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For citation: Sandu G. “Gödelian sentences and semantic arguments”, Logicheskie Issledo-
vaniya / Logical Investigations, 2020, Vol. 26, No. 1, pp. 60–77. DOI: 10.21146/2074-1472-
2020-26-1-60-77

To the memory of Alexandr Karpenko, such a great friend

1. Gödel incompleteness theorem

Let L be the language of arithmetic, consisting of

- variables, x0,x1, x, y, ...

- logical constants: ¬,∨,∃x,=

- nonlogical constants: 0,S,+,×.

(Here ‘0’ is an individual constant, ‘S’, is a one-place function symbol and ‘+’,
and ‘×’ are two place function symbols.)

From these items, the terms and formulas of the language of L are formed
in the standard way.

As Tarski observed, the object language of a formalized science, comes
together with a theory, usually given by listing its axioms and rules of inference.
In our case the starting point is the theory Q (minimal arithmetic) which is the
set of logical consequences of the following axioms:
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1. ∀x∀y(Sx = Sy → x = y)

2. ∀x(Sx 6= 0)

3. ∀x(x 6= 0→ ∃y(s = Sy))

4. ∀x(x+ 0 = x)

5. ∀x∀y(x+ Sy = S(x+ y))

6. ∀x(x× 0 = 0)

7. ∀x∀y(x× Sy = (x× y)+ x).

Notice that this theory is finitely axiomatizable. The language of Q is inter-
preted in a metalanguage in which ‘0’ is assigned the the natural number zero,
‘S’ is assigned the successor function, ‘+’ is assigned the operation of addition
‘×’ is assigned multiplication. It is known that Q is a rather strong theory
which is able to represent all recursive functions (in a technical sense of the
notion of ‘representation’, which is assumed to be known. It is also known that
Q defines (in a technical sense assumed to be known) its own syntax and many
semantical notions. This happens, as shown by Gödel, via the notion of gödel
numbering. As a result, each term t in the language L gets associated with a
gödel number ptq; and each formula A receives its gödel number pAq. Recalling
that every natural number m has a name m in L, where m is an abbreviation
for (the numeral) SS...︸ ︷︷ ︸0 (m times), we see that every term t and every formula
A have names in the arithmetical language, ptq and pAq, respectively. This
fact, together with the ones mentioned earlier, makes possible to introduce, for
any formula A in the language of arithmetic, the diagonalization of A, which
is the expression

∃x(x = pAq ∧A).

When A is a formula with one free variable, then we see that asserting the
diagonalization of A amounts to predicating A of its own gödel number.

From Gödel’s results, it follows that for any theory T extending Q, the
set of gödel numbers of theorems of T is not definable in T , from which it
can be further inferred that the set of Gödel numbers of true arithmetical
sentences (“true in the standard model”) is not definable. This last statement is
usually known as “Tarski’s theorem”; it is somehow debatable in the literature
whether Gödel himself was aware of this result or not, but this matter will not
concern us here. The first statement is standardly proved by reductio using the
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diagonalisation lemma which asserts that for any theory T which extends Q,
for any formula B(y) there is a sentence A such that

T ` A↔ ¬B(pAq).

The second statement follows directly from it, by observing that the set of
true arithmetical sentences is an extension of Q.

The variant of the Gödel’s incompleteness theorem we are interested in is
proved by first showing that for every extension T of Q there is a formula
PrT (x) in the language of arithmetic which has the form ∃yProvT (x, y) and is
such that for any sentence A in the language of arithmetic:

• T ` A if and only if ∃yProvT (pAq, y) is true (in the standard model)
if and only if for some natural number m, ProvT (pAq,m) is true if and
only if (given the representability of ProvT in Q), Q ` ProvT (pAq,m)
for some m.

Here ProvT (x, y) is a primitive recursive formula, that is, a formula which
contains only bounded quantifiers and is closed under the standard propos-
itional connectives. Thus, from the above we get that if T ` A then
Q ` ProvT (pAq,m) for some m, and given that T is an extension of Q we
also get T ` ∃yProvT (pAq, y), i.e., T ` Pr(pAq). Now applying the Diagon-
alization lemma to the formula ∃yProvT (pAq, y) Godel showed that there is a
sentence, usually denoted by G such that

T ` G↔ ¬∃yProvT (pGq, y)

The sentence G is called a Gödel sentence for T . It is taken to say: “I am
unprovable”.

