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Summary

“Or maybe it’s just that beautiful things are so easily broken by the world.”

Cassandra Clare, City of Fallen Angels

With the widespread application of Deep learning models in domains such as
finance, transportation, medicine, and security, there is a rising concern regarding
the trustworthiness of these models. This concern makes it hard to deploy deep
learning models in risk-sensitive tasks such as face recognition, autonomous
driving, and medical diagnostic. Therefore, to improve the trustworthiness
of deep learning models, several aspects should be considered such as their
robustness, generalization, explainability, transparency, fairness, and privacy
preservation. At the current state-of-the-art, many models are found to be
vulnerable to imperceptible attacks, biased against underrepresented groups,
and lacking in user privacy protection. This not only degrades the user experience
but also erodes society’s trust in all artificial intelligence (AI) systems. One clear
case of the model’s vulnerability is given by adversarial examples. Adversarial
examples are special inputs perturbed by well-designed changes with the purpose
of confusing deep learning models. It has been demonstrated that such examples
can be found for a wide range of deep learning models, resulting in a great
concern regarding the safety of such models. Although adversarial examples
are commonly used to attack deep learning models, they play important roles in
multiple aspects of DL models. Specifically, adversarial examples can be used to
❶ attack DL models, ❷ build and evaluate adversarial robust models, ❸ boost
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the generalization of a model. In this work, we carry out a series of research
studies delving into these three aspects of adversarial examples.

To address the first aspect, we present the Direction-Aggregation (DA) at-
tack method, which enhances the transferability of adversarial examples and
strengthens black-box attacks. DA attack smoothens the decision boundary to
prevent overfitting of attack direction to the white-box model. Our experiments
demonstrate that DA attack notably improves the transferability of adversarial
examples.

With regards to the second aspect, we introduce Calibrated Adversarial
Training (CAT), Weighted Optimization Trajectories (WOT), and Curvature-
based Regularization as solutions to address robust overfitting, trade-off, and
low training efficiency issues.

• CAT: CAT adapts the training data, i.e., adversarial examples, at pixel level
with the goal of reducing the semantic content changes in the input. Our
results show that training on the adapted inputs achieves a better trade-off
in clean accuracy and robust accuracy than baselines.

• WOT: WOT refines the optimization trajectories by maximizing the robust
accuracy on an unseen dataset. An intuition behind this is that a model’s
ability to generalize robustness to an unseen dataset is likely indicative of
its ability to generalize robustness to other unseen datasets. Our results
demonstrate that WOT integrates seamlessly with adversarial training
methods and effectively addresses the robust overfitting issue, leading to
improved adversarial robustness.

• Curvature-based Regularization. We observe that large curvatures along
the Fast Gradient Signed Method (FGSM) perturbed direction result in a
significant difference in the adversarial robustness performance between
FGSM-based adversarial training (FGSM-AT) and Projected Gradient De-
scent attack based adversarial training (PGD-AT). To mitigate this, we
propose combining FGSM-AT with curvature regularization to close the gap
between FGSM-AT and PGD-AT. Our experiments show that this method
achieves similar adversarial robustness to PGD-AT while maintaining the
fast training efficiency of FGSM-AT, significantly speeding the training time
of PGD-AT.

Motivated by the third aspect, we investigate the impact of adversarial exam-
ples on enhancing the generalization performance of Graph Autoencoder (GAE)
and Variational Graph Autoencoder (VGAE) models. Our findings highlight two
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crucial factors that contribute to improved task performance: the magnitude
of allowed perturbations and the strength of regularization using adversarial
examples. With the optimal balance between these factors, adversarial examples
can significantly improve the generalization of graph representations learned by
GAE/VGAE models, resulting in better performance in node classification, link
prediction, and anomaly detection tasks.
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Chapter 1
Introduction

The rapid advancement of deep learning (DL) models is having a significant
impact on society. DL-based systems play a critical role in many aspects of
our lives, from unlocking mobile phones with facial recognition to guiding
autonomous vehicles, interacting with voice assistants, and recommending prod-
ucts online. Despite these benefits, the limitations of DL-based systems have
become increasingly apparent, particularly with regard to their lack of reliabil-
ity and trustworthiness. For example, safety-sensitive DL-based systems have
been shown to be vulnerable to adversarial examples. As shown in [EEF+18],
small perturbations on the road signs make the image recognition system fail
to recognize it, posing a huge threat to passenger safety. Besides, DL-based
chatbot systems have been shown to be biased and unfair. Online chatbots have
been observed to produce indecent and racist content [WMG17]. Furthermore,
DL-based systems also pose a risk in disclosing users’ private information. These
vulnerabilities could make current DL-based systems unstable and cause severe
disasters in the human economy and security. Among these vulnerabilities,
adversarial examples pose a particularly severe challenge to DL models since
they are difficult to be detected and discriminated [CW17a,SZS+13] from the
true examples and easy to be conducted by the attackers. Toward the goal of
building trustworthy DL models, we focus on understanding and eliminating the
particular yet challenging weakness of DL models– adversarial examples.

Adversarial examples are formed by adding carefully designed perturbations
to the original input with the purpose of confusing deep neural networks (DNNs),
leading to a wrong prediction. As shown in Figure 1.1, an input of “howler
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0.001x

Clean input Adversarial
Perturbations

Adversarial
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howler monkey Coucals Bird
Confidence: 0.99 Confidence: 0.88

Figure 1.1: A case of adversarial examples. The prediction of the deep neural network is
changed to “Coucals Bird” from “howler monkey” by adding small perturba-
tions.

monkey” is misclassified as “Coucals Bird” with high confidence after adding
extremely small perturbations.

Adversarial examples play important roles in multiple aspects of DL models.
Specifically, the roles of adversarial examples on DL models can be separated
into three aspects (as shown in Figure 1.2): ❶ Adversarial examples are used to
attack DL models, known as adversarial attack [SZS+13,MDFFF17,MDFF16]; ❷
Adversarial examples are important tools for evaluating and boosting the model’s
adversarial robustness (measured by robust accuracy) [CW17b,CH20b,GSS14a,
MMS+18]; ❸ Adversarial examples can potentially play a positive effect on task
performance [XZZ+19]. In this thesis, we delve into each role of adversarial
examples in DL models.
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Figure 1.2: Roles of adversarial examples on DL models.

The remaining part of the Introduction to this thesis is organized as follows.
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We revisit the basic definitions of adversarial examples and adversarial training
in Section 1.1. Then we introduce the key research questions the thesis is focused
on in Section 1.2. We explain how we studied these questions in Section 1.3.
Finally, in Section 1.4, we highlight the main achievements and explain how the
rest of the thesis is organized.

1.1 Background

1.1.1 Notations

We denote a C -class dataset by D = {(xi , yi )|xi ∈Rd , yi ∈R}n
i=1 and a DNN function

by fθ :Rd −→RC . We denote cross-entropy loss by L(·). We denote the Lp norm by
∥ ·∥p . We denote the maximum magnitude of the allowed perturbation by ϵ.

1.1.2 Adversarial examples

Adversarial examples are first discovered in [SZS+13]. It is found that small
perturbations on the input can arbitrarily change the deep models’ prediction.
Specifically, adversarial examples can be obtained by optimizing the following
objective:

max
∥δ∥p≤ϵ

L( fθ(x +δ), y), (1.1)

With optimizing the objective function 1.1, the cross-entropy loss will be enlarged
such that the prediction of fθ(x +δ) does not equal the true label y . The process
of generating adversarial examples is known as adversarial attacks.

Methods for Generating Adversarial Examples. According to whether
an attacker can access the target model including the model’s architecture,
parameters, and training data, adversarial attacks can be categorized as White-
box attacks and Black-box attacks [ZL19]. White-box attacks usually generate
adversarial examples by accumulating gradients with respect to maximizing
the training loss. Popular white-box attacks include Limited-memory Broyden-
Fletcher-Goldfarb-Shanno attack(L-BFGS) [SZS+13], Fast Gradient Sign Method
(FGSM) [GSS14a], Iterative Gradient Sign Method (IGSM) [KGB16], C&W
attack [CW17b], Deep Fool [MDFF16], Jacobian-based Saliency Map attack
(JSMA) [PMW+16], Projected Gradient Descent attack (PGD) [MMS+17], Au-
toattack [CH20b] and so on. Black-box attacks can be further classified as
transferability-based attacks and query-based attacks. The transferability-based
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black-box attack usually needs to train a surrogate model on the known train-
set and then generates adversarial examples based on the surrogate model
[DPSZ19,LCLS17,XZZ+19,LSH+20,HMP+22,WZ20,HK22]. In contrast, Query-
based black-box attack does not need to train a surrogate model. It generates
adversarial examples based on an approximate gradient estimated by the finite
difference [DCP+21, IEAL18,ACFH20,BZJ+20,CZS+17].

Variants of Adversarial Examples. Since adversarial examples are first
identified by [SZS+13], various variants of adversarial examples have been
explored. Su et al. [SVS19] propose one-pixel adversarial examples where only
one-pixel value is changed, resulting in fooling the model’s prediction. Song et
al. [SEE+18] and Kurakin et al. [KGB17] propose physical adversarial examples
to fool the predictors by modifying visual characteristics of the real object in the
physical world. For example, Athalye et al. [AEIK18] construct an adversarial
object to fool the model and Eykholt et al. [EEF+18] stick a sticker on the
stop sign for fooling the model’s detection. Xiao et al. [XZL+18] propose to
generate adversarial examples based on spatial transformation instead of direct
manipulation of the pixel values. Moosavi et al. [MDFFF17] further demonstrate
the existence of universal adversarial perturbations that cause the input to be
classified.

Transferability of Adversarial Examples. An intriguing property of adver-
sarial examples is that they can transfer among different architectures, which is
first found by [LCLS17]. An explanation for this is that the decision boundary of
models trained on the same train set is similar [LCLS17,HMP+22]. This property
is utilized to conduct the black-box attack for the unknown models. However, the
transferability of adversarial examples directly generated by accumulating the
gradients from the model is poor due to the adversarial examples are easily over-
fitting to the white-box model. Therefore, many techniques have been proposed
to enhance the transferability by smoothing the decision boundaries [XZZ+19,
DPSZ19,LSH+20,HMP+22,WZ20,WWX+20b,WH21,GLC20,HK22].

1.1.3 Adversarial Robustness

. Adversarial robustness refers to a model’s ability to resist adversarial attacks.
Formally, adversarial robustness for a model fθ is defined as follows: the model
is robust to adversarial perturbations of magnitude δ at input x if and only
if [QMG+19]

ar g max
i∈C

f i
θ (x) = ar g max

i∈C
f i
θ (x +δ) ∀δ ∈ {δ : ∥δ∥p ≤ ϵ} (1.2)
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Since the first demonstration of the vulnerability that deep models are vulner-
able to adversarial attacks [SZS+13], many methods have been proposed to im-
prove the model’s adversarial robustness including adversarial training [GSS14b,
MMS+18,ZYJ+19a], input purification [LLD+18,SKC18],regularization [QMG+19,
FO21,RDV18,MDFUF19]. Among these methods, many of them are proven to
be ineffective in defending adversarial attacks [ACW18]. In contrast, adversarial
training, i.e., training models on the on-the-fly generated adversarial examples,
is the most effective method in boosting the model’s adversarial robustness.

Goodfellow et al. [GSS14a] take the first attempt to train the model by
including the FGSM adversarial examples, a.k.a. FGSM-adversarial training,
and demonstrates its effectiveness for single-step adversarial attacks. However,
FGSM-adversarial trained models are found still vulnerable to multi-step adver-
sarial attacks. To alleviate this issue, [MMS+18] propose to train a model on
adversarial examples generated by multiple steps adversarial attack (PGD-AT)
and formalized it as min-max optimizing problem:

min
θ
ρAT (θ), ρAT (θ) = 1

n

n∑
i

{max
∥δ∥≤ϵ

L( fθ(xi +δ), yi )}, (1.3)

where the inner maximization is to find the adversarial examples and ϵ is the
allowed perturbation magnitude. PGD-AT effectively improves adversarial ac-
curacy against various adversarial attacks, e.g. FGSM attack [GSS14a], PGD
attack [MMS+17], AA [CH20b]. However, there are three challenges in apply-
ing PGD-AT for achieving adversarial robustness: ❶ Trade-off between Clean
Accuracy and robust accuracy, ❷ Robust overfitting, ❸ Expensive training cost.

Trade-off. The trade-off between robust accuracy and clean accuracy has
been widely observed [SST+18,SZC+18,ZYJ+19a,WCG+20]. This trade-off is
provably shown to exist on a simple binary classification task [TSE+18a,Nak19,
RXY+20]. At the same time, many techniques have been proposed to alleviate
this trade-off. Alayrac et al. [AUH+19], Carmon et al. [CRS+19], Raghunathan
et al. [RXY+20] show that this trade-off can be good alleviated by adding more
training data. Moreover, Balaji et al. [BGH19], Zhang et al. [ZZN+20], Zhang et
al. [ZXH+20a], and Huang [HMPP21] alleviate this trade-off without additional
data by either adapting adversarial perturbations or re-weighting adversarial
examples. Pang et al. [PLY+22] further propose to reconcile robust accuracy and
clean accuracy by minimizing self-consistent robust error.

Robust Overfitting. Robust overfitting refers to the phenomenon that robust
accuracy in the test set degrades severely after the first learning rate decay
during the training, resulting in poor robust generalization. This phenomenon
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is first identified by [RWK20]. Since then, several studies have been proposed
to explain and mitigate the robust overfitting issue [WXW20,SSFJ21,CZL+20,
DXY+21,CZW+22,SHS21]. Chen et al. [CZL+20] show that stochastic weight
average (SWA) and knowledge distillation can mitigate robust overfitting issue
decently and Singla et al. [SSFJ21] found that low curvature activation helps to
mitigate robust overfitting problem. Dong et al. [DXY+21] took a step further
to explain that robust overfitting may be caused by the memorization of hard
samples in the final phase of training. Wu et al. [WXW20], Yu et al. [YHG+21],
and Stutz et al. [SHS21] demonstrate that a flattened loss landscape improves
robust generalization and reduces robust overfitting problem, which is in line
with the sharpness studies in standard training setting [FKMN20,JNM+19,DR17].

Expensive Training Cost. Due to the inner loop for generating adversarial
examples, adversarial training usually takes more than multiple times of standard
training cost, making it hard to be applied in large datasets, such as ImageNet.
To alleviate this issue, Shafahi et al. [SNG+19] propose to update the model
parameters and image perturbations on one simultaneous backward pass, which
achieves 3-30x time faster than standard adversarial training. At the same time,
Zhang et al. [ZZL+19] observe that adversarial perturbation is coupled with
the first layer of the model. This observation inspires them to restrict most
of the forward and backward propagation within the first layer, resulting in
acceleration with 4x-5x less training time. Moreover, Zheng et al. [ZZG+20]
propose to improve the training efficiency of AT by accumulating adversarial
perturbations through epochs, leading to an acceleration of the training. On
the other side, since FGSM-AT has superior training efficiency but suffers from
“catastrophic overfitting” problem [WRK20], i.e., the model lost the robust
accuracy suddenly under strong adversarial attack such PGD attack and is over-
fitting to the weaker adversarial attack such FGSM attack, several works try
to understand and mitigate the ‘catastrophic overfitting’ problem in order to
achieve comparable adversarial robustness with PGD-AT in the training efficiency
of FGSM-AT. Wong et al. [WRK20] propose to combine random initialization for
the on-the-fly FGSM adversarial examples which enables FGSM-AT to achieve
comparable performance as PGD-AT. Andriushchenko & Flammarion [AF20],
and huang [HMPP20] further show that FGSM-AT with random initialization still
suffers from the “catastrophic overfitting” problem and propose a regularization
to mitigate this problem.



1.2 Research Questions 7

1.1.4 Evaluation Metrics

This thesis mainly focuses on two aspects of DNNs: Adversarial robustness and
Task performance. Since most of the experiments in this study are conducted on
the classification task, we use robust accuracy and clean accuracy to measure
adversarial robustness and task performance respectively.
Formally, robust accuracy is expressed as follows:

E(x,y)∼D 1{ar g max
i∈C

f i
θ (x +δ) = y, ∥δ∥p ≤ ϵ} (1.4)

In practice, δ is generated by adversarial attacks.
Correspondingly, clean accuracy is expressed as follows:

E(x,y)∼D 1{ar g max
i∈C

f i
θ (x) = y} (1.5)

1.2 Research Questions

Adversarial examples play multiple roles in DNNs as shown in Figure 1.2. We
define a number of research questions for each role (Figure 1.3) and express
them as follows:

On the role of attacking DL models. Although adversarial examples in the
white-box setting have been shown to fail DL models easily, the requirement of
accessing target model knowledge hinders their application in practice. Besides,
white-box attacks usually suffer from “gradient masking” effects, resulting in a
false sense of robustness in evaluating adversarial robustness. Transferability
in adversarial examples refers to the property of an adversarial attack, where
the adversarial samples generated for one model can be effective in causing
misclassification in other models, even if they have different architectures or are
trained on different datasets. Understanding and improving the transferability
of adversarial examples have great value for practical adversarial attacks and
comprehensive evaluation of adversarial robustness. Therefore, we raise the first
research question:

(RQ1) How to improve the transferability of adversarial examples?

On the role of building adversarial robust models. Currently, the most
effective method to build adversarial robust models is to train models on on-
the-fly adversarial examples (referred to as adversarial training technique).
Although the adversarial training technique is effective in improving adversarial
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robustness, its performance is still far from satisfactory. It faces three problems:
❶ robust overfitting, ❷ a trade-off between clean accuracy and robust accuracy,
❸ expensive training cost. Studies delving into these three aspects are important
to building models with more robust and efficient. Thus, the second research
question raises resulting from the limitations described above:

(RQ2) Can we effectively address the three challenges: (1) Robust
overfitting, (2) Trade-off between clean accuracy and robust

accuracy, (3) High training cost?

On the role of boosting the generalization of DL models. Most of the
existing studies mainly utilize adversarial examples for attacking DL models or
building robust models in image classification problems. The roles of adversarial
examples in representation learning are less explored. This exploration is of
importance for the community to better understand and utilize adversarial
examples. As a pilot study of the role of adversarial examples on representation
learning, we raise the third research question:

(RQ3) Can adversarial examples enhance the representation
learning of graph neural networks?

1.3 Methodology

(I) To answer (RQ1)

We study the transferability property of adversarial examples to improve
their black-box attack ability. We propose to aggregate multiple attack
directions sampled from the neighborhood of the input, leading to stable
attack direction and avoiding overfitting to the specific white-box model.
We evaluate the effectiveness of our proposed method by measuring the
attack success rate of the generated adversarial examples on multiple
unknown models including normal-trained and adversarial-trained models.

(II) To answer (RQ2)

We analyze adversarial training empirically and theoretically. Leveraging
this analysis, we propose novel methods including (1) calibrated adver-
sarial training for mitigating the trade-off between robust accuracy and
clean accuracy, and (2) weighted optimization trajectories for eliminating
the robust overfitting issue. Besides, we propose a novel regularization
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for reducing the training time of adversarial training and overcoming
the catastrophic overfitting issue. To demonstrate the effectiveness of
our proposed techniques, we conduct extensive experiments on multiple
datasets including MNIST, SVHN, CIFAR-10, CIFAR-100, Tiny ImageNet
with PreActResNet-18, and WideResNet-34 architectures. We present both
clean and robust accuracy results under various adversarial attacks. Ad-
ditionally, we perform ablation studies to demonstrate the impact of each
component in our proposed method. To provide further insight, we also
conduct visual analyses to illustrate the workings of our method.

(III) To answer (RQ3)

To preliminarily answer this question, we investigate adversarial training in
the graph domain and prove its effectiveness in enhancing representation
learning. We propose adversarial training for Graph Neural Networks
(GNNs) and evaluate its performance across multiple tasks such as node
classification, link prediction, and graph anomaly detection. Additionally,
we examine the factors that influence the learned node representations.

1.4 Thesis Contribution and Outline
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We carry out a series of research studies during the course of this Ph.D. to
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delve into the above-mentioned research questions. These research questions
are correlated with the core concept of adversarial examples (Figure 1.2 and
Figure 1.3).

Firstly, we study the role of adversarial examples in attacking and evaluat-
ing a model. Concretely, we propose the Direction-Aggregation attack, which
aggregates attack directions to reduce oscillation and prevent overfitting to the
white-box model’s decision boundary. Our experiments on the ImageNet dataset
show that the direction-aggregation attack significantly improves the transfer-
ability of adversarial examples, making it a practical black-box attack. This
study is an extension of the paper “Direction-aggregated Attack for Transferable
Adversarial Examples” and corresponds to answer RQ 1 ( shown in Chapter 2).

Correspondingly, we study the role of adversarial examples in building robust
models.

(1) We analyze the limitation of adversarial training and propose a new defini-
tion of robust error: Calibrated Robust Error. Besides, we derive an upper
bound for the calibrated robust error. Furthermore, we propose calibrated
adversarial training based on the upper bound of calibrated robust error,
which can reduce the adverse effect of adversarial examples. Extensive
experiments demonstrate that our method achieves the best performance
on both clean and robust accuracy among baselines and provides a good
trade-off between clean and robust accuracy. Furthermore, it enables train-
ing with larger perturbations, which yields higher adversarial robustness.
This study is an extension of the paper “Calibrated Adversarial Training”
and corresponds to answer RQ 2 (reported in Chapter 3).

(2) Besides, to overcome the robust overfitting issue and improve robust gen-
eralization, we propose a new method named Weighted Optimization
Trajectories (WOT) that leverages the optimization trajectories of ad-
versarial training in time. We have conducted extensive experiments to
demonstrate the effectiveness of WOT under various state-of-the-art ad-
versarial attacks. Our results show that WOT integrates seamlessly with
the existing adversarial training methods and consistently overcomes the
robust overfitting issue, resulting in better adversarial robustness. This
study is an extension of the paper “In-Time Refining Optimization Trajec-
tories Toward Improved Robust Generalization” and corresponds to answer
RQ 2 (shown in Chapter 4).

(3) Moreover, we demonstrate that the large curvature along FGSM perturbed
direction leads to a large difference in the performance of adversarial
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robustness between FGSM-AT and PGD-AT, and therefore propose com-
bining FGSM-AT with a curvature regularization in order to bridge the
performance gap between FGSM-AT and PGD-AT. The experiments show
that the proposed method achieves comparable adversarial robustness with
PGD-AT but at the same training efficiency as FGSM-AT, which greatly
accelerates the training of PGD-AT. This study is an extension of the paper
“Bridging the Performance Gap between FGSM and PGD Adversarial Training”
and corresponds to answer RQ 2 (shown in Chapter 5).

Finally, we study the effect of adversarial training on the learned represen-
tations. We explore a case in the graph domain. Specifically, we first formulate
L2 and L∞ versions of adversarial training in two powerful node embedding
methods: graph autoencoder (GAE) and variational graph autoencoder (VGAE).
We experimentally show that both L2 and L∞ adversarial training can boost the
generalization with a large margin for the node embeddings learned by GAE
and VGAE. The performance is highly influenced by the magnitude of adver-
sarial perturbations and the strength of the regularization based on adversarial
examples. This study is an extension of the paper “On Generalization of Graph Au-
toencoders with Adversarial Training” and corresponds to answer RQ 3 (reported
in Chapter 6).





Chapter 2

Direction-Aggregation for
Transferable Adversarial
Examples

Deep neural networks are vulnerable to adversarial examples that are crafted by
imposing imperceptible changes to the inputs. However, these adversarial exam-
ples are most successful in white-box settings where the model and its parameters
are available. Finding adversarial examples that are transferable to other models
or developed in a black-box setting is significantly more difficult. This chapter
proposes Direction-Aggregated adversarial attacks that deliver transferable adver-
sarial examples. Specifically, our method utilizes the aggregated direction during
the attack process for avoiding the generated adversarial examples overfitting
to the white-box model. Extensive experiments on ImageNet show that our
proposed method improves the transferability of adversarial examples signifi-
cantly and outperforms state-of-the-art attacks, especially against adversarially
trained models. The best-averaged attack success rate of our proposed method
reaches 94.6% against three adversarially trained models and 94.8% against five
defense methods. It also reveals that current defense approaches do not prevent
transferable adversarial attacks.
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2.1 Introduction

Deep Neural Networks (DNNs) have achieved great success in many tasks, e.g.
image classification [KH12, HZRS16], object detection [GDDM14], segmenta-
tion [LSD15], etc. However, these high-performing models have been shown to
be vulnerable to adversarial examples [SZS+13,lGS15]. In other words, carefully
crafted changes to the inputs can change the model’s prediction drastically. This
fragility has raised concerns about security-sensitive tasks such as autonomous
cars, face recognition, and malware detection. Well-designed adversarial exam-
ples are not only useful to evaluate the robustness of models against adversarial
attacks but also beneficial to improve the model’s robustness [lGS15].

Plenty of ways have been proposed to craft adversarial examples, which
can be divided into white-box and black-box attacks. White-box attacks utilize
complete knowledge including model architecture, model parameters, training
strategy, and training method, e.g. fast gradient sign method (FGSM) [lGS15],
Iterative Fast Gradient Sign Method (I-FGSM) [KGB17], Project gradient descent
(PGD) [MMS+18], Deepfool [MDFF16], Momentum Iterative Fast Gradient Sign
Method (MI-FGSM) [DLP+18] and Carlini & Wagner’s attack [CW17b]. On the
contrary, black-box attacks fool the model’s prediction without any knowledge
about the model. It has been shown that adversarial examples generated by
white-box attacks have the ability to fool other black-box models, which is
known as the transferability property [SZS+13]. The transferability of adversarial
examples enables practical black-box attacks and imposes a huge threat on real-
world applications. However, the transferability of adversarial examples usually
is very low because these adversarial examples easily overfit the white-box model,
i.e. the model for generating these adversarial examples. Therefore, avoiding the
overfitting problem is the key to generating transferable adversarial examples.

