R(c,
d) and such that if R(x, y) and ϕ(x, w) and ψ(y, z) then R(w, z).

However, there seems no reason to think that understanding predicates formed from
the double ancestral operator requires one of these definitions—any more than for the
ancestral operator. Smith (2008) and Avron (2003) argue that an explicit definition of
the ancestral is not necessary, and that the ancestral operator can be thought of as a
conceptual primitive occupying a valid middle ground between first- and second-order
logic.1 Exactly the same arguments can be used for the double ancestral.

One attractive way to argue for the ancestral and double ancestral as primitives is to
argue that we grasp them by grasping the introduction and elimination rules for them, as
with other logical vocabulary (helped by informal explication, again as with other logical
vocabulary). This view of ancestral style predicates is urged by Parsons (2007, Chapter 8),
and exactly the same could be said of relations formed by the double ancestral.

We will see these rules for the double ancestral in a second, but first we will characterize
it in stricter logical terms. Formally the double ancestral is an operator on formulae that
produces relation symbols. We introduce an extra clause into the recursive definition
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of formulae for the language: if ϕ and ψ are formulae, x1, x2 are distinct variables,
y1, y2 are distinct variables and s1, s2, t2, t2 are terms, then we obtain a formula
(ϕ,ψ)∗x1,x2,y1,y2

(
s1, t1, s2, t2

)
. Free occurrences of x1, x2 in ϕ become bound in this

formula, as do free occurrences of y1, y2 in ψ.
Now onto the rules for the double ancestral. We will see shortly that it can be used

to play the role of the (single) ancestral, so since there is no complete effective deductive
system for the ancestral operator (Shapiro 2000), there isn’t one for the double ancestral
operator either. However, we can still give natural deductive rules that capture the
reasoning we use for it in practice. These parallel those for the ancestral described by
Smith, and the rules for the predicate “natural number” described and defended by
Parsons (2007, Chapter 8). It is these rules that will be used to test Isaacson’s thesis, so that
if one could argue that there were further inferences that a grasp of the double ancestral
should license, the test of Isaacson’s thesis would be undermined; there are no obvious
candidates for this though. I use ϕ[t| x] to denote the substitution of the term t for free
occurrences of variable x in ϕ.

s1 = t1s2 = t2

(ϕ,ψ)∗−→x ,−→y
(

s1, t1, s2, t2
)

(ϕ,ψ)∗−→x ,−→y
(

s1, t1, s2, t2
)
ϕ
[
s2|x1, s3|x2

]
ψ
[
t2|y1, t3|y2

]

(ϕ,ψ)∗−→x ,−→y
(

s1, t1, s3, t3
)

∀−→x−→y
((
χ
(

x1, y1
)
∧ ϕ ∧ ψ

)
⇒ χ

[
x2|x1, y2|y1

])
(ϕ,ψ)∗−→x ,−→y

(
s1, t1, s2, t2

)

χ
[
s1|x1, t1|y1

]
⇒ χ

[
s2|x1, t2|y1

]

In the third rule, we require that y1 and y2 are not free in χ. The first two rules give ways
of showing that objects lie under the generalized ancestral, the third is an induction rule:
if some property χ is preserved by ϕ together with ψ, then it is preserved by (ϕ,ψ)∗−→x ,−→y .

We now quickly sketch a semantics for this. If A is a structure for the language and v a
variable assignment over A, then we stipulate that D, v ⊨ (ϕ,ψ)∗−→x ,−→y

(
s1, t1, s2, t2

)
iff there

exist sequences (a0, … an) and (b0, … bn) for some n≥ 0 such that a1 = v(s1), b1 = v(t1),
an = v(s2), bn = v(t2), and for each i= 0… (n− 1) we have A, v(x1 → ai, x2 → ai+ 1)⊨ϕ
and v(y1 → bi, y2 → bi+ 1)⊨ψ. Otherwise one can employ the generalized ancestral in the
meta-language for this clause.