We recall that a theory T is called ω−inconsistent if there is a formula F (x)
such that T ` ∃xF (x) but T ` ¬F (0), T ` ¬F (1), T ` ¬F (2),...(for every
natural number 0, 1, 2, ...). T is called ω−consistent if it is not ω−inconsistent.
Now Gödel proved

Theorem 1. (Gödel First Incompleteness Theorem). Let T be a consistent,
axiomatizable extension of Q and let G be a Gödel sentence for T . Then T 0 G.
If T is ω−consistent, then T 0 ¬G.

The proof is well known but we rehearse it here (we follow Boolos, Jeffrey
and Burgess), because it serves as a basis for extracting, later on, a se-
mantic argument. Suppose that T ` G. Hence, by our previous comments,
∃yProvT (pGq, y) is true (in the standard model) and by a well known res-
ult, Q ` ∃yProvT (pGq, y); given that T is an extension of Q we also have
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T ` ∃yProvT (pGq, y). From the Diagonalization lemma we also know that
T ` ¬∃yProvT (pGq, y). Thus T is inconsistent, a contradition. Hence T 0 G.
For the second claim, suppose that T ` ¬G. By the diagonalization lemma,
T ` ∃yProvT (pGq, y). But given that T is consistent and T ` ¬G, we must
have T 0 G. This implies that for no natural number n, n is the code of a proof
of G in T , that is, ¬ProvT (pGq, 0), ¬ProvT (pGq, 1), ¬ProvT (pGq, 2)..., are
all true (in the standard model), where each of these formulas are primitive re-
cursive. Hence Q ` ¬Prov(pGq, 0), Q ` ¬Prov(pGq, 1), Q ` ¬Prov(pGq, 2)....
and since T is an extension of Q we also have T ` ¬Prov(pGq, 0), T `
¬Prov(pGq, 1), T ` ¬Prov(pGq, 2).... Hence T is ω−inconsistent, which con-
tradicts our assumption. We conclude T 0 ¬G.

After reviewing these results, let us return to the question which is the
main concern in this paper, namely Gödel’s method to produce undecidable
sentences such as G, and especially a claim often made in this connection to
the effect that these sentences are true and recognized to be true. Here is, for
instance, how Dummett describes Gödel’s result:

By Gödel’s theorem there exists, for an intuitively correct formal
system for elementary arithmetic, a statement [G] expressible in
the system but not provable in it, which not only is true but can be
recognized by us to be true... [Dummett, 1963].

The puzzling question is: how do we “recognize” that G (or any statement
equivalent to it) is true?

The above proof of the theorem does not give an explicit argument about
how we come to recognize G as true, neither did Gödel provide one. But it is
not very difficult to extract one. From the Diagonalization lemma we know that
the statement G is equivalent to a universal statement, viz. ¬∃yProvT (pGq, y)
(i..e ∀y¬ProvT (pGq, y)). From the second part of the proof we see that every
numerical instance is provable (and true) in the system. Since G is the universal
quantification over all these numerical instances, then G is true. Of course in
this last step we rely on our grasp of the standard model (this is what the
ω−consistency is supposed to ensure).

In fact, this is Dummett’s argument for the truth of Gödel’s sentence:

The statement [G] is of the form ∀xA(x),where each one of the
statements A(0),A(1),A(2), ...is true: since A(x) is recursive, the
notion of truth for these statements is unproblematic. Since each
of the statements A(0),A(1),A(2), ...is true in every model of the
formal system, every model of the system in which G is false must
be a non-standard model...whenever, for some predicate B(x), we
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can recognize all of the statements B(0),B(1),BA(2), ...as true in the
standard model, then we can recognize that ∀xA(x) is true in that
model. This fact ...we know on the strength of our clear intuitive
conception of the structure of the model [Dummett, 1963, p. 191].

As we see from this quote, we come to appreciate that the undecidable Gödel
sentence G for Q is true not by working inside the system but rather by con-
ducting a so called semantical argument which makes an essential use of the
concept of truth itself. Dummett is not the only one to have seen the import-
ance of semantical arguments. There is another semantical argument which
uses the truth predicate, distinct from Dummett’s argument, which goes back
to Alfred Tarski [Tarski, 1956]. In order to present it, we need to say somehting
about arithmetical induction.