Deep neural networks applied to high dimensional classification tasks are
typically very complex models, in other words, the decision boundary is highly
non-linear and tends to have high curvature, e.g., the decision boundary of
model 1 in Fig. 2.1. We believe that it is the high curvature of a decision
boundary that makes adversarial examples decrease their ability to attack other
models, especially adversarial robust models 1 that have smoothed decision
boundary [CRK19,LCWC19]. As shown in Fig. 2.1, the adversarial attack direc-
tion generated by model 1 at sample x (the black arrow line in Fig. 2.1) tends
to overfit to model 1 because this attack direction is the best direction 2 for

1In this chapter, it denotes a model trained with an adversarial training technique.
2It denotes the direction that is perpendicular to the decision boundary.
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attacking model 1, but not a good direction for attacking model 2. To mitigate
the issue of adversarial examples easily overfitting to the white-box model, we
propose to aggregate the attack directions from the neighborhood of the input x,
e.g., by adding Gaussian noise or Uniform noise to the input. The green solid
arrow line in Fig. 2.1 shows the aggregated direction. It is easy to see that the
green solid arrow line is a good attack direction for both model 1 and model
2. Therefore, adversarial examples generated by the aggregated direction can
achieve good transferability. Based on this, we propose the Direction-Aggregated
attack (DA-Attack) for improving the transferability of adversarial examples.
Results of the extensive experiments presented in later sections show that our
method achieves state-of-the-art results.

x

Class 2

Class 1

decision boundary

 of model 1

decision boundary 

of model 2

Figure 2.1: A simple schematic diagram for explaining why aggregated direction can
mitigate the overfitting problem of adversarial examples. Black circle and
triangle markers denote samples of class 1 and class 2 respectively. Red and
blue lines represent the decision boundary of model 1 and model 2. The circle
with a dotted line denotes a set of examples from the neighborhood of x.
Black arrow line denotes the attack direction (sg n(∇xL( fθ(x), y))) of model
1 at the sample x. Green arrow dotted lines are the attack direction at the
perturbed sample with Gaussian noise. Green arrow solid lines denote the
aggregated direction by the vector addition of the green arrow dotted lines.

In detail, our contributions are summarized as follows:

• We propose to aggregate attack directions in order to stabilize the oscilla-
tion of attack directions and guide it to the generalized decision boundary
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and avoid overfitting to the white-box model’s decision boundary. Based
on the aggregated direction, we propose our DA-Attack.

• We demonstrate experimentally that DA-Attack outperforms state-of-the-art
attacks through extensive experiments on ImageNet. The best-averaged
attack success rate of our method achieves 94.6% against three ensemble
adversarially trained models and 94.8% against five defense methods,
which also reveals that current defense models are not safe for transferable
adversarial attacks. We expect that the proposed DA-Attack will serve as a
benchmark for evaluating the effectiveness of adversarial defense methods
in the future.

• We experimentally show that sampling times N , standard deviation σ,
iterations T , and perturbation size ϵ induced in our method plays an
important role in achieving the transferability of adversarial examples.
Usually, a bigger value in N , σ, T , and ϵ can lead to a higher transferability
of the adversarial examples. However, a too-large value in T and σ would
lead to a negative effect.

The rest of this paper is organized as follows. In Section 2.2 we present
related work. In Section 2.3 we describe our proposed DA-Attack in detail. In
Section 2.4 we discuss the results of the extensive experiments with DA-Attack.
In Section 2.5 we discuss the connection of the DA-Attack to a smoothed classifier.
We draw conclusions in Section 2.6.

2.2 Related Work

Adversarial examples Szegedy et al. [SZS+13] first found the existence of
adversarial examples: given an input (x, y) and a classifier fθ, it is possible to
find a similar input x∗ such that fθ(x∗) ̸= y . A formal mathematical definition is
as follows:

min
x∗ ∥x∗−x∥p , s.t . fθ(x∗) ̸= y, fθ(x) = y (2.1)

where ∥·∥p denotes the Lp distance.
Following [SZS+13], many related kinds of research have emerged. On the

one hand, some of them propose to generate adversarial examples that can
be applied in the physical world [EKM+18,KGB17]. On the other hand, some
of them focus on reducing the minimal size of adversarial perturbations and
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improving the attack success rates [lGS15,DLP+18,CW17b,MDFF16]. Among
these researches, the attack success rates under the black-box setting are still
low, especially against adversarially trained models, i.e. the model is trained by
adversarial training technique which can effectively defend against adversarial
examples [MMS+18]. Recently, several papers improve the attack success rates
based on transferable adversarial attacks. Inkawhich et al. [IWLC19] generate
more transferable adversarial examples by enlarging the distance between ad-
versarial examples and clean samples in feature space. Their intuition is from
the fact that deep feature representations of models are transferable. Similar
in utilizing feature representations, Zhou et al. [ZHC+18] improve the transfer-
ability by reducing the variations of adversarial perturbations via constructing
a new regularization based on feature representations. Liu et al. [LCLS17]
demonstrate that transferability can be improved by attacking an ensemble of
substitute models. This method suffers from expensive computational costs since
multiple models are needed to be trained first. Li et al. [LBZ+20] further reduce
the computation cost of the method by attacking “Ghost Networks” where the
“Ghost Networks” are generated from a basic trained model. Xie et al. [XZZ+19]
believe that overfitting to the white-box model decreases the transferability of
adversarial examples, therefore they induce the data augmentation technique to
mitigate the overfitting issue. Specifically, they apply random transformations
to the inputs and calculate gradients based on the transformed inputs. Dong et
al. [DPSZ19] find that different models make predictions based on different dis-
criminative regions of the input, which decreases the transferability of adversarial
examples. Based on this intuition, they propose a translation-invariant attack by
averaging the gradients from an ensemble of images composed of the image and
its translated versions. Similarly, Lin et al. [LSH+20] enhance the transferability
of adversarial examples by averaging gradients from an ensemble of images
composed of the image and its scaled versions. Besides, Lin et al. [LSH+20] also
demonstrate that Nesterov accelerated gradient can further improve the transfer-
ability of adversarial examples. Wu and Zhu [WZ20] improve the transferability
of adversarial examples by smoothing the loss surface. Our method is degraded
to this method when the attack direction of each step is the gradient of loss w.r.t
the inputs. Naseer et al. [MSMH+19] propose “domain-agnostic” adversarial
perturbations which can be used to fool models learned from different domains.
Defense against adversarial examples Correspondingly, many methods have
been proposed to defend against these adversarial examples. Usually, the ability
of a model for defending adversarial examples is referred to adversarial robust-
ness. It measures a model’s resilience against adversarial examples. Goodfellow,
Shlen, and Szegedy [lGS15], Madry et al. [MMS+18] effectively improve a
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model’s adversarial robustness by adversarial training technique. That is, it
trains model based on on-the-fly generated adversarial examples x∗ bounded
by uniformly ϵ-ball of the input x (i.e., ∥x∗− x∥ ≤ ϵ). Tramer et al. [TKP+18]
further improve adversarial robustness by ensemble adversarial training where
the model is trained on adversarial examples generated from multiple pre-trained
models. Cohen, Rosenfeld, and Kolter [CRK19] build a guaranteed adversarial
robust model by transforming a base classifier f into a smoothed classifier’s g .
Specifically, the prediction of g (X ) is defined to be the class which f is most
likely to classify the random variable N (x,σ2I ) as. On the other hand, sev-
eral papers try to defend against adversarial examples by purifying or reducing
adversarial perturbations. Xie et al. [XWZ+18] and Guo et al. [GRCvdM18]
impose transformations, e.g., image cropping, rescaling, quilting, padding, and
so on, on input images at inference time to reduce the adversarial perturbations,
and therefore increase the accuracy of the model’s performance on adversarial
examples. Liao et al. [LLD+18] propose a U-net based denoiser to purify the
adversarial perturbations.

2.3 Methodology

In this section, we first introduce notation and then provide details of our method.

2.3.1 Notation

We specify the notations that are used in this chapter by the following list:

• x and y denote a clean image and the corresponding true label respectively.

• x∗ denotes the adversarial example.

• fθ(x) denotes a deep neural network.

• L( fθ(x), y) represents the Cross-Entropy loss.

• sg n(·) denotes the sign function.

• ∇xL(·) denotes the gradient of L(·) with respect to x.

• C l i pϵ
x(·) function limits the generated adversarial example x∗ to the ϵ

max-norm ball of x.

• ϵ is the allowed maximum perturbation size of the adversarial perturbation.
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• α is the step size for PGD/FGSM-based adversarial attacks.

• N (0,σ2I ) denotes Gaussian distribution with mean 0 and standard devia-
tion σ.

• U (a,b) is Uniform distribution.

• ε denotes a small random noise and can be generated from Gaussian
distribution or Uniform distribution. In this chapter, we adopt Gaussian
noise by default.

• | · | denotes the number of elements of a set.

• D∗ denotes a set of adversarial examples.

2.3.2 Gradient-based Adversarial Attack Methods

Several adversarial attacks will be integrated into our proposed method. We give
a brief introduction to them in this section.

Fast Gradient Sign Method (FGSM) [lGS15] generates adversarial examples
by adding a fixed magnitude along the sign of gradients of the loss function,
which is formalized as follows:

x∗ =x+ϵ · sg n(∇xL( fθ(x), y)). (2.2)

Iterative Fast Gradient Sign Method (I-FGSM) [KGB16] is a multi-step
variant of FGSM and restricts the perturbed size to the ϵ max-norm ball. With
the initialization x∗

0 = x, the perturbed data in t − th step x∗
t can be expressed as

follows:

x∗
t =C l i pϵ

x{x∗
t−1 +α · sg n(∇xL( fθ(x∗

t−1), y))}. (2.3)

Momentum iterative fast gradient sign method (MI-FGSM) [DLP+18]
integrates momentum into the I-FGSM method for stabilizing optimization,
which can be expressed as follows:

gt+1 =µ ·gt +
∇xL( fθ(x∗

t ), y)

∥∇xL( fθ(x∗
t ), y)∥1

(2.4)

x∗
t+1 =C l i pϵ

x{x∗
t +α · sg n(gt )} (2.5)

where gt is the accumulated gradient at iteration t and µ is the decay factor of
the momentum term.



20 Direction-Aggregation for Transferable Adversarial Examples

Diverse Inputs Method(DIM) [XZZ+19] calculates gradient based on ran-
dom transformed inputs. The transformation contains random resizing and
padding with a given probability. Formally, it can be expressed as follows:

gt+1 =µ ·gt +
∇xL( fθ(T (x∗

t ; p)), y)

∥∇xL( fθ(T (x∗
t ; p)), y)∥1

(2.6)

x∗
t+1 =C l i pϵ

x{x∗
t +α · sg n(gt+1)} (2.7)

where T (·; p) is the stochastic transformation function and p is the transformation
probability.

Translation-invariant Method(TIM) [DPSZ19] generates an adversarial
example by an ensemble of translated inputs and it was demonstrated to be
equivalent to convolving the gradient at the untranslated image. Specifically, it
can be expressed as follows:

gt+1 =µ ·gt +
W ∗∇xL( fθ(x∗

t ), y)

∥W ∗∇xL( fθ(x∗
t ), y)∥1

(2.8)

x∗
t+1 =C l i pϵ

x{x∗
t +α · sg n(gt )} (2.9)

where ∗ is the convolutional operation and W is the kernel matrix of size
(2k + 1)× (2k + 1). Following [DPSZ19], a Gaussian kernel is chosen for our
experiments. It is defined as: W̃i , j = 1

2πσ2 exp− i 2+ j 2

2σ2 where the standard deviation
σ= k/

p
3 and Wi , j = W̃i , j /

∑
i , j W̃i , j .

2.3.3 Direction-Aggregated Attack (DA-Attack)

In Fig. 2.1 we illustrated that adversarial examples could overfit to the white-box
model due to the very complex decision boundary decreasing their transferabil-
ity. We mitigate this overfitting problem by aggregating the attack directions
of a set of examples from the neighborhood of the input. We integrate the
aggregated direction to basic adversarial attacks, i.e. Fast Gradient Sign Method
(FGSM) [SZS+13], Iterative Fast Gradient Sign Method (I-FGSM) [KGB16], and
Momentum Iterative Fast Gradient Sign Method (MI-FGSM) [DLP+18], for im-
proving their transferability. Besides, to further enhance the transferability, we
combine our method with other transferable adversarial attacks, i.e. Diverse
Input Method (DIM) [XZZ+19], Translation-Invariant Method (TIM) [DPSZ19],
TI-DIM [DPSZ19]. Concretely, the update procedures for each attack are formal-
ized as follows.
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DA-FGSM. To mitigate the effect of overfitting to the specific model and
improve the transferability of adversarial examples for FGSM attack, we propose
the Direction-Aggregated FGSM (DA-FGSM). The attack direction is replaced
with the aggregated direction which is achieved by aggregating the attack di-
rections of a set of examples from the neighborhood of the input x. In practice,
we generate the set of examples by adding small perturbations to the input, i.e.
adding Gaussian noise or Uniform noise to the input. In this chapter, we adopt
Gaussian noise as the default choice. We further provide evidence that Uniform
noise can reach the same performance as Gaussian noise. Formally, it can be
represented as follows:

x∗ =x+ϵ · sg n(
N∑

i=0
(sg n(∇xL( fθ(x+εi ), y)))), (2.10)

where N denotes the sampling times from certain noise distribution. The
sg n(∇xL( fθ(x+εi ), y)) denotes one specific attack direction. We aggregate the N
attack directions by the sum operation.

DA-I-FGSM. To improve the transferability for I-FGSM. We propose the
Direction-Aggregated I-FGSM (DA-I-FGSM). The attack direction at each iter-
ation is replaced with the aggregated direction. The update procedure can be
formalized as follows:

x∗
t =C l i pϵ

x{x∗
t−1 +α · sg n(

N∑
i=0

(sg n(∇xL( fθ(x∗
t−1 +εi ), y))))}. (2.11)

DA-MI-FGSM. We integrate the momentum term into DA-I-FGSM for improv-
ing the attack ability, which is called Momentum Direction-Aggregated I-FGSM
(DA-MI-FGSM). The update procedure of DA-MI-FGSM can be expressed as
follows:

ga =
N∑

i=0
(sg n(∇xL( fθ(x∗

t−1 +εi ), y))) (2.12)

gt =µ ·gt−1 + ga

∥ga∥1
(2.13)

x∗
t =C l i pϵ

x{x∗
t−1 +α · sg n(gt )}, (2.14)

where gt is the accumulated gradient at iteration t and µ is the decay factor of
the momentum term, and ga is the aggregated direction.

DA-DIM. We combine our proposed DA-MI-FGSM with DIM to further im-
prove the transferability of adversarial examples and denote it as Direction-
Aggregated DIM (DA-DIM). The update procedure is similar to DA-MI-FGSM,
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with the replacement of Eq. (2.12) by the following equation:

ga =
N∑

i=0
(sg n(∇xL( fθ(T (x∗

t−1 +εi ; p)), y))), (2.15)

DA-TIM. Similar to DA-DIM, we combine DA-MI-FGSM with TIM and denote
it as Direction-Aggregated TIM (DA-TIM). Likewise, the update procedure is
similar to DA-MI-FGSM, with the replacement of Eq. (2.13) by the following
equation:

gt =µ ·gt−1 + W ∗ga

∥W ∗ga∥1
, (2.16)

DA-TI-DIM. Following [LSH+20], we combine DA-MI-FGSM with TIM and
DIM together and denote it as Direction-Aggregated TI-DIM (DA-TI-DIM). The
update procedure can be presented as follows:

ga =
N∑

i=0
(sg n(∇xL( fθ(T (x∗

t−1 +εi ; p)), y))) (2.17)

gt =µ ·gt−1 + W ∗ga

∥W ∗ga∥1
(2.18)

x∗
t =C l i pϵ

x{x∗
t−1 +α · sg n(gt )}. (2.19)

The pseudocode of DA-MI-FGSM is summarized in Algorithm 1 and the code
is provided3.

2.4 Experiments

We evaluate the effectiveness of DA-Attack empirically. We first introduce the
dataset and experimental settings. Then we show the performance of our method
against normal and defense models. Finally, we analyze the influence of the
parameters N , σ, ϵ, T and α on achieving the transferability of adversarial
examples.

2.4.1 Experimental Settings

Datasets. Following the strategy used in [LSH+20], a set of 1000 images (de-
noted as D) that are correctly classified by all testing models are randomly

3https://github.com/Juintin/DA-Attack.git

https://github.com/Juintin/DA-Attack.git
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Algorithm 1 DA-MI-FGSM

Require: A input image x with true label y; a classifier f with loss function L;
perturbation size ϵ; maximum iterations T ; Gaussian distribution N (0,σ2I );
The decay factor µ; the aggregated direction ga .

Ensure: An adversarial example x∗
1: α = ϵ/T
2: x∗

0 =x; g0 = 0
3: for t = 1 to T do
4: ga=0
5: for i = 0 to N do
6: Get εi ∼ N (0,σ2I )
7: Aggregate attack directions as ga=ga+sg n(∇xL( fθ(x∗

t−1 +εi ), y))
8: end for
9: Update gt =µ ·gt−1+ ga

∥ga∥1

10: Update x∗
t =C l i pϵ

x {x∗
t−1 +α · sg n(gt )}

11: end for
12: x∗ =x∗

t
13: return x∗

selected from ILSVRC 2012 validation set. For a fair comparison with state-of-
the-art methods, we use the same 1000 images4 in [LSH+20].
Models. Four normally trained models and three ensemble adversarially trained
models are used for evaluating adversarial examples, which are Inception-V3
(Inc-V3) [SVI+16], Inception-v4 (Inc-V4) [SIVA17], Inception-Resnet-v2 (IncRes-
V2) [SIVA17], Resnet-V2 (Res-101) [HZRS16], Inc-V3ens3, Inc-V3ens4 and IncRes-
V2ens [TKP+18] respectively. Besides, five advanced defense methods are con-
sidered for further evaluating the effectiveness of our method. Specifically,
the selected advanced defense methods are High-level representation guided
denoiser (HGD) [LLD+18], Random resizing and padding (R&P) [XWZ+18],
NIPS-r35, feature distillation (FD) [LLL+19] and purifying perturbations by im-
age compression (Comdefend) [JWCF19].
Baselines. Several most recently proposed methods aiming at generating trans-
ferable adversarial examples are taken as baselines:

• DIM [XZZ+19], which generates transferable examples by random resizing
input images;

4https://github.com/JHL-HUST/SI-NI-FGSM
5https://github.com/anlthms/nips-2017/tree/master/mmd

https://github.com/JHL-HUST/SI-NI-FGSM
https://github.com/anlthms/nips-2017/tree/master/mmd
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• TIM [DPSZ19], which generates transferable examples by a set of translated
images;

• SI-NI-FGSM [LSH+20], which generates transferable examples by scaled
images and Nesterov accelerated gradients; and

• The combinations of DIM, TIM, and SI-NI-FGSM, namely TI-DIM [DPSZ19],
SI-NI-TIM [LSH+20], SI-NI-DIM [LSH+20] and SI-NI-TI-DIM [LSH+20]
attacks.

Considering that we completely follow the experimental settings in [LSH+20], all
the baseline results except for the attack success rates against FD and ComDefend
in Table 2.6 are from [LSH+20].
Hyper-Parameters. We follow the settings in [LSH+20] for all hyper-parameters,
the maximum perturbation ϵ is set to 16, and the number of iterations T is set
to 12 as default values. Accordingly α = ϵ/T . The momentum parameter µ is
set to 1.0. For DIM and TI-DIM methods, the transformation probability is set
to 0.5. For the TIM method, the Gaussian kernel is adopted as our baseline
experiments and kernel size is set to 7×7. For SI-NI-FGSM, SI-NI-TIM, SI-NI-DIM,
and SI-NI-TI-DIM methods, the number of scales is set to 5. For our DA-Attack,
sampling times N and standard deviation σ are set to 30 and 0.05 respectively.
Criteria. We use the attack success rates to reflect the ability of adversarial
examples to attack a model. The attack success rates are defined as follows:

100×
∑M

i=1 [argmax j f j (x∗
i ) ̸= yi ]

M
, (2.20)

where (x∗
i , yi ) ∈ D∗ and M is the number of adversarial examples in D∗.

2.4.2 Single-Model Attacks

We first evaluate the effectiveness of DA-Attack based on the single model.
DIM [XZZ+19], TIM [DPSZ19] and SI-NI-FGSM [LSH+20] and their combina-
tions, i.e. SI-NI-TIM, TI-DIM, SI-NI-TI-DIM, are taken as baselines. Besides,
several popular normal adversarial attacks, i.e. FGSM, I-FGSM, MI-FGSM, PGD,
C&W, are utilized to show the effectiveness of our method.

Comparison with normal and transferable attacks. The attack success
rates of DIM, TIM, SI-NI-FGSM, normal attacks and our proposed method are
shown in Table 2.1. The adversarial examples are crafted based on the Inc-V3
model. From Table 2.1, it can be observed:
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• Adversarial examples are much easier to attack normally trained models
than adversarially trained models.

• Adversarial examples generated by transferable attacks have much higher
attack success rates against black-box models than normal attacks.

• Our proposed M-ADI-FGSM attack outperforms the current state-of-the-art
SI-NI-FGSM attack by 4.6% to 10.4%. Besides, DA-FGSM and DA-I-FGSM
attacks without momentum acceleration still achieve remarkable results
compared with normal attacks, which demonstrates the effectiveness of
the aggregated direction.

Besides, it is worth noting that adversarial examples from the I-FGSM attack are
less transferable than that from the FGSM attack (by comparing I-FGSM with
FGSM in Table 2.1), which shows the evidence that adversarial examples overfit-
ting to the white-box model decreases the transferability. And the transferability
is improved by adding a momentum term during generating adversarial exam-
ples (by comparing MI-FGSM with I-FGSM in Table 2.1), which is in line with
the claim in [DLP+18]. Interestingly, the combination of Direction Aggregation
and momentum can greatly improve the transferability again (by comparing
MI-FGSM with DA-MI-FGSM in Table 2.1). We conjecture that it is because
the proposed Direction Aggregation technique is orthogonal to the momentum
technique. Intuitively, the Direction Aggregation technique stabilizes the attack
direction by reducing the oscillation of each update direction during the itera-
tions while momentum stabilizes the attack direction by accumulating historical
update directions.

Comparison with the extensions of DIM and TIM. To fully evaluate DA-
TIM, DA-DIM, and DA-TI-DIM attacks, adversarial examples are crafted by these
attacks based on Inc-V3, Inc-V4, IncRes-V2, and Res-101 models respectively. We
test it against the four normally trained and three ensemble adversarially trained
models. The evaluation results are shown in Table 2.2, Table 2.3 and Table 2.4.
It can be observed from these results:

• The combination of our method with DIM and TIM methods significantly
enhances the transferability of adversarial examples, demonstrating that
our method is complementary to these methods.

• Our method outperforms the state-of-the-art attacks across all conducted
experiments, i.e. SI-NI-TIM, SI-NI-DIM, and SI-NI-TI-DIM, except for adver-
sarial examples crafted on IncRes-V2 model. Besides, the attack success
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rates of our method against the adversarially trained models outperform
state-of-the-art attacks by large margins.

For the exception that our method does not outperform the state-of-the-art results
for adversarial examples crafted on the IncRes-V2 model, it may be because the
adversarial examples generated by our method underfit the IncRes-V2 model
somehow since the attack success rates for the white-box model IncRes-V2 is
only around 95% and 4%-5% lower than the SI-NI-TIM/DIM method. One
possible solution for this “underfit” problem is to increase the Iterations T. The
results in Fig. 2.7c also indicates that the attack success rates for normal models
can be improved a lot by increasing the Iterations T. Besides, we notice that
the improvement of combining DA technique and DIM/TIM implemented on
different white-box models are different. We think it may be caused by the
different degrees of non-linearity on the decision boundaries of different white-
box models. Intuitively, the greater the non-linearity of the decision boundary,
the larger the improvement in transferability that can be achieved with the DA
technique.

Visibility. We visualize 5 randomly selected pairs of adversarial examples
generated by TIM, DIM, SI-NI-FGSM, and DA-MI-FGSM attacks respectively, and
their corresponding clean images in Fig. 2.2. We can see that the adversarial
examples generated by our method are similar to those generated by other meth-
ods in visibility, and all these adversarial examples are hard to be distinguished
from their corresponding clean images by humans.

Table 2.1: The attack success rates (%) against Inc-V3, Inc-V4, IncRes-V2, Res-101, Inc-
V3ens3, Inc-V3ens4 and IncRes-V2ens models. The adversarial examples are
generated based on the Inc-V3 model by normal adversarial attacks including
FGSM, I-FGSM, PGD, C&W, and transferable adversarial attacks including DIM,
TIM, SI-NI-FGSM, DA-FGSM, DA-I-FGSM, and DA-MI-FGSM attacks. ∗ denotes
the white-box model being attacked.