Next, we note that the double ancestral operator can be used to define the ancestral
operator. If we have a relationϕ(x, y) for which we wish to form the ancestral (ϕ)∗x,y (w, z),
we can take some variables u1, u2 distinct from x, y, w, z, takeψ to be “u1 = u2,” and take
(ϕ)∗x,y (w, z) to be ∃u1

(
(ϕ,ψ)∗x,y,u1,u2

(
w, u1, z, u1

) )
. It is an easy check that this has the

right semantics and satisfies Smith’s deductive rules.
The double ancestral defined here is a special case of the two place generalized

ancestral, which was defined by Martin (1943). Avron (2003, pp. 157–58) also discusses
the generalized ancestral, and proves that it cannot be defined in terms of the ancestral. As
we will soon see, the double ancestral can be used to define primitive recursive functions,
so Avron’s proof also shows that the double ancestral cannot be defined in terms of the

10 Thought 8 (2019) 4–15

© 2018 The Author. Thought: A Journal of Philosophy published by The Thought Trust and Wiley Periodicals, Inc.



Oliver Tatton-Brown Primitive Recursion and Isaacson’s Thesis

ancestral. It is possible to define the generalized ancestral (and thus the double ancestral)
in terms of the ancestral if one has a pairing function on objects, as we will see in
Proposition 5.1. However, as noted in Section 2, trying to explain our grasp of addition
and multiplication in terms of a pairing function is a very unattractive route. One can
directly form relations defined using, and see this to be valid, the double ancestral, just as
one can directly form predicates defined using the ancestral.

I focus on the double ancestral rather than the generalized ancestral in this paper
because it allows a simpler informal characterization, and is a closer fit for the case
of primitive recursive functions. One could argue that anyone who grasps the double
ancestral should be able to grasp the two place generalized ancestral; whether or not that
is correct, the conservativeness argument given later would also apply to the two place
generalized ancestral, so Isaacson’s thesis is safe either way.

4 Primitive recursion and the double ancestral

When Smith argues that a grasp of the ancestral is used to understand the predicate
“natural number,” he does so by pointing out that

understanding quantification over the [natural] numbers involves understanding
that the numbers are zero, the next number, the one after that, and so on, without
limit —and understanding too that these are the only numbers. Which is in effect to
grasp the thought that every number stands in the ancestral of the successor relation
to zero. (Smith 2008, pp. 3–4, emphasis his)

Fix an object a and a function f , and consider the primitive recursive function g
defined by

g (0) = a

g (S (n)) = f
(

g (n)
)
.

a might be any object (not necessarily a number). Exactly parallel to the above
explication of what it is to understand the predicate “natural number,” we can say that

understanding the function g involves understanding that g applied to zero gives a,
that g applied to the next number after zero is f of g applied to zero, that g applied to
the next number after that is f of g applied to that number, that g applied to the next
number after that is f of g applied to that number, and so on.

Understanding some sort of informal explication along these lines is how we under-
stand what we mean by g, and why we can introduce a function symbol with these
properties—in exactly the same way as understanding the ancestral is how we know we
can form the predicate “natural number.” The above is doubtless less clear than the ear-
lier explication of “natural number,” but it has a parallel structure, just involving twice
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0 S(0) S(S(0)) S(S(S(0))) …S S S S

a f(a) f(f(a)) f(f(f(a))) …
f f f f

g(0) = a
Also

g(S (0)) = f (a)
Also g(S (S (0))) =

f (f (a))
…

Also
g(S (S (S (0)))) =

f (f (f (a)))

Figure 3: Primitive recursion via the double ancestral.

as many objects. It is also visibly an explication of the function g in terms of the double
ancestral. This is illustrated diagrammatically in Figure 3.

Comparing this to Figure 1 and Figure 2 makes it pretty clear, I think, that definition by
primitive recursive is a straightforward case of the double ancestral; and, in fact, that the
double ancestral generalizes definition by primitive recursive in an exactly parallel way
to how the ancestral generalizes the definition of the concept “natural number.” We can
see the same thing happening in prose. We can describe the above function g by saying
g(x)= y iff

• x= 0 and y= a
• Or x= S(0) and y= f (a)
• Or there are u and v such that u= S(0) and x= S(u), and v= f (a) and y= f (v)
• Or there are u, u′ and v, v′ such that u= S(0) and u′ = S(u) and x= S(u′), and v= f (a)

and v′ = f (v) and y= f (v′′)
• Or there are u, u′ , u′′ and v, v′ , v′′ such that u= S(0) and u′ = S(u) and u′′ = S(u′)

and x= S(u′′), and v= f (a) and v′ = f (v) and v′′ = f (v′′) and y= f (v′′)
• …

and so on (and these are the only objects related by g). This is visibly an example of a
definition of which the prose characterization of (ϕ,ψ)*(c, d, x, y) seen in Section 3 is the
general form.