The system Q of minimal arithmetic is knowingly defficient in that it fails
to prove many universal statements about numbers which are usually proved
by mathematical induction. Typically, if we want to prove that every number
has a given property, we prove it by showing that 0 has that property, and then
we show, from the assumption that an arbitrary number x has that property,
that the successor Sx has that property. To accommodate induction one needs
a more adequate set of axioms for number theory. To this effect we add to the
7 axioms of the system Q all sentences of the form

8. [A(0) ∧ ∀x(A(x)→ A(S(x))]→ ∀xA(x)

(8) is usually known as the Induction axiom scheme. The theory which is the
set of all sentences in the language of arithmetic which are logical consequences
of (1)–(8) is known as Peano Arithmetic (PA). It is a simple mathematical
fact that definability and representability in Q entail definability and repres-
entability in any extension of Q and thus in PA in particular. From now on we
shall operate with PA. Tarski’s semantical argument which proves the truth
of the Gödelian statement G for PA, uses a universal statement which cannot
be proved in Q but needs PA.

1.1. The representability of the syntax in arithmetic

Tarski’s truth-definition for arithmetic exploits the representability of the
syntax of PA in PA.

It is a mathematical fact that there are functions f¬, f∨, f∃ defined on the
natural numbers such that the following hold:

- f¬(pAq) = p¬Aq, for every formula A in the object language;
- f∨(pAq, pBq) = pA ∨Bq, for every formulas A,B in the object language;
- f∃(pAq, n) = p∃xnAq, for every formula A and natural number n.
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There is also a function fsub (the susbstitution function) which has the
property:

fsub(pAq, pxiq, ptq) = pA(t)q

for every formula A in the language of arithmetic, variable xi and term t in the
same language.

All these functions are recursive, thus representable in Q and hence in
PA which means there are formulas Neg(x, y), Dis(x, y, z), Ex(x, y, z) and
Sub(x, y, z, w) in the language of arithmetics so that for all formulas A,B,
term t, and natural number n we have

a) PA ` ∀y (Neg(pAq, y)↔ y = p¬Aq)

b) PA ` ∀y (Dis(pAq, pBq, y)↔ y = pA ∨Bq)

c) PA ` ∀y
(
Ex(pAq, n, y)↔ y = p∃xnAq

)
d) PA ` ∀y

(
Sub(pAq, pxiq, ptq, y)↔ y = pA(t)q

)
Similarly, the function f= on the natural numbers such that

f= (ptq, psq) = pt = sq

for all terms t, s in the language of arithmetic is representable in PA by, say,
the expression Id(x, g, z), that is,

PA ` ∀y (Id(ptq, psq, y)↔ y = pt = sq) .

If in (a) we instantiate y with p¬Aq we get

PA ` Neg(pAq, p¬Aq)↔ p¬Aq = p¬Aq.

The formula on the right side is a theorem of the predicate calculus (with
identity), hence PA proves it. Thus PA ` Neg(pAq, p¬Aq). We can show that
for each formula A of the object language there is exactly one formula B of the
object laguage such that PA ` Neg(pAq, pBq) and B is ¬A. Therefore we can
take Neg to be a function and write Neg(pAq) = p¬Aq.

In a similar way we can also takeDis,Ex, Sub, Id, Less to be also functions.
Thus we shall have

a*) PA ` Neg(pAq) = p¬Aq, for every formula A in the object language.

b*) PA ` Dis(pAq, pBq) = pA ∨Bq, for every formulas A,B in the object
language
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c*) PA ` Ex(pAq, n) = p∃xnAq, for every formula A in the object language
and natural number n.

d*) PA ` Sub(pAq, pxiq, ptq) = pA(t)q, for every formula A and term t of the
object language and every natural number i.

e*) PA ` Id(ptq, psq) = pt = sq, for all terms t, s of the object language.

In a similar way it can be shown that PA defines its own syntax: being a closed
term, a variable, a formula and a sentence (of the language of arithmetic). That
is, there are formulas ct(x), var(x), form(x) and sen(x) in the object language
such that the following holds:

f) PA ` ct(ptq), for every closed term t.

g) PA ` var(pxiq), for every natural number i.

h) PA ` form(pAq), for every formula A.

j) PA ` sen(pAq), for every closed sentence A.

PA also defines some semantical properties. There is a formula Den(x) in the
object language (that we can take to be a function) such that

k) PA ` t = s ↔ Den(ptq) = Den(psq), for all terms t, s in the object
language.

2. Tarski’s truth theory

In the case of Tarski’s truth theory for arithmetic we do not need to go via
the notion of satisfaction but use directly the truth-predicate Tr. The reason
for this is that each natural number has a name in the object language.