Attack Inc-V3∗ Inc-V4 IncRes-V2 Res-101 Inc-V3ens3 Inc-V3ens4 IncRes-V2ens

Normal

FGSM 67.1 26.7 25 24.4 10.5 10 4.5
I-FGSM 99.9 20.7 18.5 15.3 3.6 5.8 2.9
PGD 99.5 17.3 15.1 13.1 6.1 5.6 3.1
C&W 100 18.4 16.2 14.3 3.8 4.7 2.7

Transferable

MI-FGSM 100.0 40.0 38.2 32.3 12.5 12.8 6.8
DIM 98.7 67.7 62.9 54 20.5 18.4 9.7
TIM 100 47.8 42.8 39.5 24 21.4 12.9
SI-NI-FGSM 100 76 73.3 67.6 31.6 30 17.4
DA-FGSM(Ours) 87.6 47 43.6 42 18.3 17.4 9.5
DA-I-FGSM(Ours) 99.8 44 39.2 34.3 23.7 22.4 12.4
DA-MI-FGSM(Ours) 99.8 80.6 78.5 72.2 40.6 40.4 26.5
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Table 2.2: Comparison of TIM, SI-NI-TIM and the DA-TIM extension. The attack success
rates (%) are shown in the table. Adversarial examples are generated based
on Inc-V3, Inc-V4, IncRes-V2, and Res-101 respectively. ∗ denotes the attack
success rates under white-box attacks.

Model Attack Inc-V3 Inc-V4 IncRes-V2 Res-101 Inc-V3ens3 Inc-V3ens4 IncRes-V2ens

Inc-V3
TIM 100∗ 47.8 42.8 39.5 24 21.4 12.9
SI-NI-TIM 100∗ 77.2 75.8 66.5 51.8 45.9 33.5
DA-TIM(Ours) 99.8∗ 80.9 77.9 71.8 66.9 65.2 51.2

Inc-V4
TIM 58.5 99.6∗ 47.5 43.2 25.7 23.3 17.3
SI-NI-TIM 83.5 100∗ 76.6 68.9 57.8 54.3 42.9
DA-TIM(Ours) 84.2 98.4∗ 77.7 69.3 66.8 65.9 56.4

IncRes-V2
TIM 62 56.2 97.5∗ 51.3 32.8 27.9 21.9
SI-NI-TIM 86.4 83.2 99.5∗ 77.2 66.1 60.2 57.1
DA-TIM(Ours) 80 78.5 94∗ 74 69.5 66.4 66

Res-101
TIM 59 53.6 51.8 99.3∗ 36.8 32.2 23.5
SI-NI-TIM 78.3 74.1 73 99.8∗ 58.9 53.9 43.1
DA-TIM(Ours) 78.6 74.7 76 99.2∗ 72.1 69.7 62.7

2.4.3 Ensemble-based Attacks

We also evaluate the performance of our method under ensemble-based attacks.
Liu et al. [LCLS17] have shown that attacking multiple models simultaneously
can generate more transferable adversarial examples. It is because if an adver-
sarial example can attack multiple models successfully, it can more likely attack
yet another model successfully.

We follow the ensemble-based attack strategy proposed in [DLP+18], which
fuses the logit activations of multiple models to generate adversarial examples.
In this experiment, we generate adversarial examples by attacking Inc-V3, Inc-V4,
IncRes-V2, and Res-101 models simultaneously with equal ensemble weights. In
Table 2.5, we show the attack success rates for DA-DIM, DA-TIM, DA-TI-DIM,
and baselines. It shows that our method outperforms these baselines across
all experiments. The highest attack success rate is achieved by our DA-TI-DIM
attack and the average attack success rates against the three robust models reach
94.6%.

2.4.4 Attacking Other Defense Models

We also study the performance of our method on defense models. We test it
against HGD [LLD+18], R&P [XWZ+18], NIPS-r3, FD [LLL+19] and ComDe-
fend [JWCF19] defense methods. HGD, R&P, and NIPS-r3 were the top 3
defense methods in the NIPS 2017 defense competition. FD and ComDefend
are recently published defense methods for purifying adversarial perturbations.
TI-DIM [DPSZ19] and SI-NI-TI-DIM attacks [LSH+20] are presented as base-
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Table 2.3: Comparison of DIM, SI-NI-DIM and the DA-DIM extension. The numbers in the
table denote the attack success rates (%). Adversarial examples are generated
based on Inc-V3, Inc-V4, IncRes-V2, and Res-101 respectively using DIM, SI-NI-
DIM, and DA-DIM methods. ∗ denotes the attack success rates under white-box
attacks.

Model Attack Inc-V3 Inc-V4 IncRes-V2 Res-101 Inc-V3ens3 Inc-V3ens4 IncRes-V2ens

Inc-V3
DIM 98.7∗ 67.7 62.9 54 20.5 18.4 9.7
SI-NI-DIM 99.6∗ 84.7 81.7 75.4 36.9 34.6 20.2
DA-DIM(Ours) 99.5∗ 89 87.3 81.2 57.1 56.6 38.8

Inc-V4
DIM 70.7 98.0∗ 63.2 55.9 21.9 22.3 11.9
SI-NI-DIM 89.7 99.3∗ 84.5 78.5 47.6 45 28.9
DA-DIM(Ours) 90.8 98.1∗ 87.1 80.9 62.1 62.9 49.7

IncRes-V2
DIM 69.1 63.9 93.6∗ 47.4 29.4 24 17.3
SI-NI-DIM 89.7 86.4 99.1∗ 81.2 55 48.2 38.1
DA-DIM(Ours) 86.1 85.8 95∗ 80.2 64.6 59.7 57.1

Res-101
DIM 75.9 70 71 98.3∗ 36 32.4 19.3
SI-NI-DIM 88.7 84.2 84.4 99.3∗ 53.4 48 33.2
DA-DIM(Ours) 90.9 87.7 89.4 99.2∗ 75.3 72.6 62.9

lines. Adversarial examples are generated based on the ensemble of Inc-V3,
Inc-V4, IncRes-V2, and Res-101 models. The attack success rates against FD and
ComDefend defense are based on IncRes-V2ens model.

As shown in Table 2.6, our model achieves state-of-the-art results and reaches
94.8% for averaged attack success rates, which indicates current defense methods
are not safe to transferable adversarial attacks.

2.4.5 Similarity of Adversarial Perturbations

To further understand the proposed Direction-Aggregated attack, we plot the
cosine similarity of adversarial perturbations generated from multiple white-box
models, i.e. Inc-V3, Inc-V4, IncRes-V2, and Res-101 models. The results are
shown in Fig 2.3.

In Fig 2.3, the cosine similarity of adversarial perturbations generated by the
proposed Direction-Aggregated attack is generally higher than other baseline
attacks. It is in line with our expectation since the aggregated direction could
reduce the oscillation of each update direction in generating adversarial pertur-
bations. Besides, we notice that the cosine similarity of adversarial perturbations
on DA-FGSM is not significantly higher than FGSM. We conjecture that it is due
to the adversarial perturbations generated by FGSM “underfit” the white-box
model, which limits the similarity of adversarial perturbations.
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Table 2.4: Comparison of TI-DIM, SI-NI-TI-DIM and the DA-TI-DIM extension. The num-
bers in the table denote the attack success rates (%). Adversarial examples are
generated based on Inc-V3, Inc-V4, IncRes-V2, and Res-101 respectively using
TI-DIM, SI-NI-TI-DIM, and DA-TI-DIM methods. ∗ denotes the attack success
rates under white-box attacks.

Model Attack Inc-V3 Inc-V4 IncRes-V2 Res-101 Inc-V3ens3 Inc-V3ens4 IncRes-V2ens

Inc-V3
TI-DIM 98.5∗ 66.1 63 56.1 38.6 34.9 22.5
SI-NI-TI-DIM 99.6∗ 85.5 80.9 75.7 61.5 56.9 40.7
DA-TI-DIM(Ours) 99.6∗ 88.3 85.1 80.3 77.4 76.8 62.9

Inc-V4
TI-DIM 72.5 97.8∗ 63.4 54.5 38.1 35.2 25.3
SI-NI-TI-DIM 88.1 99.3∗ 83.7 77 65 63.1 49.4
DA-TI-DIM(Ours) 88.8 97.8∗ 83.9 78.3 75.7 75.7 68.1

IncRes-V2
TI-DIM 73.2 67.5 92.4∗ 61.3 46.4 40.2 35.8
SI-NI-TI-DIM 89.6 87 99.1∗ 83.9 74 67.9 63.7
NS-TI-DIM(Ours) 84.2 83.5 94.5∗ 78.3 76.1 73.1 72.8

Res-101
TI-DIM 74.9 69.8 70.5 98.7∗ 52.6 49.1 37.8
SI-NI-TI-DIM 86.4 82.6 84.6 99∗ 72.6 66.8 56.4
DA-TI-DIM(Ours) 88.1 83.8 86.2 99.3∗ 82.6 82.2 76.2

2.4.6 Parameter Analysis

In this section, we conduct a series of experiments to study the impact of different
hyper-parameters on the transferability of adversarial examples.

Sampling Times N . We explore the influence of sampling times N upon
the transferability of adversarial examples. Fig. 2.4 shows the attack success
rates (%) against Inc-V3, Inc-V4, IncRes-V2, Res-101, Inc-V3ens3, Inc-V3ens4 and
IncRes-V2ens models under black-box settings. The generation of adversarial
examples is based on Inc-V3, Inc-V4, IncRes-V2, and Res-101 models respectively
with standard deviation σ setting as 0.05.

From Fig. 2.4, we can see that the attack success rates are growing with the
increase in sampling times. In detail, the curve is growing fast when sampling
times N are less than 30 and the trend of growth tends to be flattening when
sampling times N are greater than 30. Besides, the growing trends of Fig. 2.4a,
Fig. 2.4b, Fig. 2.4c and Fig. 2.4d are similar, which indicates that the influence of
sampling times N on the transferability is little sensitive to the white-box model.

σ in Gaussian Distribution. Standard deviation σ controls the shape of
Gaussian distribution and plays an important role in Gaussian noise generation.
We study the influence of σ upon the transferability of adversarial examples.
Fig. 2.5 shows the attack success rates against Inc-V3, Inc-V4, IncRes-V2, Res-
101, Inc-V3ens3, Inc-V3ens4 and IncRes-V2ens models under black-box attacks.
Adversarial examples in this experiment are crafted based on Inc-V3, Inc-V4,
IncRes-V2, and Res-101 models respectively with sampling times N = 30.

From Fig. 2.5, we can see that the attack success rates have a surge increasing
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Figure 2.2: Visualization of randomly selected clean images and their corresponding
adversarial examples. All examples are generated by TIM, DIM, SI-NI-FGSM,
and DA-MI-FGSM attacks respectively.

at first, then the growing trends tend to be flattening. The surge increasing of
the attack success rates indicates that the parameter σ plays an important role in
our method. Besides, the similar trends among Fig. 2.5a, Fig. 2.5b, Fig. 2.5c and
Fig. 2.5d indicate that the influence of σ on achieving transferability is insensitive
to the white-box model.

It is deserved to note that a very large σ is not encouraged for our method for
two reasons: 1) a larger σ indicates a larger perturbation size will be generated
(Fig. 2.1), thus more sampling times are needed to cover the sampling region;
2) noise sampling from a very large σ might already be too large to flip the
prediction and consequently disturb the attack direction.

Perturbation Size ϵ. We study the impact of perturbation size ϵ on the attack
success rates. We set sampling times N and standard deviation σ to 30 and
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Table 2.5: The attack success rates (%) against Inc-V3, Inc-V4, IncRes-V2, Res-101, Inc-
V3ens3, Inc-V3ens4 and IncRes-V2ens models. Adversarial examples are gener-
ated based on the ensemble of Inc-V3, Inc-V4, IncRes-V2, and Res-101 models
using DIM, SI-NI-DIM, TIM, SI-NI-TIM, TI-DIM, SI-NI-TI-DIM, DA-DIM, DA-TIM,
and DA-TI-DIM attacks respectively. Aver ag e column denotes the averaged
attack success rates against the three robust models. ∗ denotes the white-box
model being attacked.

Attack Inc-V3∗ Inc-V4∗ IncRes-V2∗ Res-101∗ Inc-V3ens3 Inc-V3ens4 IncRes-V2ens Average
DIM 99.7 99.2 98.9 98.9 66.4 60.9 41.6 56.3
SI-NI-DIM 100 100 100 99.9 88.2 85.1 69.7 81
DA-DIM(Ours) 99.9 99.8 99.7 99.8 91 90.1 85.5 88.9
TIM 99.9 99.3 99.3 99.8 71.6 67 53.2 63.9
SI-NI-TIM 100 100 100 100 93.2 90.1 84.5 89.2
DA-TIM(Ours) 99.8 99.8 99.2 99.6 93.4 92.1 89.3 91.6
TI-DIM 99.6 98.8 98.8 98.9 85.2 80.2 73.3 79.5
SI-NI-TI-DIM 99.9 99.9 99.9 99.9 96 94.3 90.3 93.5
DA-TI-DIM(Ours) 99.8 99.8 99.6 99.6 96.2 94.7 93 94.6

Table 2.6: The attack success rates against the five advanced defense models.

Attack HGD R&P NIPS-r3 FD ComDefend Average
TI-DIM 84.8 75.3 80.7 84.2 79.6 80.9
SI-NI-TI-DIM 96.1 91.3 94.4 93.7 91.9 93.5
DA-TI-DIM(Ours) 96.1 93.6 94.8 94.4 94.3 94.8

0.05 respectively. We fix step size al pha to 16
10 and iterations T to 16. The

attack success rates (%) against Inc-V3, Inc-V4, IncRes-V2, Res-101, Inc-V3ens3,
Inc-V3ens4 and IncRes-V2ens models are achieved under black-box settings. The ϵ
varies from 10 to 16 and the results are shown in Fig. 2.6.

From Fig. 2.6, we observe that the attack success rates increase steadily as
perturbation size ϵ increases on both adversarially trained models and normally
trained models.

Iterations T . We study the impact of iterations T on the transferability of
adversarial examples. Similarly, we set sampling times N and standard deviation
σ to 30 and 0.05 respectively. We fix perturbation size ϵ to 16 and step size
α to 16

10 . We generate adversarial examples based on normally trained models.
Then these adversarial examples are tested on the other models under black-box
settings. The total iterations T vary from 5 to 22 and the results are shown in
Fig. 2.7.

From Fig. 2.7, we can see that the attack success rates are growing sig-
nificantly when T is less than 10. However, the attack success rates start to
flatten/slightly grow on the normally trained models and slightly decrease on
the adversarially trained models after T is greater than 10. It is worth noting
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Figure 2.3: The cosine similarity of adversarial perturbations generated from Inc-V3, Inc-
V4, IncRes-V2 and Res-101 models.

that the perturbation size reaches the maximum perturbation size because the
α is set to 16

10 , which could be the reason why the trends start to be flattening
after T = 10. Besides, we conjecture that the adversarial examples overfit the
white-box model to some extent when T is greater than 10, which decreases
its transferability. A similar phenomenon can be found in I −FGSM attack in
which the adoption of multiple iterations decreases its transferability. A possible
reason for the steady/slight increase in the normally trained models when T > 10
is that the decision boundary of the white-box model is more similar to that of
the normally trained models than that of the adversarially trained models.

Step size α. We study the impact of step size α on the transferability of
adversarial examples. Similarly, we set sampling times N and standard deviation
σ to 30 and 0.05 respectively. We fix perturbation size ϵ to 16 and iterations T to
16. We generate adversarial examples based on normally trained models. Then
we test these adversarial examples on the other models under black-box settings.
The step size α varies from 16

8 to 16
16 and the results are shown in Fig. 2.8.

From Fig. 2.8, it can be seen that the attack success rates are consistently
increasing with the decrease of α on the adversarially trained models while
keeping a flat/slightly decreasing trend on normally trained models. The reason
for the different trends between normally trained models and adversarially
trained models might be because the correctly classified samples by normally
trained models are very difficult to conduct the transferable attack. To show the
evidence for our conjecture, we provide a ratio metric to indicate the percentage
of the samples correctly classified by normal models are also correctly classified
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Figure 2.4: The attack success rates (%) of black-box attack against Inc-V3, Inc-V4, IncRes-
V2, Res-101, Inc-V3ens3, Inc-V3ens4 and IncRes-V2ens models when varying
sampling times N ranging from 10 to 50. The adversarial examples are
generated based on Inc-V3 (Fig. 2.4a), Inc-V4 (Fig. 2.4b), IncRes-V2 (Fig. 2.4c)
and Res-101 (Fig. 2.4d) models respectively by DA-MI-FGSM attack.

by the adversarially trained model. We denote S IncV 3 = {x ∈ D∗| f IncV 3
θ

(x) = y}
where the mark IncV 3 denotes the name of the model. The ratio is formulated
as follows:

Rati o = |S IncV 3 ∪S IncV 4 ∪S IncResV 2 ∪SRes101 ∩Sr obust |
|S IncV 3 ∪S IncV 4 ∪S IncResV 2 ∪SRes101|

(2.21)

where the mark r obust denotes the surrogate name of adversarially trained
models.

From Fig. 2.9, we can see that around 90% or more 90% of the samples are
correctly classified by both normally trained models and adversarially trained
models. It implies that these samples are difficult to be transferred to attack the
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Figure 2.5: The attack success rates (%) of black-box attack against Inc-V3, Inc-V4, IncRes-
V2, Res-101, Inc-V3ens3, Inc-V3ens4 and IncRes-V2ens models when varying
σ from 0 to 0.09. The adversarial examples are generated based on Inc-V3
(Fig. 2.5a), Inc-V4 (Fig. 2.5b), IncRes-V2 (Fig. 2.5c) and Res-101 (Fig. 2.5d)
models respectively using DA-MI-FGSM attack.

black-box models. Therefore, the transferability of these samples improved by
reducing α may not be enough to attack the black-box models successfully.

2.5 Connection of the DA-Attack to a Smoothed
Classifier

Our method mitigates the overfitting problem by aggregating the attack directions
of a set of examples around the input x, which is different from DIM, TIM,
and SI-NI-FGSM attacks. Essentially, these methods are based on geometric
transformations of the inputs, e.g. scale and translation. The successful boosting
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Figure 2.6: The attack success rates (%) of black-box attack against Inc-V3, Inc-V4, IncRes-
V2, Res-101, Inc-V3ens3, Inc-V3ens4 and IncRes-V2ens models when varying
ϵ from 10 to 16. The adversarial examples are generated based on Inc-V3
(Fig. 2.6a), Inc-V4 (Fig. 2.6b), IncRes-V2 (Fig. 2.6c) and Res-101 (Fig. 2.6d)
models respectively using DA-MI-FGSM attack.

of the performance of combinations of PA-Attack with DIM or TIM (Table 2.2,
Table 2.3, Table 2.4) also provides evidence that our method is orthogonal to
these attacks.

For a better understanding of our method, we provide an analysis of the
connection of DA-Attack to a smoothed classifier. A reasonable assumption is
that adversarial examples generated by a non-smoothed classifier are more easily
overfitted than that generated by a smoothed classifier. We take the Gaussian
noise-smoothed classifier as an example. Formally, given a Gaussian function
g (t ) = 1p

2πσ
exp− t 2

2σ2 , the Gaussian noise smoothed classifier can be presented as
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Figure 2.7: The attack success rates (%) of black-box attack against Inc-V3, Inc-V4, IncRes-
V2, Res-101, Inc-V3ens3, Inc-V3ens4 and IncRes-V2ens models when varying
T from 5 to 22. The adversarial examples are generated based on Inc-V3
(Fig. 2.7a), Inc-V4 (Fig. 2.7b), IncRes-V2 (Fig. 2.7c) and Res-101 (Fig. 2.7d)
models respectively using DA-MI-FGSM attack.

follows:

Φ( f )(x) =
∫

Rn
g (y−x) f (y)dy

= Eε∈N (0,σ2 I )[ f (x +ε)]. (2.22)

In practice, Eq. (2.22) can be empirically estimated by Monte Carlo sampling.
That is, Φ( f )(x) = 1

N

∑N
i=1 f (x + εi ),εi ∈ N (0,σ2I ). Accordingly, the gradient of

Φ( f )(x) can be presented as follows:

∇xΦ( f )(x) = 1

N

N∑
i=1

∇x f (x +εi ),εi ∈N (0,σ2I ). (2.23)
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Figure 2.8: The attack success rates (%) of black-box attack against Inc-V3, Inc-V4, IncRes-
V2, Res-101, Inc-V3ens3, Inc-V3ens4 and IncRes-V2ens models when varying
α from 16

8 to 16
16 . The adversarial examples are generated based on Inc-V3

(Fig. 2.8a), Inc-V4 (Fig. 2.8b), IncRes-V2 (Fig. 2.8c) and Res-101 (Fig. 2.8d)
models respectively using DA-MI-FGSM attack.

Comparing Eq. (2.23) with Eq. (2.10), it can be observed that when we use the
gradient instead of the projected gradient as the update direction, i.e. drop the
sign function in Eq. (2.10), Eq. (2.10) will be equivalent to Eq. (2.23). 1

N can be
ignored since it will not influence the attack direction. Therefore, our method
will be degraded to generate adversarial examples by a smoothed classifier when
we use the gradient as the attack direction directly, which also implies that
DA-Attack can mitigate the overfitting issue of adversarial examples.

Actually, the smoothed classifier also could be smoothed by other noise, e.g.
Uniform noise, where g (t ) is replaced with the uniform distribution function.
Similarly, Gaussian noise is not the only choice for our DA-Attack. Uniform
noise is applicable too. To provide empirical evidence for this, we conduct
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Figure 2.9: The percentage of the samples that are correctly classified by both normal
models and the adversarially trained model. Adversarial examples generated
by different models are shown in Fig 2.9a, Fig 2.9b, Fig 2.9c and Fig 2.9d
respectively.

further experiments by replacing Gaussian noise with Uniform noise (Eq. (2.12))
sampled from U(−0.08,0.08). Other hyper-parameters are set the same as in
the preceding experiments (Section 2.4). The results are shown in Fig. 2.10,
from which we observe that DA-Attack with Uniform noise reaches the same
performance as when Gaussian noise was added. This experiment illustrates that
the choice of the type of perturbations is not the key factor for DA-Attack.

2.6 Conclusion

In this study, we aimed to enhance the transferability of adversarial examples
through the aggregation of attack directions in the vicinity of the input. Our
proposed DA-Attack method leverages the aggregated direction. Our experiments
on ImageNet, including both single-model and ensemble-based attacks, showed
that our method outperforms state-of-the-art attacks. The exception was the
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Figure 2.10: The attack success rates (%) of black-box attack against Inc-V3, Inc-V4,
IncRes-V2, Res-101, Inc-V3ens3, Inc-V3ens4 and IncRes-V2ens models. The
adversarial examples are generated based on Inc-V3 (Fig. 2.10a), Inc-V4
(Fig. 2.10b), IncRes-V2 (Fig. 2.10c) and Res-101 (Fig. 2.10d) models using
DA-MI-FGSM attack with Gaussian noise and Uniform noise respectively.

IncRes-V2 model, where results were inconsistent. Our DA-Attack achieved the
highest average attack success rate of 94.6% against three adversarially trained
models and 94.8% against five defense models in black-box settings. These
results highlight the need for stronger defense mechanisms as current defense
models are not sufficient to protect against transferable adversarial attacks.

We outline several potential approaches for defending against transferable
adversarial examples. The essence of existing transferable adversarial examples
is that the decision boundaries of the trained models are similar. Therefore, one
simple defense approach is to train ensemble models with diversified decision
boundaries in order that the decision boundary of each base model is less similar
to that of the white-box model. Another way is to use transferable adversarial
examples as training instances, i.e. simply adding them to the training data.
This idea is similar to adversarial training. The challenge here however is is to
efficiently generate on-the-fly transferable adversarial examples.





Chapter 3
Calibrated Adversarial Training

Adversarial training is an approach of increasing the robustness of models to ad-
versarial attacks by including adversarial examples in the training set. One major
challenge of producing adversarial examples is to contain sufficient perturbation
in the example to flip the model’s output while not making severe changes in the
example’s semantical content. Exuberant change in the semantical content could
also change the true label of the example. Adding such examples to the training
set results in adverse effects. In this chapter, we present Calibrated Adversarial
Training, a method that reduces the adverse effects of semantic perturbations
in adversarial training. The method produces pixel-level adaptations to the
perturbations based on novel calibrated robust error. We provide theoretical
analysis on the calibrated robust error and derive an upper bound for it. Our
empirical results show a superior performance of the Calibrated Adversarial
Training over a number of public datasets.

3.1 Introduction

Despite the impressive success in multiple tasks, e.g. image classification [KH12,
HZRS16], object detection [GDDM14], semantic segmentation [LSD15], deep
neural networks (DNNs) are vulnerable to adversarial examples. In other words,
carefully constructed small perturbations of the input can change the prediction
of the model drastically [SZS+13,GSS14a]. Furthermore, these adversarial exam-
ples have shown high transferability, which greatly threatens the security of DNN
models [XZZ+19,HMP+21]. This vulnerability of DNNs prohibits their adoption
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in applications with high risk such as autonomous driving, face recognition, and
medical image diagnosis.

In response to the vulnerability of DNNs, various defense methods have been
proposed. These methods can be roughly separated into two categories: 1) certi-
fied defense, and 2) empirical defense. Certified defense tries to learn provable
robustness against ϵ-ball bounded perturbations [CRK19,WK18]. Empirical de-
fense refers to heuristic methods, including augmenting training data [MMS+18]
(e.g. adversarial training), regularization [MDFUF18, JG18], and inspirations
from biology [TKRB19]. Among all these defense methods, adversarial train-
ing has been the most commonly used defense against adversarial perturba-
tions because of its simplicity and effectiveness [MMS+18,ACW18]. Standard
adversarial training takes model training as a minmax optimization problem
(Section 3.3.2) [MMS+18]. It trains a model based on on-the-fly generated ad-
versarial examples X ′ bounded by uniformly ϵ-ball of input X (i.e. ∥X ′−X ∥ ≤ ϵ).

