123 research outputs found

    Venice: Exploring Server Architectures for Effective Resource Sharing

    Get PDF
    Consolidated server racks are quickly becoming the backbone of IT infrastructure for science, engineering, and business, alike. These servers are still largely built and organized as when they were distributed, individual entities. Given that many fields increasingly rely on analytics of huge datasets, it makes sense to support flexible resource utilization across servers to improve cost-effectiveness and performance. We introduce Venice, a family of data-center server architectures that builds a strong communication substrate as a first-class resource for server chips. Venice provides a diverse set of resource-joining mechanisms that enables user programs to efficiently leverage non-local resources. To better understand the implications of design decisions about system support for resource sharing we have constructed a hardware prototype that allows us to more accurately measure end-to-end performance of at-scale applications and to explore tradeoffs among performance, power, and resource-sharing transparency. We present results from our initial studies analyzing these tradeoffs when sharing memory, accelerators, or NICs. We find that it is particularly important to reduce or hide latency, that data-sharing access patterns should match the features of the communication channels employed, and that inter-channel collaboration can be exploited for better performance

    A protocol reconfiguration and optimization system for MPI

    Get PDF
    Modern high performance computing (HPC) applications, for example adaptive mesh refinement and multi-physics codes, have dynamic communication characteristics which result in poor performance on current Message Passing Interface (MPI) implementations. The degraded application performance can be attributed to a mismatch between changing application requirements and static communication library functionality. To improve the performance of these applications, MPI libraries should change their protocol functionality in response to changing application requirements, and tailor their functionality to take advantage of hardware capabilities. This dissertation describes Protocol Reconfiguration and Optimization system for MPI (PRO-MPI), a framework for constructing profile-driven reconfigurable MPI libraries; these libraries use past application characteristics (profiles) to dynamically change their functionality to match the changing application requirements. The framework addresses the challenges of designing and implementing the reconfigurable MPI libraries, which include collecting and reasoning about application characteristics to drive the protocol reconfiguration and defining abstractions required for implementing these reconfigurations. Two prototype reconfigurable MPI implementations based on the framework - Open PRO-MPI and Cactus PRO-MPI - are also presented to demonstrate the utility of the framework. To demonstrate the effectiveness of reconfigurable MPI libraries, this dissertation presents experimental results to show the impact of using these libraries on the application performance. The results show that PRO-MPI improves the performance of important HPC applications and benchmarks. They also show that HyperCLaw performance improves by approximately 22% when exact profiles are available, and HyperCLaw performance improves by approximately 18% when only approximate profiles are available

    Physically Dense Server Architectures.

    Full text link
    Distributed, in-memory key-value stores have emerged as one of today's most important data center workloads. Being critical for the scalability of modern web services, vast resources are dedicated to key-value stores in order to ensure that quality of service guarantees are met. These resources include: many server racks to store terabytes of key-value data, the power necessary to run all of the machines, networking equipment and bandwidth, and the data center warehouses used to house the racks. There is, however, a mismatch between the key-value store software and the commodity servers on which it is run, leading to inefficient use of resources. The primary cause of inefficiency is the overhead incurred from processing individual network packets, which typically carry small payloads, and require minimal compute resources. Thus, one of the key challenges as we enter the exascale era is how to best adjust to the paradigm shift from compute-centric to storage-centric data centers. This dissertation presents a hardware/software solution that addresses the inefficiency issues present in the modern data centers on which key-value stores are currently deployed. First, it proposes two physical server designs, both of which use 3D-stacking technology and low-power CPUs to improve density and efficiency. The first 3D architecture---Mercury---consists of stacks of low-power CPUs with 3D-stacked DRAM. The second architecture---Iridium---replaces DRAM with 3D NAND Flash to improve density. The second portion of this dissertation proposes and enhanced version of the Mercury server design---called KeyVault---that incorporates integrated, zero-copy network interfaces along with an integrated switching fabric. In order to utilize the integrated networking hardware, as well as reduce the response time of requests, a custom networking protocol is proposed. Unlike prior works on accelerating key-value stores---e.g., by completely bypassing the CPU and OS when processing requests---this work only bypasses the CPU and OS when placing network payloads into a process' memory. The insight behind this is that because most of the overhead comes from processing packets in the OS kernel---and not the request processing itself---direct placement of packet's payload is sufficient to provide higher throughput and lower latency than prior approaches.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/111414/1/atgutier_1.pd

    Scalable and fault-tolerant data stream processing on multi-core architectures

    Get PDF
    With increasing data volumes and velocity, many applications are shifting from the classical “process-after-store” paradigm to a stream processing model: data is produced and consumed as continuous streams. Stream processing captures latency-sensitive applications as diverse as credit card fraud detection and high-frequency trading. These applications are expressed as queries of algebraic operations (e.g., aggregation) over the most recent data using windows, i.e., finite evolving views over the input streams. To guarantee correct results, streaming applications require precise window semantics (e.g., temporal ordering) for operations that maintain state. While high processing throughput and low latency are performance desiderata for stateful streaming applications, achieving both poses challenges. Computing the state of overlapping windows causes redundant aggregation operations: incremental execution (i.e., reusing previous results) reduces latency but prevents parallelization; at the same time, parallelizing window execution for stateful operations with precise semantics demands ordering guarantees and state access coordination. Finally, streams and state must be recovered to produce consistent and repeatable results in the event of failures. Given the rise of shared-memory multi-core CPU architectures and high-speed networking, we argue that it is possible to address these challenges in a single node without compromising window semantics, performance, or fault-tolerance. In this thesis, we analyze, design, and implement stream processing engines (SPEs) that achieve high performance on multi-core architectures. To this end, we introduce new approaches for in-memory processing that address the previous challenges: (i) for overlapping windows, we provide a family of window aggregation techniques that enable computation sharing based on the algebraic properties of aggregation functions; (ii) for parallel window execution, we balance parallelism and incremental execution by developing abstractions for both and combining them to a novel design; and (iii) for reliable single-node execution, we enable strong fault-tolerance guarantees without sacrificing performance by reducing the required disk I/O bandwidth using a novel persistence model. We combine the above to implement an SPE that processes hundreds of millions of tuples per second with sub-second latencies. These results reveal the opportunity to reduce resource and maintenance footprint by replacing cluster-based SPEs with single-node deployments.Open Acces