The axioms of the truth-definition are given in the metalanguage containing
Tr is a predicate symbol:

Ax1 ∀x(Tr(x)→ sen(x))

(If x is true, then x is of a sentence)

Ax2 ∀x∀y(ct(x) ∧ ct(y)→ (Tr(Id(x, y))↔ Den(x) = Den(y)))

(The identity between two closed terms x and y is true iff their denotations are
the same)

Ax3 ∀x(Sen(x)→ (Tr(Neg(x))↔ ¬Tr(x)))

(The negation of the sentence is true iff the sentence is not true)
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Ax4 ∀x∀y(sen(x) ∧ sen(y)→ (Tr(Dis(x, y))↔ Tr(x) ∨ Tr(y)))

(A disjunction is true iff either sentence is true)

Ax5 ∀x1∀x2(form(x1) ∧ var(x2) → (Tr(Ex(x1, x2)) ↔
∃t(Tr(Sub(x1, x2, t))))

(An existential sentence is true iff there is a closed term t such that the sentence
which is the result of the substitution of the free variable x2 in x1 by t is true.)

Let PA(Tr) be the set of sentences which are the logical consequences of
the 7 axioms of PA, the five axioms (Ax1)–(Ax5), and plus the Induction
schema (8) which allows occurrences of the truth-predicate in the formulas
A(x). It can be shown that PA(Tr) is materially adequate, that is,

PA(Tr) ` Tr(pAq)↔ A,

for any sentence A in the language of arithmetic.
It is well known that the Tarskian truth theory proves the following universal

statements:

• The principle of noncontradiction (consistency). For every sentence y of
the object language it is not the case that both y and its negation are
true:

PA(Tr) ` ∀y (Sen(y)→ ¬(Tr(y) ∧ Tr(neg(y)))) .
This property follows directly from Ax3.

• The principle of excludded middle. Every sentence of the object language
is true ot its negation is true:

PA(Tr) ` ∀y (Sen(y)→ Tr(y) ∨ Tr(neg(y))) .

This property follows from the other direction of Ax3.

• The principle of soundness. All theorems are true:

PA(Tr) ` ∀x(PrPA(x)→ Tr(x)).

This principle fully exploits the occurrence of the truth-predicate in the In-
duction scheme. We omit its proof but it consists, informally, of the following
steps:

1. All the axioms of PA are true.

2. The rules of inference of PA preserve truth.

3. Hence every theorem of PA is true (i.e. PA(Tr) ` ∀x(PrPA(x) →
Tr(x)).
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2.1. Tarski’s semantical argument
In the postscript to the English translation of his seminal article, Tarski

adds some interesting parallels between his results and those of Gödel:

Moreover Gödel has given a method for constructing sentences
which- assuming the theory concerned to be consistent- cannot be
decided in any direct way in this theory. All sentences constructed
according to Gödel’s method possess the property it can be estab-
lished whether they are true or false on the basis of the metatheory
of higher order having a correct definition of truth [Tarski, 1956,
p. 274].

To establish the truth of such a Gödelian sentence Tarksi uses the principle of
soundness listed in the previous sesction. We present Tarski’s semantical argu-
ment (Tarski, 1936, Theorem 5) for the Gödelian sentence ¬PrPA(p¬0 = 0q)
(that we shall abbreviate by ConPA) which is taken to express the consistency
of PA. The semantical argument for G is similar. There is nothing original in
my presentation, this argument has been rehearsed many times [Ketland, 1999]
and [Shapiro, 1998].

Gödel’s second incompleteness theorem shows that PA 0 ConPA and PA 0
¬ConPA. But Tarski shows

PA(Tr) ` ConPA.

The argument is straightforward. From the soundness principle we get

(i) PA(Tr) ` PrPA(p¬0 = 0q)→ Tr(p¬0 = 0q).

We also know that the theory of truth proves all the T-instances, i.e.,

(ii) PA(Tr) ` Tr(p¬0 = 0q)↔ ¬0 = 0.

But PA proves 0 = 0, and thus PA(Tr) ` 0 = 0, which together with
(ii) entails

(iii) PA(Tr) ` ¬Tr(p¬0 = 0q).

From (i) and (iii) we get

(iv) PA(Tr) ` ¬PrPA(p¬0 = 0q)

that is, PA(Tr) ` ConPA.
Tarski’s semantical argument is usually expressed in words, in order to

enhance its explanatory power:
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• In a first step we establish the principle of soundness as we showed earlier:

1. All the axioms of PA are true.

2. The rules of inference of PA preserve truth.

3. Hence every theorem of PA is true,

PA(Tr) ` ∀x(PrPA(x)→ Tr(x)).