Although adversarial training is effective in achieving robustness, it suffers
from two problems. Firstly, it achieves robustness with a severe sacrifice on
natural accuracy, i.e. accuracy on natural images. Furthermore, the sacrifice
will be enlarged rapidly when training with larger ϵ. Secondly, there is an
underlying assumption that the on-the-fly generated adversarial examples within
ϵ-ball are semantically unchanged. However, recently, Guo et al. [GFW18]
and Sharma et al. [SDB19] show that adversarial examples bounded by ϵ-ball
could be perceptible in some instances. Tramer et al. [TBC+20] and Jacobsen
et al. [JBZB19] find that there are “invariance adversarial examples” for some
instances, where “invariance adversarial examples” refer to those adversarial
examples that model’s prediction does not change while the true label changes.
All these findings indicate that this assumption does not consistently hold, which
hurts the performance of the model.

In this chapter, we first analyze the limitation of adversarial training and
point out that some on-the-fly generated adversarial examples may be harmful
to train models. For instance, in Figure 3.1, the adversarial examples for x1 may
be harmful since it crosses the oracle classifier’s decision boundary. To address
the limitation, we propose calibrated adversarial training, which is derived from
the upper bound of a new definition of robust error (Calibrated robust error).
Calibrated adversarial training is composed of weighted cross-entropy loss for
natural input and KL divergence for calibrated adversarial examples where
calibrated adversarial examples are pixel-level adapted adversarial examples
in order to reduce the adverse effect of adversarial examples with underlying
semantic changes.

Specifically, our contributions are summarized as follows:



3.2 Related Work 43

• Theoretically, we analyze the limitation of adversarial training and propose
a new definition of robust error: Calibrated robust error. Furthermore, we
derive an upper bound for the calibrated robust error.

• We propose the calibrated adversarial training based on the upper bound of
calibrated robust error, which can reduce the adverse effect of adversarial
examples.

• Extensive experiments demonstrate that our method achieves the best
performance on both natural and robust accuracy among baselines and
provides a good trade-off between natural accuracy and robust accuracy.
Furthermore, it enables training with larger perturbations, which yields
higher adversarial robustness.

 
 

   





Model’s decision boundary Oracle classifier’s decision boundary

1x

2x

Class1 Class2

Figure 3.1: Illustration for neighborhoods of inputs and the decision boundaries.

3.2 Related Work

Many papers have proposed their variants of adversarial training for achieving
either more effective adversarial robustness or a better trade-off between ad-
versarial robustness and natural accuracy. Generally, they can be categorized
into two groups. The first group adapts a loss function for outer minimization or
inner maximization. For instance, Kannan et al. [KKG18] introduce a regular-
ization term to enclose the distance between the adversarial example and the
corresponding natural example. Zhang et al. [ZYJ+19b] propose a theoretically
principled trade-off method (Trades). Ding et al. [DSLH19] propose Max-Margin
adversarial (MMA) training by maximizing the margin of a classifier. Wang
et al. [WZY+20] propose MART by introducing an explicit regularization for
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misclassified examples. Wu et al. [WXW20] propose Adversarial Weight Pertur-
bation (AWP) for regularizing the weight loss landscape of adversarial training.
Andriushchenko et al. [AF20] and Huang et al. [HMPP20] propose FGSM ad-
versarial training + gradient-based regularization for achieving more effective
adversarial robustness. The other group is to generate adversarial examples
with adapted perturbation strength. Our work belongs to this group. Several
recent works including Customized adversarial training [CLC+20], Currium ad-
versarial training [CDLS18], Dynamic adversarial training [WMB+19], Instance
adapted adversarial training [BGH19], Adversarial training with early stopping
(ATES) [SCW20], Friendly adversarial training (FAT) [ZXH+20b], heuristically
propose to adapt ϵ in instance-level for adversarial examples.

3.3 Preliminary

3.3.1 Notations

We denote capital letters such as X and Y to represent random variables and
lower-case letters such as x and y to represent the realization of random variables.
We denote by x ∈X the sample instance, and by y ∈Y the label, where X ∈Rm×n

indicates the instance space. We use B(x,ϵ) to represent the neighborhood of
instance x: {x ′ : ∥x ′−x∥p ≤ ϵ}. We denote a neural network classifier as fθ(x), the
cross-entropy loss as L(·) and Kullback-Leibler divergence as KL(·||·). We denote
P (Y |X ) as probability output after softmax and P (Y = y |X ) as the probability of
Y = y. sg n(·) denotes the sign function and for acl e denotes the oracle classifier
that maps any inputs to correct labels.

3.3.2 Standard Adversarial Training

Given a set of instances x ∈X and y ∈Y . We assume the data are sampled from
an unknown distribution (X ,Y ) ∼D. The standard adversarial training can be
formally expressed as follows [MMS+18]:

min
θ
ρ(θ),ρ(θ) =E(X ,Y )∼D [ max

X ′∈B(X ,ϵ)
L( fθ(X ′),Y )]. (3.1)

3.3.3 Projected Gradient Descent (PGD)

Madry et al. [MMS+18] utilize projected gradients to generate perturbations.
Formally, with the initialization x0 = x, the perturbed data in t -th step x t can be
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expressed as follows:

x t =ΠB(x,ϵ)(x t−1 +α · sg n(∇x L( fθ(x t−1), y))), (3.2)

where ΠB(x,ϵ) denotes projecting perturbations into the set B(x,ϵ), α is the step
size and t ∈ {1,2, ...,T }. We denote PGD attack with T = 20 as PGD-20 and T = 100
as PGD-100.

3.3.4 C&W attack

Given x, C&W attack [CW17b] searches adversarial examples x̃ by optimizing
the following objective function:

∥x̃ −x∥p + c ·h(x̃), (3.3)

with

h(x̃) = max(max
i ̸=t

fθ(x̃)i − fθ(x̃)t ,−k),

where c > 0 balances the two loss terms and k encourages adversarial examples
to be classified as target t with larger confidence. This paper adopts C&W∞
attack and follows the implementation in [ZYJ+19b,CDLS18] where they replace
the cross-entropy loss with h(x̃) in PGD attack.

3.3.5 Robust Error

We introduce the definition of robust error given by [ZYJ+19b,SST+18].

Definition 3.3.1 (Robust Error [ZYJ+19b,SST+18]) Given a set of instance x1

,..., xn ∈ X and labels y1, ..., yn ∈ {−1,+1}. We assume that the data are sampled
from an unknown distribution (X ,Y ) ∼ D. The robust error of a classifer fθ : X −→ R
is defined as: Rr ob( f ) := E(X ,Y )∼D1{∃X ′ ∈B(X ,ϵ) s.t . fθ(X ′)Y ≤ 0}.

3.4 Method

3.4.1 Analysis For Adversarial Training

Current adversarial training including its variants trains a model by minimizing
robust error directly, which may hurt the performance of the model. Taking
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standard adversarial training as an example, it first approximates robust error by
inner maximization and then minimizes the approximated robust error. However,
the on-the-fly adversarial examples generated by the inner maximization could
be semantically damaged for some instances, e.g., in Figure 3.1, the semantical
content of the adversarial examples for x1 could be damaged since it crosses the
decision boundary of fθ. Therefore, the objective function (Eq. (3.1)) can be
decomposed into two terms according to the oracle classifier’s decision boundary:

min
θ
ρ(θ), ρ(θ) =E(X ,Y )∼D [

(a)︷ ︸︸ ︷
max

X ′∈B(X ,ϵ)
L( fθ(X ′),Y )1{ for acl e (X ′) = Y }

+
(b)︷ ︸︸ ︷

max
X ′∈B(X ,ϵ)

L( fθ(X ′),Y )1{ for acle (X ′) ̸= Y }]. (3.4)

The term (b) contributes to negative effects since the cross-entropy loss takes Y
as the label of adversarial examples X ′ while the true label of X ′ is not Y . This
term is equivalent to bringing noisy labels in training data, which also explains
why a large perturbation magnitude in adversarial training leads to a severe
drop in the natural accuracy of the model.

To overcome this limitation, we present the concept of calibrated robust error
as the foundation for our defense method.

3.4.2 Calibrated Robust Error

Definition 3.4.1 (Calibrated Robust Error (Ours)) Given a set of instances x1

,..., xn ∈X and labels y1, ..., yn ∈ {−1,+1}. We assume that the data are sampled from
an unknown distribution (X ,Y ) ∼ D. Assume there is an oracle classifier for acl e that
maps any input x ∈ Rd into its true label. The calibrated robust error of a classifier
fθ : X −→ R is defined as: Rcal i ( f ) := E(X ,Y )∼D1{∃X ′ ∈B(X ,ϵ) s.t . fθ(X ′) for acl e (X ′) ≤
0}.

Theorem 1 Given a set of instance x1, ..., xn ∈ X , a classifier fθ : X −→ R and an
oracle classifier for acl e that maps any input x ∈ Rd into its true label and assumed
the decision boundaries of fθ and for acl e are not overlapped 1, we have:

Rr ob( f ) ≤Rcal i ( f ). (3.5)

1Not overlapped denotes fθ and for acl e are not exactly the same.
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Proof. We denote the set SR = {(X ,Y )|∀(X ,Y ) ∼ D,∃X ′ ∈ B(X ,ϵ) s.t . fθ(X ′)Y ≤ 0}
and SC ali R = {(X ,Y )|∀(X ,Y ) ∼ D,∃X ′ ∈B(X ,ϵ) s.t . fθ(X ′) for acl e (X ′) ≤ 0}.

Since SR ⊆ SC ali R =⇒ Rr ob( f ) ≤Rcal i ( f ), we only need to prove SR ⊆ SC ali R .

∀(X ,Y ) ∈ SR ,

(1) i f fθ(X )Y ≤ 0, then fθ(X ) for acl e (X ) ≤ 0 =⇒ X ∈ SC ali R .

(2) i f fθ(X )Y > 0, then ∃X ′ ∈B(X ,ϵ) s.t fθ(X ′)Y ≤ 0;

1)i f for acl e (X ′) fθ(X ′) ≤ 0 =⇒ X ∈ SC ali R

2)i f for acl e (X ′) fθ(X ′) > 0, then i t must have :

∃X
′′ ∈B(X ,ϵ) s.t . fθ(X

′′
) for acl e (X

′′
) ≤ 0; (3.6)

We prove Eq. (3.6) by the contradiction method. We assume:

∀X
′′ ∈B(X ,ϵ) s.t . fθ(X

′′
) for acl e (X

′′
) > 0 i s Tr ue. (3.7)

fθ(X )Y > 0, fθ(X ′)Y ≤ 0 =⇒ the deci si on bound ar y o f fθ

cr osses the ϵ−nor m ball o f X .

fθ(X ′)Y ≤ 0, for acl e (X ′) fθ(X ′) > 0 =⇒ the deci si on bound ar y

o f for acl e cr osses the ϵ−nor m ball o f X .

I f E q. (3.7) i s tr ue, whi ch i mpl i es that fθ and for acl e have the

same pr edi ct i on on any sample f r om the ϵ−bal l o f X .

=⇒ the deci si on bound ar i es o f fθ and for acl e wi l l be

compl etel y over l apped i n ϵ−bal l o f X , whi ch contr adi ct s

the assumpti on o f the T heor em 1 : the deci si on bound ar i es

o f fθ and for acl e ar e not over l apped .

T her e f or e E q. (3.7) i s F al se .

=⇒ ∃X
′′ ∈B(X ,ϵ) s.t . fθ(X

′′
) for acl e (X

′′
) ≤ 0;E q. (3.6) i s pr oved .

=⇒ X ∈ SC ali R .

By now, we proved ∀X ∈ SR =⇒ X ∈ SC ali R . Besides, ∃X ∈ SC ali R =⇒ X ∉ SR , e.g.
the sample X in Fig. 3.2a. Therefore SR ⊆ SC ali R is proved.
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Besides going through the formal proof itself, we think it is useful to look
into the provided visualization of the decision boundary for a more intuitive
understanding. According to the spatial relationship of decision boundaries of fθ
and for acl e , it can be separated into intersection and non-intersection cases (no
overlap case according to the assumption in Theorem 1), which are shown in
Fig. 3.2. From Fig. 3.2, for any sample (X, Y) from class 2, if ∃X ′ ∈B(X ,ϵ) lies
in the region filled with blue lines, it must have ∃X

′′ ∈B(X ,ϵ) lies in the region
filled with gray lines. However, if ∃X

′ ∈B(X ,ϵ) lies in the region filled with gray
lines, it is possible that ∀X

′ ∈B(X ,ϵ) do not lie in the region filled with blue lines.
Therefore SR ⊆ SC ali R .

Model’s decision boundary

Oracle classifier’s decision boundary

Class1

Class2

X



(a) Intersect1

Model’s decision boundary

Oracle classifier’s decision boundary

Class1

Class2

(b) Intersect2

Model’s decision boundary

Oracle classifier’s decision boundary

Class1

Class2

(c) Non-Intersect1

Model’s decision boundary

Oracle classifier’s decision boundary

Class1

Class2

(d) Non-Intersect2

Figure 3.2: Visualization of fθ and for acle decision boundaries. Region filled with gray
lines: {X ′| fθ(X ′) for acl e (X ′) ≤ 0}. Region filled with blue lines: {X ′| fθ(X ′)Y ≤
0,Y = cl ass2}.

From Theorem 1, it can be observed that minimizing robust error can be
obtained by minimizing calibrated robust error.
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3.4.3 Upper Bound on Calibrated Robust Error

In this section, we derive an upper bound on the calibrated robust error.

Theorem 2 (Upper Bound) Let ψ be a nondecreasing, continuous and convex
function:[0,1] −→ [0,∞]. Let Rφ( f ) := Eφ( fθ(X )Y ) and R∗

φ := min f Rφ( f ), R( f ) :=
E( fθ(X )Y ) and R∗ = min f R( f ). For any non-negative loss function φ such that
φ(0) ≥ 1, any measurable fθ : X −→ R and any probability distribution on X ×
{+1,−1}, we have:

Rcal i ( f )−R∗ ≤ψ−1(Rφ( f )−R∗
φ)+E

[
max

X ′∈B(X ,ϵ)
for acl e (X ′)=Y

φ( fθ(X ′)Y )
]

. (3.8)

Proof.

Rcal i ( f )−R∗ = E(X ,Y )∼D1{∃X ′ ∈B(X ,ϵ) s.t . fθ(X ′) for acl e (X ′) ≤ 0}

= E(X ,Y )∼D1{∃X ′ ∈B(X ,ϵ) s.t . fθ(X ′) for acl e (X ′) ≤ 0, fθ(X )Y ≤ 0}

+E(X ,Y )∼D1{∃X ′ ∈B(X ,ϵ) s.t . fθ(X ′) for acle (X ′) ≤ 0, fθ(X )Y > 0}−R∗

= E(X ,Y )∼D1{ fθ(X )Y ≤ 0}−R∗

+E(X ,Y )∼D1{∃X ′ ∈B(X ,ϵ) s.t . fθ(X ′) for acle (X ′) ≤ 0, fθ(X )Y > 0}

≤ψ−1(Rφ( f )−R∗
φ)+E(X ,Y )∼D1{∃X ′ ∈B(X ,ϵ) s.t . fθ(X ′) for acl e (X ′) ≤ 0, fθ(X )Y > 0}

≤ψ−1(Rφ( f )−R∗
φ)+E(X ,Y )∼D1{∃X ′ ∈B(X ,ϵ) s.t . fθ(X ′) for acl e (X ′) ≤ 0}

≤ψ−1(Rφ( f )−R∗
φ)+E(X ,Y )∼D max

X ′∈B(X ,ϵ)
1{ fθ(X ′) for acl e (X ′) ≤ 0}

≤ψ−1(Rφ( f )−R∗
φ)+E(X ,Y )∼D max

X ′∈B(X ,ϵ)
φ( fθ(X ′) for acl e (X ′))

Let for acle (X ′) = Y , then,

Rcal i ( f )−R∗ ≤ψ−1(Rφ( f )−R∗
φ)+E(X ,Y )∼D max

X ′∈B(X ,ϵ)
for acle (X ′)=Y

φ( fθ(X ′)Y )

The first inequality holds when φ is a classification-calibrated loss [ZYJ+19b,
BJM06]. Classification-calibrated loss contains the cross-entropy loss, hinge loss,
KL divergence and etc.

From the upper bound, it can be observed:

• If the oracle classifier’s decision boundary crosses ϵ-ball, the upper bound is
decided by the adversarial examples that are close to the oracle classifier’s
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decision boundary. If the oracle classifier’s decision boundary does not
cross ϵ-ball, the upper bound is decided by the adversarial examples that
are close to the boundary of ϵ-ball.

• Minimizing Rφ( f )+E
[

max X ′∈B(X ,ϵ)
for acle (X ′)=Y

φ( f (X ′)Y )
]

can reduce the calibrated

robust error. From Theorem 1, we can know that calibrated robust error is
the upper bound of robust error. Therefore, it also reduces the robust error
of the model.

3.4.4 Method for Defense

From the upper bound, we define the general objective function as follows:

min
θ

E
[
φ( fθ(X )Y )+ max

X ′∈B(X ,ϵ)
for acle (X ′)=Y

φ( fθ(X ′)Y )
]

. (3.9)

The first term in Eq. (3.9) is the surrogate loss of misclassification on natural
data, and we design it as a cross-entropy weighted by (1−P (Y = y |X )) where
P (Y = y |X ) represents the probability of target label. Formally, it is expressed as:

φ( fθ(X )Y ) = L( fθ(X ),Y ) · (1−P (Y = y |X )). (3.10)

The second term in Eq. (3.9) is the surrogate loss on adversarial examples.
However, it can not be solved directly since for acl e is unknown. Therefore, we
propose an approximate solution with two steps. Firstly, we generate adversarial
examples based on maxX ′∈B(X ,ϵ)φ( fθ(X ′)Y ). Secondly, we adapt the adversar-
ial examples at pixel-level such that it approximately satisfies the constraint
for acl e (X ′) = Y and we name the pixel-level adapted adversarial examples as
calibrated adversarial examples. We rewrite max X ′∈B(X ,ϵ)

for acl e (X ′)=Y

φ( fθ(X ′),Y ) as

follows:

X ′ = ar g maxX ′∈B(X ,ϵ)φ( fθ(X ′)Y ) (3.11)

X ′
cal i = X +M ⊙ (X ′−X ), M ∈Rm×n , M [i , j ] ∈ (0,1), (3.12)

where the ⊙ denotes Hadamard product. From Eq. (3.11) and Eq. (3.12), we
can see that calibrated adversarial examples X ′

cal i are obtained by adapting
adversarial perturbations with soft mask M . Please refer to Section 3.5.2 for a
better understanding of how the mask M adapts the adversarial perturbations.
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X ′ can be solved by various adversarial attacks, e.g., the PGD attack. Therefore,
the problem of the inner maximization in Eq. (3.9) is transformed to find a
proper soft mask M . Considering that soft mask M relies on inputs X and the
perturbations δ= X ′−X , we propose to learn it by a neural network gϕ, which is
defined as follows:

M = gϕ(X ,δ). (3.13)

Therefore, by replacing φ( fθ(X )Y ) with Eq. (3.10) and X ′ with X ′
cal i , the objective

function (Eq. (3.9)) is transformed to follows:

min
θ

E(X ,Y )∼D [L( fθ(X ),Y ) · (1−P (Y = y |X ))+β ·φ( fθ(X ′
cal i )Y )], (3.14)

where X ′
cal i is solved by Eq. (3.12), and β is a hyper-parameter for balancing

two terms. In practice, we follow [ZYJ+19b,WZY+20] to use KL divergence for
the surrogate loss φ(·) in the outer minimization step. Thus, Eq. (3.14) can be
reformulated as follows:

min
θ

E(X ,Y )∼D [L( fθ(X ),Y ) · (1−P (Y = y |X ))+β ·KL(P (Y |X ′
cal i )||P (Y |X ))]. (3.15)

From Eq. (3.15), it can be observed that there are two main differences with
other variants of adversarial training, e.g., AT, Trades, MART, etc.

• We use weighted cross-entropy loss instead of cross-entropy loss in order
to make the loss function pay more attention to misclassified samples.

• The KL divergence is based on calibrated adversarial examples that reduce
the adverse of some adversarial examples because calibrated adversarial
examples are expected to be satisfied with for acl e (X ′

cal i ) = Y .

Finally, we design the objective function for gϕ(X ,δ) based on the two con-
straints: (1) X ′

cal i should be close to X ′ as far as possible in order to keep the
inner maximization constraint in Eq. (3.9). (2) X ′

cal i is expected to be satisfied
with for acle (X ′

cal i ) = Y . Therefore, the objective function for gϕ(X ,δ) is designed
as follows:

min
ϕ

E(X ,Y )∼D [KL(P (Y |X ′
cal i )||P (Y |X ′))+β1 ·L( fθ(X ′

cal i ),Y )], (3.16)

where KL divergence term corresponds to the constraint (1) and cross-entropy
loss L(·) corresponds to the constraint (2). β1 is the hyper-parameter that controls
the strength of the constraint (2).
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We denote our method as calibrated adversarial training with PGD attack
(CATcent ) if X ′ is solved by PGD attack, calibrated adversarial training with
C&W∞ attack (CATcw ) if X ′ is solved by C&W∞ attack.

3.5 Experiments

In this section, we first conduct extensive experiments to assess the effectiveness
of our approach in achieving natural accuracy and adversarial robustness, then
we conduct experiments for understanding the proposed method.

3.5.1 Evaluation on Robustness and Natural Accuracy

Experimental settings

Two datasets are used in our experiments: MNIST [LeC98], and CIFAR-10 [KNH10].
For MNIST, all defense models are built on four convolution layers and two linear
layers. For CIFAR-10, we use PreAct ResNet-18 [HZRS16] and WideResNet-34-
10 [ZK16] models. Following previous studies [ZYJ+19b,WXW20], Robustness is
measured by robust accuracy against white-box and black-box attacks. For white-
box attack, we adopt PGD-20/100 attack [MMS+18], FGSM attack [GSS14a]
and C&W∞ [CW17b]. For black-box attacks, we adopt the query-based attack:
Square attack [ACFH20].

Baselines. Standard adversarial training and the three latest defense methods
are considered: 1)TRADES [ZYJ+19b], 2)MART [WZY+20], 3)FAT [ZXH+20b].

Hyper-parameter settings. During training phase, for MNIST, we set T = 20,
ϵ = 0.3, α = ϵ/T for the training attack, and set β = 1, β1 = 0.3 by default. For
CIFAR-10, we set T = 10, α= 2/255, ϵ= 8/255 for the training attack and set β= 5
by default. We train models with β1 = 0.05,0.1,0.3 respectively. For all baselines,
they are trained using the official code that their authors provided, and the
hyper-parameters for them are set as per their original papers.

During the test phase, for MNIST, we set ϵ= 0.3 and α= 0.015 for the PGD
attack. For CIFAR-10, we set ϵ = 8/255 and α = 0.003 for PGD attack. And we
follow the implementation in [ZXH+20b] for C&W∞ attack where ϵ = 0.031,
α= 0.003, T = 30 and k = 50.

Note that during the training process, we use the PGD attack with a random
start, i.e. adding random perturbation of [−ϵ,ϵ] to the input before PGD pertur-
bation. But for the test in our experiments, we use PGD attack without random
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Table 3.1: Evaluation on MNIST. The value beside the model name denotes the max
perturbation magnitude used in the training phase. -: denotes the training
loss fails in decrease. We report the mean value with 5 repeated runs and skip
the standard deviations since they are small (< 0.4%), which hardly affects the
results.

MODELS NATURAL PGD-20 PGD-100

AT(0.3) 99.2 93.4 92.3
AT(0.4) - - -
TRADES(0.3)* 99.3 94.9 92.9
TRADES(0.4)* 99.1 95.3 91.6
CATcent (0.3) 99.3 95.4 93.2
CATcent (0.4) 99.2 96.8 95.8
CATcw (0.3) 99.1 96.2 95.0
CATcw (0.4) 99.1 97.1 96.2

* MODEL IS TRAINED WITH β= 1.0.

start by default 2.

Evaluation on White-box Robustness

This section shows the evaluation against white-box attacks. All attacks have
full access to model parameters. We first conduct an evaluation on a simple
benchmark dataset: MNIST and then conduct an evaluation on a complex dataset:
CIFAR-10.

MNIST. Table 3.1 reports natural accuracy and robust accuracy under PGD-20
and PGD-100 respectively. For baselines, we do not include results from FAT
and MART since they do not provide training codes for MNIST. From Table 3.1,
we can see that the proposed method can achieve higher natural accuracy and
robust accuracy compared with standard adversarial training. Besides, we notice
that with larger ϵ = 0.4, adversarial robustness can be boosted further by our
defense method.

CIFAR-10. We evaluate the performance based on two benchmark architec-
tures, i.e., PreAct ResNet-18 and WideResNet-34-10. All defense models are
tested under the same attack settings as described in Section 3.5.1 except for FAT
on WideResNet-34-10 since this evaluation is copied from their paper directly

2We find that PGD attack (restart=1) without random start is stronger than that with random
start.
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Table 3.2: Evaluation on CIFAR-10 for PreAct ResNet-18 under white-box setting.