Exactly as Smith argues that grasping the concept natural number means grasping it as
an instance of the ancestral operator, we can argue that grasping a definition by primitive
recursion means grasping it as an instance of the double ancestral operator. There seems
to be no good reason why anyone who can grasp a function defined by primitive recursion
should not be able to grasp other instances of the double ancestral.

There are interpretations of arithmetic on which addition and multiplication might not
be seen as given by primitive recursion: for instance, the approach of Neo-Fregeanism via
cardinality, and the interpretation of arithmetic in intuitive terms via strings of symbols
are given by Parsons (2007). As noted in Section 1, a Neo-Fregean perspective does seem
to present major problems for Isaacson’s thesis, which I cannot address here. Parsons
does argue that addition and multiplication in the context of strings should be seen as
intuitively distinct from other primitive recursive functions (ibid., Chapter 7), but this is
very much a result about his particular notion of intuition, and this string based context.
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© 2018 The Author. Thought: A Journal of Philosophy published by The Thought Trust and Wiley Periodicals, Inc.



Oliver Tatton-Brown Primitive Recursion and Isaacson’s Thesis

He does not argue that this string interpretation is the true interpretation of arithmetic,
and does not argue that it gives an interpretation of all of PA. Thus, his views (even if
correct) do not present much of a challenge to the perspective here.

5 Double ancestral arithmetic

With the logic defined, we can phrase arithmetic in it, and see how the informal
characterizations of addition and multiplication earlier do correspond to simple formal
definitions using the double ancestral.

We call the theory of arithmetic in double ancestral logic double ancestral arithmetic.
It has a language with the constant 0 and the successor function S. Defining the ancestral
(ϕ)∗x,y (w, z) in terms of the double ancestral as seen in Section 3 (or taking it as an extra
primitive), the axioms are:

(1) ∀x (v = S(u))∗u,v (0, x)

(2) ∀x S(x) ≠ 0

(3) ∀xy
(

S(x) = S
(

y
)
→ x = y

)
.

This is a particularly simple and natural axiomatization—all we need is that every
number is a successor of 0, and that the successor function is injective without 0 in its
range. It is categorical because of the standard semantics for the double ancestral, and
thus for the relation (v = S (u))∗u,v.

We can give an informal characterization of addition similar to that of general
primitive recursive functions:

Adding 0 to x gives you x, adding 1 to x gives you Sx, adding 2 to x gives you SSx,
adding 3 to x gives you SSSx, and so on.

It follows that the relation x+ y= z can be captured by the double ancestral
(

u2 = S
(

u1
)
, v2 = S

(
v1
))∗

u1,u2,v1,v2

(
0, x, y, z

)

(one can visualize a diagram similar to Figure 3 to see how this works). One can prove
straightforwardly in double ancestral arithmetic that this definition does indeed define
a total, single-valued function with value z of its arguments x and y. Using the normal
notation x+ y= z for it, we have that + satisfies the usual equations

x + 0 = x
x + Sy = S

(
x + y

)
.

Similarly, multiplication x× y= z is captured by the double ancestral
(

u2 = S
(

u1
)
, v2 = v1 + x

)∗
u1,u2,v1,v2

(
0, , , 0, y, z

)
.

Again one can prove its usual properties in the theory.
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Thus, one obtains the axioms of Smith’s ancestral arithmetic and (a fortiori) of PA in
double ancestral arithmetic—the instances of the induction axiom scheme follow from
axiom (1). The double ancestral provides the general concept of which addition and
multiplication are a special case. Thus, it provides a useful test case for Isaacson’s thesis.

If Smith is correct that a grasp of the ancestral is what’s needed to grasp the predicate
“natural number,” and the parallel argument here for the double ancestral and primitive
recursion is also correct, then the axiomatization of arithmetic above in terms of the
double ancestral appears to include everything that is needed for a full understanding
of PA (as long as the deductive rules for the ancestral and double ancestral are in some
sense adequate).