• A second step established that the sentence ‘¬0 = 0’ is not true:

PA(Tr) ` ¬Tr(p¬0 = 0q)

(see (iii))

• In a third step we combined the conclusion of the first and of the second
step and concluded that ‘¬0 = 0’ is not a theorem:

PA(Tr) ` ¬PrPA(p¬0 = 0q)

(see (iv))

• Finally we note that ¬PrPA(p¬0 = 0q) is the Consistency statement
ConPA.

The crucial role in this argument is the universal generalization which is the
Principle of soundness. It confers the semantic argument the form of a nomo-
logical argument which shows the explanatory role of the truth predicate:

Let us return to the Gödelian statement G (or ConPA). Let us
suppose a logic teacher asserts that ConPA is true, and the puzzled
student asks for an explanation. The student believes the teacher’s
word that ConPA is true, but he wants to be shown why ConPA

is true. The student wants something like a convincing proof or an
explanatory proof. The natural answer is to remark that all the
axioms of PA are true and the rules of inference preserve truth.
Thus every theorem of PA is true. It follows that ‘¬0 = 0’ is
not a theorem and thus PA is consistent.... It seems to me that
this informal version of the derivability of ConPA is as good an
explanation as there is. The argument shows why ConPA is true or
why ConPA is a consequence- and the move through the notion of
truth provides the explanation [Shapiro, 1998, p. 505].
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3. Feferman’s program

Tennant [Tennant, 2002] argues against Ketland [Ketland, 1999] and Sha-
piro [Shapiro, 1998] that Tarski’s theory of truth is not the only way we can
come to recognize the truth of the Gödel sentence. In particular, Tennant
claims, the generalization “All theorems are true” is not the only way to ex-
press the soundness of an arithmetical system S. There is, instead, another
way to express it, viz., using reflection principles of the form

(pa) If ϕ is a primitive recursive sentence and ϕ is provable in S, then ϕ.

As we see, this reflection principle does not use the truth-predicate. Tennnat
follows here Feferman [Feferman, 1962], who emphasizes that “Reflection prin-
ciples are axioms schemata ...which express, insofar as is possible without use
of the formal notion of truth, that whatever is derivable in S is true”.

Let us take stock. We have discussed two semantic arguments invoked in
how we come to recognize that Gödelain sentences are true.

One such argument, due to Tarski, and explicitly described in Shapiro’s
quote in the last section, uses the generalization “All theorems are true” and
can be run in an extension PA(Tr) of PA which, in addition to the truth
axioms, allows occurrences of the truth predicate in the induction scheme.

The other semantic argument, described earlier in the second quote from
Dummett also uses the truth-predicate. However, Tennant [Tennant, 2002]
rephrases it, so that the reference to “the structure of the model” is deleted and
the truth-predicate lifted out as required by Feferman’s reflection principles.
Here is Tennant’s formulation of his own semantic argument:

G is a universally quantified sentence (as it happens, one of Gold-
bach type, that is, a universal quantification of a primitive-recursive
predicate). Every numerical instance of that predicate is provable in
the system S. (This claim requires a subargument exploiting Gödel
numbering and the representability in S of recursive properties.)
Proof in S guarantees truth. Hence every numerical instance of G
is true. So, since G is simply the universal quantification over those
numerical instances, it too must be true [Tennant, 2002, p. 556].

Tennant shows that this argument can be faithfully represented in a “suffi-
ciently strong” arithmetical system S enriched with reflection principles (with
no occurrence of the truth-predicate) in Feferman’s style.

I will now describe shortly the main lines of Tennant’s argument. Before do-
ing that let me mention what it means for a formal system of arithmetic S to be
“sufficiently strong”: S represents recursive properties and proves the Diagonal-
ization lemma (i.e., there is a proof in S leading from G to ¬∃yProvT (pGq, y);
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and there is a proof in the other direction too), and S also proves the equival-
ence between the Gödelian sentence G and the consistency sentence ConS . It is
known that there are several systems which satisfy this requirement, e.g. PA.

Tennant proposes an extension of S with Feferman’s principle of uniform
primitive recursive reflection (which is more general than the principle (pa)
mentioned above):

(UR) Add to S all sentences of the form

∀n(PrS(pψ(n)q))→ ∀mψ(m)

where ψ is a primitive recursive formula and n is, as before the numeral
corresponding to the natural number nand PrS(pψq) is, like before, an
abbreviation for ∃yProvS(ψ, y)

He then shows that in this extension a faithful formalization of the semantical
argument described above can be run. The proof goes like this [Tennant, 2002,
p. 577]. (We let S∗ denote the system S plus (UR)).