MODELS NATURAL FGSM PGD-20 PGD-100 CW∞ AVG

AT 83.0 57.3 52.9 51.9 50.9 59.2
TRADES(β : 6) 82.8 57.6 52.8 51.7 50.9 59.2
MART (λ : 5) 83.0 60.2 53.9 52.3 49.9 59.9
FAT(β:6) 85.1 58.3 52.1 50.5 50.4 59.3
CATcent (β1 : 0.05) 84.1 ± 0.3 59.5 ± 0.2 55.6 ± 0.3 54.9±0.3 50.8±0.2 61.0
CATcent (β1 : 0.1) 85.9 ±0.2 58.5±0.3 54.1 ±0.1 53.4 ±0.06 50.44±0.3 60.4
CATcw (β1 : 0.05) 84.2 ±0.3 58.9±0.2 55.3 ±0.4 54.5 ±0.5 51.3±0.3 60.9
CATcw (β1 : 0.1) 85.1 ±0.5 58.9±0.3 54.9 ±0.5 54.1 ±0.4 51.2±0.1 60.8

CATcent (β1 : 0.3) 88.0 ±0.2 57.0±0.4 51.1 ±0.5 49.9 ±0.4 47.8±0.2 58.8
CATcw (β1 : 0.3) 88.1 ±0.1 57.4±0.5 51.5 ±0.1 50.1 ±0.2 48.8±0.2 59.2

where it is evaluated with ϵ = 0.031 for PGD attack. Table 3.2 and Table 3.3
report natural accuracy and robust accuracy on the test set. “Avg” denotes the
average of natural accuracy and all robust accuracy, and it indicates the overall
performance on both natural accuracy and robust accuracy. For our method, we
report the mean + standard deviation with 5 repeated runs.

From Table 3.2 and Table 3.3, it can be seen that our method achieves the
best performance on both natural accuracy and robust accuracy under all attacks
except for FGSM among baselines. Moreover, with β1 = 0.3, our method improves
natural accuracy with a large margin while keeping comparable performance
with baselines on robust accuracy. Besides, our method achieves a high “Avg”
value, which indicates our method has a good trade-off between natural accuracy
and robust accuracy. Finally, we observe that the robustness achieved by our
method has smaller accuracy under stronger attacks, i.e. PGD-100 and CW∞,
than weaker attacks, i.e. FGSM and PGD-20. It indicates that the robustness
achieved by our method is not caused by “gradient masking” [ACW18].

Evaluation on Black-box Robustness

We conduct evaluations on black-box settings. We choose to use Square at-
tack [ACFH20] in our experiments. The square attack is a black-box attack that
is efficient in terms of query use and has been shown to achieve performance
comparable to white-box attacks and resist “gradient masking” [ACFH20]. In
our experiments, we set hyper-parameters nquer i es = 5000 and eps = 8/255 for
the square attack. The experiments are carried out on CIFAR-10 test set based
on PreAct ResNet-18 and WideResNet-34-10 architectures. Results are shown in
Table 3.4. It can be seen that our method achieves the best accuracy among all
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Table 3.3: Evaluation on CIFAR-10 for WideResNet-34-10 under white-box setting.

MODELS NATURAL FGSM PGD-20 PGD-100 CW∞ AVG

AT 86.1 61.8 56.1 55.8 54.2 62.8
TRADES(β : 6) 84.9 60.9 56.2 55.1 54.5 62.3
MART (λ : 5) 83.6 61.6 57.2 56.1 53.7 62.5
FAT(β:6) 86.6±0.6 61.9±0.6 55.9±0.2 55.4±0.3 54.3±0.2 62.8
CATcent (β1 : 0.05) 86.6±0.1 60.9 ± 0.1 57.7 ± 0.1 57.2 ±0.2 53.9 ±0.6 63.3
CATcent (β1 : 0.1) 87.5±0.51 61.5 ±0.5 57.2 ±0.3 56.6 ±0.4 54.0±0.4 63.4
CATcw (β1 : 0.05) 86.4±0.1 62.7 ±0.2 59.7 ±0.1 58.7 ±0.3 56.0±0.1 64.7
CATcw (β1 : 0.1) 87.4±0.1 62.3 ±0.1 58.6 ±0.2 57.3 ±0.19 55.6±0.07 64.2

CATcent (β1 : 0.3) 88.9±0.4 59.8 ±0.6 54.8 ±0.7 53.9 ±0.6 51.6±0.2 61.8
CATcw (β1 : 0.3) 89.3±0.1 60.8±0.27 55.1±0.3 53.2±0.5 52.6±0.4 62.2

Table 3.4: Evaluation on CIFAR-10 for PreAct ResNet-18 and WideResNet-34-10 under
black-box setting. -: Not Available.

MODELS RESNET WRN

AT 55.12 59.19
TRADES 54.85 59.0
MART 54.98 57.7
FAT 55.35 -
CATcent (β1 : 0.05) 56.4±0.1 59.1±0.5
CATcent (β1 : 0.1) 56.4±0.1 59.6±0.8
CATcw (β1 : 0.05) 56.3 ±0.2 60.9±0.1
CATcw (β1 : 0.1) 56.5 ±0.1 60.9±0.2

baselines under square attack. Besides, by comparing Table 3.4 with Table 3.2
and Table 3.3, we can find that accuracy under black-box attack is lower than un-
der white-box attack like PGD and CW∞ attacks. It demonstrates that adversarial
robustness achieved by our method is not due to “gradient masking ” [ACW18].

3.5.2 Understanding the Proposed Defense Method

Visualization of Soft Mask M

We visualize the learned soft mask M for further understanding the calibrated
adversarial examples. As shown in Figure 3.3, natural images are randomly
selected from MNIST, and adversarial examples are generated by PGD-20 attack
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Figure 3.3: Visualization of soft mask M .

with ϵ= 0.4. Soft masks and calibrated adversarial examples are generated ac-
cordingly. It can be observed that soft masks have high values on the background
but low values on the digit, indicating an attempt to minimize perturbations
on the digit. Furthermore, by comparing calibrated adversarial examples with
regular adversarial examples, we find that pixel values on digits for calibrated
adversarial examples tend to be homogeneous, which is more consistent with
them on natural images. This suggests that soft masks aim to preserve semantic
information and prevent adversarial examples from altering it, which can impact
model performance.

Training with Larger Perturbation Bound

Our method adapts adversarial examples for mitigating the adverse effect, which
enables a model trained with larger perturbations. To verify the performance, we
conduct experiments on PreAct ResNet-18 models trained with ϵ= 8,9,10,11,12
respectively and test them on CIFAR-10 test set. Baselines are trained with their
official codes. Results are shown in Figure 3.4. From Figure 3.4a, it can be
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observed that our method has a clearly increasing trend on robust accuracy
with the increase of ϵ. From Figure 3.4b, we can see that the sum of robust
accuracy and natural accuracy has a slightly decreasing trend for our method,
indicating a trade-off between robust accuracy and natural accuracy. However,
our method’s descending grade is lower than Trades and AT, which also verifies
that our method has a good trade-off between robust accuracy and natural
accuracy.
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Figure 3.4: Evaluation on models trained with larger ϵ. Robust accuracy is calculated
by PGD-100 attack without random start.β1 is fixed to 0.1 for C ATcw and
C ATcent .

Ablation Study

We empirically verify the effect of weighted cross-entropy loss and soft mask M .
Besides, we compare the effect of different loss functions selected in Eq. (3.11)
for generating adversarial examples.

Effect of the weighted cross-entropy loss and mask M . We remove M
by replacing X ′

cal i with X ′ and remove L( fθ(X ),Y ) · (1−P (Y = y |X )) by replacing
it with L( fθ(X ),Y ). We train PreAct ResNet-18 models based on CATcent by
removing both weighted cross-entropy loss and M (marked as A1 model), and
by removing M only (marked as A2 model). We plot natural accuracy and robust
accuracy on the CIFAR-10 test set. Robust accuracy is computed by PGD-10 with
random start (α= 2/255,ϵ= 8/255). Results are reported in Figure 3.5. It can be
observed that after removing soft mask M , there is a clearly decrease in natural
accuracy and overall performance (natural+robust accuracy). Furthermore,
after removing weighted cross-entropy loss, there is a slight decrease in natural
accuracy.
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Comparison of different loss functions. There are many choices for the
surrogate loss in Eq. (3.11) used to generate adversarial examples, e.g., cross-
entropy loss, KL divergence used in Trades [ZYJ+19b], CW∞ loss. Here we
evaluate the effect of these three losses in our method. We plot robust accuracy
on CIFAR-10 test set for β1 = 0.1 and β1 = 0.05 respectively, and robust accuracy
is calculated by PGD-10 attack with random start (α= 2/255,ϵ= 8/255). The ex-
periments are based on PreAct ResNet-18 model. Results are shown in Figure 3.6
and it can be seen that KL divergence is less effective in achieving robustness
than cross-entropy loss and CW∞ loss for both β1 = 0.1 and β1 = 0.05 settings.
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Figure 3.5: The ablation Experiments. A1: Model trained by CATcent with removing
both soft mask M and (1−P (Y = y |X )). A2: Model trained by CATcent with
removing soft mask M only. β1 : 0.1,0.05 denote models trained by CATcent
with setting β1 = 0.1,0.05 respectively.
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Figure 3.6: Comparison of different loss functions on achieving adversarial robustness.



3.5 Experiments 59

Analysis for Hyper-parameter β1

There are two hyper-parameters, β and β1, in our method. β has the same effect
as λ in MART [WZY+20] and Trades [ZYJ+19b]. It controls the strength of the
regularization for robustness. β1 controls the strength that pushes calibrated
adversarial examples to be the same class as the input X. In this section, we
mainly show the effect of β1 on robust accuracy and natural accuracy. We train
models with β1 varying from 0.001 to 0.3 based on PreAct ResNet-18 architecture.
The robust accuracy is calculated on the CIFAR-10 test set by PGD-20 attack
without random start.

The trends are shown in Figure 3.7. From Figure 3.7, it can be observed
that when increasing the value of β1, natural accuracy has remarkable growth.
Meanwhile, PGD+Natural accuracy increases when β1 is from 0.01 to 0.1, which
implies that calibrated adversarial examples release the negative effect of ad-
versarial examples to some degree. With continuously increasing β1, there is a
large drop in robust accuracy. It is because a large β1 will reduce adversarial
perturbation strength. However, it can be observed that there is a good trade-
off for large β1 between natural accuracy and robust accuracy. For example,
with β1 = 0.3, CATcw achieves 88.08±0.07 for natural accuracy while keeping
51.46±0.11 for robust accuracy, which is much better than the trade-off achieved
by Trades [ZYJ+19b] where natural accuracy is 87.91 and robust accuracy is
41.50 3.
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Figure 3.7: Impact of hyper-parameter β1 on the performance of natural accuracy
and robust accuracy. Note: The natural accuracy shown in the figure is
(natur al accur ac y − 80) and the robust accuracy shown in the figure is
(r obust accur ac y −50).

3Results are copied from [ZYJ+19b]
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3.6 Conclusion

In this chapter, we proposed a new definition of robust error, i.e. calibrated robust
error for adversarial training. We derived an upper bound for it and enabled
a more effective way of adversarial training that we call calibrated adversarial
training. The results of our extensive experiments show that calibrated adver-
sarial training significantly improves natural accuracy while maintaining strong
robust accuracy, making it a leading approach among state-of-the-art methods.
Our method also strikes the best balance between natural accuracy and robust
accuracy among baselines.



Chapter 4
In-Time Refining Optimization
Trajectories Toward Improved
Robust Generalization

Despite the fact that adversarial training has become the de facto method for
improving the robustness of deep neural networks, it is well-known that vanilla
adversarial training suffers from daunting robust overfitting, resulting in unsat-
isfactory robust generalization. A number of approaches have been proposed
to address these drawbacks such as extra regularization, adversarial weights
perturbation, and training with more data over the last few years. However, the
robust generalization improvement is yet far from satisfactory. In this chapter,
we approach this challenge with a brand new perspective – refining historical
optimization trajectories. We propose a new method named Weighted Opti-
mization Trajectories (WOT) that leverages the optimization trajectories of
adversarial training in time. We have conducted extensive experiments to demon-
strate the effectiveness of WOT under various state-of-the-art adversarial attacks.
Our results show that WOT integrates seamlessly with the existing adversarial
training methods and consistently overcomes robust overfitting, resulting in
better adversarial robustness. For example, WOT boosts the robust accuracy of
AT-PGD under AA-L∞ attack by 1.53% ∼ 6.11% and meanwhile increases the
clean accuracy by 0.55%∼5.47% across the SVHN, CIFAR-10, CIFAR-100, and
Tiny-ImageNet datasets.
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4.1 Introduction

Deep neural networks (DNNs) have achieved enormous breakthroughs in various
fields, e.g., image classification [HDY+12,HZRS16], speech recognition [HDY+12],
object detection [GDDM14] and etc. However, it has been shown that they are
vulnerable to adversarial examples, i.e., carefully crafted imperceptible perturba-
tions on inputs can easily change the prediction of the model [SZS+13,GSS14a].
The vulnerability of DNNs hinders their applications in risk-sensitive tasks such
as face recognition, autonomous driving, and medical diagnostics. While various
methods have been proposed to obtain robustness against adversarial pertur-
bations, adversarial training [MMS+17] is the leading approach to achieve
adversarial robustness.

However, the vanilla adversarial training usually suffers from daunting robust
overfitting, resulting in poor robust generalization1 [RWK20]. To tackle this issue,
a number of methods from different perspectives have been proposed including
but not limited to training with more data [SST+18,RGC+21,SMH+21,CRS+19,
AUH+19], adversarial weights perturbation [WXW20,YHG+21], and knowledge
distillation and stochastic weights averaging (SWA) [CZL+20]. Recently, Stutz et
al. [SHS21] empirically show that the improved adversarial robustness can be
attributed to the flatter loss landscape at the minima.
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Figure 4.1: Visualization of loss contours and optimization trajectories for AT-PGD and
AT-PGD+WOT-W/B (Ours). The experiments are conducted on CIFAR-10 with
PreRN-18.

Although the generalization properties of SGD-based optimizer under stan-
dard training setting have been well studied [ZLR+17,EEPK05,ZLZ18,HRS16],
the corresponding robust generalization property under adversarial setting has
not been fully explored. Among previous studies, Chen et al. [CZL+20] heuris-
tically adopts stochastic weight averaging (SWA) and average model weights
along the optimization trajectory, which potentially mitigates robust overfitting.

1Robust generalization refers to the difference between the model’s performance on adversarial
examples in the training set and the test set, following previous work [CZL+20,WXW20,SHS21].
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However, it has been shown that naive weight averaging is not general enough to
fundamentally address this problem, still prone to robust overfitting [RGC+21].
Instead of simply averaging weights, we propose a new approach - Weighted
Optimization Trajectories (briefly WOT) for the first time showing that we can
largely improve the flatness of solutions of existing adversarial training variants
by periodically refining a set of historical optimization trajectories. Compared
with the existing approaches, our method has three unique design contribu-
tions: ❶ our refinement is obtained by maximizing the robust accuracy on
the unseen hold-out set, which is naturally advantageous to address the over-
fitting issue; ❷ our refinement is performed on a set of previous optimization
trajectories rather than solely on previous weights; ❸ we further propose a
block-wise trajectory refinement, which significantly enlarges the optimization
space of refinement, leading to better robust performance. We conduct rigor-
ous experiments to demonstrate the effectiveness of these design novelties in
Section 4.4.1 as well as the ablation study in Section 4.4.3. Simple as it looks
in Figure 4.1, the optimization trajectories after refining converge to a flatter
loss valley compared to the vanilla AT-PGD, indicating the improved robust
generalization [WXW20,WWX20a,SHS21].

Extensive experiments on different architectures and datasets show that
WOT seamlessly mingles with the existing adversarial training methods with
consistent robust accuracy improvement. For example, WOT-B directly boosts
the robust accuracy over AT-PGD (early stops) under AA-L∞ attack by 6.11%,
1.53%, 1.57%, and 4.38% on SVHN, CIFAR-10, CIFAR-100, and Tiny ImageNet,
respectively; meanwhile improves the corresponding clean accuracy by 0.55% ∼
5.47%. Moreover, we show that WOT can completely prevent robust overfitting
across different attack approaches, including the strongest one off-the-shelf -
AA-L∞ attack.

4.2 Related Work

Robust Overfitting and its Mitigation. Recently, Rice, Wong, and Kolter [RWK20]
identified robust overfitting in AT that robust accuracy in test set degrades
severely after the first learning rate decay and found that early stop is an ef-
fective strategy for mitigating robust overfitting. Following [RWK20], several
studies have been proposed to explain and mitigate the issue of robust overfitting
[WXW20, SSFJ21, CZL+20, DXY+21, CZW+22, SHS21]. Chen et al. [CZL+20]
showed that stochastic weight average (SWA) and knowledge distillation can
mitigate the issue of robust overfitting decently and Singla et al. [SSFJ21]
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found that low curvature activation helps to mitigate robust overfitting problem.
Dong et al. [DXY+21] took a step further to explain that robust overfitting may
be caused by the memorization of hard samples in the final phase of training.
[WXW20,YHG+21,SHS21] demonstrated that a flattened loss landscape improves
robust generalization and reduces robust overfitting problem, which is in line
with the sharpness studies in standard training setting [FKMN20,JNM+19,DR17].
Among these studies, SWA is technically close to our method. In essence, SWA
does a post-process for optimization trajectories heuristically while our method
refines optimization trajectories with respect to the robust performance on an
unseen dataset. Furthermore, our method does the refinement in time instead of
a post-process.

4.3 Methodology
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Figure 4.2: Sketch map of
WOT.

In this section, we introduce weighted optimiza-
tion trajectories (WOT), a carefully designed
method that refines the optimization trajectory
of adversarial training towards a flatter region in
the training loss landscape, to avoid robust over-
fitting. Specifically, WOT collects a set of histori-
cal optimization trajectories and further learns a
weighted combination of them explicitly on the
unseen set. The sketch map of WOT is shown in
Figure 4.2. Concretely, WOT contains two steps:
(1) collect optimization trajectories of adversarial
training. (2) re-weight collected optimization tra-
jectories and optimize weights according to the
robust loss on an unseen set. Two unanswered problems of this process are how
to collect optimization trajectories and how to construct the objective function
of optimizing weights. We give detailed solutions as follows.

4.3.1 WOT: Optimization Trajectories

We denote optimization trajectories as the consecutively series status of weights
in weight space after n steps optimization. Formally, given a deep neural network
f with the parameter w ∈W . n steps optimization trajectories of adversarial train-
ing is denoted as {w1, w2...w i , ..., wn} where w i is the weight after i−th optimiza-
tion. This process can also be simplified as follows: {w1,∆w1...∆w i , ...,∆wn−1}
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where ∆w i = w i+1−w i . In practice, it is time-consuming and space-consuming to
collect the weights of each batch optimization step and it is also not necessary to
collect the weights at so high frequency (See details in Figure 4.5). Therefore, we
propose to collect weights for every m batch optimization step and the collected
trajectories with n optimization steps are re-denoted as follows:

∆W s = {w1,∆w1, ...,∆w i , ...,∆wk }, (4.1)

where k = n
m . For brevity, we call m as Gaps that controls the length between two

consecutively collections and k as the number of Gaps that controls the number
of weights that are collected.

4.3.2 WOT: Objective Function

We design the objective function based on historical optimization trajectories
of model training. From the description of optimization trajectories introduced
above, the weights w ′ with n batch optimization steps from w can be written as
w ′ = w+∆w1+...+∆w i +..+∆wk . Since WOT refines the optimization trajectories
by re-weighting them, the weights w̃ ′ after refining optimization trajectories can
be expressed as follows:

w̃ ′ = w + ∆̃w , ∆̃w =α1∆w1 + ...+αi∆w i + ...+αk∆wk , (4.2)

where α1, ...,αi , ...,αk are optimizable variables. Considering that we expect to
find the model with better robust generalization via optimizing α, a straightfor-
ward idea is to optimize αi with respect to improving its robust performance
on a small unseen dataset. That is, we expect WOT carefully selects the opti-
mization trajectories such that the adversarial robustness of the model can better
generalize to unseen datasets.

Formally, the objective function of optimizing αi is defined as follows:

min
0≤αi≤1

max
∥∆xuns∥≤ϵ

L( fw+∆̃w (xuns +∆xuns ), yuns ), (4.3)

where (xuns , yuns) is from an unseen dataset and ∆xuns is the adversarial per-
turbations. We constrain αi to [0,1] such that the new update direction does
not go far from the original optimization trajectories and avoid overfitting to the
unseen dataset.

Update αi . αi can be optimized by any SGD-based optimizers according to
the objective function (Eq. (4.3)) described above. In this study, we update αi
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by SGD optimizer with momentum buffer.

mt = mt−1 ·γ+∇αi L( fw i−1+∆̃w (xuns +∆xuns ), yuns ) (4.4)

αi =αi − l r ·mt , (4.5)

where mt is the momentum buffer of αi at the t -th step and l r is the learning
rate.

4.3.3 WOT: In-Time Refining Optimization Trajectories

Different from adapting optimization trajectories for a post-process like SWA
[IPG+18], we refine optimization trajectories in time across the training process
to encourage the optimization process to go in the direction of better generaliza-
tion.

Based on whether weight space is considered as a whole or divided into
independent blocks, we categorize WOT into two variants: WOT-Whole (WOT-W)
and WOT-Blockwise (WOT-B).

WOT-W takes weight space as a whole. It assigns an α for whole weight space
and the number of α that need to be optimized equals the number of Gaps:k.

WOT-B considers the weight space in a blockwise way. It assigns an α vector
for weight space and the length of the α vector equals the number of blocks.
Therefore, Eq. (4.2) can be extended as follows:

∆̃w =


∆̃w1

...
∆̃w j

...
∆̃w t

 , ∆̃w j =α1
j∆w1

j +α2
j∆w2

j + ...+αk
j∆wk

j (4.6)

where j denotes the j -th block. Optimizing α for blockwise of WOT is exactly
the same as the description in Eq. (4.4) and Eq. (4.5).

4.4 Experiments

We perform extensive experiments to show the effectiveness of our method
in improving adversarial robustness as well as addressing the issue of robust
overfitting.

Datasets. Four datasets are considered in our experiments: CIFAR-10, CIFAR-
100 [KNH10], Tiny-ImageNet [DDS+09] and SVHN [NWC+11]. For experiments
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Table 4.1: Robust accuracy of WOT under multiple adversarial attacks with various adver-
sarial training variants. The experiments are conducted on CIFAR-10 with the
PreRN-18 architecture. The best results are marked in bold.

MODELS FGSM PGD-20 PGD-100 CW∞ AA-L∞
AT+EARLY STOP 57.30 52.90 51.90 50.90 47.43
AT+SWA 58.89 53.02 51.86 52.32 48.61
AT+WOT-W (OURS) 58.50 53.19 51.90 51.74 48.36
AT+WOT-B (OURS) 59.67 54.85 53.77 52.56 48.96

TRADES 58.16 53.14 52.17 51.24 48.90
TRADES+SWA 58.07 53.17 52.22 50.91 49.07
TRADES+WOT-W (OURS) 58.95 54.07 53.29 51.74 49.95
TRADES+WOT-B (OURS) 58.50 53.73 52.95 52.12 50.19

MART 59.93 54.07 52.30 50.16 47.01
MART+SWA 58.19 54.21 53.56 49.39 46.86
MART+WOT-W (OURS) 58.13 53.79 52.66 50.24 47.43
MART+WOT-B (OURS) 59.95 55.13 54.09 50.56 47.49

AT+AWP 59.11 55.45 54.88 52.50 49.65
AT+AWP+SWA 58.23 55.54 54.91 51.88 49.39
AT+AWP+WOT-W (OURS) 59.05 55.95 54.96 52.70 49.84
AT+AWP+WOT-B (OURS) 59.26 55.69 55.09 52.82 50.00

of WOT, we randomly split 1000 samples from the original CIFAR-10 training
set, 10000 samples from Tiny-ImageNet, and 2000 samples from the original
CIFAR-100 and SVHN training set as the unseen hold-out sets.

Baselines. Five baselines are included: AT [RWK20], Trades [ZYJ+19a],
AWP+AT [WXW20], MART [WZY+20] and SWA [CZL+20]. Three architectures
including VGG-16 [SZ14], PreActResNet-18 (PreRN-18) [HZRS16], WideResNet-
34-10 (WRN-34-10) [ZK16].

Experimental Setting. For WOT, we adopt an SGD optimizer with a momen-
tum of 0.9, weight decay of 5e-4 and a total epoch of 200 with a batch size of
128 following [RWK20]. By default, we start to refine optimization trajectories
after 100 epochs. For WOT-B, we set each block in PreRN-18 and WRN-34-10
architectures as the independent weight space. We set the layers with the same
width as a group and set each group as an independent block for VGG-16. We
by default set the gaps m to 400, the number of gaps k to 4 and initialize α as
zero. For all baselines, we use the training setups and hyperparameters exactly



68 In-Time Refining Optimization Trajectories Toward Improved Robust Generalization

the same as their papers.

Evaluation Setting. We use AA attack [CH20b] as our main adversarial ro-
bustness evaluation method. AA attack is a parameter-free ensembled adversarial
attack that incorporates three white-box attacks: APGD-CE [CH20b], APGD-
T [CH20b], FAB-T [CH20a] and one black-box attack: Square attack [ACFH20].
To the best of our knowledge, AA attack is currently the most reliable adversarial
attack for evaluating adversarial robustness. We also adopt three other commonly
used white-box adversarial attacks: FGSM [GSS14a], PGD-20/100 [MMS+17]
and C&W∞ attack [CW17b]. Besides, we also report the performance of query-
based SPSA black-box attack [UOKO18] (100 iterations with a learning rate
of 0.01 and 256 samples for each gradient estimation). By default, we report
the mean of three random runs for all experiments of our method and omit the
standard deviation since it is very small (≤ 0.3%). We by default set ϵ= 8/255 for
L∞ version adversarial attack and ϵ= 64/255 for L2 version adversarial attack.

Table 4.2: Test robustness under multiple adversarial attacks based on VGG-16/WRN-34-
10 architectures. The experiments are conducted on CIFAR-10 with AT and
Trades. The bold denotes the best performance.