Thus, conservativeness of double ancestral arithmetic over PA would imply that
one would have to employ ideas beyond those needed to understand PA in order to
prove a statement of LA that was unprovable in PA. On the other hand, if double
ancestral arithmetic is not conservative over PA, then—on a very natural interpretation
of arithmetic—we would have examples of statements of LA provable using only the
conceptual resources needed to understand PA, so Isaacson’s thesis would be in trouble.

Fortunately for Isaacson’s thesis, we have the following:

Proposition 5.1. Double ancestral arithmetic is conservative over ancestral arithmetic (as
defined by Smith).

Proof. We show that ancestral arithmetic and double ancestral arithmetic are definition-
ally equivalent. Let TAnc be the theory of ancestral arithmetic, LAnc its language and let
TDA be the theory of double ancestral arithmetic and LDA its language. We saw above how
to define the relevant primitives of ancestral arithmetic—the ancestral operator, addition
and multiplication—in terms of the double ancestral. Letϕ → f (ϕ) denote the translation
by these definitions from the LAnc to LDA. We have that if TAnc, Γ⊢ then TDA, f (Γ)⊢ f (ϕ),
since double ancestral arithmetic proves the axioms for the ancestral and addition and
multiplication.

Now in ancestral arithmetic we can define a bijective pairing function α :ℕ2 →ℕ,
where α(x, y)=α(x′ , y′) iff x= x′ and y= y′ . We let the inverse be z → (β1(z), β2(z)). We
will show how to translate statements involving the double ancestral into statements
involving the (standard) ancestral using this. This translation function will be denoted
by g.

The idea is simply that (ϕ,ψ)∗x1,x2,y1,y2

(
s1, t1, s2, t2

)
is equivalent to the ancestral

(
ϕ
[
β1 (x) , β1

(
y
)]
∧ ψ

[
β2 (x) , β2

(
y
)])∗

x,y

(
α
(

s1t1
)
, α

(
s2t2

))
.

This can be easily checked to be the case semantically.
We define g by induction on the number of occurrences of the double ancestral in a

formula. For statements θ of LDA which do not involve RTC2, g(θ) is just θ. For a statement
of the form θ = (ϕ,ψ)∗x1,x2,y1,y2

(
s1, t1, s2, t2

)
, we let ϕ′ be g(ϕ)[β1(x)| x1, β1(y)| x2] andψ′

be g(ψ)[β2(x)| y1, β2(y)| y2], and then define g(θ) to be (ϕ′ ∧ ψ′)∗x,y
(
α
(

s1t1
)
, α

(
s2t2

))
.

g acts on statements built from propositional connectives or quantifiers in the obvious
way, for example, g(θ1 ∧θ2)= g(θ1)∧ g(θ2). It is an easy check that this is an adequate
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definition of the double ancestral, in as much as the deductive rules for the double
ancestral hold: we have that if TDA, Δ⊢ θ then TAnc, g(Δ)⊢ g(θ).

Then, it is not difficult to show f and g give a definitional equivalence (Corcoran 1980),
that is, that for any χ∈ LAnc, we have TAnc ⊢ χ⇐⇒ g(f (χ)), and for any θ∈ LDA, we have
TDA ⊢ θ⇐⇒ f (g(θ)).

Thus, if χ is a formula of LAnc and TDA ⊢ f (χ) then TAnc ⊢ g(f (χ)) so TAnc ⊢ χ. In this
sense, TDA is conservative over TAnc, as claimed. ◽

Putting this together with Smith’s result that ancestral arithmetic is conservative over
PA, we can conclude that double ancestral arithmetic is conservative over PA. Thus,
Isaacson’s thesis passes the test, and looks secure; even more secure than it did after
passing Smith’s test, since we have now taken the functions of addition and multiplication
into account.

Incidentally this argument makes it clear that understanding primitive recursion does
not require quantifying over relations. Since the double ancestral is an ontologically
innocent operator, primitive recursion is available to a nominalist.

Note

1 Others have also used ancestral logic as a middle ground between first- and second-order
logic, such as Heck (2011), pp. 274–79], though Heck does not give sustained arguments for
this status.
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