Suppose m codes a proof of G in S. Hence by representability (a natural
number being the code of a proof in S of a formula is a primitive recursive
relation), S ` ProvS(pGq,m), where ProvS is a primitive recursive formula.
But S proves also, from the assumption G, the sentence ∀y¬ProvS(pGq, y)
(i.e. the diagonalization lemma), which by universal instantiation implies
¬ProvS(pGq,m). Given our assumption that S is consistent, we have a con-
tradiction, from which we conclude that m does not code a proof of G in S.
Again by representability we get S ` ¬ProvS(pGq,m). But n has been chosen
arbitrarily, hence for every n, there is some proof of ¬ProvS(pGq, n) in S, from
which with the help of (UR) we derive (in S∗) that ∀y¬ProvS(pGq, y). Finally,
by the Diagonalization Lemma, we get G (in S∗).

The penultinate steps requires perhaps some additional clarification. If I
understood correctly, “for every n, there is some proof of ¬ProvS(pGq, n) in S”
is just the sentence ∀nPrS(pψ(n)q) in the antecedent of (UR), where ψ(n) is
the primitive recursive sentence ¬ProvT (pGq, n).

We are then told:

The foregoing proof justifies the assertion ofG. The stronger system
S∗ contains methods for reflecting on the justification resources of
the weaker system S. These methods can be seen at work, in the
application, in the proof just give, of various rules of inference that
are available in S∗ but not in S [Tennant, 2002, p. 577].
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The thing which I find somehow problematic in the proof are the penultimate
steps:

...But n has been chosen arbitrarily, hence for every n, there is some proof
of ¬ProvS(pGq, n) in S, from which, with the help of (UR), we derive (in S∗)
that ∀y¬ProvS(pGq, y).

I take them to correspond to the informal steps of Tennant’s own semantic
argument listed earlier in this section. It seems to me that we can justify these
steps only on the basis of our intuitive understanding of the standard model,
as Dummett pointed out. The principle of uniform recursive reflection (UR)
just expresses this understanding in a formal way. We may have eliminated
the truth-predicate as required by a minimlist conception of truth, but the
justification of (UR) is still grounded in such understanding. This matter is
orthogonal to the goal of this essay, so I will not dwell on it.

One can still perhaps argue that Tarski’s truth-definition is more general,
because it can also account for the intuition that all S−theorems are true
(sound), and not just the primitive recursive ones. Tennant’s response to this
objection is that we could add as well to S∗ the schema (soundness principle)

ProvS(pϕq)→ ϕ,

where ϕ is any sentence in the language of arithmetic. It is known from Löb’s
theorem that this principle cannot be derivable in S without making S incon-
sistent. But in the present case we add the soundness principle not to S directly
but to S extended with the principle of uniform primitive recursive reflection,
and this avoids the inconsistency.

To sum up, I agree with Tennant that the difference between the two se-
mantic arguments is that between saying (Tarski) and showing (Feferman).
That is, Tarski’s truth theory can state the principle of soundness in one single
universal statement “All theorems are true”. In this case the “recognition” of
the truth of the Gödelian sentence takes the form of a nomological explanation
which uses that universal statement [Ketland, 1999; Shapiro, 1998]. On the
other side, the Feferman-Tennant framework (S∗ extended with the soundness
axiom scheme) uses an axiom scheme which can be seen as a list of the infinitely
many instances of the universal statement ∀x(PrS(x)→ Tr(x):

PrS(pϕ1q)→ Tr(pϕ1q)
PrS(pϕ2q)→ Tr(pϕ2q)

...
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in which the truth-predicate has been eliminated in virtue of the equivalences

Tr(pϕ1q)↔ ϕ1

Tr(pϕ2q)↔ ϕ2
...

In this case the recognition of the truth of G does not take the form of a
nomological argument (because there is no collection of all these instances into
one universal statement). It consists in the apprehension of the proof of G in the
extension of e.g. PA with the soundness principle. Truth does not “transcend”
proof, truth is just proof (in the extended system).

4. The justification of the extensions

A question which arises quite naturally at this stage is about the justification
of different extensions which settle the Gödelian statements, and about the
nature of these statements themselves. Is a given extension more justified than
another? This question revives an older discussion which goes back to Gödel
concerning intrinsic versus extrinsic extensions of a theory which has been the
inspiring source for the Feferman program.