ARCHITECTURE METHOD CW∞ PGD-20 PGD-100 AA-L∞
VGG16 AT+EARLY STOP 46.87 49.95 46.87 43.63
VGG16 AT+SWA 47.01 49.58 49.13 43.89
VGG16 AT+WOT-W(OURS) 47.42 49.96 49.36 44.01
VGG16 AT+WOT-B(OURS) 47.52 50.28 49.58 44.10
VGG16 TRADES 45.47 48.24 47.54 43.64
VGG16 TRADES+SWA 45.92 48.64 47.86 44.12
VGG16 TRADES+WOT-W(OURS) 46.75 49.19 48.28 44.82
VGG16 TRADES+WOT-B(OURS) 46.21 48.81 47.85 44.17

WRN-34-10 AT+EARLY STOP 53.82 55.06 53.96 51.77
WRN-34-10 AT+SWA 88.45 55.34 53.61 52.25
WRN-34-10 AT+WOT-W(OURS) 56.05 58.21 57.11 52.88
WRN-34-10 AT+WOT-B(OURS) 57.13 60.15 59.38 53.89
WRN-34-10 TRADES 54.20 56.33 56.07 53.08
WRN-34-10 TRADES+SWA 54.55 54.95 53.08 51.43
WRN-34-10 TRADES+WOT-W(OURS) 56.10 57.56 56.20 53.68
WRN-34-10 TRADES+WOT-B(OURS) 56.62 57.92 56.80 54.33
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Table 4.3: Test robustness under AA-L2 and AA-L∞ attacks across various datasets. The
experiments are based on PreRN-18 and AT. The bold denotes the best perfor-
mance.

ATTACK METHOD
SVHN CIFAR-10 CIFAR-100 TINY-IMAGENET

CLEAN ROBUST CLEAN ROBUST CLEAN ROBUST CLEAN ROBUST

L∞ AT+EARLY STOP 89.05 45.72 81.72 47.43 53.84 23.69 42.76 14.39
L∞ AT+SWA 90.36 40.24 85.23 48.61 58.51 23.90 49.19 17.94
L∞ AT+WOT-W(OURS) 93.25 50.42 84.47 48.36 55.07 24.41 49.31 17.10
L∞ AT+WOT-B(OURS) 92.95 51.83 83.84 48.96 54.39 25.26 48.83 18.77

L2 AT+EARLY STOP 89.05 72.13 81.72 71.30 53.84 42.75 42.76 36.61
L2 AT+SWA 90.36 67.76 85.23 73.28 58.51 43.10 49.19 42.40
L2 AT+WOT-W(OURS) 93.25 72.75 84.47 73.20 55.07 43.88 49.31 42.43
L2 AT+WOT-B(OURS) 92.95 72.80 83.84 73.39 54.39 43.32 48.83 42.54

4.4.1 Superior Performance in Improving Adversarial Robust-
ness

We evaluate the effectiveness of WOT in improving adversarial robustness across
AT and three of its variants, four popular used datasets, i.e., SVHN, CIFAR-10,
CIFAR-100 and Tiny-ImageNet, and three architectures, i.e., VGG16, PreRN-18,
and WRN-34-10.

WOT consistently improves the adversarial robustness of all adversarial
training variants. In Table 4.1, we applied WOT-B and WOT-W to AT+early
stop, Trades, MART, and AWP variants and compare them with their counterpart
baselines. Besides, we add the combination of SWA and these adversarial
training variants as one of the baselines. The results show: (1) WOT consistently
improves adversarial robustness among the four adversarial training variants
under both weak attacks, e.g. FGSM, PGD-20, and strong attacks, e.g., C&W∞,
AA-L∞ attacks. (2) WOT-B as the WOT variant confirms our hypothesis and
consistently performs better than WOT-W. WOT-B improves the robust accuracy
over their counterpart baselines by 0.35% ∼ 1.53% under AA-L∞ attack. (3) WOT
boosts robust accuracy with a larger margin on AT and Trades than MART and
AWP under AA-L∞ attack. One reason might be that MART and AWP themselves
enjoy good ability in mitigating robust overfitting [SHS21,WXW20], leading to
less space for WOT to further boost the performance.

WOT can generalize to different architectures and datasets. Table 4.2
and Table 4.3 show that WOT consistently outperforms the counterpart baseline
under AA-L∞ attack, which indicates that the effectiveness of WOT generalizes
well to different architectures and datasets. In Table 4.2, WOT boosts robust
accuracy by 0.47% ∼ 2.12% on VGG16 and WRN-34-10 architectures. In Table 4.3,
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WOT improves robust accuracy with 1.53% ∼ 6.11% among SVHN, CIFAR-10,
CIFAR-100 and Tiny-ImageNet under AA-L∞ attack. Besides, the success of WOT
can also be extended to AA-L2 attack with the improvement by 0.67% ∼ 5.93%.

Excluding Obfuscated Gradients. Athalye et al. [ACW18] claims that obfus-
cated gradients can also lead to the “counterfeit" of improved robust accuracy
under gradients-based white-box attacks. To exclude this possibility, we report
the performance of different checkpoints under transfer attack and SPSA black-
box attack over epochs. In Figure 4.3, the left figure shows robust accuracy of
the unseen robust model on the adversarial examples generated by the PreRN-18
model trained by AT, AT+WOT-B, AT+WOT-W respectively with PGD-10 attack
on CIFAR-10. A higher robust accuracy on the unseen robust model corresponds
to a weaker attack. It can be seen that both AT+WOT-B and AT+WOT-W generate
more transferable adversarial examples than AT. Similarly, the middle figure
shows the robust accuracy of the PreRN-18 model trained by AT, AT+WOT-B,
and AT+WOT-W on the adversarial examples generated by the unseen robust
model. It can be seen that AT+WOT-B, and AT+WOT-W can better defend the
adversarial examples from the unseen model. What’s more, in the right figure,
we observe again that both AT+WOT-B and AT+WOT-W outperform AT under
SPSA black-box attack over different checkpoints during training. All these
empirical results sufficiently suggest that the improved robust accuracy of WOT
is not caused by obfuscated gradients.
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Figure 4.3: Robust accuracy under black-box attack over epochs. (Left) Robust accu-
racy on the unseen robust model transfer attacked from checkpoints of AT,
AT+WOT-W/B. (Middle) Robust accuracy on checkpoints of AT, AT+WOT-
W/B transfer attacked from the unseen model. (Right) Robust accuracy on
checkpoints of AT, AT+WOT-W/B under SPSA black-box attack. The experi-
ments are conducted on PreRN-18 and CIFAR-10. The unseen robust model is
WRN-34-10 trained by AT.
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4.4.2 Ability to Prevent Robust Overfitting

We report the robust accuracy under AA-L∞ attack for the best checkpoint and
the last checkpoint based on PreRN-18 and WRN-34-10 architectures on CIFAR-
10 (Table 4.4). Besides, we show the robust accuracy curve under PGD-10 attack
on different checkpoints over epochs (Figure 4.4).

In Figure 4.4, the third and fourth figures show that after the first learning
rate decay (at 100 epoch), there is a large robust accuracy drop for AT between
the best checkpoint and the last checkpoint on both PreRN-18 and WRN-34-10
architectures. In comparison, there is completely no robust accuracy drop for
AT+WOT-W/B between the best checkpoint and the last checkpoint on both
PreRN-18 and WRN-34-10 architectures. In Table 4.4, we further show the
evidence that there is no robust accuracy drop for AT+WOT-B/W under stronger
attack, i.e., AA-L∞ attack. From the first and second figures of Figure 4.4, we
observe that the mean of α decreases to a very small value after 150,100 epochs
for PreRN-18, WRN-34-10 respectively. The small mean of α indicates that WOT
stops the model’s weights updating with unexpected magnitudes, which prevents
the occurrence of robust overfitting.
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Figure 4.4: Mean value of α and results of test robust/clean accuracy over epochs. The
experiments are conducted on CIFAR-10 with PreRN-18 based on AT.

4.4.3 Ablations and Visualizations

In this section, we first conduct ablation studies to show the effectiveness of the
designed optimization trajectories and the unseen hold-out set in WOT. Then we
investigate the impact of gaps:m and the number of gaps:k, the effect of WOT
on the loss landscapes w.r.t weight space, and the visualization of α for blocks.
The results are shown in Table 4.5, Figure 4.5, and Figure 4.7. All experiments
in the two figures are conducted on CIFAR-10 with PreRN-18 based on AT except
for Figure 4.7 where Trades is also included. The robust accuracy is evaluated
under AA-L∞ attack for all three figures.
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Table 4.4: Test robustness under AA-L∞ attack to show the issue of robust overfitting in
AT and the effectiveness of WOT in overcoming it. The difference between
the best and final checkpoints indicates performance degradation during train-
ing and the best checkpoint is chosen by PGD-10 attack on the validation
set. The experiments are conducted on CIFAR-10 with PreRN-18/WRN-34-10
architectures.

ARCHITECTURES METHOD
ROBUST ACCURACY(RA) STANDARD ACCURACY(SA)
BEST FINAL DIFF. BEST FINAL DIFF.

PRERN-18 AT 48.02 42.48 -5.54 81.33 84.40 +3.07
PRERN-18 AT+SWA 48.93 48.61 -0.32 84.19 85.23 +1.04
PRERN-18 AT+WOT-W(OURS) 48.04 48.36 +0.32 84.05 84.47 -0.42
PRERN-18 AT+WOT-B(OURS) 48.90 48.96 +0.06 83.84 83.83 -0.01

WRN-34-10 AT 51.77 46.78 -4.99 85.74 86.34 +0.6
WRN-34-10 AT+SWA 53.38 52.25 -1.13 87.14 88.45 +1.31
WRN-34-10 AT+WOT-W(OURS) 52.84 52.88 +0.04 84.83 84.88 +0.05
WRN-34-10 AT+WOT-B(OURS) 52.23 53.89 +1.66 83.46 85.50 +2.04

Table 4.5: Robust Accuracy of ablation experiments on CIFAR-10 with PreRN-18.

METHODS PGD-20 PGD-100 CW∞ AA-L∞
AT+B1 49.68 47.44 49.04 45.26
AT+B2 52.74 51.28 51.31 48.22

AT+WOT-B+B3 (M=400,K=4) 47.14 44.23 43.87 41.02
AT+WOT-W (M=400,K=4) 53.19 51.90 51.74 48.36
AT+WOT-B (M=400,K=4) 54.85 53.77 52.56 48.96

Ablation studies. To demonstrate the effectiveness of the designed optimiza-
tion trajectories and the unseen hold-out set in boosting adversarial robustness,
we designed the following baselines: 1) Keep the same unseen hold-out set and
training strategy with WOT, but optimize model weights instead of α on the
unseen hold-out set (Abbreviated as “B1" ); 2) Keep the same unseen hold-out
set and optimize the hyperparameter of SWA by the hold-out set (Abbreviated
as “B2" ); 3) Replace the unseen hold-out set with a seen set, i.e. keep the same
number of samples from the training set (Abbreviated as “B3" ). Results in Ta-
ble 4.5 show that (1) AT+WOT-W/B outperforms AT+B1 and AT+B2, indicating
the designed optimization trajectories play key roles in WOT. (2) AT+WOT-W/B
outperforms AT+B3 with a large margin, indicating the unseen hold-out set is
crucial for WOT.

Impact of m and k. Figure 4.5 shows the impact of gaps m and number of
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Figure 4.5: The impact of gaps m and the number of gaps k on robust accuracy under
AA-L∞ attack. The experiments are conducted on CIFAR-10 with PreRN-18
based on AT. k is fixed to 4 for the left figure and m is fixed to 400 for the
right figure.
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Figure 4.6: Loss landscape w.r.t weight space (Figure 4.6a and Figure 4.6b). z-axis denotes
the loss value. We plot the loss landscape following the setting in [WXW20].
The averaged α by averaging along training process (Figure 4.6c). The k-
averaged α during the training process. (Figure 4.6d). The experiments are
conducted on CIFAR-10 with PreRN-18.

gaps k on robust accuracy under AA-L∞ attack. In the left figure, we observe that
robust accuracy increases with an increase of m. Besides, we find that WOT-W is
more sensitive to m than WOT-B. The right figure shows that both WOT-W and
WOT-B are not sensitive to the number of gaps k.

Averaged α for Blocks. To shed insights on why WOT-B outperforms WOT-W,
we plot the learned α for each block. Experiments are conducted on CIFAR-10
with PreRN-18 based on WOT-B (K=4, m=400). Results in Figure 4.6c and
Figure 4.6d show that the magnitude of learned α is different among blocks.
Specifically, WOT-B assigns a large value of α for middle blocks, i.e., Block-
2,3,4,5, and a small value of α for the bottom and top blocks, i.e., Block-1,6.
This indicates that assigning different weights for different blocks may play a
crucial role in boosting adversarial robustness.

Visualizing loss landscape. We expect WOT to search flatter minima for
adversarial training to boost its robust generalization. We demonstrate that it
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Figure 4.7: Loss landscape w.r.t weight space. z-axis denotes the loss value. We plot
the loss landscape following the setting in [WXW20] with z = loss( fw+x·v (i ))
where v is sampled from Gaussian distribution and i denotes the inputs. The
experiments are conducted on CIFAR-10 with PreRN-18.

indeed happens via visualizing the loss landscape with respect to input space
( Figure 4.8) and weight space ( Figure 4.7). Figure 4.8 shows that WOT
enjoys a loss landscape with low curvature compared with AT, which is in
line with the robust generalization claim in [MDFUF18]. Figure 4.7 shows
that WOT obtains flatter minima than AT, which indicates an improved robust
generalization [SHS21,WXW20].

4.5 Conclusion

In this chapter, we proposed a new method named weighted optimization tra-
jectories (WOT) for improving adversarial robustness and avoiding robust over-
fitting. We re-weighted the optimization trajectories in time by maximizing the
robust performance on an unseen hold-out set during the training process. The
comprehensive experiments demonstrated: (1) WOT can effectively improve
adversarial robustness across various adversarial training variants, model archi-
tectures, and benchmark datasets. (2) WOT exhibits superior performance in
mitigating robust overfitting. Moreover, visualizing analysis validates that WOT
flattens the loss landscape with respect to input and weight space, showing an
improved robust generalization.
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Figure 4.8: Comparison of loss landscapes of PreRN-18 models trained by AT (the first
row) and our methods (the second and third row). Loss plots in each col-
umn are generated from the same original image randomly chosen from the
CIFAR-10 test dataset. z-axis denotes the loss value. Following the setting
in [EIA18], we plot the loss landscape function: z = loss(x · r1 + y · r2) where
r1 = si g n(∇x f (x)) and r2 ∼ Rademacher (0.5).





Chapter 5
Bridging the Performance Gap
between FGSM and PGD
Adversarial Training

Deep learning has demonstrated impressive performance in many tasks, but
is susceptible to adversarial examples. Adversarial training with the projected
gradient decent (adv.PGD) is considered one of the most effective defense tech-
niques, but it requires a significant amount of training time due to the need
for multiple iterations to generate perturbations. On the other hand, adver-
sarial training with the fast gradient sign method (adv.FGSM) is faster, as it
only requires one step to generate perturbations, but does not provide enough
adversarial robustness. In this chapter, we extend adv.FGSM to make it achieve a
comparable adversarial robustness with adv.PGD. We uncover the reason for the
difference in adversarial robustness between adv.FGSM and adv.PGD, which lies
in the large curvature along the FGSM perturbed direction. To address this issue,
we propose combining adv.FGSM with a curvature regularization (adv.FGSMR)
in order to bridge the performance gap between adv.FGSM and adv.PGD. The
experiments show that adv.FGSMR has higher training efficiency than adv.PGD.
In addition, it achieves a comparable performance of adversarial robustness on
the MNIST dataset under white-box attack, and it achieves better performance
than adv.PGD under white-box attack and effectively defends the transferable
adversarial attack on the CIFAR-10 dataset.
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5.1 Introduction

Deep Neural Networks (DNNs) have shown great performance in multiple tasks,
e.g. image classification [KH12,HZRS16], object detection [GDDM14], seman-
tic segmentation [LSD15], and speech recognition [HDY+12]. However, these
highly performed models show weakness in adversarial examples. Namely, care-
fully designed imperceptible perturbations on input can change the prediction
drastically [SZS+13,GSS14a]. This fragility prohibits DNNs to be widely applied
especially in security-sensitive tasks such as autonomous cars, face recognition,
and malware detection. Therefore, training a model resistant to adversarial
attacks becomes increasingly important.

By now, plenty of ways have been proposed to generate adversarial exam-
ples, which can be categorized into black-box attacks and white-box attacks.
White-box attacks can access the complete knowledge of the target model in-
cluding its parameters, architecture, training method, and training data. The
popular white-box attacks include FGSM [GSS14a], PGD [MMS+18], Deepfool
[MDFF16], C&W [CW17b], etc. Black-box attack generates adversarial exam-
ples without knowledge of the target model, e.g. ZOO [CZS+17], Transferable
adversarial attack [LCLS17,PMG+17], etc. Correspondingly, many methods have
been proposed to improve the model’s adversarial robustness against these at-
tacks. Qiu et al. [QLZW19], Akhtar and Mian [AM18] separate these defense
methods into three categories: (1) augmenting training data, e.g. adversar-
ial training [MMS+18,GSS14a]; (2) using an extra tool to help model against
adversarial attacks, e.g. PixelDefend [SKN+17]; and (3) modifying model to im-
prove its robustness, e.g. Defensive Distillation [PMW+16], Regularization [MD-
FUF18, JG18].

Among these defense approaches, most have been reported failure on later
proposed adversarial attacks except for adversarial training [ACW18]. adv.PGD
has been considered one of the most effective ways to achieve moderate adver-
sarial robustness [WMB+19]. However, a major issue for adv.PGD is its expensive
computational cost because PGD attack takes multi-step iterations to generate
perturbations. The high computational cost makes this method hard to be ap-
plied to larger neural networks and datasets. On the other hand, adv.FGSM takes
much less computational cost but shows no robustness improvement against
adversarial attacks except for FGSM attack (Table 5.1). The behavior of strong
defense on FGSM attack but a weak defense on other attacks has also been
reported in [MMS+18,KGB17]. We believe that closing the robust performance
gap between adv.FGSM and adv.PGD would bring significant value. Our in-
vestigation into the lack of adversarial robust performance in adv.FGSM has
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revealed that the large curvature along the FGSM perturbed direction results in
a significant disparity between the perturbed directions generated by FGSM and
PGD attacks, which accounts for the differences in robustness between adv.FGSM
and adv.PGD(Figure 5.1). To deal with this we propose a regularization term
that makes FGSM perturbed direction close to PGD perturbed direction, and
allows for adv.FGSM to reach comparable robust performance as adv.PGD. Our
experimental studies demonstrate that the proposed method achieves compa-
rable results on the MNIST dataset and better results on the CIFAR-10 dataset
compared with adv.PGD.

Our contributions are summarized as follows:

• We analyze the influence of the curvature along FGSM perturbed direction
on the perturbations generated by FGSM and PGD attacks respectively.
We show that the curvature along FGSM perturbed direction has a signifi-
cant influence on the performance of adversarial robustness achieved by
adv.FGSM.

• We develop a curvature regularization term for restraining the curvature
along FGSM perturbed direction when training model with adv.FGSM,
which is called adv.FGSMR method. adv.FGSMR can effectively bridge the
performance gap between adv.FGSM and adv.PGD.

• Extensive experiments show that adv.FGSMR achieves comparable perfor-
mance on MNIST under a white-box attack. Besides, it achieves better
performance on CIFAR-10 under white-box attack and effectively defends
the transferable adversarial attack as well. Experiments also show that
adv.FGSMR achieves comparable convergence speed on perturbed-data
accuracy during the training process while requiring only half of the time
for training one epoch compared with adv.PGD.

The rest of this paper is organized as follows. Section 5.2 describes the
preliminary knowledge. Section 5.3 presents the proposed method for bridging
the performance gap between adv.FGSM and adv.PGD. Section 5.4 introduces
evaluations in terms of training efficiency and adversarial robustness.Finally,
Section 5.5 draws the conclusions of this study.

5.2 Preliminaries

5.2.1 Notation
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Method PGD-l2 PGD-inf Deepfool-l2(ρad v ) C&W(ρad v )
adv.PGD 0.710 0.444 0.178 0.129
adv.FGSM 0.353 0.091 0.022 0.016

Table 5.1: Comparison of robust performance of robust models trained by adv.FGSM and
adv.PGD respectively against various attacks. Experiments are based on the
CIFAR-10 test set and ResNet-18 model. For Deepfool-l2 and C&W-l2 attacks,
ρad v is calculated using Eq. (5.5).
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Figure 5.2: The simplified schematic di-
agram for perturbed direc-
tions generated by PGD-inf
and FGSM attacks. x0 is a
specific input.

We denote our deep neural network as
fθ(x) where x ∈ Rd is an instance of input
data, and L( fθ(x), y) is the cross-entropy
loss where y is the true label. sg n(·) de-
notes the sign function. ∇x L(·) denotes the
gradient of L(·) with respect to x. S is the
set constrained by l∞ or l2 ball. ϵ is the
allowed perturbation size. k is the total
iterations for PGD attacks.

5.2.2 Adversarial Training

Different from Vanilla training, adversar-
ial training uses adversarial samples in-
stead of clean samples to train a model.
Generally, the optimization function of ad-
versarial training can be represented as
follows [MMS+18]:

min
θ
ρ(θ),ρ(θ) =E(x,y)∼D [max

δ∈S
L( fθ(x +δ), y)]. (5.1)

In this chapter, we call it adv.PGD method when maxδ∈S L( fθ(x+δ), y) is solved by
PGD-inf attack. Similarly, we call it adv.FGSM method when maxδ∈S L( fθ(x+δ), y)
is solved by FGSM attack. It is easy to see that adv.PGD takes much more training
time than adv.FGSM since PGD-inf attack takes multiple iterations while FGSM
attack takes only one iteration.
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Figure 5.1: The accuracy and average curvature curve for training ResNet-18 model on
CIFAR-10 within 50 epochs. The subfigure (a) and (b) show the accuracy and
average curvature curve of the model trained by adv.FGSM respectively; (c)
and (d) show the accuracy and average curvature curve of the model trained
by our proposed adv.FGSMR respectively. The curvature value is calculated
using Eq. (5.3). Notice: A sudden decrease of perturbed accuracy under
PGD-inf attack occurs with the sudden increase of the curvature value for
adv.FGSM.

5.3 Methodology

In this section, we first give a full analysis to explain why adv.FGSM can not
achieve the performance of adversarial robustness with adv.PGD. Based on the
analysis, we further extend adv.FGSM in order to achieve comparable perfor-
mance with adv.PGD.

5.3.1 Analysis of Performance Gap between adv.FGSM and
adv.PGD

Considering the only difference between adv.FGSM and adv.PGD is that the
adversarial examples are generated by FGSM attack or PGD-inf attack. Thus we
first mainly explore the perturbation difference generated by FGSM and PGD-inf
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respectively. From the definitions of PGD-inf and FGSM attacks in Section 5.2, we
know PGD-inf attack is a multi-step variant of FGSM attack and it is apparent that
PGD-inf attack can generate more accurate perturbation compared with FGSM
attack. Figure 5.2 shows the simplified schematic of PGD-inf and FGSM attacks.
It indicates that the difference of perturbed directions generated by them will be
enlarged with the increasing of the curvature along FGSM perturbed direction.
We believe that a large difference in perturbed directions will lead to the radical
difference in adversarial robust performance achieved by adv.FGSM and adv.PGD
because the perturbed training dataset depends on these perturbed directions.
This conjecture is supported by the experiment in Figure 5.3a. Therefore, we
propose that as long as the curvature along FGSM perturbed direction is kept
to be small during the training process, adv.FGSM can achieve comparable
performance with adv.PGD for the following reasons:

• The perturbed directions generated by FGSM and PGD-inf attacks will be
approaching to be identical with the curvature along FGSM perturbed di-
rection approaching zero (Figure 5.2). As soon as the perturbed directions
are the same, the perturbed training set will also be the same since the size
of perturbation has the same constraint, and consequently the performance
of adversarial robustness between adv.FGSM and adv.PGD should be the
same.

• During adv.FGSM training process, the perturbed-data accuracy under
PGD-inf attack stops increasing until the curvature along FGSM perturbed
direction surges suddenly (Figure 5.3a). This provides evidence that the
curvature along FGSM has a significant influence on the adversarial robust
performance of adv.FGSM.

• The curvature along FGSM perturbed direction is also kept to be small
during adv.PGD training process (Figure 5.3b). It indicates that restraining
the growth of the curvature value is reasonable.

5.3.2 Proposed Method

We use a curvature regularization for restraining the growth of the curvature
value and making FGSM perturbed direction close to PGD-inf perturbed direc-
tion. Formally, Let Lθ(x) be the cross-entropy loss; g = sg n(∇x Lθ(x)) be the FGSM
perturbed direction at data point x; δ = ϵg be the perturbation generated by
FGSM attack. As what we want to restrain is the gradient variation along FGSM
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Figure 5.3: (a) The average curvature along FGSM perturbed direction on the CIFAR-
10 training set and the perturbed-data accuracy curve on perturbed test set
generated by PGD-inf attack. The training process is based on ResNet-18 model
and adv.FGSM. (b) The average curvature along FGSM perturbed direction
on the CIFAR-10 training set during the training process with adv.PGD. The
curvature value is calculated using Eq. (5.3).

perturbed direction, namely, the second directional derivative, here we want to
emphasize that the curvature value corresponds to the second directional deriva-
tive instead of the exact definition of curvature. According to the definition of
the directional derivative, the second derivative along FGSM perturbed direction
can be represented as:

∇2
xg Lθ(x) = lim

ϵ→0

∇x Lθ(x +ϵg )−∇x Lθ(x)

ϵ
. (5.2)

Following the paper [MDFUF18], by using a finite difference approximation, we
have ∇2

xg Lθ(x) = ∇x Lθ(x+ϵg )−∇x Lθ(x)
ϵ . The denominator can be omitted since it is a

constant. Therefore, we give the curvature regularization term as follows:

Rθ = ∥∇x Lθ(x +ϵg )−∇x Lθ(x)∥2, (5.3)

The form of Eq. (5.3) is similar to CURE method [MDFUF18] but a difference is
that the perturbation size here is fixed and the perturbed direction is generated
by FGSM attack. The adversarial training optimization goal is to minimize the
following expression:

min
θ

Lθ(x +ϵg )+λRθ, (5.4)

where Rθ is the curvature regularization defined in Eq. (5.3). λ is the hyperpa-
rameter to control the strength of penalizing the curvature along FGSM perturbed
direction.
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5.4 Experiments

5.4.1 Experiments Setup

Datasets and network architectures All experiments are run on the MNIST
and CIFAR-10 datasets. MNIST [LBB+98] consists of 28x28 gray-scale images
for handwritten digits with 60K training images and 10K test images. CIFAR-
10 [KH+09] consists of 32x32 color images that contain 10 different classes with
50K training images and 10K test images.