    Network-Compute Co-Design for Distributed In-Memory Computing

    Get PDF
    The booming popularity of online services is rapidly raising the demands for modern datacenters. In order to cope with data deluge, growing user bases, and tight quality of service constraints, service providers deploy massive datacenters with tens to hundreds of thousands of servers, keeping petabytes of latency-critical data memory resident. Such data distribution and the multi-tiered nature of the software used by feature-rich services results in frequent inter-server communication and remote memory access over the network. Hence, networking takes center stage in datacenters. In response to growing internal datacenter network traffic, networking technology is rapidly evolving. Lean user-level protocols, like RDMA, and high-performance fabrics have started making their appearance, dramatically reducing datacenter-wide network latency and offering unprecedented per-server bandwidth. At the same time, the end of Dennard scaling is grinding processor performance improvements to a halt. The net result is a growing mismatch between the per-server network and compute capabilities: it will soon be difficult for a server processor to utilize all of its available network bandwidth. Restoring balance between network and compute capabilities requires tighter co-design of the two. The network interface (NI) is of particular interest, as it lies on the boundary of network and compute. In this thesis, we focus on the design of an NI for a lightweight RDMA-like protocol and its full integration with modern manycore server processors. The NI capabilities scale with both the increasing network bandwidth and the growing number of cores on modern server processors. Leveraging our architecture's integrated NI logic, we introduce new functionality at the network endpoints that yields performance improvements for distributed systems. Such additions include new network operations with stronger semantics tailored to common application requirements and integrated logic for balancing network load across a modern processor's multiple cores. We make the case that exposing richer, end-to-end semantics to the NI is a unique enabler for optimizations that can reduce software complexity and remove significant load from the processor, contributing towards maintaining balance between the two valuable resources of network and compute. Overall, network-compute co-design is an approach that addresses challenges associated with the emerging technological mismatch of compute and networking capabilities, yielding significant performance improvements for distributed memory systems

    Effects of Communication Protocol Stack Offload on Parallel Performance in Clusters

    Get PDF
    The primary research objective of this dissertation is to demonstrate that the effects of communication protocol stack offload (CPSO) on application execution time can be attributed to the following two complementary sources. First, the application-specific computation may be executed concurrently with the asynchronous communication performed by the communication protocol stack offload engine. Second, the protocol stack processing can be accelerated or decelerated by the offload engine. These two types of performance effects can be quantified with the use of the degree of overlapping Do and degree of acceleration Daccs. The composite communication speedup metrics S_comm(Do, Daccs) can be used in order to quantify the combined effects of the protocol stack offload. This dissertation thesis is validated empirically. The degree of overlapping Do, the degree of acceleration Daccs, and the communication speedup Scomm characteristic of the system configurations under test are derived in the course of experiments performed for the system configurations of interest. It is shown that the proposed metrics adequately describe the effects of the protocol stack offload on the application execution time. Additionally, a set of analytical models of the networking subsystem of a PC-based cluster node is developed. As a result of the modeling, the metrics Do, Daccs, and Scomm are obtained. The models are evaluated as to their complexity and precision by comparing the modeling results with the measured values of Do, Daccs, and Scomm. The primary contributions of this dissertation research are as follows. First, the metric Daccs and Scomm are introduced in order to complement the Do metric in its use for evaluation of the effects of optimizations in the networking subsystem on parallel performance in clusters. The metrics are shown to adequately describe CPSO performance effects. Second, a method for assessing performance effects of CPSO scenarios on application performance is developed and presented. Third, a set of analytical models of cluster node networking subsystems with CPSO capability is developed and characterised as to their complexity and precision of the prediction of the Do and Daccs metrics

    A cross-stack, network-centric architectural design for next-generation datacenters

    Get PDF
    This thesis proposes a full-stack, cross-layer datacenter architecture based on in-network computing and near-memory processing paradigms. The proposed datacenter architecture is built atop two principles: (1) utilizing commodity, off-the-shelf hardware (i.e., processor, DRAM, and network devices) with minimal changes to their architecture, and (2) providing a standard interface to the programmers for using the novel hardware. More specifically, the proposed datacenter architecture enables a smart network adapter to collectively compress/decompress data exchange between distributed DNN training nodes and assist the operating system in performing aggressive processor power management. It also deploys specialized memory modules in the servers, capable of performing general-purpose computation and network connectivity. This thesis unlocks the potentials of hardware and operating system co-design in architecting application-transparent, near-data processing hardware for improving datacenter's performance, energy efficiency, and scalability. We evaluate the proposed datacenter architecture using a combination of full-system simulation, FPGA prototyping, and real-system experiments
    • …
    corecore