8 research outputs found

    Adversarial content manipulation for analyzing and improving model robustness

    Get PDF
    The recent rapid progress in machine learning systems has opened up many real-world applications --- from recommendation engines on web platforms to safety critical systems like autonomous vehicles. A model deployed in the real-world will often encounter inputs far from its training distribution. For example, a self-driving car might come across a black stop sign in the wild. To ensure safe operation, it is vital to quantify the robustness of machine learning models to such out-of-distribution data before releasing them into the real-world. However, the standard paradigm of benchmarking machine learning models with fixed size test sets drawn from the same distribution as the training data is insufficient to identify these corner cases efficiently. In principle, if we could generate all valid variations of an input and measure the model response, we could quantify and guarantee model robustness locally. Yet, doing this with real world data is not scalable. In this thesis, we propose an alternative, using generative models to create synthetic data variations at scale and test robustness of target models to these variations. We explore methods to generate semantic data variations in a controlled fashion across visual and text modalities. We build generative models capable of performing controlled manipulation of data like changing visual context, editing appearance of an object in images or changing writing style of text. Leveraging these generative models we propose tools to study robustness of computer vision systems to input variations and systematically identify failure modes. In the text domain, we deploy these generative models to improve diversity of image captioning systems and perform writing style manipulation to obfuscate private attributes of the user. Our studies quantifying model robustness explore two kinds of input manipulations, model-agnostic and model-targeted. The model-agnostic manipulations leverage human knowledge to choose the kinds of changes without considering the target model being tested. This includes automatically editing images to remove objects not directly relevant to the task and create variations in visual context. Alternatively, in the model-targeted approach the input variations performed are directly adversarially guided by the target model. For example, we adversarially manipulate the appearance of an object in the image to fool an object detector, guided by the gradients of the detector. Using these methods, we measure and improve the robustness of various computer vision systems -- specifically image classification, segmentation, object detection and visual question answering systems -- to semantic input variations.Der schnelle Fortschritt von Methoden des maschinellen Lernens hat viele neue Anwendungen ermöglicht – von Recommender-Systemen bis hin zu sicherheitskritischen Systemen wie autonomen Fahrzeugen. In der realen Welt werden diese Systeme oft mit Eingaben außerhalb der Verteilung der Trainingsdaten konfrontiert. Zum Beispiel könnte ein autonomes Fahrzeug einem schwarzen Stoppschild begegnen. Um sicheren Betrieb zu gewĂ€hrleisten, ist es entscheidend, die Robustheit dieser Systeme zu quantifizieren, bevor sie in der Praxis eingesetzt werden. Aktuell werden diese Modelle auf festen Eingaben von derselben Verteilung wie die Trainingsdaten evaluiert. Allerdings ist diese Strategie unzureichend, um solche AusnahmefĂ€lle zu identifizieren. Prinzipiell könnte die Robustheit “lokal” bestimmt werden, indem wir alle zulĂ€ssigen Variationen einer Eingabe generieren und die Ausgabe des Systems ĂŒberprĂŒfen. Jedoch skaliert dieser Ansatz schlecht zu echten Daten. In dieser Arbeit benutzen wir generative Modelle, um synthetische Variationen von Eingaben zu erstellen und so die Robustheit eines Modells zu ĂŒberprĂŒfen. Wir erforschen Methoden, die es uns erlauben, kontrolliert semantische Änderungen an Bild- und Textdaten vorzunehmen. Wir lernen generative Modelle, die kontrollierte Manipulation von Daten ermöglichen, zum Beispiel den visuellen Kontext zu Ă€ndern, die Erscheinung eines Objekts zu bearbeiten oder den Schreibstil von Text zu Ă€ndern. Basierend auf diesen Modellen entwickeln wir neue Methoden, um die Robustheit von Bilderkennungssystemen bezĂŒglich Variationen in den Eingaben zu untersuchen und Fehlverhalten zu identifizieren. Im Gebiet von Textdaten verwenden wir diese Modelle, um die DiversitĂ€t von sogenannten Automatische Bildbeschriftung-Modellen zu verbessern und Schreibtstil-Manipulation zu erlauben, um private Attribute des Benutzers zu verschleiern. Um die Robustheit von Modellen zu quantifizieren, werden zwei Arten von Eingabemanipulationen untersucht: Modell-agnostische und Modell-spezifische Manipulationen. Modell-agnostische Manipulationen basieren auf menschlichem Wissen, um bestimmte Änderungen auszuwĂ€hlen, ohne das entsprechende Modell miteinzubeziehen. Dies beinhaltet das Entfernen von fĂŒr die Aufgabe irrelevanten Objekten aus Bildern oder Variationen des visuellen Kontextes. In dem alternativen Modell-spezifischen Ansatz werden Änderungen vorgenommen, die fĂŒr das Modell möglichst ungĂŒnstig sind. Zum Beispiel Ă€ndern wir die Erscheinung eines Objekts um ein Modell der Objekterkennung tĂ€uschen. Dies ist durch den Gradienten des Modells möglich. Mithilfe dieser Werkzeuge können wir die Robustheit von Systemen zur Bildklassifizierung oder -segmentierung, Objekterkennung und Visuelle Fragenbeantwortung quantifizieren und verbessern