For the MNIST dataset, we use a simple convolutional neural network with
four convolutions and two dense layers as our model architecture. For the CIFAR-
10 dataset, the Residual Networks-18/34/50 [HZRS16] and Wide Residual
Networks-22×1/5/10×0×10 [ZK16] are used as our model architecture. For
comparison, robust models trained by adv.PGD and adv.FGSM respectively are
evaluated as well. Please refer to the supplementary material for a detailed
training process.

Adversarial attacks In order to have a comprehensive evaluation of the model’s
robustness, state-of-the-art white-box attacks are employed here. In specific,
PGD-inf, PGD-l2, FGSM, C&W-l2 and Deepfool-l2 are used for white-box attack.
By default, the hyperparameter k is set to 20 for PGD-inf/l2 in this chapter. The
accuracy on the perturbed test set is used as the adversarial robustness indicator,
but for C&W-l2 and Deepfool-l2 attacks, as they can find the adversarial examples
that change the model’s prediction for all inputs, we use the distance of the
perturbed example to the clean example as the adversarial robustness evaluation
indicator, refer to [MDFF16], the average distances are defined as follows:

ρad v = 1

|D|
∑

x∈D

∥xad v −x∥2

∥x∥2
, (5.5)

where xad v is the adversarial example generated by the attack algorithm, and
D is the test set. C&W-l2 and Deepfool-l2 attack are carried out by public
attack tool: foolbox [RBB17] and parameters are set by default for these two
attacks. Beyond white-box attacks, the transferable adversarial attack [LCLS17]
is employed on the CIFAR-10 dataset as a block-box attack evaluation.

5.4.2 Training Efficiency

We evaluate the training efficiency of adv.FGSMR and compare it with adv.PGD.
The training efficiency is evaluated from two aspects: (1) how much time it
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takes for training one epoch; and (2) how fast can the adversarial robustness be
improved during the training process. For the first aspect, as adv.PGD method
uses PGD-inf attack to generate perturbed examples, it takes k (commonly k is
set to 20) times of forward and backward process where k is the total iterations
for PGD-inf attack. But for adv.FGSMR, it takes 1 time of forward and backward
process to generate perturbed examples plus 2 times of forward and backward
process for the curvature regularization. Therefore, from the analysis above,
adv.FGSMR saves (k−3) times the forward and backward process. Table 5.2 shows
the training time of 50 epochs for adv.PGD (k = 20) and adv.FGSMR respectively,
which indicates that adv.FGSMR takes half time of what adv.PGD (k = 20) takes.
For the second aspect, we record the perturbed-data accuracy under PGD-inf
attack on the CIFAR-10 test set with the first 50 training epochs for adv.PGD and
adv.FGSMR with ϵ= 8.0/255 respectively. We repeat the training process 10 times
and report the mean and standard deviation. The results (Figure 5.4) show that
the perturbed-data accuracy of adv.FGSMR can be converged as fast as adv.PGD.
Therefore, we conclude that adv.FGSMR has higher training efficiency since it
takes less time for training one epoch and has comparable convergence speed
upon the perturbed-data accuracy compared with adv.PGD.

Figure 5.4: A comparable convergence speed on perturbed-data accuracy between
adv.FGSMR and adv.PGD. Left figure: the training process of ResNet-18 model.
Right figure: the training process of ResNet-34 model. Perturbed test sets
are generated by PGD-inf attack (ϵ= 8.0/255) on the CIFAR-10 test set. The
accuracy variation for each epoch is plotted using one standard deviation.

5.4.3 Performance under White-box Attack

Performance on the MNIST Dataset We evaluate the performance of our
proposed adv.FGSMR on the MNIST dataset. For comparison, the performance
of adv.PGD, adv.FGSM and CURE [MDFUF18] are shown. Robust models with
ϵ= 0.1 and ϵ= 0.2 are trained by adv.PGD, adv.FGSM and adv.FGSMR respectively.
Various state-of-the-art attacks are used for evaluating adversarial robustness
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Time ResNet-18 ResNet-34 ResNet-18 ResNet-34
(minutes) (adv.PGD) (adv.PGD) (Ours) (Ours)

Training time(50 Epoch) 214 375 106 187

Table 5.2: Comparison of time spent on training 50 epochs with adv.PGD and adv.FGSMR
respectively. This experiment is based on the CIFAR-10 dataset.

including FGSM, PGD-l2, PGD-inf, Deepfool-l2 and C&W-l2 attacks. The hyperpa-
rameter ϵ is set to 0.2, 2, 0.1 for FGSM, PGD-l2 and PGD-inf attacks respectively.

From Table 5.3, We can see that our method achieves higher perturbed-data
accuracy than adv.PGD under FGSM, PGD-l2 and PGD-inf attacks. For Deepfool-l2
attack, the average distance ρad v values of our method are slightly smaller than
that of adv.PGD. For C&W-l2 attack, our method achieves a slightly larger distance
on the robust model with ϵ= 0.2 while achieving a slightly smaller distance on
the robust model with ϵ= 0.1. It is also worth noting that our method achieves
state-of-the-art accuracy on the clean test set. In general, our method achieves
comparable adversarial robust performance compared with adv.PGD.

For adv.FGSM, it achieves better performance on FGSM attack but performs
worse on the other four attacks, which is consistent with the results reported
in [KGB17]. Considering the curvature regularization is similar to CURE method
[MDFUF18], we also show the performance of CURE method that is proposed to
improve robustness by decreasing the curvature of the loss function. The results
(Table 5.3) show that the performance achieved by CURE is obviously worse than
the performance achieved by adv.PGD and adv.FGSMR under all attacks.

Performance on the CIFAR-10 Dataset We show the adversarial robust perfor-
mance of the proposed adv.FGSMR on the CIFAR-10 dataset. For comparison, the
adversarial robust performance of adv.PGD and Vanilla train are also evaluated.
For adv.FGSMR, we train three robustness models with ϵ = 8.0/255, 9.0/255,
10.0/255 respectively. The same as on the MNIST dataset, FGSM, PGD-l2, PGD-
inf, Deepfool-l2 and C&W-l2 attacks are chosen for testing the adversarial robust
performance. The hyperparameter ϵ is set to 8.0/255 for FGSM and PGD-inf
attacks, and 60.0/255 for PGD-l2 attack.

The results (Table 5.4) show that our method achieves higher perturbed-data
accuracy than adv.train-PGD under FGSM, PGD-inf and PGD-l2 attacks, and the
average distance ρad v values are larger than that of adv.PGD under Deepfool-l2
and C&W-l2 attacks. The large average distance ρad v values indicate that our
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Training methods
Attack methods Clean FGSM PGD-l2 PGD-inf Deepfool-l2 C&W-l2

(accuracy) (accuracy) (accuracy) (accuracy) (ρad v ) (ρad v )
Vanilla train 0.98 0.361 0.448 0.27 0.54 0.46
adv.PGD(ϵ : 0.1) 0.993 0.897 0.956 0.974 1.25 0.85
adv.PGD(ϵ : 0.2) 0.992 0.966 0.975 0.982 1.36 0.87
adv.FGSM(ϵ : 0.1) 0.992 0.988 0.950 0.971 1.02 0.77
adv.FGSM(ϵ : 0.2) 0.993 0.968 0.950 0.972 1.07 0.66
CURE [MDFUF18] 0.990 0.936 0.932 0.957 1.02 0.79
adv.FGSMR(ϵ : 0.1) 0.994 0.961 0.959 0.979 1.15 0.84
adv.FGSMR(ϵ : 0.2) 0.992 0.968 0.976 0.983 1.31 0.90

Table 5.3: Performance of models trained by Vanilla train, adv.PGD, CURE, adv.FGSMR
methods respectively against various attacks on the MNIST Dataset. For FGSM,
PGD-l2, and PGD-inf attacks, the accuracy on the perturbed MNIST test set
is taken as the evaluation indicator. For Deepfool-l2 and C&W-l2 attacks, the
average distance (ρad v ) is taken as the evaluation indicator and is calculated
using Eq. (5.5).

method indeed enlarges the distance of input x to its nearest boundary. For
adv.FGSM, it achieves much higher accuracy on FGSM perturbed examples than
on clean examples, which is claimed as the ‘label leaking’ problem in [KGB17].
The average distance ρad v also shows that the model trained by adv.FGSM nearly
does not enlarge the distance of input x to the nearest decision boundary.

We also observe that with increasing perturbation size ϵ from 8.0/255 to
10.0/255, the clean accuracy decreases gradually and the perturbed-data ac-
curacy under PGD-inf attack increases gradually, which is consistent with the
claim [TSE+18a] that there is a trade-off between clean accuracy and adversarial
robustness. However, it is interesting that the perturbed-data accuracy under
FGSM and PGD-l2 attacks does not show an increasing trend. We argue the
perturbed-data accuracy might depend more on clean accuracy since the FGSM
and PGD-l2 attacks are weaker than the PGD-inf attack.

Effect of network capacity In order to explore the relation between network
capacity and adversarial robustness improved by adv.FGSMR (ϵ= 8.0/255), we
evaluate the adversarial robust performance on ResNet-18/34/50 and Wide
ResNet-22×1/5/10×0×10 for different depths and widths respectively. Madry
[MMS+18] concludes by experiments that increasing the capacity of a model
can increase the model’s adversarial robustness. In our results (Table 5.5), the
perturbed-data accuracy achieved by adv.FGSMR shows the same increasing
tendency both with the increasing of the model’s width or depth, which is
consistent with the claim of [MMS+18]. Besides, the perturbed-data accuracy
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Training methods
Attack methods Clean FGSM PGD-l2 PGD-inf Deepfool-l2 C&W-l2

(accuracy) (accuracy) (accuracy) (accuracy) (ρad v ) (ρad v )
Vanilla train 0.909 0.237 0.308 0.000 0.031 0.025
adv.FGSM(ϵ : 8.0/255) 0.849 0.908 0.353 0.091 0.022 0.016
adv.PGD(ϵ : 8.0/255) 0.746 0.506 0.710 0.444 0.178 0.129
adv.FGSMR(ϵ : 8.0/255) 0.789 0.51 0.759 0.458 0.228 0.179
adv.FGSMR(ϵ : 9.0/255) 0.772 0.507 0.734 0.465 0.227 0.180
adv.FGSMR(ϵ : 10.0/255) 0.756 0.509 0.723 0.470 0.230 0.177

Table 5.4: Performance of models trained by Vanilla train, adv.train-PGD, adv.train-FGSMR
methods respectively under various attacks on the CIFAR-10 dataset. For FGSM
and PGD-inf/l2 attacks, the accuracy on the perturbed CIFAR-10 test set is
taken as the evaluation indicator. For Deepfool-l2 and C&W-l2 attacks, the
average distance (ρad v ) is taken as evaluation indicator.

achieved by our method is all higher than the perturbed-data accuracy achieved
by adv.PGD, which further provides evidence that the proposed method achieves
better performance on the CIFAR-10 dataset. We also calculate the average
curvature for the six models where the average curvature is calculated using
Eq. (5.3). The results (Table 5.5) show the curvature values are smaller than
the curvature values of adv.PGD, which indicates the curvature value can be
effectively restrained by our proposed regularization.

Capacity adv.PGD adv.FGSMR
Models (Million) PGD-inf FGSM Average Curvature PGD-inf FGSM Average Curvature
ResNet-18 11 0.444 0.506 0.487 0.458 0.51 0.324
ResNet-34 21 0.469 0.511 0.442 0.475 0.525 0.309
ResNet-50 23 0.448 0.512 0.565 0.479 0.528 0.338
WResNet-22x1 0.27 0.383 0.407 0.282 0.408 0.438 0.245
WResNet-22x5 6 0.438 0.495 0.502 0.462 0.495 0.262
WResNet-22x10 26 0.440 0.498 0.504 0.477 0.515 0.319

Table 5.5: Effect of network depth and width. The perturbed-data accuracy under PGD-inf
and FGSM attacks are shown for robust models with different capacities. For
network depth, ResNet-18/34/50 with increasing depth is reported. For net-
work width, Wide ResNet-22×1/5/10×0×10 with increasing width are reported.
As compared, Robust models achieved by adv.PGD are tested too. Capacity
denotes the number of trainable parameters in the model.
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5.4.4 Performance under Black-box Attack

In this section, we evaluate our proposed method based on transferable ad-
versarial attack [LCLS17]. Following the transferable adversarial attack, three
no-defense models and two robust models are taken as the source model, and six
models that are trained by Vanilla train, adv.FGSMR (ϵ= 8.0/255) and adv.PGD
(ϵ= 8.0/255) methods respectively are taken as target models. The adversarial
examples under PGD-inf attack with (ϵ= 8.0/255) are generated from the source
model to attack the target model. The results (Table 5.6) show that models
trained by adv.FGSMR achieve slightly higher perturbed-data accuracy than mod-
els trained by adv.PGD under transferable adversarial examples generated from
both robust and non-defense models, which indicates adv.FGSMR can defend
black-box attack as effectively as adv.PGD. We also observe that the perturbed-
data accuracy achieved by adv.FGSMR is much closer to adv.PGD than Vanilla
train, which indicates that adv.FGSMR learns a similar feature with adv.PGD but
a different feature with Vanilla train.

Source model
Target model Vanilla train adv.PGD adv.FGSMR

ResNet-18 ResNet-34 ResNet-18 ResNet-34 ResNet-18 ResNet-34
Vanilla train(ResNet-18) 0.00 0.040 0.736 0.759 0.771 0.764
Vanilla train(ResNet-34) 0.070 0.016 0.735 0.758 0.772 0.764
Vanilla train(ResNet-50) 0.071 0.084 0.747 0.760 0.774 0.766
adv.PGD(ResNet-18) 0.792 0.787 0.444 0.584 0.606 0.614
adv.PGD(ResNet-34) 0.738 0.741 0.554 0.469 0.577 0.582

Table 5.6: The perturbed-data accuracy under transferable adversarial attack. The rows
denote the three vanilla-trained models and two robust models which are
used for generating transferable adversarial examples on the CIFAR-10 test set.
The columns denote models trained by Vanilla train, adv.FGSMR and adv.PGD
respectively that are used for testing.

5.5 Conclusion

In this chapter, we aimed to improve the adversarial robustness of the adv.FGSM
method by adding a curvature regularization. We first identified the reason for
the performance gap between adv.FGSM and adv.PGD by showing that the large
difference in perturbed directions, caused by the increasing curvature along the
FGSM perturbed direction, leads to a difference in adversarial robustness. To
address this issue, we proposed the adv.FGSMR method, which adds a curvature
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regularization to restrain the growth of curvature along the FGSM perturbed
direction. The evaluation of adv.FGSMR showed that it achieved comparable
convergence speed on perturbed-data accuracy and took half the time to train
one epoch compared to adv.PGD (k = 20). Under white-box attack, adv.FGSMR
performed similarly to adv.PGD on the MNIST dataset and outperformed it on the
CIFAR-10 dataset. Furthermore, it effectively defended transferable adversarial
attacks, performing as well as adv.PGD under black-box attack.



Chapter 6
On Generalization of Graph
Autoencoders with Adversarial
Training

Adversarial training is an approach for increasing a model’s resilience against
adversarial perturbations. Such approaches have been demonstrated to result
in models with feature representations that generalize better. However, limited
works have been done on adversarial training of models on graph data. In this
chapter, we raise such a question – does adversarial training improve the general-
ization of graph representations. We formulate L2 and L∞ versions of adversarial
training in two powerful node embedding methods: graph autoencoder (GAE)
and variational graph autoencoder (VGAE). We conduct extensive experiments
on three main applications, i.e. link prediction, node clustering, graph anomaly
detection of GAE and VGAE, and demonstrate that both L2 and L∞ adversarial
training boost the generalization of GAE and VGAE.

6.1 Introduction

Networks are ubiquitous in plenty of real-world applications and they contain
relationships between entities and attributes of entities. Modeling such data is
challenging due to its non-Euclidean characteristic. Recently, graph embedding
that converts graph data into low dimensional feature space has emerged as
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a popular method to model graph data, For example, DeepWalk [PARS14],
node2vec [GL16] and LINE [TQW+15] learn graph embedding by extracting
patterns from the graph. Graph Convolutions Networks (GCNs) [KW16a] learn
graph embedding by repeated multiplication of normalized adjacency matrix
and feature matrix. In particular, graph autoencoder (GAE) [KW16b,TGC+14,
WCZ16] and variational graph autoencoder (VGAE) [KW16b] have been shown
to be powerful node embedding methods as unsupervised learning. They have
been applied to many machine learning tasks, e.g. node clustering [SHV20,
TGC+14,SFK20], link prediction [SKB+18,KW16b], graph anomaly detection
[PHvIP20,DLBL19] and etc.

Adversarial training is an approach for increasing a model’s resilience against
adversarial perturbations by including adversarial examples in the training set
[MMS+17]. Several recent studies demonstrate that adversarial training im-
proves feature representations leading to better performance for downstream
tasks [UKE+20, SIE+20]. However, little work in this direction has been done
for GAE and VGAE. Besides, real-world graphs are usually highly noisy and
incomplete, which may lead to sub-optimal results for standard trained mod-
els [YZJ+19]. Therefore, we are interested to seek answers to the following two
questions:

• Does adversarial training improve generalization, i.e. the performance in
applications of node embeddings learned by GAE and VGAE?

• Which factors influence this improvement?

In order to answer the first question above, we first formulate L2 and L∞ adver-
sarial training for GAE and VGAE. Then, we select three main tasks of VGAE and
GAE: link prediction, node clustering, and graph anomaly detection for evaluat-
ing the generalization performance brought by adversarial training. Besides, we
empirically explore which factors affect the generalization performance brought
by adversarial training.

Contributions: To the best of our knowledge, we are the first to explore
generalization for GAE and VGAE using adversarial training. We formulate
L2 and L∞ adversarial training, and empirically demonstrate that both L2 and
L∞ adversarial training boost the generalization with a large margin for the
node embeddings learned by GAE and VGAE. An intriguing discovery is that the
proposed adversarial training’s generalization performance is more vulnerable to
attribute perturbations than adjacency matrix perturbations and is insensitive to
node degrees.
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6.2 Related Work

Adversarial training has been extensively studied in images. It has been an
important issue to explore whether adversarial training can help generalization.
Tsipras et al. [TSE+18b] illustrates that adversarial robustness could conflict
with a model’s generalization by a designed simple task. However, Stutz et
al. [SHS19] demonstrate that adversarial training with on-manifold adversarial
examples helps the generalization. Besides, Salman et al. [SIE+20] and Utrera et
al. [UKE+20] show that the latent features learned by adversarial training are
improved and boost the performance of their downstream tasks.

Recently, a few works bring adversarial training to the graph data. Deng,
Dong, and Zhu [DDZ19] and Sun et al. [SLGZ19] propose virtual graph adver-
sarial training to promote the smoothness of a model. Feng et al. [FHTC19]
propose graph adversarial training by inducing dynamical regularization. Dai
et al. [DSZ+19] formulate an interpretable adversarial training for DeepWalk.
Jin and Zhang [JZ19] introduce latent adversarial training for GCN, which train
GCN based on the adversarial perturbed output of the first layer. Besides, several
studies explored adversarial training based on adversarial perturbed edges for
graph data [XCL+19,CWLX19,WLH19]. Among these works, part of the studies
pays attention to achieving adversarial robustness while ignoring the effect of
generalization [XCL+19, JZ19,CWLX19,WLH19,DSZ+19] and the others simply
utilize perturbations on nodal attributes while not explore the effect of the per-
turbation on edges [DDZ19,SLGZ19,FHTC19]. The difference between these
works and ours is two-fold: (1) We extend both L∞ and L2 adversarial training
for graph models while the previous studies only explore L2 adversarial training.
(2) We focus on the generalization effect brought by adversarial training for
unsupervised deep learning graph models, i.e. GAE and VGAE while most of the
previous studies focus on adversarial robustness for supervised/semi-supervised
models.

6.3 Preliminaries

We first summarize some notations and definitions used in this chapter. Following
the commonly used notations, we use bold uppercase characters for matrices,
e.g. X, bold lowercase characters for vectors, e.g. b, and normal lowercase
characters for scalars, e.g. c. The i th row of a matrix A is denoted by Ai ,: and
(i , j )th element of matrix A is denoted as Ai , j . The i th row of a matrix X is
denoted by xi . We use KL for Kullback-Leibler divergence.
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We consider an attributed network G = {V ,E ,X} with |V | = n nodes, |E | = m
edges and X node attributed matrix. A is the binary adjacency matrix of G .

6.3.1 Graph Autoencoders

Graph autoencoders are a kind of unsupervised learning model on graph-
structure data [KW16b], which aim at learning low dimensional representations
for each node by reconstructing inputs. It has been demonstrated to achieve com-
petitive results in multiple tasks, e.g. link prediction [SHV20,KW16b,SLH+19],
node clustering [SHV20,TGC+14,SFK20], graph anomaly detection [DLBL19,
PHvIP20]. Generally, graph autoencoder consists of a graph convolutional net-
work for the encoder and an inner product for decoder [KW16b]. Formally, it
can be expressed as follows:

Z =GC N (A,X) (6.1)

Â=σ(ZZT ), (6.2)

where σ is the sigmoid function, GC N is a graph convolutional network, Z is the
learned low dimensional representations and Â is the reconstructed adjacency
matrix.

During the training phase, the parameters will be updated by minimizing the
reconstruction loss. Usually, the reconstruction loss is expressed as cross-entropy
loss between A and Â [KW16b]:

L ae =− 1

n2

∑
(i , j )∈V ×V

[
Ai , j logÂi , j + (1−Ai , j )log (1−Âi , j )

]
. (6.3)

6.3.2 Variational Graph Autoencoders

Kipf and Welling [KW16b] introduced variational graph autoencoder (VGAE)
which is a probabilistic model. VGAE consists of an inference model and a
generative model. In their approach, the inference model, i.e. corresponding to
the encoder of VGAE, is expressed as follows:

q(Z|X ,A) =
n∏

i=1
q(zi |X ,A), wi th q(zi |X ,A) =N (zi |µi ,di ag (σ2

i )), (6.4)

where µi and σi are learned by a GNN respectively. That is, µ=GC Nµ(X ,A)
and logσ =GC Nσ(X ,A), with µ is the matrix of stacking vectors µi ; likewise,
σ is the matrix of stacking vectors σi .
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The generative model, i.e. corresponding to the decoder of autoencoder, is
designed as an inner product between latent variables Z, which is formally
expressed as follows:

p(A|Z) =
n∏

i=1

n∏
j=1

p(Ai , j |zi ,z j ), wi th p(Ai , j = 1|zi ,z j ) =σ(zT
i z j ). (6.5)

During the training phase, the parameters will be updated by minimizing the
variational lower bound L vae :

L vae = Eq(Z|X ,A)[log p(A|Z)]−KL(q(Z|X ,A)||p(Z)), (6.6)

where a Gaussian prior is adopted for p(Z) =∏
i p(zi ) =∏

i N (zi |0,I).

6.3.3 Adversarial Training

By now, multiple variants of adversarial training have been proposed and most of
them are built on supervised learning and Euclidean data, e.g. FGSM-adversarial
training [GSS14b], PGD-adversarial training [MMS+17], Trades [ZYJ+19a],
MART [WZY+20] and etc. Here we introduce Trades that will be extended
to GAE and VGAE settings in Section 6.4. Trades [ZYJ+19a] separates loss
function into two terms:1) Cross-Entropy Loss for achieving natural accuracy; 2)
Kullback-Leibler divergence for achieving adversarial robustness. Formally, given
inputs (X ,Y ), it can be expressed as follows [ZYJ+19a]:

min
θ

E(X ,Y )[L( fθ(X ),Y )+λ ·KL(P (Y |X ′)||P (Y |X ))], (6.7)

where fθ is a supervised model, X ′ is the adversarial examples that maximize
KL divergence and P (Y |X ) is the output probability after softmax. λ is a tunable
hyperparameter and it controls the strength of the KL regularization term.

6.4 Graph Adversarial Training

In this section, we formulate L2 and L∞ adversarial training for GAE and VGAE
respectively.
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6.4.1 Adversarial Training in Graph Autoencoder

Considering that: (1) the inputs of GAE contain adjacency matrix and attributes,
(2) the latent representation Z is expected to be invariant to the input perturba-
tion, we reformulate the loss function in Eq. (6.3) as follows:

min
θ

L ae +λ ·KL(P (Z|A′,X′)||P (Z|A,X)) (6.8)

X ′ = ar g max
∥X ′−X∥≤ϵ

L ae (A,X), A′ = ar g max
∥A′−A∥≤ϵ

L ae (A,X) (6.9)

where A′ is the adversarial perturbed adjacency matrix and X ′ is the adversar-
ial perturbed attributes. Here the important question is how to generate the
perturbed adjacency matrix A′ and attributes X ′ in Eq. (6.9).