Gödel’s reflections took place in the context of set theory (What is Cantor’s
continuum problem? [Gödel, 1947]) but they also apply mutatis mutandis to
arithmetic. Gödel introduced a distinction between an intrinsic and extrinsic
extension of an axiom system. An intrinsic extension, unlike an extrinsic one,
is justified on the basis of one grasping the concepts of the base theory. Gödel
gave as an example the Axiom of Determinacy in set theory that he regarded
as an extrinsic axiom because it is not justified by our understanding of sets, in
contrast to Mahlo’s axioms for big cardinals. In addition, Gödel also mentioned
intrinsic extensions with undecidable statements (Gödelian sentences) that one
recognizes as true in virtue of their meaning, that is, by reflecting on their
undecidability.

Gödel’s remarks suggest the idea to treat the truth axioms of Tarski’s theory
of truth as examples of intrinsic extensions of the base theories, whose justi-
fication is grounded in our grasping of the concepts of the base theory, that
is, natural numbers and operations on natural numbers. In fact this sugges-
tion, which was not made by Gödel, has been explicitly advocated later on by
Koellner in his reflections on Gödel’s distinctions:

Let us consider first our conception of natural numbers which is
underlying PA. This conception of natural numbers not only jus-
tifies the principle of mathematical induction for the language of
PA, but for any other extension of the language of PA which has
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a sense. For instance if we extend the language of PA by adding the
tarskian truth-predicate and we extend the axioms of PA by adding
the tarskan axioms for truth, then, on the basis of our conception
of natural numbers, we are justified in accepting the instances of
the induction scheme in which the truth-predicate occurs. In the
resulting system one can prove ConPA....By contrast, the Axiom
of determinacy AD is not justified by our understanding of natural
numbers [Koellner, 2006].

Similar ideas have been expressed by Feferman. Starting with the 60’s and in-
spired by Gödel, he addressed the question of the extensions of schematic formal
systems (formal systems which contain axiom shemes, like ZFC and PA) with
new axioms. He started looking for the possibility to generate systematically
extensions of such systems whose acceptance was already implicit in the base
theory. One of the mechanisms Feferman proposed is reflection principles. We
saw an illustration of this mechanism when presenting Tennant’s ideas. Little
by little Feferman also came to consider extensions which contains explicitly
a truth-predicate and developed the notion of reflexive closure of a schematic
theory [Feferman, 1991], which allows for the Induction scheme to range over
the truth-predicate. In this case the extended system can prove statements of
the form ∀x(PrPA(x)→ Tr(x)). This has been, as we saw, Tarski’s way.

I think there is an important difference between Gödel’s notion of intrinsic
extension where the new axioms display or unfold the content of the notions
of the base theory, and the two extensions of PA introduced in this paper. It
seems to me that neither Tarski’s extension of PA with his theory of truth, nor
Tennant’s extension of a sufficiently strong arithmetical system S (e.g. PA)
with reflection principles ProvS(pϕq) → ϕ, “unfold” the content of the notion
of natural number. None of this extensions is, in my opinion, grounded in
our knowledge and understanding of natural numbers but rather “reflect” on
the properties of certain methods of proof that have been adopted. That is,
although these methods of proof operate on arithmetical and logical resources,
they also possess certain properties confered to them by certain philosophical
positions which are constitutive of their definitions. The extension axioms or
schemata are about these properties (e.g. soundness, truth, consistency) and
not about the content of the notion of natural number. Gödelian arithmetical
statements as well as their analogues in set theory contain explicit references
to these methods of proof, as a consequence of which they inherit an additional
content which is not purely arithmetical, or set-theoretical, for that matter.
One can find a partial recognition of this point in [Horsten, 2011]:
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Gödelian proofs of GZFC and ConZFC are certainly partly math-
ematical in nature. The proof cited above, for example, involves
an instance of the principle of mathematical induction, which is a
mathematical principle if there ever was one. It is just that such
Gödelian proofs are not purely mathematical proofs. For they essen-
tially contain the notion of truth, which is itself not a mathematical
but a philosophical notion. This is not to deny that mathematics
can be applied to produce interesting theories of truth. It is just
that mathematical theories of truth do, on this view, belong not to
pure mathematics but at least to applied mathematics, or to the
more mathematical part of philosophy [Horsten, 2011].