    The Roles of Adversarial Examples on Trustworthiness of Deep Learning

    Get PDF

    Designing and Evaluating Physical Adversarial Attacks and Defenses for Machine Learning Algorithms

    Full text link
    Studies show that state-of-the-art deep neural networks (DNNs) are vulnerable to adversarial examples, resulting from small-magnitude perturbations added to the input in a calculated fashion. These perturbations induce mistakes in the network's output. However, despite the large interest and numerous works, there have only been limited studies on the impact of adversarial attacks in the physical world. Furthermore, these studies lack well-developed, robust methodologies for attacking real physical systems. In this dissertation, we first explore the technical requirements for generating physical adversarial inputs through the manipulation of physical objects. Based on our analysis, we design a new adversarial attack algorithm, Robust Physical Perturbations (RPP) that consistently computes the necessary modifications to ensure the modified object remains adversarial across numerous varied viewpoints. We show that the RPP attack results in physical adversarial inputs for classification tasks as well as object detection tasks, which, prior to our work, were considered to be resistant. We, then, develop a defensive technique, robust feature augmentation, to mitigate the effect of adversarial inputs, both digitally and physically. We hypothesize the input to a machine learning algorithm contains predictive feature information that a bounded adversary is unable to manipulate in order to cause classification errors. By identifying and extracting this adversarially robust feature information, we can obtain evidence of the possible set of correct output labels and adjust the classification decision accordingly. As adversarial inputs are a human-defined phenomenon, we utilize human-recognizable features to identify adversarially robust, predictive feature information for a given problem domain. Due to the safety-critical nature of autonomous driving, we focus our study on traffic sign classification and localization tasks.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/153373/1/keykholt_1.pd