Attributes Perturbation X ′. We generate the perturbed X ′ by projection
gradient descent (PGD) [MMS+17]. We denote total steps as T .

For X ′ bounded by L2 norm ball, the perturbed data in t -th step X t is
expressed as follows:

X t = ∏
B(X ,ϵ∥X ∥2)

(X t−1 +α · g · ∥X ∥2/∥g∥2) (6.10)

g =∇X t−1L ae (A,X t−1) (6.11)

where
∏

is the projection operator and B(X ,ϵ∥X ∥2) is the L2 norm ball of nodal
attributes xi : {x′

i : ∥x′
i −xi∥2 ≤ ϵ∥xi∥2}.

For X ′ bounded by L∞ norm ball, the perturbed data in t -th step X t is
expressed as follows:

X t = ∏
B(X ,ϵ)

(X t−1 +α · g ) (6.12)

g = sg n(∇X t−1L ae (A,X t−1)), (6.13)

where B(X ,ϵ) is the L∞ norm ball of nodal attributes xi : {x′
i : ∥x′

i −xi∥∞ ≤ ϵ}
and sg n(·) is the sign function.

Adjacency Matrix Perturbation A′. Adjacency matrix perturbation includes
two-fold:(1) perturb node connections, i.e. Adding or dropping edges, (2) perturb
the strength of information flow between nodes, i.e. the strength of correlation
between nodes. Here we choose to perturb the strength of information flow
between nodes and leave the perturb of node connections for future work.
Specifically, we add weight for each edge and change these weights in order
to perturb the strength of the information flow. Formally, given the adjacency
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matrix A, the weighted adjacency matrix Ã is expressed as A⊙M where the
elements of M are continuous and its values are initialized as the same value as
A. ⊙ denotes the element-wise product. Formally, A′ is expressed as follows:

M ′ = ar g max
∥M ′−M∥≤ϵ

L ae (Ã,X) (6.14)

A′ =A⊙M ′. (6.15)

For A′ bounded by L2 norm ball, the perturbed data in t -th step At is expressed
as follows:

g =∇M t−1L ae (Ãt−1,X) (6.16)

M t = ∏
B(M ,ϵ∥M∥2)

(M t−1 +α · g · ∥M∥2/∥g∥2) (6.17)

At = Ãt =A⊙M t . (6.18)

For A′ bounded by L∞ norm ball, the perturbed data in t -th step At is
expressed as follows:

g = sg n(∇M t−1L ae (Ãt−1,X)) (6.19)

M t = ∏
B(M ,ϵ)

(M t−1 +α · g ) (6.20)

At = Ãt =A⊙M t . (6.21)

6.4.2 Adversarial Training in Variational Graph Autoencoder

Similarly to GAE, we reformulate the loss function for training VGAE (Eq. (6.6))
as follows:

min
θ

L vae +λ ·KL(P (Z|A′,X′)||P (Z|A,X)) (6.22)

X ′ = ar g max
∥X ′−X∥≤ϵ

L vae (A,X), A′ = ar g max
∥A′−A∥≤ϵ

L vae (A,X) (6.23)

We generate A′ and X ′ exactly the same way as with GAE (replacing L ae with
L vae in Eq. (10-21).)

For convenience, we abbreviate L2 and L∞ adversarial training as AT-2 and
AT-Linf respectively in the following tables and figures where L2/L∞ denote both
attributes and adjacency matrix perturbation are bounded by L2/L∞ norm ball.
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In practice, we train models by alternatively adding adjacency matrix pertur-
bation and attributes perturbation 1.

6.5 Experiments

In this section, we present the results of the performance evaluation of L2 and L∞
adversarial training under three main applications of GAE and VGAE: link predic-
tion, node clustering, and graph anomaly detection. Then we conduct parameter
analysis experiments to explore which factors influence the performance.

Datasets. We used six real-world datasets: Cora, Citeseer, and PubMed for
link prediction and node clustering tasks, and BlogCatalog, ACM, and Flickr for
the graph anomaly detection task. The detailed descriptions of the six datasets
are shown in Table 6.1.

Model Architecture. All our experiments are based on the GAE/VGAE model
where the encoder/inference model is consisted of a two-layer GCN by default.

Table 6.1: Datasets Descriptions.

DataSets Cora Citeseer PubMed BlogCatalog ACM Flickr

#Nodes 2708 3327 19717 5196 16484 7575
#Links 5429 4732 44338 171743 71980 239738
#Features 1433 3703 500 8189 8337 12074

6.5.1 Link Prediction

Metrics. Following [KW16b], we use the area under a receiver operating char-
acteristic curve (AUC) and average precision (AP) as the evaluation metric. We
conduct 30 repeat experiments with random splitting datasets into 85%, 5%,
and 10% for training sets, validation sets, and test sets respectively. We report
the mean and standard deviation values on test sets.
Parameter Settings. We train models on Cora and Citeseer datasets with 600
epochs, and PubMed with 800 epochs. All models are optimized with Adam
optimizer and 0.01 learning rate. The λ is set to 4. For attributes perturbation,
the ϵ is set to 3e-1 and 1e-3 on Citeseer and Cora, 1 and 5e-3 on PubMed for L2

1We find that optimizing models by alternatively adding these two perturbations is better than
adding these two perturbations together.
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and L∞ adversarial training respectively. For adjacency matrix perturbation, the
ϵ is set to 1e-3 and 1e-1 on Citeseer and Cora, and 1e-3 and 3e-1 on PubMed for
L2 and L∞ adversarial training respectively. The steps T is set to 1. The α is set
to ϵ

T .
For standard training GAE and VGAE, we run the official Pytorch geometric

code 2 with 600 epochs for Citeseer and Cora datasets, 1000 epochs 3 for PubMed
dataset. Other parameters are set the same as in [KW16b].
Experimental Results. The results are shown in Table 6.2. It can be seen that
both L2 and L∞ Adversarial trained GAE and VGAE models consistently boost
their performance for both AUC and AP metrics on Cora, Citeseer, and PubMed
datasets. Specifically, the improvements on the Cora and Citeseer datasets reach
at least 2% for both GAE and VGAE (Table 6.2). The improvements on PubMed
are relatively small with around 0.3%.

Table 6.2: Results for Link Prediction.

Methods Cora Citeseer PubMed

AUC (in%) AP (in%) AUC (in%) AP (in%) AUC (in%) AP (in%)
GAE 90.6±0.9 91.2±1.0 88.0±1.2 89.2±1.0 96.8±0.2 97.1±0.2
AT-L2-GAE 93.0±0.9 93.5±0.6 92.5±0.7 93.2±0.6 97.2±0.2 97.4±0.2
AT-Linf-GAE 92.8±1.1 93.4±1.0 92.3±0.9 92.6±1.1 96.9±0.2 97.3±0.2
VGAE 89.8±0.9 90.3±1.0 86.6±1.4 87.6±1.3 96.2±0.4 96.3±0.4
AT-L2-VGAE 92.8±0.6 93.1±0.6 90.7±1.1 91.1±0.9 96.6±0.2 96.7±0.2
AT-Linf-VGAE 92.2±1.2 92.3±1.3 91.9±0.8 92.0±0.6 96.5±0.2 96.6±0.3

6.5.2 Node Clustering

Metrics. Following [PHL+18,XPDY14], we use accuracy (ACC), normalized mu-
tual information (NMI), precision, F-score(F1), and average rand index (ARI) as
our evaluation metrics. We conduct 10 repeat experiments. For each experiment,
datasets are randomly split into training sets( 85% edges), validation sets (5%
edges), and test sets (10% edges). We report the mean and standard deviation
values on test sets.
Parameter Settings. We train GAE models on Cora and Citeseer datasets with
400 epochs, and PubMed dataset with 800 epochs. We train VGAE models on the
Cora and Citeseer datasets with 600 epochs and the PubMed dataset with 800

2https://github.com/rusty1s/pytorch_geometric/blob/master/examples/autoencoder.
py

3Considering PubMed is big graph data, we use more epochs in order to avoid underfitting.

https://github.com/rusty1s/pytorch_geometric/blob/master/examples/autoencoder.py
https://github.com/rusty1s/pytorch_geometric/blob/master/examples/autoencoder.py
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epochs. All models are optimized by Adam optimizer with 0.01 learning rate.
The λ is set to 4. For attributes perturbation, the ϵ is set to 5e-1 and 1e-3 on the
both Cora and Citeseer dataset, and 1 and 5e-3 on the PubMed dataset for L2

and L∞ adversarial training respectively. For adjacency matrix perturbation, the
ϵ is set to 1e-3 and 1e-1 on Cora and CiteSeer, 1e-3 and 3e-1 on PubMed for L2

and L∞ adversarial training respectively. The steps T is set to 1. The α is set to
ϵ
T .

Likewise, for standard GAE and VGAE, we run the official Pytorch geometric
code with 400 epochs for the Citeseer and Cora datasets, and 800 epochs for the
PubMed dataset.
Experimental Results. The results are showed in Table 6.3, Table 6.4 and
Table 6.5. It can be seen that both L2 and L∞ adversarially trained models
consistently outperform the standard trained models for all metrics. In particular,
on Cora and Citeseer datasets, both L2 and L∞ adversarial training improve
the performance with a large margin for all metrics, i.e. at least +5.4% for
GAE, +6.7% for VGAE on Cora dataset (Table 6.3), and at least +5.8% for GAE,
+5.6% for VGAE on Citeseer dataset (Table 6.4).

Table 6.3: Results for Node Clustering on Cora.

Methods Acc (in%) NMI (in%) F1 (in%) Precision (in%) ARI (in%)

GAE 61.6±3.4 44.9±2.3 60.8±3.4 62.5±3.5 37.2±3.2
AT-L2-GAE 67.0±3.0 50.8±1.7 66.6±1.7 69.4±1.7 44.1±4.1
AT-Linf-GAE 67.1±3.8 51.4±1.9 67.5±2.8 70.7±2.2 43.4±4.3
VGAE 58.7±2.7 42.3±2.2 57.3±3.2 58.8±3.5 34.6±2.8
AT-L2-VGAE 67.3±3.8 50.5±2.1 66.1±4.1 67.5±3.8 44.3±3.3
AT-Linf-VGAE 65.4±2.3 49.5±1.6 64.0±2.3 65.8±3.0 42.9±2.8

Table 6.4: Results for Node Clustering on Citeseer.

Methods Acc (in%) NMI (in%) F1 (in%) Precision (in%) ARI (in%)

GAE 51.8±2.6 28.0±1.9 50.6±3.1 55.1±3.1 22.8±2.3
AT-L2-GAE 61.6±2.3 36.3±1.4 58.8±2.1 60.9±1.4 34.6±2.3
AT-Linf-GAE 60.2±2.8 38.0±2.3 57.0±2.7 61.1±1.6 34.1±3.4
VGAE 53.6±3.5 28.4±3.3 51.1±3.8 53.2±4.1 26.1±3.5
AT-L2-VGAE 59.2±2.3 35.1±2.3 57.3±2.3 60.4±3.1 33.0±2.4
AT-Linf-VGAE 60.4±1.5 36.5±1.4 58.2±1.4 61.1±1.4 34.7±2.0
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Table 6.5: Results for Node Clustering on PubMed.

Methods Acc (in%) NMI (in%) F1 (in%) Precision (in%) ARI (in%)

GAE 66.2±2.0 27.9±3.7 65.0±2.3 68.8±2.2 27.1±3.3
AT-L2-GAE 67.5±2.9 30.4±5 66.7±3.3 70.2±3.1 28.9±4.8
AT-Linf-GAE 68.4±1.6 31.9±3.2 67.7±1.9 70.9±1.8 30.2±2.8
VGAE 67.5±2.0 29.4±3.2 66.5±2.2 69.9±2.2 28.4±3.2
AT-L2-VGAE 69.8±2.0 33.2±3.4 69.4±2.3 71.7±2.5 32.5±3.2
AT-Linf-VGAE 68.5±1.2 30.7±2.5 67.4±1.5 70.1±1.5 30.4±2.0

6.5.3 Graph Anomaly Detection

We strictly follow the experimental protocol outlined in [DLBL19] for graph
anomaly detection. In [DLBL19], the authors take reconstruction errors of
attributes and links as the anomaly scores. Specifically, the node with larger
scores is more likely to be considered anomalies.
Model Architecture. Different from link prediction and node clustering, the
model architecture in graph anomaly detection not only contains a structure
reconstruction decoder, i.e. link reconstruction, but also contains an attribute
reconstruction decoder. We adopt the same model architecture as in the official
code of [DLBL19] where the encoder consists of two GCN layers and the
decoder of structure reconstruction decoder consists of a GCN layer and an
InnerProduction layer, and the decoder of attributes reconstruction decoder
consists of two GCN layers.
Metrics. Following [DLBL19, PHvIP20], we use the area under the receiver
operating characteristic curve (ROC-AUC) as the evaluation metric.
Parameter Settings. We set the α in anomaly scores to 0.5 where it balances
the structure reconstruction errors and attributes reconstruction errors. We train
the GAE model on Flickr, BlogCatalog, and ACM datasets with 300 epochs. We
set λ to 5. For adjacency matrix perturbation, we set ϵ to 3e-1, 5e-5 on both
BlogCatalog and ACM datasets, 1e-3 and 1e-6 on Flickr dataset for L∞ and L2

adversarial training respectively. For attributes perturbations, we set ϵ to 1e-3 on
BlogCatalog for both L∞ and L2 adversarial training, 1e-3 and 1e-2 on ACM for
L∞ and L2 adversarial training respectively, 5e-1 and 3e-1 on Flickr for L∞ and
L2 adversarial training respectively. We set steps T to 1 and the α to ϵ

T
Anomaly Generation. Following [DLBL19], we inject two kinds of anomaly by
perturbing structure and nodal attributes respectively:

• Structure anomalies. We randomly select s nodes from the network and
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then make those nodes fully connected, and then all the s nodes forming
the clique are labeled as anomalies. t cliques are generated repeatedly and
totally there are s × t structural anomalies.

• Attribute anomalies. We first randomly select s × t nodes as the attribute
perturbation candidates. For each selected node vi , we randomly select
another k node from the network and calculate the Euclidean distance
between vi and all the k nodes. Then the node with the largest distance is
selected as v j and the attributes of node v j are changed to the attributes
of vi .

In this experiment, we set s = 15 and t = 10,15,20 for BlogCatalog, Flickr, and
ACM respectively which are the same to [DLBL19,PHvIP20].
Experimental Results. From Table 6.6, it can be seen that both L2 and L∞
adversarial training boost the performance in detecting anomalous nodes. Since
adversarial training tends to learn feature representations that are less sensitive
to perturbations in the inputs, we conjecture that the adversarially trained node
embeddings are less influenced by the anomalous nodes, which helps the graph
anomaly detection. A similar claim is also made in the image domain [SAP+20]
where they demonstrate adversarial training of autoencoders is beneficial to
novelty detection.

Table 6.6: Results w.r.t. AUC (in%) for Graph Anomaly Detection.

Methods Flickr BlogCatalog ACM

GAE 80.2±1.3 82.9±0.3 72.5±0.6
AT-L2-GAE 84.9±0.2 84.7±1.4 74.2±1.7
AT-Linf-GAE 81.1±1.1 82.8±1.3 75.3±0.9

6.6 Understanding Adversarial Training

In this section, we explore the impact of three hyper-parameters on the per-
formance of GAE and VGAE with adversarial training, i.e. the ϵ, λ and T in
generating A′ and X ′. These three hyper-parameters are commonly considered
to control the strength of regularization for adversarial robustness [ZYJ+19a].
Besides, we explore the relationship between the improvements achieved by
adversarial training and node degree.
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Figure 6.1: The impact of ϵ in adjacency matrix perturbation and attributes perturbation.
(a)-(d) shows AUC/AP values for the link prediction task and (e)-(h) shows
NMI/F1 values for the node clustering task. Dots denote mean values with 30
repeated runs.
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6.6.1 The Impact of ϵ

The experiments are conducted on link prediction and node clustering tasks
based on the Cora dataset. We fix ϵ to 5e-1 and 1e-3 on adjacency matrix
perturbation for L∞ and L2 adversarial training respectively when varying ϵ on
attributes perturbation. We fix ϵ to 1e-3 and 3e-1 on attributes perturbation for
L∞ and L2 adversarial training respectively when varying ϵ on adjacency matrix
perturbation.

The results are shown in Fig. 6.1. From Fig. 6.1, we can see that the per-
formance is less sensitive to adjacency matrix perturbation and more sensitive
to attributes perturbation. Besides, it can be seen that there is an increase
and then a decreasing trend when increasing ϵ for attributes perturbation. We
conjecture that it is because too large perturbations on attributes may destroy
useful information in attributes. Therefore, it is necessary to carefully adapt the
perturbation magnitude ϵ when we apply adversarial training for improving the
generalization of a model.
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Figure 6.2: The impact of steps T . Dots denote mean AUC/AP values for the link predic-
tion task and mean NMI/F1 values for the node clustering task.
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6.6.2 The Impact of T

The experiments are conducted on link prediction and node clustering tasks
based on the Cora dataset. For L2 adversarial training, we set ϵ to 1e-3 and
5e-1 for adjacency matrix perturbation and attributes perturbation respectively.
For L∞ adversarial training, we set ϵ to 1e-1 and 1e-3 for adjacency matrix
perturbation and attributes perturbation respectively. We set λ to 4.

Results are shown in Fig. 6.2. From Fig. 6.2, we can see that there is a slight
drop in both link prediction and node clustering tasks when increasing T from 2
to 4, which implies that a big T is not helpful to improve the generalization of
node embeddings learned by GAE and VGAE. We suggest that one step is a good
choice for generating adjacency matrix perturbation and attributes perturbation
in both L2 and L∞ adversarial training.

6.6.3 The Impact of λ

The experiments are conducted on link prediction and node clustering tasks
based on the Cora dataset. Likewise, for L2 adversarial training, ϵ is set to
1e-3 and 5e-1 for adjacency matrix perturbation and attributes perturbation
respectively. For L∞ adversarial training, ϵ is set to 1e-1 and 1e-3 for adjacency
matrix perturbation and attributes perturbation respectively. T is set to 1.

Results are shown in Fig. 6.3. From Fig. 6.3, it can be seen that there is a sig-
nificant increasing trend with the increase of λ, which indicates the effectiveness
of both L2 and L∞ adversarial training in improving the generalization of GAE
and VGAE. Besides, we also notice that a too-large λ is not necessary and may
lead to a negative effect in the generalization of GAE and VGAE.
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Figure 6.3: The impact of λ. λ is varied from 0 to 7. Dots denote the mean Acc for
the node clustering task and the mean AUC for the link prediction task.
Experiments are conducted with 30 repeated runs.
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6.6.4 Performance w.r.t. Node Degree

In this section, we explore whether the performance of adversarial trained
GAE/VGAE is sensitive to the degree of nodes. To conduct this experiment, we
first learn node embeddings from Cora and Citeseer datasets by GAE/VGAE
with L2/L∞ adversarial training and standard training respectively. The hyper-
parameters are set the same as in the Node clustering task. Then we build a
linear classification based on the learned node embeddings. The accuracy with
respect to the node degree distribution is shown in Fig. 6.4.

From Fig. 6.4, it can be seen seem that for most degree groups, both L2 and
L∞ adversarially trained models outperform standard trained models, which
indicates that both L2 and L∞ adversarial training improve the generalization of
GAE and VGAE with different degrees. However, we also notice that adversarial
training does not achieve a significant improvement in [9,N] group. We conjec-
ture that it is because node embeddings with very large degrees already achieve
a high generalization.
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Figure 6.4: Performance of GAE/VGAE and adversarial trained GAE/VGAE w.r.t. node
degrees in Cora and Citeseer networks.
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6.7 Conclusion

In this chapter, we first formulated L2 and L∞ adversarial training for GAE and
VGAE, and then presented their impact on the generalization performance. The
extensive experiments showed that both L2 and L∞ adversarial trained GAE and
VGAE outperform GAE and VGAE with standard training, indicating that both
L2 and L∞ adversarial training improve the generalization of GAE and VGAE.
Besides, we also found that the generalization performance achieved by the L2

and L∞ adversarial training is more sensitive to attributes perturbation than
adjacency matrix perturbation, and not sensitive to node degree. In addition,
the parameter analysis suggested that a too large λ, ϵ, and T would lead to a
negative effect on the performance w.r.t. generalization.





Chapter 7
Conclusion and Future Work

7.1 Conclusion

In this thesis, we focused on adversarial examples and explore their roles in
building robust models. Concretely, we have investigated the following research
questions.

How to improve the transferability of adversarial examples? (RQ1). In
Chapter 2, we presented our study of the transferability of adversarial examples.
We experimentally showed that adversarial examples generated by the existing
standard adversarial attacks such as the PGD, FGSM, and C&W attacks, have
low transferability. That is, the adversarial examples generated by the white-box
model are hard to attack other models successfully. Furthermore, we showed
that the transferability can be greatly improved by stabilizing the attack direc-
tions, resulting in a practical and strong black-box attack. In experiments, we
demonstrated that the black-box models including robust-trained models are not
robust to the proposed DA attack.

Can we effectively address the three challenges: (1) Robust overfitting,
(2) Trade-off between clean accuracy and robust accuracy, (3) High training
cost? (RQ2). Despite adversarial training (AT) has been demonstrated effective
to improve adversarial robustness. However, there are still three challenging
issues when we apply AT for improving adversarial robustness: ❶ Trade-off
between clean accuracy and robust accuracy, ❷ Robust overfitting, ❸ Expensive
training cost. We proposed methods to mitigate these issues.

• CAT. In Chapter 3, we presented our theoretical analysis for AT. We found
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that adversarial examples generated by maximizing robust error could lead
to an inconsistency between adversarial examples and its label. We further
showed that the proposed calibrated adversarial examples reduce the se-
mantic changes on the input and keep the consistency between adversarial
examples and the label. Based on the calibrated adversarial examples, we
proposed Calibrated Adversarial Training (CAT) that boosts adversarial
robustness while keeping a good trade-off between clean accuracy and
robust accuracy, indicating that there could be strong connectivity between
the trade-off and the consistency of labels and adversarial examples.

• WOT. In Chapter 4, We drew a connection between robust overfitting and
optimization trajectories. We found that refining the optimization trajec-
tories by maximizing the robust performance on unseen data effectively
improves adversarial robustness while it has negligible or even no sacrifice
on clean accuracy. In experiments, we showed that refining optimization
trajectories can find flatter minima. Overall, our results suggested that
optimization trajectories play a key role in mitigating robust overfitting
and improving adversarial robustness.

• Bridging FGSM-AT and PGD-AT. In Chapter 5, we bridged FGSM-AT
and PGD-AT by introducing a curvature regularization. We found that
reducing the difference between adversarial examples from the FGSM and
PGD attacks can avoid the “catastrophic overfitting” issue of FGSM-AT. In
experiments, we showed that the proposed curvature regularization can
decrease the iterations of the inner loop to 1 for PGD-AT and obtain a 2x
time speed up while keeping the same adversarial robustness.

Can adversarial examples enhance the representation learning of graph
neural networks? (RQ3). In Chapter 6, we explored the impact of adversarial
examples on the generalization of graph autoencoder (GAE) and variational
graph autoencoder (VGAE). We demonstrated that, with optimal choice of the
magnitude of adversarial perturbations and the strength of the regularization
based on adversarial examples, AT can boost the generalization with a large
margin for the node embedding learned by GAE/ VGAE. This study indicates
that there is a larger-than-expected space for applying adversarial examples
for boosting task performance such as feature representation except for robust
performance.
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7.2 Future Work

Many studies indicate that current deep networks lack the generalization abilities
of human perception, being susceptible to small input variations, viewpoint
changes, and occlusions. Despite various attempts to enhance the robustness of
these models, it remains an ongoing challenge to match the robustness of human
perception. In this section, we outline some of the most promising directions for
future development.

Offline AT. While PGD-AT achieves promising performance in improving
adversarial robustness, the online adversarial examples generation occupies
much computing resources. Therefore, developing offline AT is a promising
future work where adversarial examples are collected offline. Since adversarial
examples can be obtained with high transferability [DPSZ19,XZZ+19,Nes83], it
might be also possible to generate static transferable adversarial examples that
can attack models across the training period. Adversarial robustness might be
achieved by training a model on these static transferable adversarial examples.

Optimal Adversarial Examples for AT. Although many variants of AT have
been proposed, optimal adversarial examples for AT are still unknown. Sev-
eral studies [ZXH+20a, SCW20, BGH19] experimentally showed dynamically
changing ϵ can mitigate the trade-off between adversarial robustness and clean
accuracy. However, most of them are heuristically proposed and lack a theoretical
analysis and guarantee. Therefore, a theoretical analysis for optimal adversar-
ial examples is critical for understanding AT and achieving a better trade-off
between adversarial robustness and clean accuracy.

Universal Robustness. There are many different types of robustness. For an
example, robustness to common corruptions [HD19], robustness to pixel-based
adversarial attacks [GSS14a,MMS+18], robustness to spatial-based adversarial
attacks [TB19, KDS19]. Although there are various methods proposed for im-
proving this robustness respectively [MMS+18,HMC+19,KDS19], there are rare
studies to boost this robustness altogether. [LCO19] show that the pixel-based
adversarial robustness is not correlated with robustness to common corruptions.
[SLL21] point out that increasing the robustness of pixel-based adversarial
attacks leads to a decreased robustness of rotation-based adversarial attacks.
Developing a general framework to improve universal robustness that can robust
all these perturbations or attacks is important.
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