Horsten refers here to the philosophical notion of truth, and to Gödelian proofs
using a truth-predicate, but my main point in this paper is slightly different. It
concerns the notions of proof and provability. It is a metamathematical notion
which reflects a certain finitistic, philosophical standpoint. By making explicit
reference to such notions, Gödelian sentences acquire also a higher-order, not
purely numerical content, which depends on the properties of these notions and
cannot be reduced to the concept of natural number. One possible way to be
more explicit about the higher-order content of Gödelian sentences is through
some remarks made by Isaacson [Isaacson, 1991; Isaacson, 1996]. He contrasts
arithmetical sentences provable in PA with the Gödelian sentences: the former
have a pure arithmetical content, and the system PA which proves them arises
out of our undertanding of natural numbers. On the other side, the meaning
of Gödelian statements involve our reflections on our understanding of natural
numbers.

The ideas discussed in this paper have been debated many times in the post
Gödelian era. The contribution of the paper is simply one of emphasis. Myhill,
for instance expresses similar ideas in an often quoted passage:

Indeed it seems to me that the use of the word ‘proof’ in ordinary
non-philosophical mathematical discussion is rather clearly neither
a syntactical nor a semantical term. It is as self-contradictory to
use methods of proof without admitting their correctness, as it is
to make statements without admitting their truth. (I am not using
‘self-contradictory’ in the sense of formal logic, but roughly as a
synonym for ‘irrational’.) Therefore if a person who has been us-
ing certain methods for proving arithmetical theorems succeeds in
making these methods explicit, he is ipso facto committed to the
perfectly definite proposition that the use of those methods cannot
lead to a false arithmetical statement, for example the statement
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that 0 is equal to 1. By Gödel’s technique of arithmetization, which
translates every statement of formal deducibility into a statement of
arithmetic, any such person is compelled to admit a new arithmet-
ical statement, namely the arithmetized version of the statement
that his methods cannot lead to a proof of the statement that 0
is equal to 1. By Gödel’s theorem, he could not have established
this statement by his previous methods. Hence, as soon as a person
makes explicit the tools which he has been using in the construction
of arithmetical proofs, he is ipso facto in a position to obtain new
arithmetical proofs which he could not have obtained by using those
tools alone. The whole process is closely related to what the British
philosophical logician W.E. Johnson called ‘intuitive induction’; we
find ourselves making certain inferences and we thereupon realize
that the pattern of those inferences is such as to confer validity on
arguments in which they occur. This realization is a demonstrative
and rational step quite apart from any question of formalization,
though of course the results of an intuitive induction can be form-
alized after the induction has taken place [Myhill, 1960, p. 461].

It is difficult to disagree with these remarks. Myhill, like other commentators I
discussed (Horsten) is concerned with the distinction between different kind of
proofs. My concern in this paper was, however, with the other side of the coin:
the meaning of the Gödelian sentences which are settled by these proofs. The
minor point I tried to make was that, by making reference to notions like proof
(provability), these sentences have a content which transcend the arithmet-
ical content of purely numerical statements. This is the internal, conceptual
reason for which, in some cases (not all; there are Gödelian statements like
“I am provable” which are provable), their proof has to mobilize higher-order
(meta-theoretical) resources, be they in the form of a truth-theory, a la Tarski,
or reflection principles, a la Feferman. I think that Gödel was aware of this
fact when he made a distinction between intrinsic extensions with Gödelian
sentences and intrinsic extensions with other kind of axioms which unfold the
content of the basic notions like natural numbers.
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Gödel, 1947 – Gödel, K. “What is Cantor’s continuum problem?”, The American
Mathematical Monthly, 1947, Vol. 54, pp. 515–525.

Horsten, 2011 – Horsten, L. The Tarskian Turn. Deflationism and Axiomatic Truth,
MIT Press, 2011.

Hyttinen, Sandu, 2004 – Hyttinen, T., Sandu, G. “Deflationism and Arithmetical
Truth”, Dialectica, 2004, Vol. 58, pp. 413–426.

Isaacson, 1991 – Isaacson, D. “Some considerations on arithmetical truth and the
omega-rule”, in: Proof, logic, and formalization, ed. by M. Detlefsen, Routledge,
1991, pp. 49–138.

Isaacson, 1996 – Isaacson, D. “Arithmetical truth and hidden higher-order concepts”,
in: Logic Colloquium ’85, Amsterdam: North-Holland, 1987, pp. 147–169. Re-
printed in: The philosophy of mathematics, ed. by W.D. Hart, Oxford University
Press, 1996, pp. 203–224.

Ketland, 1999 – Ketland, J. “Tarski’s Paradise and Deflationist Truth”, Mind, 1999,
Vol. 108, pp. 69–94.

Koellner, 2006 – Koellner, P. “On the question of absolute undecidability”, Philosophia
Mathematica, 2006, Vol. 14, pp. 153–188. Revised and reprinted in: Kurt Gödel:
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