    Natural image processing and synthesis using deep learning

    Full text link
    Nous Ă©tudions dans cette thĂšse comment les rĂ©seaux de neurones profonds peuvent ĂȘtre utilisĂ©s dans diffĂ©rents domaines de la vision artificielle. La vision artificielle est un domaine interdisciplinaire qui traite de la comprĂ©hension d’images et de vidĂ©os numĂ©riques. Les problĂšmes de ce domaine ont traditionnellement Ă©tĂ© adressĂ©s avec des mĂ©thodes ad-hoc nĂ©cessitant beaucoup de rĂ©glages manuels. En effet, ces systĂšmes de vision artificiels comprenaient jusqu’à rĂ©cemment une sĂ©rie de modules optimisĂ©s indĂ©pendamment. Cette approche est trĂšs raisonnable dans la mesure oĂč, avec peu de donnĂ©es, elle bĂ©nĂ©ficient autant que possible des connaissances du chercheur. Mais cette avantage peut se rĂ©vĂ©ler ĂȘtre une limitation si certaines donnĂ©es d’entrĂ© n’ont pas Ă©tĂ© considĂ©rĂ©es dans la conception de l’algorithme. Avec des volumes et une diversitĂ© de donnĂ©es toujours plus grands, ainsi que des capacitĂ©s de calcul plus rapides et Ă©conomiques, les rĂ©seaux de neurones profonds optimisĂ©s d’un bout Ă  l’autre sont devenus une alternative attrayante. Nous dĂ©montrons leur avantage avec une sĂ©rie d’articles de recherche, chacun d’entre eux trouvant une solution Ă  base de rĂ©seaux de neurones profonds Ă  un problĂšme d’analyse ou de synthĂšse visuelle particulier. Dans le premier article, nous considĂ©rons un problĂšme de vision classique: la dĂ©tection de bords et de contours. Nous partons de l’approche classique et la rendons plus ‘neurale’ en combinant deux Ă©tapes, la dĂ©tection et la description de motifs visuels, en un seul rĂ©seau convolutionnel. Cette mĂ©thode, qui peut ainsi s’adapter Ă  de nouveaux ensembles de donnĂ©es, s’avĂšre ĂȘtre au moins aussi prĂ©cis que les mĂ©thodes conventionnelles quand il s’agit de domaines qui leur sont favorables, tout en Ă©tant beaucoup plus robuste dans des domaines plus gĂ©nĂ©rales. Dans le deuxiĂšme article, nous construisons une nouvelle architecture pour la manipulation d’images qui utilise l’idĂ©e que la majoritĂ© des pixels produits peuvent d’ĂȘtre copiĂ©s de l’image d’entrĂ©e. Cette technique bĂ©nĂ©ficie de plusieurs avantages majeurs par rapport Ă  l’approche conventionnelle en apprentissage profond. En effet, elle conserve les dĂ©tails de l’image d’origine, n’introduit pas d’aberrations grĂące Ă  la capacitĂ© limitĂ©e du rĂ©seau sous-jacent et simplifie l’apprentissage. Nous dĂ©montrons l’efficacitĂ© de cette architecture dans le cadre d’une tĂąche de correction du regard, oĂč notre systĂšme produit d’excellents rĂ©sultats. Dans le troisiĂšme article, nous nous Ă©clipsons de la vision artificielle pour Ă©tudier le problĂšme plus gĂ©nĂ©rale de l’adaptation Ă  de nouveaux domaines. Nous dĂ©veloppons un nouvel algorithme d’apprentissage, qui assure l’adaptation avec un objectif auxiliaire Ă  la tĂąche principale. Nous cherchons ainsi Ă  extraire des motifs qui permettent d’accomplir la tĂąche mais qui ne permettent pas Ă  un rĂ©seau dĂ©diĂ© de reconnaĂźtre le domaine. Ce rĂ©seau est optimisĂ© de maniĂšre simultanĂ© avec les motifs en question, et a pour tĂąche de reconnaĂźtre le domaine de provenance des motifs. Cette technique est simple Ă  implĂ©menter, et conduit pourtant Ă  l’état de l’art sur toutes les tĂąches de rĂ©fĂ©rence. Enfin, le quatriĂšme article prĂ©sente un nouveau type de modĂšle gĂ©nĂ©ratif d’images. À l’opposĂ© des approches conventionnels Ă  base de rĂ©seaux de neurones convolutionnels, notre systĂšme baptisĂ© SPIRAL dĂ©crit les images en termes de programmes bas-niveau qui sont exĂ©cutĂ©s par un logiciel de graphisme ordinaire. Entre autres, ceci permet Ă  l’algorithme de ne pas s’attarder sur les dĂ©tails de l’image, et de se concentrer plutĂŽt sur sa structure globale. L’espace latent de notre modĂšle est, par construction, interprĂ©table et permet de manipuler des images de façon prĂ©visible. Nous montrons la capacitĂ© et l’agilitĂ© de cette approche sur plusieurs bases de donnĂ©es de rĂ©fĂ©rence.In the present thesis, we study how deep neural networks can be applied to various tasks in computer vision. Computer vision is an interdisciplinary field that deals with understanding of digital images and video. Traditionally, the problems arising in this domain were tackled using heavily hand-engineered adhoc methods. A typical computer vision system up until recently consisted of a sequence of independent modules which barely talked to each other. Such an approach is quite reasonable in the case of limited data as it takes major advantage of the researcher's domain expertise. This strength turns into a weakness if some of the input scenarios are overlooked in the algorithm design process. With the rapidly increasing volumes and varieties of data and the advent of cheaper and faster computational resources end-to-end deep neural networks have become an appealing alternative to the traditional computer vision pipelines. We demonstrate this in a series of research articles, each of which considers a particular task of either image analysis or synthesis and presenting a solution based on a ``deep'' backbone. In the first article, we deal with a classic low-level vision problem of edge detection. Inspired by a top-performing non-neural approach, we take a step towards building an end-to-end system by combining feature extraction and description in a single convolutional network. The resulting fully data-driven method matches or surpasses the detection quality of the existing conventional approaches in the settings for which they were designed while being significantly more usable in the out-of-domain situations. In our second article, we introduce a custom architecture for image manipulation based on the idea that most of the pixels in the output image can be directly copied from the input. This technique bears several significant advantages over the naive black-box neural approach. It retains the level of detail of the original images, does not introduce artifacts due to insufficient capacity of the underlying neural network and simplifies training process, to name a few. We demonstrate the efficiency of the proposed architecture on the challenging gaze correction task where our system achieves excellent results. In the third article, we slightly diverge from pure computer vision and study a more general problem of domain adaption. There, we introduce a novel training-time algorithm (\ie, adaptation is attained by using an auxilliary objective in addition to the main one). We seek to extract features that maximally confuse a dedicated network called domain classifier while being useful for the task at hand. The domain classifier is learned simultaneosly with the features and attempts to tell whether those features are coming from the source or the target domain. The proposed technique is easy to implement, yet results in superior performance in all the standard benchmarks. Finally, the fourth article presents a new kind of generative model for image data. Unlike conventional neural network based approaches our system dubbed SPIRAL describes images in terms of concise low-level programs executed by off-the-shelf rendering software used by humans to create visual content. Among other things, this allows SPIRAL not to waste its capacity on minutae of datasets and focus more on the global structure. The latent space of our model is easily interpretable by design and provides means for predictable image manipulation. We test our approach on several popular datasets and demonstrate its power and flexibility

    Multimedia Forensics

    Get PDF
    This book is open access. Media forensics has never been more relevant to societal life. Not only media content represents an ever-increasing share of the data traveling on the net and the preferred communications means for most users, it has also become integral part of most innovative applications in the digital information ecosystem that serves various sectors of society, from the entertainment, to journalism, to politics. Undoubtedly, the advances in deep learning and computational imaging contributed significantly to this outcome. The underlying technologies that drive this trend, however, also pose a profound challenge in establishing trust in what we see, hear, and read, and make media content the preferred target of malicious attacks. In this new threat landscape powered by innovative imaging technologies and sophisticated tools, based on autoencoders and generative adversarial networks, this book fills an important gap. It presents a comprehensive review of state-of-the-art forensics capabilities that relate to media attribution, integrity and authenticity verification, and counter forensics. Its content is developed to provide practitioners, researchers, photo and video enthusiasts, and students a holistic view of the field

    Anonymizing Speech: Evaluating and Designing Speaker Anonymization Techniques

    Full text link
    The growing use of voice user interfaces has led to a surge in the collection and storage of speech data. While data collection allows for the development of efficient tools powering most speech services, it also poses serious privacy issues for users as centralized storage makes private personal speech data vulnerable to cyber threats. With the increasing use of voice-based digital assistants like Amazon's Alexa, Google's Home, and Apple's Siri, and with the increasing ease with which personal speech data can be collected, the risk of malicious use of voice-cloning and speaker/gender/pathological/etc. recognition has increased. This thesis proposes solutions for anonymizing speech and evaluating the degree of the anonymization. In this work, anonymization refers to making personal speech data unlinkable to an identity while maintaining the usefulness (utility) of the speech signal (e.g., access to linguistic content). We start by identifying several challenges that evaluation protocols need to consider to evaluate the degree of privacy protection properly. We clarify how anonymization systems must be configured for evaluation purposes and highlight that many practical deployment configurations do not permit privacy evaluation. Furthermore, we study and examine the most common voice conversion-based anonymization system and identify its weak points before suggesting new methods to overcome some limitations. We isolate all components of the anonymization system to evaluate the degree of speaker PPI associated with each of them. Then, we propose several transformation methods for each component to reduce as much as possible speaker PPI while maintaining utility. We promote anonymization algorithms based on quantization-based transformation as an alternative to the most-used and well-known noise-based approach. Finally, we endeavor a new attack method to invert anonymization.Comment: PhD Thesis Pierre Champion | Universit\'e de Lorraine - INRIA Nancy | for associated source code, see https://github.com/deep-privacy/SA-toolki

    Multimedia Forensics

    Get PDF
    This book is open access. Media forensics has never been more relevant to societal life. Not only media content represents an ever-increasing share of the data traveling on the net and the preferred communications means for most users, it has also become integral part of most innovative applications in the digital information ecosystem that serves various sectors of society, from the entertainment, to journalism, to politics. Undoubtedly, the advances in deep learning and computational imaging contributed significantly to this outcome. The underlying technologies that drive this trend, however, also pose a profound challenge in establishing trust in what we see, hear, and read, and make media content the preferred target of malicious attacks. In this new threat landscape powered by innovative imaging technologies and sophisticated tools, based on autoencoders and generative adversarial networks, this book fills an important gap. It presents a comprehensive review of state-of-the-art forensics capabilities that relate to media attribution, integrity and authenticity verification, and counter forensics. Its content is developed to provide practitioners, researchers, photo and video enthusiasts, and students a holistic view of the field

    Proceedings of the 2020 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory

    Get PDF
    In 2020 fand der jĂ€hrliche Workshop des Faunhofer IOSB und the Lehrstuhls fĂŒr interaktive Echtzeitsysteme statt. Vom 27. bis zum 31. Juli trugen die Doktorranden der beiden Institute ĂŒber den Stand ihrer Forschung vor in Themen wie KI, maschinellen Lernen, computer vision, usage control, Metrologie vor. Die Ergebnisse dieser VortrĂ€ge sind in diesem Band als technische Berichte gesammelt
    corecore